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THE PROBABILISTIC
SET COVERING PROBLEM

Patrizia Beraldi Andrzej Ruszczynski

Abstract. In a probabilistic set covering problem the right hand side is a random
binary vector and the covering constraint has to be satisfied with some prescribed
probability. We analyse the structure of the set of probabilistically efficient points
of binary random vectors, develop methods for their enumeration and propose spe-
cialized branch and bound algorithms for probabilistic set covering problems.



1 Introduction

The set covering problem is one of the fundamental models of integer programming. It has
a deceptively simple formulation:

min ¢l z

Tz > 1, (1)
z € {0,1}",

where T is a 0-1 matrix of dimension m x n, c is an integer n-vector, and 1 = [1...1]7.
Despite of that, set covering problems are very difficult and are known to belong to the class
of NP-hard problems.

Set covering problems arise in manifold applications, such as scheduling, manufacturing,
service planning, logical data analysis. Interested readers are referred to the survey by Balas
[1] and to the annotated bibliography by Ceria, Nobili and Sassano [15]. There is also an
extensive literature on numerical methods for solving such problems, both exact ([2], [4], [8],
[28]) and approximate ([5], [7], [11], [14], [23], [24], [26]). An experimental comparison of the
main methods is reported in the survey paper by Caprara, Fischetti, and Toth [12].

Our objective is to analyse a probabilistic set covering problem, in which the right hand
side of (1) is replaced by a binary random vector £. Clearly, requiring that Tz > £ for all
possible realizations of £ would lead back to the deterministic formulation (1). Instead of
that, we require that the constraints T'x > £ are satisfied with probability at least p, where
p € (0,1) is some prespecified reliability level.

The probabilistic set covering problem is therefore formulated as follows:

min ¢’z (2)
P{Tz > &} > p, (3)
z € {0,1}" (4)

The symbol IP denotes probability. It should be stressed that we do not assume independence
of the components & of £, ¢ = 1,... ,m, and that the constraint (3) is a joint probabilistic
constraint in the terminology of [30].

Many deterministic set covering models have their stochastic counterparts.

Example 1.1 Suppose that we have n potential locations of service centers, and m possible
locations of service requests. Let

T — 1 if a request at ¢ can be served by center located at j,
Y1 0 otherwise.

Our binary decision variables, x;, represent the selection of service center locations: z; = 1
if a center is located at i, otherwise x; = 0.

Let & be an m-dimensional binary random vector representing service requests that occur:
& = 1 if there is a service request at location i; otherwise £ = 0. Then inequality (3) can
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be interpreted as the requirement that the centers located can serve the requests with the
probability at least p. Many variations are possible here, with several matrices T}, for different
service quality levels, and several probability thresholds py.

Example 1.2 Consider a graph with node set N and arc set A. Our “adversary” chooses
at random one or many paths in the graph, from some set of paths II. We want to select a
subset of arcs D C A, such that the probability that each adversaries’ path has at least one
arc in D (is “intercepted”) equals p or more.

We define the binary random vector £ to represent our adversaries’ choice: for each path
m € Il we have &, = 1 if path 7 is selected, and &, = 0 otherwise.

Let T be the arc—path incidence matrix:

T _ 1 if path 7 contains arc a,
e 0 otherwise.

Our decision variables z, € {0,1} model the choice of arcs: z, = 1if a € D, and z, = 0
otherwise. With these definitions inequality (3) represents the requirement on the probability
of interception.

Remark 1.1 The expected value problem, understood as the deterministic model in which
random variables are replaced by their expectations, takes on the form

min ¢ z

Tz > EE,
z € {0,1}".

IfIEE > 0,4 =1,...,m, this problem is equivalent to (1), that is, to the worst case problem,
in which the constraint has to be satisfied for all realizations of &. Therefore, the expected
value approach is of no interest here.

Remark 1.2 If the components of £ are independent, the deterministic equivalent of (2)—(4)
can be developed as follows. The probabilistic constraint (3) is equivalent to the existence
of a vector z € {0,1}™ such that

Tx > z
and
P{¢ <z} > p.

Using the independence of the components of £, and taking the logarithm of both sides, we
can write the last inequality as

D In(P{& < z}) > In(p).

=1
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Let ¢ = P{&, =0}, i =1,...,m. Since In(IP{& < z}) = (1 — z)In(g;), we arrive at the
following re-formulation of (2)—(4)

min ¢ z

Tzr > z,
2(1 — z) In(g;) > In(p),

z € {0,1}", =ze€ {0,1}™.

However, if the components of £ are dependent, we cannot carry out the crucial transforma-
tion of the probabilistic constraint into a linear constraint.

Our motivation for this research is twofold. First, the probabilistic set covering problem is
interesting in its own and has a number of potential applications. Secondly, we intend to use
it as a convenient laboratory model for developing new concepts and algorithms which will be
useful for a broader class of problems: stochastic programming problems with probabilistic
constraints involving both integer decision variables and integer random variables. The
literature about these problems is very scarce, and main developments are still ahead of
us. We can mention here the works [25] and [22] on routing problems with probabilistic
constraints (see also [9]), and few papers that address probabilistically constrained problems
with discrete random variables, but continuos decision variables ([21], [29], [31], [32]).

In the next section we shall recall the notion of a p-efficient point of a discrete distribution
and we shall discuss its role in the analysis of problem (2)-(4). Section 3 is devoted to
procedures for enumerating p-efficient points of binary random vectors. In section 4 we
shall discuss branch and bound methods for solving the probabilistic set covering problem.
Finally, in section 5 we shall present some numerical results.

We use Z™ to denote the set of integer vectors of dimension m. The symbol |- | denotes
the ¢; norm of an m-vector, that is, |[v| = Y"1, |v;|. We use convA to denote the convex hull
of the set A.

2 p-Efficient points

Let F : IR™ — [0, 1] denote the probability distribution function of £, that is, F(v) = IP{{ <
v}. To analyse the structure of the feasible set of problem (2)—(4) we define the set:

Z,={z€R™: F(z) > p}. (5)

All solution strategies proposed in this paper are based on the concept of p-efficient point
of a probability distribution function. This concept has been introduced by Prékopa in [29]
and extensively analysed in [21]. Here we restrict this notion to binary random vectors.

Definition 2.1 A point v € {0,1}™ is called a p-efficient point (PEP) of the probability
distribution F, if F'(v) > p and there is no binary y < v, y # v such that F(y) > p.



PAGE 4 RRR 899

The number of p-efficient points of any discrete random vector is finite [21]; for a binary
random vector this property is trivial.
Let p € (0,1) and let v',... ;v be all p-efficient points of £&. Then

N

z, = J{v'} + RY). (6)

i=1
We can thus replace (3) by the disjunctive constraint:

Tz >v" for at least one i € {1,...,N}.

So, there are two sources of non-convexity in the probabilistic set covering problem: one
introduced by the integrality condition on the decision variables, and the other one introduced
by the probabilistic constraint. The following result shows that the non-convexity introduced
by the disjunctive constraint is absorbed by the integrality condition.

Lemma 2.1 Z,NZ" =convZ,NZ".

Proof. It is sufficient to show that every integer vector z € convZ, is an element of Z,. Let

z > Z)\jvj,

jeJ

where the set J C {1,..., N} is such that \; € (0,1), j € J. Since z is integer and the v’’s
are binary,

z > max{v’, j € J},
S0 z € Z,, as required. |

Let us now pass to the derivation of bounds for p-efficient points. They will use the condi-
tional marginal distributions

Fiv | E<w)=P{ < [ E<w), i=1,...,m.

Lemma 2.2 Let p € (0,1) and let w € {0,1}™ be such that F(w) > p. Define l; to be the

%—eﬁicient point of the conditional marginal F;(v; | £ < w), that is

1 if F;(0 ] &€ <w F(w), .
z,-(w):{o z'fFiE()Iggw)<p/ (W) 1 m (7)

Then
(i) for every p-efficient point v < w we have v > l(w);

(ii) if z < w then I(z) > l(w);
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(111) w is p-efficient if and only if l(w) = w.
Proof. For any vector v < w and for any 7 we have
Fv) = Fw)P{{ <v | § Sw} < F(w)lP{& <wi | £ Sw} = F(w)Fi(vi | £ < w).
Therefore, if v is p efficient, we must have
Fi(vi | € < w) > p/F(w),

so, v; = 1, if F;(0 | £ < w) < p/F(w). This proves (i).
Let us prove (ii). If z < w,

Fi(0|£<2)F(2) =P{§=0] < 2}P{£ < 2}
=P{§ =0, <z}
<P{& =0, <w}
=P{§&=0]¢ < wiP{{ <w}
=F((0 | <w)F(w).

Therefore I(z) > l(w), as required.
To prove (iii) suppose that /;(w) < w; for some i, that is, w; = 1 and [;(w) = 0. Define
W= (wy,...,w; 1,0, Wi11,..., Wwy). Then

F(w) = F(w)F(0 | £ <w) > p,
so w cannot be p-efficient. H

We shall use Lemma 2.2 to trim the search tree in methods for enumerating p-efficient
points and in branch and bound methods for solving (2)—(4).

3 Enumeration of p-efficient points

3.1 Forward enumeration

In [31], Prékopa et al. proposed a conceptual algorithm for the enumeration of the PEP for
the general case of discrete random variables. It uses nesting with respect to the dimension
of the random vector. In the case of binary random variables, the enumeration of PEP can
be carried out in a more efficient way.

Throughout, a binary vector v € B™ is said to belong to level j if |v| = j.

On the basis of the definition of PEP, it is evident that a natural strategy to adopt for
their determination is based on a “level” search. We may start from the lowest level and
move from one level to the next until no more PEP can be found.
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This basic scheme can be improved by using two main considerations. The first one
follows from Lemma 2.2. By setting w = 1, we can define the point [ = [(1) as follows:
= 1 if F5(0) < p, io1 m (8)
T 0 ifE(O)Zp —_— g ey .

Here, F; is the ith marginal distribution of £ (without any conditions). By Lemma 2.2, the
vector [ constitutes the lower bound for all p-efficient points of £&. Basing on that, we can
fix to 1 some components of the potential PEP and restrict our search to a space of lower
dimension. In effect, the starting level will be j + 1 where j = |I|.

The second consideration follows from the concept of dominance.

Let v be a PEP of level j. We say that it dominates a point w of level k if v < w. Thus
a point w of level k£ can be PEP only if it is not dominated by any PEP belonging to the
previous levels.

It is evident that each point of level j dominates (7]?:;) points of level k, and each point

of level k is dominated by (’;) points of level j.

Let us now consider a certain level k. It can be partitioned into three different sub-
sets: dominated points, PEP, nondominated and not PEP. Among all these points, only
those belonging to the third subset represent potential candidates for further exploration.
In particular, each candidate at level £ will be the father of m — k children, out of which
some will be either dominated, or PEP, or will become candidates for the next level. It
is important to stress that each child has many fathers (£ in this case) and, consequently,
it is necessary to introduce some mechanism preventing duplication of children which have
already been generated (“prime” children). The enumeration process terminates when the
number of candidates at the current level is zero.

The algorithm presented below formalizes these ideas.

1. Initialization
Determine the lower bound vector [. Set:
k = |l| level counter,
Sk = () set of PEP at level &,
CF = {l} set of candidate points at level k,
P* = () set of “prime” children of points of level k,
J = 0 set of all PEP found fo far.

2. Enumeration
For each v € C* generate all its “prime” children and add them to P*.

3. Dominance Test
For each v € P*, verify if there exists a point in J dominating it. If this is the case,
eliminate v; otherwise, compute the value of the probability distribution function F'(v).
If F(v) > p, add v to S¥*1, otherwise add v to C**1.
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4. Termination Test
Set J = J U Sk If O+ = (), stop; otherwise, increase k by 1 and go to Step 2.

To avoid duplication, with each node v we associate the position i(v) at which v differs from
its father (the last position set to 1). To generate “prime” children, we consider only i > i(v)
as potential positions to be set to 1.

The determination of the PEP through the proposed algorithm can be seen as a breadth-
first search procedure on the tree of all binary vectors of dimension m — || (|| positions have
been already fixed to 1). The root of the tree is the node defined by the vector [. It is clear
that if m is large and |{| is not close to m we may encounter serious difficulties in this type
of enumeration.

3.2 Backward enumeration

An alternative approach to the determination of the PEP is based on a “backward” search.
We start from the node of maximum level (the vector 1) and we move to lower levels of the
binary tree. In the backward search the determination of the PEP is based on the application
of Lemma 2.2.

Let us consider a point w at level k = m — j, where j > 1. By Lemma 2.2, all p-efficient
points v < w are dominated by the vector I(w) given by (7). We define the following sets:

IHw)={ie{l,....,m} : l;(w) =1},
Jw)={ie{l,...,m} : w; =0}.

Clearly, the components i € I(w) can be permanently fixed to 1 at all candidates v < w,
while the components ¢ € J(w) are already fixed to 0. Since w has been obtained by fixing to
zero one component in a vector z at the higher level, Lemma 2.2(b) implies that 1(z) C I(w).
Therefore, only the components I;(w) for i ¢ I(z) U J(w) need be computed.

If I(w) # w, some components are still free, that is the set {1,... ,m}\ I(w)\ J(w) # 0.
Only these components will be used to branch by setting one of them to 0.

Since a predecessor of w is also a predecessor of other nodes at level k, the same node
could be generated many times. In order to avoid this, some mechanism that guarantees the
generation of the “prime” predecessors only has to be introduced. Similarly to the forward
method, with each node w we associate the last position i(w) at which w has a zero. Only
i > i(w) are considered as candidates for branching (setting w; = 0). Thus, we need only to
compute [;(w) for

i€ {i(w)+1,...,m}\I(w)\ J(w).

The generation procedure terminates when all the potential PEP w at a given level satisfy
the condition /(w) = w.
The “backward” algorithm can be formalized as follows:
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1. Initialization
Determine the vector [. Set:
k = m level counter,
Sk = () set of PEP at level k,
Ck = {1} set of candidate points at level k,
P* = () set of “prime” predecessors of points at level k,
J = 0 set of all PEP.

2. Enumeration
For each v € C* generate all its “prime” predecessors and add them to P*.

3. Efficiency Test
For each v € P*, compute I(v). If [(v) = v then add v to S*¥~'; otherwise, add v to
k1.

4. Termination Test
Set J = J U SkL. If C*¥~! = (), stop; otherwise, decrease k by 1 and go to Step 2.

The main advantage of this method is the quick improvement of the lower bounds I(w)
in the course of computation. The more components are set to 0 by branching, the more
other components will be fixed to 1 by lower bounds. This facilitates the trimming of the
search tree.

4 Solution methods

In order to solve the probabilistic set covering problem, we can adopt two different strategies
that we refer to as complete and hybrid.

The complete strategy consists of two distinct phases. In the first one we enumerate all
PEP, whereas in the second phase we determine, by using some tailored solution method,
the optimal solution of the problem.

Generating all the PEP is computationally expensive, because their number can be very
large even for moderate values of m. The hybrid solution approaches try to avoid the
complete enumeration of the PEP and to generate them only when required. The key idea
is to alternate the phase of enumeration and the phase of solution of the corresponding
problems until some termination condition is reached.

It is evident that a crucial role in the hybrid solution methods will be played by the upper
and lower bound values. Indeed, on the basis of the comparison between the lower bound
value associated with a potential PEP, and the value of the best known feasible solution, we
can decide either to eliminate the node, or to label it as a candidate for further exploration.

As pointed out in section 3, the determination of PEP can be carried out by visiting the
tree of all binary vectors starting either from the node [ of the lowest bound, or from the
node 1 of maximum level.

By using these two proposed enumeration schemes, we may develop two hybrid solution
methods: forward and backward.
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4.1 Complete methods

Once all PEP v!,...,v" are known, the straightforward way to solve the probabilistic set
covering problem, is to solve the problem

min ¢’z
Tz > v, 9)
z € {0,1}"

for each £ = 1,... N. The optimal solution of the original problem will be the best one
among the N optimal solutions determined. Each such problem is a deterministic set covering
problem in which the rows of the matrix 7" that correspond to the 0 entries of the PEP can
be removed.

It is well known that the set covering problem is NP-hard, thus an efficient solution
strategy should try to avoid the solution (as integer) of as many problems as possible. This
can be accomplished by using a “bounding-pruning” scheme. For each problem we may
derive a lower bound on its optimal value by solving its relaxation (e.g. linear or lagrangian).
On the basis of a comparison with some known feasible solution, we can decide either to
prune the problem or to hold it as a potential candidate for further exploration.

Critical to this strategy is the determination of a “starter”, that is the first problem whose
integer solution (either optimal or feasible) will be used as an upper bound, z;. Heuristic
procedures for generating the upper bound will be discussed in section 4.4.

In the complete method we maintain a list L of all PEP ordered by level. At each iteration,
we select a PEP v* from L and we solve the relaxation of the corresponding problem (9).
As in the standard branch and bound algorithm (here we use only the bounding part), we
compare the round-up optimal value of this problem, z;, with the upper bound z;. The
following cases can happen.

e The solution is not integer and z; > z;; in this case we prune the problem.

e The solution is not integer, but z; < z7; in this case we add the problem to the list M
of potential candidates to be solved as integer.

e The solution is integer, but 2z, < z;y. Then we update the value of z; and eliminate
from the list M all problems with larger values of the objective function.

Once the list L is empty, we proceed with the determination of the integer solution starting
from the problem with the smallest lower bound value. Each time a better value for zj is
found, all the problems j € M with round-up value z; > z; are eliminated. The procedure
terminates when M is empty.

4.2 The forward branch and bound method

The forward branch and bound method combines the forward enumeration procedure with
a “bounding-pruning” scheme. To initialize the method we need a feasible solution which
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will serve as the first upper bound z;. This can be computed by solving (9) with a first PEP
t as right-hand side.

Suppose that the forward enumeration procedure of section 3.1 is at level k£ in the tree
of binary vectors. The non-dominated points of the level can either belong to the set S* of
PEP, or to the set C* of potential candidates to be further explored.

For each node v € S¥ U C*, we solve a relaxation of the problem:

min ¢ z
Tzr > v, (10)
xz € {0,1}".

Let z(v) be the round-up value of the objective function. It is evident that this value
represents a lower bound not only on the optimal solution of problem (10), but also on
optimal solutions of all problems corresponding to nodes generated from v (that is, for nodes
w > v). Thus, on the basis of the comparison between z(v) and the best upper bound, z;,
we can decide either to prune the node (if z(v) > z;) or to proceed further (if z(v) < z).
In particular, if the last condition occurs and v is a PEP (v € S*) it may generate a better
upper bound. If the solution happens to be integer, we update z;; otherwise, we add problem
(10) to the list M of problems to be solved as integer.

The condition z(v) > z; can also be used to prune other nodes at higher levels. Although
we prevent the duplication of immediate successors, we cannot avoid the situation that a
successor of the current node has a predecessor at earlier levels which have already been
discarded. In order to avoid this redundant generation (and solution of the corresponding
relaxed problems), we can label v as a “pseudo” PEP, and use it in the dominance test to
prune additional nodes.

The forward solution method can be formalized as follows.

1. Initialization
Determine the vector [ and the upper bound z;. Set:
k = |l| level counter,
S* = () set of PEP at level &,
Ck = {l} set of candidate points at level k,
P* = () set of “prime” children of points at level k,
L* = () set of “potential” candidates at level k,
R = () set of “pseudo” PEP,
M = () list of the problems to be solved as integer,
J = {t} set of all PEP.

2. Enumeration
For each v € C*, generate all its “prime” children and add them to P*.

3. Dominance Test
For each v € P¥, verify if there exists any point in J U R dominating it. If this is the
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case, discard v; otherwise, compute at v the probability distribution function F(v). If
F(v) > p, then add v to S*¥*!; otherwise, add v to LFFL.

4. Termination Test
Set J = J U Sk If Lk = () and S**! = (), Stop; otherwise, increase k by 1.

5. Solution
For each v € S¥ U L*, solve a relaxation of problem (10). Let z(v) be the objective
function value.

If z(v) > z;, then

(i) if v € L* add v to R;
ii) if v € S* discard the point.
(i)

If z(v) < 21, then

(i) if v € L* then add v to C¥;

(ii) if v € S* and the solution is fractional then add problem (10) to M; if the solution
is integer, update the upper bound z; = z(v), and eliminate from M all problems
with a worse lower bound value.

If C* = (), stop; otherwise, go to Step 2.

When the algorithm terminates, the list M contains all the most promising problems to
solve as integer. As in the case of the complete strategy, we determine the optimal solution
starting from the problem with the smallest lower bound value. Each time a better z; is
obtained, we prune some problems until M is empty.

4.3 The backward branch and bound method

In the backward method the determination of the lower bound values is based on Lemma 2.2.

Let us consider a node w at level m — j. In order to determine a lower bound on the
optimal solution for all the problems corresponding to potential p-efficient predecessors of
w, we solve a relaxation of the following problem:

min ¢z
Tz > l(w), (11)
z € {0,1}",

where the vector [(w) is computed by (7). As in the forward method, we compare the
round-up of the optimal objective value z(l(w)) of a relaxation of (11) and the best known
feasible solution z;, and we either eliminate the node or continue exploration. In particular,
if z(l(w)) > zr, then node w can be discarded. Furthermore, in order to avoid generation
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of poor candidates, we can store the vector /(w) and use it in an efficiency test to prune all
v > l(w). If z(l(w)) < zr, then w is a promising candidate. In addition, if I(w) = w, we add
problem (11) to the list M of problems to be solved as integer, if the solution is fractional;
otherwise we update z; and prune.

The backward method can be formalized as follows.

1. Initialization
Determine the vector [, and the upper bound z;. Set:
k = m the level counter,
Sk = () set of PEP at level k,
C* = () set of candidate points at level k,
P* = () set of “prime” predecessors of points at level k,
L¥ = () set of “potential” candidates at level k,
M = () list of the problems to solve as integer,
R = () set of eliminated points,
J = {t} set of all PEP found.

2. Enumeration
For each v € C*, generate its “prime” predecessors and add them to P*.

3. Efficiency Test
For each v € P*, verify if there exists any point w in R such that w < v. If this is the
case, discard v; otherwise, compute [(v). If I(v) = v add v to S¥~1; otherwise, add v
to Lk,

4. Termination Test
If S¥~1 = and L*~! = (), stop; otherwise, decrease k by 1.

5. Solution
For each v € S*¥ U L* solve a relaxation of problem (11). Let z(I(v)) be the objective
function value.

If z({(v)) > 21, then
(i) if v € L* add I(v) to R,
(ii) if v € S* discard the point.
If z(I(v)) < zr, then
(i) if v € L* add v to C¥;

(ii) if v € S* add problem (11) to M, if the solution is fractional; if the solution is
integer, update z; = z(Il(v)), and eliminate from M all problems with a worse
lower bound value.

If C* = (), stop; otherwise, go to Step 2.
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As in the forward method, at termination the list M contains all problems to be solved as
integer.

4.4 Greedy heuristics

All solution methods share the problem of determining an initial upper bound. Such a
problem can be addressed by using different strategies.

An adaptation of Chvatal’s greedy heuristic method [17] for deterministic set covering
problems belongs to this class. We find the variable z; for which the ratio of its cost
coefficient ¢, to the number of nonzeros |T},| in its column of T is minimal, and we set
xj, = 1. At step k, when variables z;,,... ,z;_, are already set to 1, we check whether
F(Txz) > p. If so, we stop; otherwise, we select the next variable z;, for which the ratio
of ¢;, to the number of nonzeros in its column 7j, in the rows which are not yet covered is
minimal, etc. At termination, we calculate v = T'x and solve to optimality the corresponding
set covering problem.

It is evident that the upper bound value found in this way may be rather weak, because
v = Tz may be much larger than a PEP.

An improvement can be obtained by searching for a p-efficient point of the lowest possible
level. In the complete method we can simply select a point v* at random from the set of
PEP having the least norm. In the backward enumeration method, we proceed in a depth
first fashion as long as there is a possibility to go to a lower level. The last PEP v* found
in the branch explored in this way is entered to the set covering problem (9). The integer
solution of this problem will be our first upper bound. We shall call this approach the simple
PEP-based heuristic.

A stronger bound can be obtained by using the vector of Lagrange multipliers u corre-
sponding to the deterministic problem (1).

In the complete methods, having enumerated all p-efficient points v, ... ,v", we choose
v"" for which the dual bound u”v" is minimal. Then we solve as integer the set covering
problem (9).

In the backward branch and bound method, we proceed in a depth-first fashion as follows.
At step k, given v* such that F(v*) > p, we calculate the lower bound [(v*) by (7). Then,
among the coordinates i such that I;(v*) < vF we find 4 such that
= max{u; : [;(v*) = 0}.

U’ik

Then we set

o1 — 0 1= g,
i ¢ 7& Lk,

and the iteration continues. The algorithm stops when [(v*) = v*, that is, when v* is a p-
efficient point (Lemma 2.2). At this point we solve the corresponding deterministic problem
to optimality. We shall call this method dual PEP-based heuristic.
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5 Computational Experiments

This section is devoted to the presentation and discussion of the computational experiments.
In the first part we shall focus our attention on the enumeration methods: we analyse the
main computational issues and present the numerical results. The second part is dedicated to
the solution methods: crucial factors affecting the performance of the methods are discussed
and the numerical results of both the complete and hybrid solution strategies are presented.

5.1 Computational issues for enumeration strategies

In order to evaluate the performance of enumeration and solution methods, we consider a
binary random vector & whose components &;, 7 = 1, ..., m, are partitioned into independent
subvectors &', ..., &% of dependent random variables. This assumption makes the model
rather flexible and encompasses the cases of all independent and all dependent random
variables.

Clearly, computation of the probability distribution function at a given point v € {0, 1}™
is an indispensable part of the procedure. We do not need to store the huge array with
the values of F' at each binary point; it is sufficient to store lower dimensional marginal
distributions Fi, ..., F for each of L independent groups of dependent components. Then
F(v) = Fi(v') - ---- Fp(vl), where v!,... v are the corresponding subvectors of v. To
efficiently store the s-dimensional marginal probability distribution function we treat the
binary argument as a binary representation of an integer, so only a real array of dimension
2% of function values needs to be stored.

As far as the forward generation of binary points is concerned, a reasonable way to
proceed is to store only the positions of the binary point at which 1 appears. So, for points
of level 1 we store one position, for points of level 2 two positions, and so on. To generate
points of a given level k starting from points of the previous level £ —1 the following ordering
scheme avoids duplication. Let v be a point of level k¥ — 1 with positions (i1, ..., ix_1) fixed
to 1. If ix_1y < m, starting from v we generate s = m — i;_; points w with the last 1 at
i = tk—1 + J, for 5 = 1,...s. In this way, we avoid the generation of the same point at a
given level, starting from different points of the previous level.

For backward methods the approach is similar. We only store positions at which 0
appears. For a point v of level m — k + 1 with positions (i1, ..., ix_1) fixed to 0, we generate
s =m — ix_1 points w with the last 0 at ¢y = i1+ 7, for j=1,...5s.

5.2 Numerical results of the enumeration methods

The test problems used in our computational experiments have been generated by speci-
fying, in the general model introduced above, the type of dependency among the random
components of a given group.

Let us denote by X ..., X, the dependent variables belonging to a subvector of size s.
We have considered two different types of dependency.
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The first type of dependency model is the following. Given independent Bernoulli random
variables Y7, ... Y, with parameters a1, ...a,, we define the variables X; ... X as

Xi:}/:i\/}/;(mods)—i—la 7;:17"'787

where V and mod denote the union and modulo operators, respectively. In a such a scheme two
consecutive random variables have a common source of dependency. The scheme, referred
in the following as “circular”, can be depicted as in Figure 1.

Figure 1: The circular dependency scheme.

In the second case given independent Poisson random variables Y7, ... Y, with parameters
A1y ..., Ag, We first define the integer vector Vi ...V, as follows:

Vi=Yi4 Yy, i=1,...s

The distribution of (Xj,...,X;) is the conditional distribution of (Vi,...,V;) under the
condition that V; < 1,4 = 1,...,s. This is a rather involved scheme of dependency (see
[30]). As an illustration, we report the computation of the mass function for a subvector of
size 2.

Let us denote by A1, Ay, A3 the parameters of three independent Poisson random variables
Y1,Y5,Y;. The dependent variables Vi, V5 are defined as follows:

Vv1:Yv1+YT3,
Vo =Y, + Y5
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Let k1 and ko be two non-negative integer values. The following relation holds:

min(k1,k2)
]P{Vlzkl,VQZkQ}Z Z P{YI‘FY},:/%}@*-Y},:%‘K’,:k}'ﬂ){%:k}
k=0
min(ki,k2)
= Y P{Vi=k-kYo=k -k} -P{Y;=Fk}
k=0
min(k1,k2) )\ k
— o~ (aFA2+As) 3 ARk
e > () 0

By replacing k1, ko with the values 0, 1 and normalizing we get the mass distribution function
of X;, X5. In the described model there exists a common source of dependency for all
components of the random variable within a subgroup. The model, referred in the following
as “star”, can be depicted as in Figure 2.

Figure 2: The star dependency scheme.

For completeness, we have also considered the case of independent random variables. In
particular, we have assumed that each component &;, 7 = 1,...,m, can take the value 0 with
probability ¢; = qé/ ' where the value ¢y can be defined by the user.

We do not intend to use independence in our methods, by applying the transformations
mentioned in Remark 1.2. The objective of this example is to see how general methods
behave if the components of the random vector happen to be independent.

It is also not our intention to analyse the effect of different dependence structures on
the performance of the methods. The only objective of these constructions is to generate
non-trivial examples. Nevertheless, the design of meaningful test problems is a crucial issue:
to our best knowledge, no test involving dependent discrete random variables has been ever
presented in literature.

In order to design the test problems, we have considered, for each dependency model,
different sizes of dependent groups. In the case of independency, we have as many groups of
size 1 as the dimension m of the random vector.
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We have generated three different classes of problems: small, medium, large. The size of
the search space has been set to 50, 100 and 200, respectively. The characteristics of the test
problems are summarized in Table 1, where we report the type of model, the group size and
the number of groups.

Table 1: Characteristics of the Test Problems

H Problem H Model Group’s size | Number of groups H
Test1 Star 5 10
Test2 Circular 5 10
Test3 Star 10 5
Test4 Circular 10 )
Testb Independent 1 50
Test6 Star 5 20
Test7 Circular 5 20
Test8 Star 10 10
Test9 Circular 10 10

Test10 | Independent 1 100
Test11 Star 5 40
Test12 Circular 5 40
Test13 Star 10 20
Test14 Circular 10 20
Test1l5 | Independent 1 200

All computational experiments have been carried out on a single processor R10K at 195
MHz of the supercomputer SGI Origin 2000, which has 4 nodes, with 4 Mb cache memory
and 128 Mb RAM each. All codes have been implemented in the C language. The cc
compiler with the default optimization level has been used.

We have enumerated the PEP for two different values of the probability level p. For each
class of problems, Tables 2—4 report the number of PEP and the time (in seconds) required
by the forward and backward enumeration procedures. We note that the number of PEP
depends on choice of the distribution parameters, i.e. the values of a; and ); in the circular
and star dependency schemes, respectively, and the value of ¢y in the case of independent
random variables. The choice of these parameters depends on the considered applications
and it is left to the user. In our experiments the values of o; and \; have been chosen in the
range [0.009,0.99]. In order to reflect the freedom in the user’s choice, we have defined our
tests in such a way that different groups may have different values of the parameters selected
from the defined ranges. These values are reported in Tables 9-12. For each dependency
scheme, the test problems are grouped according to the size s of each group. Note that in the
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case of star dependency, we have to include an additional random variable, with parameter
As+1, denoting the center of the star.

In the case of independency the experiments have been performed by setting ¢y to 0.1
for all the tests.

Table 2: Results of the Enumeration Procedures for the Small Test Problems

| Problem | p | PEP | Forward | Backward |

Test1 095 | T4 1.01 1.06
Test1 0.90 | 1016 130.89 100.29
Test2 0.95 | 52 0.70 0.72
Test2 0.90 | 779 100.76 80.48.89
Test3 0.95| 156 2.40 2.45
Test3 0.90 | 2490 296.15 210.99
Test4 0.95 | 107 2.00 2.17
Test4 0.90 | 1732 269.78 178.89
Testb 0.95 6 0.01 0.02
Testb 0.90 | 56 0.68 0.80

The numerical results shows that the number of PEP increases as p decreases. This is
confirmed by our intuition: the higher the reliability imposed, the smaller the number of
feasible “configurations”. Other considerations concern the impact of the structure of the
problem on the number of PEP. For a given size of the search space, we note that, at least
for the test considered here, the larger the group’s size the higher the number of p-efficient
points. Nevertheless, the size of the search space influences the number of PEP: for a given
group’s size the larger the number of groups the higher the number of PEP. This behavior
is even more relevant in the case of independent random variables. Here by increasing the
size of the search space from 100 to 200 we pass (for p = 0.95) from 139 to 179564 PEP.

The computational comparison of the two enumeration strategies reveals the advantage
of the backward enumeration procedure over the forward one. This can be explained by
observing that the vast majority of PEP belongs to high levels (with large numbers of
1s). The backward strategy enumerates these points at early iterations, which substantially
reduces the number of candidates at later stages. This does not apply to the forward strategy.
Since we start from the lowest level (actually, the level m -|l|), our search through initial
levels may be fruitless. We note that for Test15 with p = 0.90 both the procedures fail to
enumerate all the PEP because of problems related to memory allocation (represented by
“” in Table 4).
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Table 3: Results of the Enumeration Procedures for the Medium Test Problems

| Problem | p | PEP | Forward | Backward ||

Test6 0.95 | 198 2.45 2.40
Test6 0.90 | 5289 192.08 137.20
Test7 0.95 | 144 3.82 3.30
Test7 0.90 | 5426 090.81 330.90
Test8 0.95 | 202 2.54 2.51
Test8 0.90 | 7923 985.65 368.20
Test9 0.95 | 182 2.89 2.70
Test9 0.90 | 12809 | 803.71 423.0
Test10 | 0.95| 139 1.85 1.80
Test10 | 0.90 | 24253 | 1500.39 824.60

Table 4: Results of the Enumeration Procedures for the Large Test Problems

Problem | p PEP | Forward | Backward
Test1l | 0.95 | 240 6.01 5.90
Test1l | 0.90 | 8466 622.70 479.20
Test12 | 0.95| 208 7.00 5.56
Test12 | 0.90 | 13397 | 1071.53 729.00
Test13 | 0.95| 274 7.84 7.20
Test13 | 0.90 | 9872 1136.87 752.90
Test14 | 0.95 | 282 10.56 8.7
Test14 | 0.90 | 14789 | 1610.38 914.99
Test15 | 0.95 | 179564 - 11132.90
Test15 | 0.90 - - -
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5.3 Computational results of the solution strategies

In order to evaluate the performance of the solution procedures we have considered two test
problems from the Beasley’s OR library [6], namely scp41 and scp42. These are determin-
istic set covering problems with m = 200 rows and n = 1000 columns. The probabilistic
instances have been defined combining the deterministic problems with Test11-Test15 in
Table 1, thus obtaining 10 different test problems. Other numerical results, collected on
randomly generated test problems of smaller size, are reported in [3].

All the codes developed for the solution of the probabilistic set covering problem use the
state-of-the-art LP solver CPLEX 6.5 [20]. The choice of this software, although probably
not the most efficient for the solution of deterministic set covering instances (see [12] for an
experimental comparison among of the main methods), is motivated by its high flexibility.
Indeed, it contains callable libraries which allow to perform several operations (such as
sensitivity analysis, determination of the dual multipliers, etc.) used in our algorithmic
schemes.

As in any branch and bound scheme, the performance of the solution procedures is
influenced by the initial upper bound value. It is obtained by solving an instance of the set
covering problem having as the right-hand side the first PEP. We shall present and compare
the results collected by using both the simple and dual heuristic strategies proposed in section
4.4 to address this issue. The upper bound value is used to decide to either eliminate or
maintain a given candidate problem for further exploration. The “elimination” test is based
on the use of a lower bound on the optimal solution of the candidate problem; the bound
which is obtained by solving a relaxation of the problem.

The choice of the type of relaxation represents another crucial issue in the solution
method. We have used a two stage relaxation. At first, we compute a dual bound us-
ing the Lagrange multipliers u obtained by the linear relaxation of the set covering problem
(1). Its round-up value is used to perform the first selection: we solve the linear relaxation
only for problems with the dual bound better than the best solution found so far. We note
that the solution of the linear relaxations can be efficiently carried out by the dual simplex
method starting from the optimal basis of the previous problem. The use of the two-stage
relaxation allows to achieve better performance especially in the hybrid solution methods. In
this case, the number of relaxations to be solved is larger than those handled in the complete
strategies because both PEP and potential candidates have to considered.

The use of preprocessing or presolving techniques represents another crucial issue in
improving the performance of the solution methods. Their aim is to shrink the size of
the problem with the resulting benefit of cutting the solution time. This is even more
relevant for the probabilistic version of the set covering problem, because several instances
of the deterministic problem have to be solved. The literature dealing with preprocessing
techniques for the deterministic set covering problem is quite rich (see [10] and the references
herein for a detailed survey).

Particularly relevant are techniques aiming at reduction of dominated /duplicated columns
and rows. We have implemented both techniques (for columns and for rows) as described by
Beasley in [4]. The column reduction technique has been applied to the original deterministic



RRR 8-99 PAGE 21

set covering problems scp41, scp42 used in our tests. The reduction in the number of the
columns is remarkable: the number of deleted columns is 827 and 781 for the two problems,
respectively. On the other hand, the row reduction technique appears to be completely
ineffective, at least for the two test problems considered here.

Reduced cost fixing is another useful preprocessing technique. It consists in fixing to zero
the value of each variable whose reduced cost is greater than the difference between current
upper and lower bounds on the optimal value of the problem (see, for example, [4]). In the
case of the probabilistic set covering problem this idea can be applied at two different levels:
in the solution of a given instance of the set covering problem and within the whole solution
procedure. The first level is not the main concern here: we insert the set covering instance
in a black box and we get the solution. The second level is more interesting. Within the
hybrid solution method we can maintain a “global” gap defined as difference of the current
incumbent value and a global lower bound computed on the basis of the bounds associated
to the potential candidates at a given level. The use of the global gap allows to deal with a
unique matrix constraint during the computation. The implementation of the reduced cost
fixing requires a computational cost which is not rewarded, at least for the test problems
considered, by the reduction in the problem’s size produced by the use of this technique.
The numerical results presented below have been collected including only column reduction
and the other techniques offered by CPLEX.

Our final remark concerns the enumeration strategies used in the solution methods. On
the basis of the computational results presented in the previous subsection, it is evident that
the backward enumeration method outperforms, at least on the test problems considered
here, the forward one. Thus in the following we shall present the results obtained by using
the backward strategy.

5.3.1 Numerical results of the complete solution methods

Tables 56 report the computational results collected by using the complete method with
the simple and dual heuristics for determining the first PEP. Here z; denotes the initial
upper bound value, PEP the total number of p-efficient points, LP the number of linear
relaxations and z* the optimal objective value of the probabilistic set covering problem. The
last column reports the solution time measured in seconds. The test have been performed
for two values of the probability level p. We note that the number of integer problems solved
has not been reported because for both scp41 and scp42 the linear relaxations provide an
integer solution.

The computational results show that the complete method with dual heuristic outper-
forms, at least on the tests considered here, the version with the simple heuristic. Given the
nature of the method, both the simple and the dual versions enumerate all the PEP. How-
ever, the number of solved problems is smaller in the dual version. The advantage related to
the solution of a lower number of problems is more relevant as the solution time per problem
increases. Thus better performance can be achieved for more computationally demanding
problems.
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Table 5: Numerical results of the complete strategy with simple heuristic

| Problem || p | s | PEP | LP | =
Test11.1 | 0.95 [ 428 | 240 9 [419| 6.89
Test11.1 | 0.90 | 424 | 8466 | 258 | 413 | 502.66
Test12.1 | 0.95 | 429 | 208 | 42 |416| 9.52
Test12.1 | 0.90 | 424 | 13397 | 128 | 410 | 740.71
Test13.1 | 0.95 | 427 | 274 | 41 | 416 | 10.97
Test13.1 | 0.90 | 420 | 9872 | 80 | 402 | 760.29
Test14.1 | 0.95 | 418 | 282 | 10 |410| 9.78
Test14.1 | 0.90 | 410 | 14789 | 492 | 404 | 958.46
Test15.1 | 0.95 | 425 | 179564 | 250 | 357 | 11160.41
Test15.1 || 0.90 | - - - - -

Test11.2 | 0.95 | 516 | 240 | 34 [510] 9.14
Test11.2 | 0.90 | 510 | 8466 | 959 | 484 | 578.49
Test12.2 | 0.95 | 515 | 208 | 11 |503| 6.73
Test12.2 | 0.90 | 513 | 13397 | 339 | 494 | 759.69
Test13.2 | 0.95 | 492 | 274 | 31 |487| 10.17
Test13.2 | 0.90 | 489 | 9872 | 150 | 447 | 765.68
Test14.2 | 0.95 | 507 | 282 | 33 |497| 11.85
Test14.2 | 0.90 | 507 | 14789 | 531 | 479 | 962.87
Test15.2 || 0.95 | 498 | 179654 | 1212 | 443 | 11254.13
Test15.2 | 0.90 | - - - - -

Time

5.3.2 Numerical results of the hybrid solution methods

Tables 7-8 report the numerical results collected by using the hybrid method with the simple
and dual heuristics. Here PEP refers to the number of the p-efficient points enumerated by
the algorithm. This number is always smaller than the total number of PEP enumerated by
the complete methods. For some test problems, the reduction can be huge. For example,
for Test11.1 with a probability level p of 0.90 the hybrid method with simple heuristic
enumerates only 11% of the total number of PEP. The advantage of a reduced enumeration
is more relevant as the number of PEP increases. As the extreme case, we cite Test15 with
p = 0.90. This problem can be successfully solved only by the hybrid method, whereas the
complete algorithm fails because of memory requirements.

We note that the number of enumerated points is influenced by the initial upper bound
value: the better the value, the smaller the portion of the graph explored during the com-
putation. For example, for Test 13.2 with p = 0.90 the number of PEP decreases from 1745
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Table 6: Numerical results of the complete strategy with dual heuristic

| Problem || p | 2y | PEP |LP| z* | Time
Test11.1 || 0.95 [ 419 240 | 7 [419] 6.71
Test11.1 || 0.90 | 414 | 8466 | 170 | 413 | 495.59
Test12.1 || 0.95 | 420 | 208 | 32 | 416 | 8.72
Test12.1 || 0.90 | 413 | 13397 | 83 | 410 | 736.65
Test13.1 || 0.95 | 416 | 274 | 11 | 416 | 8.12
Test13.1 || 0.90 | 402 | 9872 | 7 |402| 752.98
Test14.1 || 0.95 | 418 | 282 | 10 | 410 | 9.78
Test14.1 || 0.90 | 410 | 14789 | 492 | 404 | 958.46
Test15.1 || 0.95 | 418 | 179564 | 188 | 357 | 11153.59
Test15.1 || 0.90 | - - - - -

Test11.2 || 0.95 | 510 | 240 | 19 | 510 | 7.79
Test11.2 || 0.90 | 484 | 8466 | 80 | 484 | 487.88
Test12.2 || 0.95 | 505 | 208 | 7 |503| 6.30
Test12.2 || 0.90 | 499 | 13397 | 252 | 494 | 751.86
Test13.2 || 0.95 | 492 | 274 | 31 | 487 | 10.17
Test13.2 || 0.90 | 449 | 9872 | 24 | 447 | 755.24
Test14.2 || 0.95 | 497 | 282 | 15 | 497 | 10.23
Test14.2 || 0.90 | 485 | 14789 | 322 | 479 | 944.15
Test15.2 || 0.95 | 451 | 179654 | 746 | 443 | 11207.54
Test15.2 || 0.90 | - - - - -

PAGE 23
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to 740.

Table 7: Numerical results of the hybrid strategy with simple heuristic

H Problem H p ‘ 27 ‘ PEP ‘ LP ‘ z* Time
Test11.1 | 0.95 | 425 | 209 15 | 419 6.75
Test11.1 | 0.90 | 425 | 935 74 | 413 | 60.87
Test12.1 | 0.95 | 429 | 165 34 | 416 7.76
Test12.1 | 0.90 | 424 | 6387 | 653 | 410 | 448.52
Test13.1 | 0.95 | 427 79 8 | 416 3.99
Test13.1 | 0.90 | 427 | 463 23 | 402 | 37.90
Test14.1 | 0.95 | 422 | 252 10 | 410 8.83
Test14.1 | 0.90 | 422 | 5284 | 502 | 404 | 380.76
Test15.1 || 0.95 | 427 | 140274 | 564 | 357 | 8780.02
Test15.1 | 0.90 | 382 | 529814 | 2769 | 343 | 33153.07
Test11.2 | 0.95 | 516 | 221 22 | 510 7.68
Test11.2 | 0.90 | 516 | 1881 | 136 | 484 | 123.41
Test12.2 | 0.95 | 515 | 106 6 | 503 4.02
Test12.2 | 0.90 | 511 | 6249 | 214 | 494 | 400.20
Test13.2 || 0.95 | 510 | 217 29 | 487 8.65
Test13.2 || 0.90 | 514 | 1745 | 215 | 447 | 155.64
Test14.2 || 0.95 | 516 | 297 44 | 497 | 13.32
Test14.2 | 0.90 | 516 | 13267 | 542 | 479 | 911.31
Test15.2 | 0.95 | 471 | 130049 | 967 | 443 | 8170.48
Test15.2 | 0.90 | 458 | 389886 | 3712 | 431 | 24581.25

On the basis of these computational results we can draw the following empirical con-
clusions. The hybrid solution methods seem to outperform the complete ones. The main
bottleneck of the complete methods is related to the enumeration of the whole set of the
PEP. At least for the test problems considered here, enumeration can require even more
than 90% of the entire solution time. This percentage may be smaller when considering
more computationally demanding problems. Anyway, the savings introduced by improving
the solution phase seem to be limited. The number of PEP enumerated by the hybrid meth-
ods is much smaller than the number generated by the complete ones. Furthermore, this
number can be reduced if a good initial upper bound value is available. The dual heuristic
method appears to be a good choice here.
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Table 8: Numerical results of the hybrid strategy with dual heuristic

| Problem || p | 2 | PEP | LP | z* | Time
Test11.1 || 0.95 [ 419 | 198 6 |419| 5.67
Test11.1 | 0.90 | 425 | 935 | 74 |413| 60.87
Test12.1 | 0.95 | 418 | 155 | 30 | 416 | 7.33
Test12.1 | 0.90 | 413 | 5192 | 650 | 410 | 383.02
Test13.1 | 0.95 | 417 | 65 6 |416 | 2.99
Test13.1 || 0.90 | 411 | 425 6 | 402 | 33.87
Test14.1 | 0.95 | 418 | 250 7 1410 | 8.63
Test14.1 || 0.90 | 422 | 1294 | 502 | 404 | 380.76
Test15.1 || 0.95 | 380 | 110121 | 158 | 357 | 6945.08
Test15.1 || 0.90 | 372 | 256581 | 2185 | 343 | 16248.31
Test11.2 || 0.95 [ 516 | 221 | 22 |510| 7.68
Test11.2 | 0.90 | 506 | 821 | 76 |484| 55.61
Test12.2 || 0.95 | 505 | 88 5 [503| 3.12
Test12.2 | 0.90 | 498 | 5826 | 208 | 494 | 372.28
Test13.2 | 0.95 | 488 | 213 | 24 |487| 8.34
Test13.2 | 0.90 | 479 | 740 | 52 |447| 62.58
Test14.2 | 0.95 | 501 | 258 | 34 |497| 11.77
Test14.2 || 0.90 | 515 | 1321 | 504 | 479 | 904.28
Test15.2 || 0.95 | 450 | 100107 | 856 | 443 | 6300.35
Test15.2 || 0.90 | 458 | 389886 | 3712 | 431 | 24581.25

PAGE 25
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6 Conclusions

Probabilistic set covering problems possess interesting structural properties that can be
efficiently used in the solution methods. The key notion is that of a p-efficient point: a
vector that can be substituted for the right hand side of the set covering problem to obtain
the solution of the probabilistic problem. There are many p-efficient points, and all solution
methods considered here are based on their complete or partial enumeration.

We have considered two classes of enumeration and solution methods: forward and back-
ward. The computational results indicate that the backward methods, using lower bounds
derived from conditional marginals, have smaller numbers of LPs and IPs solved, points
generated, and a shorter solution time, than forward methods.

We have also proposed and compared a number of heuristic methods for generating initial
upper bounds. Among them, the dual heuristic, which aims at finding the p-efficient point
with the lowest dual lower bound appears very attractive.

Several recent achievements in stochastic integer programming offer promising directions
of research for our problem. One of them is the application of Grobner bases of polynomial
ideals [19]. This is a method from computational algebra that has been applied in [18] for the
solution of integer problems with a varying right hand side. The integer program is translated
into a subalgebra membership problem in a ring of polynomials, and a specialized algorithm
can be developed for solving this question. The Grobner basis of a certain polynomial ideal
enters as the essential ingredient into that procedure. The key feature of this approach is
that for various right hand sides in the initial integer program always the same Grobner basis
applies. Consequently, once the basis is found, solving the integer program for another right
hand side amounts just to another generalized division of multivariate polynomials. Clearly,
finding the Grobner basis is difficult, but so is our problem, and this possibility definitely
deserves further studies.
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Table 9: Distribution Parameters of Test1,Test6, Test11
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Table 10: Distribution Parameters of Test2, Test7, Test12
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Table 11: Distribution Parameters of Test3, Test8, Test13

PAGE 29

Group

A2

A3

Ay

As

A6

A7

Ag

Ag

Al

0.010
0.070
0.010
0.500
0.720

0.090
0.070
0.040
0.020
0.440

0.700
0.090
0.010
0.550
0.650

0.090
0.010
0.010
0.080
0.060

0.020
0.010
0.010
0.670
0.090

0.070

0.050
0.010
0.190
0.120
0.110

0.070
0.070
0.080
0.040
0.110

0.090

0.010
0.010
0.010
0.020
0.110

0.201
0.100
0.010
0.910
0.020
0.011

0.100
0.050
0.100
0.010
0.010
0.041
0.089
0.700
0.100
0.010

0.051
0.010
0.020
0.090
0.010
0.611
0.770

0.010

0.010
0.010
0.500
0.090
0.010
0.011

0.090
0.900
0.100
0.050
0.040
0.011

0.010
0.710

0.200
0.090
0.010
0.900

wmqmm;&wwu;wmqmmpwwumpwwu

0.100
0.810
0.910
0.061
0.061
0.110
0.110
0.005
0.805
0.710
0.010
0.611
0.041
0.011
0.011
0.189
0.861
0.021
0.100
0.200
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Table 12: Distribution Parameters of Test4,Test9, Test14

Group aq (6% a3 Ol4 as Qg [e%4 ag Qg a19
1 0.010 0.010 0.100 0.050 0.010 0.010 0.200 0.090 0.010 0.030
2 0.010 0.070 0.010 0.050 0.001 0.009 0.090 0.010 0.020 0.060
3 0.100 0.010 0.10 0.020 0.030 0.050 0.020 0.010 0.110 o0.010
4 0.910 0.910 0.010 0.090 0.090 0.090 0.005 0.090 0.007 0.090
5 0.002 0.010 0.010 0.010 0.010 0.020 0.014 0.015 0.010 0.010
1 0.010 0.010 0.100 0.051 0.010 0.010 0.201 0.090 0.010 0.300
2 0.300 0.010 0.810 0.702 0.010 0.850 0.801 0.009 0.090 0.710
3 0.020 0.061 0.101 0.010 0.100 0.020 0.300 0.502 0.200 0.100
4 0.110 0.010 0.810 0.910 0.910 0.012 0.890 0.090 0.091 0.005
5 0.005 0.090 0.007 0.901 0.020 0.021 0.010 0.010 0.810 0.810
6 0.900 0.140 0.150 0.010 0.702 0.601 0.011 0.041 0.611 0.071
7 0.011 0.018 0.011 0.011 0.011 0.615 0.011 0.011 0.089 0.770
8 0.009 0.011 0.011 0.011 0.011 0.011 0.089 0.010 0.720 0.700
9 0.010 0.050 0.001 0.009 0.890 0.010 0.021 0.861 0.100 0.010
10 0.100 0.020 0.301 0.500 0.501 0.200 0.100 0.110 0.810 0.010
1 0.010 0.010 0.100 0.0561 0.010 0.010 0.200 0.090 0.010 0.700
2 0.900 0.301 0.010 0.010 0.102 0.951 0.010 0.810 0.290 0.890
3 0.810 0.701 0.300 0.010 0.010 0.011 0.900 0.010 0.050 0.001
4 0.809 0.990 0.010 0.020 0.061 0.061 0.810 0.810 0.901 0.810
5 0.050 0.001 0.009 0.090 0.710 0.020 0.061 0.961 0.100 0.010
6 0.100 0.020 0.801 0.501 0.201 0.100 0.110 0.110 0.810 0.810
7 0.020 0.910 0.100 0.020 0.300 0.801 0.200 0.010 0.010 0.010
8 0.010 0.010 0.910 0.910 0.010 0.890 0.990 0.890 0.905 0.005
9 0.805 0.990 0.007 0.900 0.910 0.910 0.010 0.890 0.890 0.890
10 0.005 0.005 0.805 0.890 0.807 0.901 0.891 0.820 0.010 0.010
11 0.810 0.710 0.900 0.141 0.151 0.150 0.812 0.701 0.820 0.820
12 0.810 0.910 0.010 0.010 0.900 0.140 0.150 0.150 0.810 0.700
13 0.601 0.911 0.841 0.611 0.871 0.911 0.018 0.711 0.011 0.711
14 0.911 0.615 0.601 0.011 0.041 0.611 0.971 0.911 0.018 0.811
15 0.011 0.011 0.011 0.615 0.011 0.011 0.089 0.770 0.009 0.011
16 0.011 0.911 0.011 0.811 0.811 0.189 0.011 0.011 0.089 0.770
17 0.009 0.011 0.011 0.911 0.911 0.911 0.911 0.189 0.010 0.710
18 0.700 0.810 0.050 0.101 0.909 0.890 0.810 0.921 0.861 0.861
19 0.810 0.710 0.700 0.810 0.050 0.001 0.909 0.890 0.010 0.020
20 0.861 0.061 0.100 0.010 0.101 0.020 0.301 0.500 0.500 0.020
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