AN UNSHELLABLE TRIANGULATION OF A TETRAHEDRON (1 (1 Π I I drav (T - eac1 thir the W_{Γ} twe ane is o ple th as se ne sl \mathbf{t}^{μ} BY MARY ELLEN RUDIN Communicated by R. H. Bing, February 14, 1958 A triangulation K of a tetrahedron T is shellable if the tetrahedra K_1, \dots, K_n of K can be so ordered that $K_i \cup K_{i+1} \cup \dots \cup K_n$ is homeomorphic to T for $i=1,\dots,n$. Sanderson [Proc. Amer. Math. Soc. vol. 8 (1957) p. 917] has shown that, if K is a Euclidean triangulation of a tetrahedron then there is a subdivision K' of K which is shellable; and he raises the question of the existence of a Euclidean triangulation of a tetrahedron which is unshellable. Such a triangulation will be described here. Let T be a tetrahedron each of whose edges has length 1. We will describe a nontrivial Euclidean triangulation K of T such that, if R is any tetrahedron of K, then the closure of (T-R) is not homeomorphic to T. I. Construction of K: Let X_1 , X_2 , X_3 , and X_4 be the vertices of T. The possible values for the letters i and j are 1, 2, 3, and 4 and addition involving i or j will be modulo 4. For each i, let F_i denote the face of T opposite X_i , and let U_i be the midpoint of the interval X_iX_{i+2} . Observe that $U_1 = U_3$ and $U_2 = U_4$. Let ϵ be the length of the shortest side of a triangle whose longest side is of length 1 and two of whose angles are 1° and 60°. For each i, let Y_i denote the point of F_{i+1} at a distance $(3^{1/2}/2)\epsilon$ from X_i such that the angle $Y_iX_iX_{i+2}$ is 1°. For each i, let Z_i denote the point of F_{i+2} such that the angle $Z_iX_iX_{i+3}$ is 1° and the angle $Z_iX_{i+1}X_i$ is 1°. The fourteen vertices of our triangulation K are the points X_i , Y_i , L, and U_i . It can be shown that no triangulation which has less than 14 vertices has the desired property. The tetrahedra of our triangulation K are the tetrahedra of the forms: - $(1) X_{i}Z_{i}X_{i+1}Y_{i},$ - (2) $X_i Z_{i+1} X_{i+1} Y_i$, - (3) $Z_i Z_{i+1} X_{i+1} Y_i$, - (4) $Z_i Z_{i+1} X_{i+1} Y_{i+1}$, - (5) $Z_1Z_2Z_3Z_4$, - (6) $Z_i Z_{i+1} Y_i Z_{i+2}$, - (7) $X_{i}Z_{i+1}Y_{i}Z_{i+2}$, - (8) $X_{i}Z_{i+1}Y_{i+2}Z_{i+2}$, - (9) $X_i U_i Y_{i+2} Z_{i+2}$, ·N (10) $X_i U_i Y_i Z_{i+2}$ (11) $Z_i U_i Y_i Z_{i+2}$. II. Checking the construction: The best method of doing this is to draw a big picture and label the vertices. It is easy to check that for each tetrahedron R of K, the closure of (T-R) is not homeomorphic to T. In order to check that K is a triangulation, first observe that, for each i, the tetrahedra (1), (2), (3), and (4) fit together and form a thin rod having the triangles $X_iY_iZ_i$ and $X_{i+1}Y_{i+1}Z_{i+1}$ for its ends; the union of these rods forms a torus running along the edges X_iX_{i+1} . When (5) is added to this torus the remainder of T is divided into two congruent pieces each containing pieces of T along the faces F_i and F_{i+2} . After (6), (7), and (8) are added to the first five types there is only a small strip around X_iX_{i+2} remaining of T; (9) and (10) complete the faces of T and (11) fills in the final space. To see that the tetrahedra all nest together properly in the order just described, the following facts will be useful. Fact A is needed for the "rods." Fact B is needed for (3). Facts C and D are needed as assurance that none of the tetrahedra of types (5) through (11) intersect the interior of the torus. Fact E is needed to show that (7) does not intersect either (2) or (6). And facts F, G, and H are needed to show that the tetrahedra of types (6) through (11) for i=1 do not intersect the tetrahedra of the same types for i=3. The facts can be easily proved using the definitions of ϵ , Y_i , and Z_i . - (A) The plane $X_i Y_i Z_i$ separates X_{i+1} , Y_{i+1} , Z_{i+1} from X_{i-1} , Y_{i-1} , and Z_{1-1} . - (B) The points X_i and Y_i are on the same side of the plane $X_{i+1}Z_iZ_{i+1}.$ - (C) The plane $Y_iZ_iZ_{i+3}$ separates X_i and X_{i+3} from U_i , X_{i+2} , Y_{i+2} , Z_{i+2} , X_{i+1} , Y_{i+1} , and Z_{i+1} . - (D) The plane $Y_i Z_i Z_{i+1}$ separates X_i and X_{i+1} from U_i , X_{i+2} , Y_{i+2} , Z_{i+2} , X_{i+3} , Y_{i+3} , and Z_{i+3} . - (E) The plane $X_i Y_i Z_{i+1}$ separates Z_i from Z_{i+2} , X_{i+2} , Y_{i+2} and U_i . - (F) The plane $Z_i Z_{i+2} U_i$ separates X_i , Y_i , Z_{i+1} , Y_{i+1} , X_{i+1} from $X_{i+2}, Y_{i+2}, Z_{i+3}, Y_{i+3}, X_{i+3}.$ - (G) The plane $Y_{i+2}Z_{i+2}U_i$ separates X_i and Z_{i+1} from X_{i+2} , X_{i+3} , Y_{i+3} , and Z_{i+3} . - (H) The plane $X_i Z_{i+2} U_i$ separates Y_{i+2} and Z_{i+1} from Y_i , Z_i , and Z_{i+3} . University of Rochester ra is h. :i- $^{\circ}$ ın a- chot T. , i -)e .d 3t : € 1e 11 Ċ