Finding the Maximum Weight Feasible Subsystem
of an Infeasible System of Linear Inequalities

Mark Parker! Jennifer Ryan
Mathematics Department US West Technologies
University of Colorado at Denver 4001 Discovery Drive
Post Office Box 173364 Boulder CO 80303

Denver CO 80217-3364

Abstract

Given an inconsistent set of inequalities Az < b, the irreducible inconsistent
subsystems (I11Ss) designate subsets of the inequalities such that at least one
member of each subset must be deleted in order to achieve a feasible system. By
solving a set covering problem over the I1Ss, one can determine the minimum
weight set of inequalities that must be deleted in order to achieve feasibility.
Since the number of I1Ss is generally exponential in the size of the original
subsystem, we generate the [1Ss only when they are violated by a trial solution.
Computational results on the NETLIB infeasible LP library are given.

! This research was partially supported by Air Force Office of
Scientific Research and Office of Naval Research Contract
#F49620-92-J-0248-D EF.

1 Introduction

Let A be an m x n real matrix and let b be a real m—vector. Suppose that the system
S = Ax < b is inconsistent. A subsystem A’x < b’ is an irreducible inconsistent
subsystem (I1IS) if it is inconsistent and if it has no inconsistent proper subsystem.
In general, an inconsistent system will have many overlapping 11Ss; Chakravarti 2]
proved that there can exist an exponential number of 11Ss in an infeasible system. In
order to achieve a consistent system, at least one inequality must be dropped from
every I1S.

Suppose a modeler has an infeasible linear programming problem. Many re-
searchers have proposed identifying an IIS and using this to assist the modeler in
debugging her formulation. Greenberg ([10], [11], [12], [13], [14]), Greenberg and
Murphy ([15]), and Chinneck ([5], [3], [4]) have been instrumental in promoting 1S
debugging concepts and theory. However an IIS can contain as many as n + 1 in-
equalities, and this information is potentially useless. An interesting problem is to
identify the maximum cardinality feasible subsystem. A more practical version allows
the modeler to weight the constraints according to importance or flexibility. Then
the maximum weight feasible subsystem is sought. Equivalently, we want to iden-
tify the minimum weight set of inequalities that covers all I11Ss, which we shall call
the minimum weight IS cover. If we knew what the I1Ss of a system S were, we
could formulate the following set covering problem, where ¢; is the weight on the ith

constraint.
min Yo iz
subject to

diel % >1 forallllSs I.

z; binary
Unfortunately, as discussed above, the number of I1ISs may be exponential in the
size of the original problem, so we do not want to write down the whole problem at
once. Instead, we will generate constraints dynamically for the problem and solve it

iteratively as outlined below:

1. Identify an initial set of I1Ss J. (J may be empty.)

2. Solve the covering problem

rnin E:nzl C;2;

subject to
Shierz =1 forallllSs I € J.
z; binary

Let T index the elements in the optimal cover.

3. Look for an I1S of P not covered by T'. If there is none, STOP, T is an optimal
cover of all I1Ss. Otherwise, add the new I1S to J and go to 2.

2 Background on Identifying I1ISs

I1Ss, also called minimal infeasible systems and minimal unsolvable systems, were
first introduced in the context of linear inequality theory in the early part of this
century. In his doctoral dissertation [16], Motzkin derives several results pertaining
to systems of inequalities, the most interesting in this context is a necessary condition

for an inconsistent system to be an I18S.

Theorem 1 ([16]): The coefficient matriz A of a minimal infeasible system {Ax <
b}, where A € R™*", x € R", and b € R™, has rank m — 1.

Motzkin proves that if the rank of the coefficient matrix of an infeasible system is
one less than the number of constraints in the system, then every proper subsystem
of the infeasible system is feasible, and thus the system is an IIS.

Fan [7] consolidated many of the known results for systems of inequalities. Addi-
tionally, he presents the following strengthening of Motzkin’s characterization of an

1S to provide necessary and sufficient conditions for a system to be an I1IS:

Theorem 2 ([7]): The system {Ax < b}, where A € R™*", x € R", and b € R™,
s an 1IS if, and only if, the following conditions hold.

1. There exists exactly m — 1 linearly independent rows.

2. There exists y € R™ such that yTA=0, y’b <0, andy > 0.

Fan extends Motzkin’s results by noting that necessary and sufficient conditions for a
system to be infeasible is the existence of a solution to the alternative system (Farkas’
Theorem).

Van Loon [22] was the first to identify 11Ss with linear programming infeasibility
analysis. He interprets the result of Fan in light of the simplex method and describes
a method for identifying all 1ISs by enumerating all bases of the system {(x,s) €
Q™™ | Ax + Is = b}.

Recently, Chinneck (e.g. [5], [3], [4]) has developed a set of algorithms to identify

a small cardinality I1S. These algorithms are based upon using elastic programming

3

on subsets of constraints to isolate infeasibility and using a deletion filter to isolate
an IIS. These algorithms are now implemented in the commercial LP solvers MINOS,
CPLEX, and LINDO.

To identify I ISs, we will make use of the following theorem from Gleeson and Ryan
[9]. This theorem provides insight into a geometric approach to I1S identification that
is based upon Farkas’ Theorem of the Alternative and basic polyhedral theory.

Theorem 3 ([9]): Let Ax < b denote an inconsistent set of inequalities. Then the
I1Ss are in 1-1 correspond7nce with the extreme points of the polyhedron P = {y €
| yT'A=0, y'b < 71, y > 0}. In particular, the nonzero components of any

extreme point of P index an I1S.
Recall a variant of Farkas’ Theorem of the Alternative:

Theorem 4: Ezxactly one of the following holds:

1. Ax < b is consistent.

2. There erists y € R™ such that yTA =0, y'b <0, and y > 0.

We note that the polyhedron P of Theorem 3 is a bounded form of the cone of the
alternative system (2) from Theorem 4. The following form of Theorem 3 is also

implied in [9]:

Theorem 3 [cone]: Let Ax < b denote an inconsistent set of inequalities. Then
the IISs are in 1-1 correspondence with the extreme rays of the cone P' = {y €
R | yTA =0, y'b < 0, y > 0}. In particular, the nonzero components of any

extreme ray of P' index an I1S.

We shall explore further the significance of the conical version of Theorem 3 later.
For now, we examine the utility of the bounded version of Theorem 3 in terms of our
algorithm.

Let T' denote the index set of a subset of the variables defining P. Then T will
also denote a subsystem of the system S. Let yr = 0 mean that all the variables in T
have been set to 0. If we search for an extreme point of P with yr = 0, there are two
possibilities. The first is that we find an extreme point whose nonzero components
index an IIS that does not intersect T'. The second is that there is no such extreme
point of P. In this case, the system S\ 7' is feasible.

We can now modify step 3 of our algorithm (outlined above):

1. Identify an initial set of IISs J. (J may be empty.)

2. Solve the covering problem

min 27;1 C.2;

subject to
el % >1 forall IISs I € J.
z; binary

Let T index the elements in the optimal cover.

3. Look for an extreme point of P having yr = 0. If there is none, STOP, T' is an
optimal cover of all I1Ss. Otherwise, add the I1S corresponding to this extreme

point to J and go to 2.

This implementation is generalized in Section 4 to operate on an infeasible lin-
ear programming problem given in a more general format. Later sections discuss
enhancements including the selection of the initial J in Step 1, and the choice of
extreme point in Step 3. We also discuss the efficacy of using a heuristic to solve the
covering problem in Step 2 when possible. Now, we demonstrate the utility of the

1IS cover isolation.

3 Min IIS Cover Isolation in Practice

Finding a minimum weight 1IS cover will take more time than identifying a single
I1S and attempting infeasibility diagnosis. Is the extra information obtained worth
the extra time expense? We address this by looking at several examples, and making
a number of simple observations. Observe that if there exists a constraint which is
contained in every I1S, it is a minimum I1IS cover. So, in the best case, infeasibility
can be isolated to a single constraint.

This is illustrated by the following example from [22]: Consider the infeasible

system:
1. ry —) S 0
2. 2z, <1
3. Ty +) Z 2
4. Io Z 2
5. 2.761 +) Z 4

An 11S of this system is {1,2,3}. Based upon this information alone, out of the context

of the entire system, a modeler would have a difficult time determining the source of

the infeasibility. The unique min IIS cover is {2}, which indicates that every LIS in
the system contains the second constraint.

On real problems, the isolation power becomes even greater (see Results section for
a complete comparison). We look at a real industry example of using the min weight
1 IS cover to isolate infeasibility. This LP is a SONET network model having 845 rows,
1792 columns, and 8448 non-zero entries. The SONET model arises from a new family
of problems in the telecommunications industry — it is a multidimensional packing
problem with many complicating constraints. Specifically, there are a large number of
capacity and demand constraints and a large number of side constraints. These side
constraints are generated by a number of different software codes depending upon the
exact model being analyzed. An instance of the model was found to be infeasible,
and was analyzed using our algorithm. The min cardinality IIS cover isolated the
infeasibility to a single demand constraint. Since this portion of the model was known
to be valid, weights were assigned to rows of the infeasible problem and the min weight
11S cover was found. A weight of 1 was assigned to all software generated constraints,
which accounted for 32% of all rows, and a weight of 5 was assigned to all capacity
and demand constraints. These weights become the objective function value in the
covering problem for each covering variable. The covering variables correspond to
constraints of the original infeasible system. Resolving, we were able to isolate the
infeasibility to a bad constraint. Looking at the code used to generate this constraint
led to the discovery of a family of 5 bad constraints and correction of a section of
code. It initially took 3.26 seconds on the RS6000 to determine that the problem
was infeasible. Solving the min cardinality 1IS cover took 7.28 seconds, and the
final step of solving the min weight 1IS cover took 7.21 seconds. Finding a single
[1S using CPLEX run on the same machine took 86 seconds (after infeasibility was
diagnosed), and yielded an I1S having 6 elements. This example provides an analysis
path that has proven successful isolating infeasibility in other problems. Suppose
a modeler takes the extra time during model development to generate weights for
each constraint and includes these weights as an extra column in the LP. Then, when
running the model, the bounds for this column can be set to zero (so it has no effect
on the original LP model). If the model is found to be infeasible, the weights will
be used by the min weight I11IS cover algorithm to help isolate the infeasibility. As
seen in this example, having constraint weights available can greatly increase the

effectiveness of post-infeasibility analysis.

It is easily demonstrated however, that the modeling error is not always isolated by
a particular min 11S cover. Any infeasible system having only a single 11S will have a
min I IS cover consisting of any element of the I1S. By weighting the objective function
of the covering problem, alternative minima can be identified to aid in isolation. This
can be done by setting the objective function coefficients for variables contained in
the original cover to a suitably large integer, say n — the number of variables in
the covering problem. We then resolve the covering subproblem one time with the
current I IS set. In summary, the min IIS cover itself will not always provide a perfect
isolation to the modeling error; however, the isolation is always at least as useful as
that obtained from a single IIS. Using our algorithm to find the min IIS cover always
identifies at least one IIS. This combination of min I1S cover and I1Ss is available to
the user in her debugging analysis. Additionally, the I1IS cover will always give the
modeler the means of eliminating infeasibility from the model. A single IS does not
provide this level of isolation in general.

We present an example from the NETLIB infeasible library to demonstrate an-
other key advantage of the min IIS cover. The WOODINFE problem is a small
network example with 36 rows and 89 columns. An IIS infeasibility isolation from
MINOS is a single row. However, the min 1S cover consists of 2 constraints. This
problem has two disjoint modeling errors which can not both be identified by a single
I1S. In infeasibility instances with multiple modeling errors the covering approach is

especially powerful.

4 Formulation of P, the Alternative Polyhedron,
for General Linear Programming Problems.

We now turn our attention back to the problem of identifying IISs. Theorem 3 can

be restated in a more general setting:

Theorem 3a: Given the inconsistent system S = {x € Q™ | Ax<b, Cx=d, L <

x < U}, the indices of the minimal infeasible subsystems of S are exactly the supports
of the vertices of the polyhedron P = {y,w,v,z € Q™ | yTA+wiC+v—z =
0, yY"b+ wid + vIU - 2zTL = —1, y,z,v > 0, W unrestricted}.

Note that if the only bounds on x are non-negativity constraints, we can simplify the

above formulation:

Theorem 3b: Given the inconsistent system S = {x € Q™ | Ax<b, Cx=d, x>

0}, the indices of the minimal infeasible subsystems of S are ezactly the supports of
the vertices of the polyhedron P = {y,w € Q™ | yTA+wTC >0, yTb + wld =
—1, y >0, w unrestricted}.

In other words, we do not need to explicitly handle non-negativity constraints, but can
simply check the status of the slack variables of the alternative system to determine
if non—negativity of some z; is included in an IIS. Also, this helps reduce the size of
the LP instance we solve at each step.

If the right hand side of the “cone-bounding” constraint were left as —1 for large
problems, numerical instability would result. We observed on several problems that
when we fixed at 0 those variables in the alternative system which are in the covering
solution, we obtained an I1S identical to the one just previously generated. But this
means that in trying to find an IIS not covered by the current solution, we have
generated one that is covered by the current solution. Examine what can happen if
P has many columns. Suppose each variable in the basis is set within epsilon of 0 and
the constraint y7b + w?d = —1 is satisfied. However, these values individually fall
below the optimizer’s zero tolerance, so under ideal conditions, the yIA+wIC >0
constraints will also hold, and so a “numerically” feasible solution will be obtained
by the optimizer for P. However, since the values of the basic variables are below
the software imposed tolerance, they should be considered 0, and so we should have
that 3" (y: * ki) + S (w; * I;) = 0 for any k,1; which means that the solution is not
basic feasible. When this “solution” is identified as being feasible, then we identify
subsystems which are not 11Ss. We alleviate this problem by setting the right hand
side of this constraint to be equal to the number of variables in the problem. Although
theoretically we need a larger value than this, this fix appears to have resolved the

problem.

5 Finding I11ISs

Two slightly different approaches may be used to identify I1Ss of S. First, we consider
using the simplex algorithm to find extreme points of P. By bounding the objective
function yTb of the alternative system and including it in the constraint set of P,
we free ourselves to use a “surrogate” objective function to heuristically guide our
search. We have experimented with using 1 as the objective weight. This should tend
to find small cardinality I1Ss, although to find the true minimum cardinality I1S we

must solve a fixed—charge integer programming problem. Additionally, these weights

8

can be modified at each step by incrementing the weight of each variable appearing
in the current I1IS. In this way, we heuristically tend to find IISs which overlap in the
fewest number of elements.

We have also considered ignoring the objective function when looking for extreme
points of P and using the first feasible solution found. Since every extreme point
corresponds to an IIS, we still identify an 11S. Typically this takes fewer pivots to
find an 11S than solving to optimality with the surrogate objective described above.
However, the savings in 11S identification time may be offset by the typically larger
cardinality I1Ss found and the increased number of covering subproblems needed to
solve.

Rather than generating I ISs individually, we can generate many by solving a single
LP if we instead search for extreme rays on the cone P’. We consider the following

linear programming instance based upon our definition of P’

min yTb
subject to
yITA =0
y >0

Since S is infeasible, we know that P’ is feasible (and hence unbounded). Therefore,
we must be able to find at least one nonbasic variable of non-optimal sign at termi-
nation of our new LP. If this nonbasic is not blocked, then the variable and all basic
variables which correspond to non—zero tableau column entries for the nonbasic form
the support set of an I1S. In other words, the supports of the extreme rays of P’ are
[1Ss in the original infeasible system, S. In general, we will have more than a single
such nonbasic variable, so we can find many IISs from one LP solution. By pivoting
we can find all I1ISs of S by such a procedure.

In general, we will have to perform several pivots before identifying unboundedness
due to the degeneracy of the 0 solution. In practice, this method can reduce the
number of iterations to solve the minimum weight 11IS cover. For example, let an
IIS of S be identified as {1,2,3,4,5,8,10,15} and suppose that constraint 15 is in
every 11S (and so is the minimum I1IS cover). If {1} is identified as the cover, there
could exist another 11S of the form {2,3,4,5,6,8,10,15} and so forth. There could be
potential to identify many 11Ss before the min I1S cover is solved optimally. If a
conical solution yields multiple I1Ss, the total number of covering subproblems (and
hence I IS identification problems) can be reduced. This becomes important for large

infeasible problems which can have a single constraint as the optimal min 11IS cover,

while having 11Ss with hundreds of elements in them.

This idea has even broader implications. We are looking for extreme rays of
the alternative system. The alternative system is simply the dual of our original
(primal) system with the primal objective function zeroed out. Thus, by ignoring the
objective function, the Phase 1 solution of S can be used to identify an extreme ray of
the unbounded dual system, or an I1S of the original system. In other words, we can
identify one (or more) 11Ss with no more work than solving phase 1 of our original
system. In essence, this generalizes the result of Van Loon [22]. Assume that we
are working with an infeasible system Ax < b, where any non-negativity constraints
are considered for this discussion to be included. Equivalently, we have the infeasible

system AX + s = b, where s is a vector of slack variables. Formulate the following
LP:

T

max c'x

subject to
Ax+s =b
s >0

Suppose that at the termination of Phase 1 for the infeasible system we have a basic
slack variable, say sq, which is strictly less than 0. Additionally, if the Phase 1 tableau
entries for all nonbasic variables z; are 0 and for all nonbasic slack variables s; are

non-negative in the row corresponding to s;, then Van Loon proves the following:

Theorem 5 ([22]): After deletion of all constraints s; > 0 for which their cor-
responding tableaw entries in the row corresponding to basic variable sy are 0, the

subsystem {s; >0, s; >0 | all remaining non-basic variables s;} is an IS

Van Loon’s algorithm, without explicitly identifying it as such, finds extreme rays
of the alternative system by pivoting through bases of the original infeasible system
looking for tableau rows satisfying the above theorem.

Since solving on the cone of the alternative system allows us the potential to
identify multiple I1Ss from a single basis and in general takes fewer pivots to solve,
the idea is to use this as a “jump-start” for the algorithm, and then to use the extreme
point method to find 11Ss with specific characteristics.

We can illustrate each of these methods using the following example from [5] using

10

LINDO. Suppose we are given the infeasible system S defined as:

1. =05z + =z, > 0.5
2. 27 — oz, > 3.0
3. 3z, + x4 < 5.0
4, zs < 2.0
5. 3334 — 5 S 2.0
6. T4 > 5.0
7. zq + zs < 10.0
8. ry + 2z, + x4 < 14.0
9. T9 + x4 > 1.0

with all z; > 0

If we solve to optimality using objective weights 1 for all variables of the alternative
system, after 6 pivots, we find {4,5,6} as an 1IS. If we solve to feasibility only (ignore
the objective weights), we find the I1S {1,2,3} after 5 pivots. Solving on the cone we
find 3 I1Ss after only 4 pivots: {4,5,6}, {1,2,3}, and {1,2,5,6,7}. The min IIS cover
is {1,5}, so by solving on the cone, we initialize our procedure with enough IISs to

solve the cover problem only once.

6 Heuristic Solution of Covering Problems

The covering problems can be solved heuristically at intermediate steps. We can de-
termine if these suboptimal covers are true covers of the min weight covering problem
just as we did when solving this problem optimally in Step 3 of our algorithm. If a
true optimal cover is desired, the covering problem must be solved optimally before
terminating.

The greedy heuristic [6] can be used at intermediate steps. When no I18S is found
that is not covered by the greedy solution, we solve the covering problem optimally.
If the cover is the same cardinality as that found by the greedy heuristic, we are
done. Otherwise, we find an IS not covered by the current solution and continue
the algorithm. The greedy algorithm will not guarantee an optimal cover; however,
it seems to work well in practice.

For the problems in the infeasible library on NETLIB, we have found that typ-
ically only a small fraction of total algorithm time (usually less than 10%) is spent
solving the covering subproblems. This result is based on identifying I11Ss singly by
searching for extreme point solutions of P, so the results could change significantly
with improvements over the basic form of the algorithm. It should be noted that

the difficulty of the covering problem has been displayed on a few relatively small

11

problems. For the NETLIB problem MONDOU2, more than 97% of the CPU time
(115 of 118 seconds) was spent solving a single instance of the covering subproblem
having only 9 constraints. This demonstrates a need to explore more fully using the

greedy algorithm, or a modification of it, at intermediate steps.

7 Selection of Violated 11IS

As discussed earlier, if a simplex-like procedure is used to find the IS in Step 3 of
the algorithm, we can steer the procedure to find an 1IS having certain desirable
characteristics. If we weight all variable coefficients of the objective with 1 and find
a minimum weight extreme point, we will tend to find a small cardinality I15. If
we weight each variable according to how many generated I1Ss it already appears
in, we will tend to find an ITS that overlaps as little as possible with the ones we
already have. Both these strategies have intuitive merit with respect to reducing the
number of iterations of constraint generation described. A comparison of these ideas

is included in the results section.

8 Computational Results

All comparisons (unless otherwise stated) were run on an IBM RS6000 using the IBM
OSL object library and FORTRAN code written by the authors. All runs were made
with approximately the same computer load — only a single user was on the system.
We experimented with three versions of our algorithm. All three solve the covering
subproblem to optimality at each step using the OSL EKKMSSL subroutine. Due to
coding complications involved in solving on the cone, all three versions presented here
search for extreme point solutions on the bounded alternative system. We distinguish
each version by the objective function used in solving the alternative system. The
baseline algorithm, IIS_.COV_1, weights the coefficients of the objective function to
all 1’s in an attempt to find small cardinality [ISs. Version 2, [IS_COV_2, weights the
coefficient of each variable according to how many generated 11Ss it already appears
in. Intuitively, this will tend to find I1Ss which overlap as little as possible. Finally,
version 3, IIS.COV_3, ignores the objective function, and the first extreme point found
is the solution. This will tend to identify 11Ss faster, though perhaps at the trade off of
finding larger cardinality 11Ss. Note that IIS.COV_2 will differ from IIS_.COV_1 only

when more than 1 11Sis found to optimally solve the covering problem. Therefore,

12

we did not run IIS_.COV_2 if we found that only 1 IIS was needed to find the optimal
cover.

The test bed of problems consists of the infeasible LP library on NETLIB, origi-
nally set up by John Chinneck. A summary of the problems is given in Table 1.

Problem Original Problem Alternative System
Constraints | Variables | Nonzeros | Constraints | Variables | Nonzeros
BGDBGI1 348 407 1440 408 390 1737
BGETAM 400 688 2409 689 689 2957
BGINDY 2671 10116 65502 10117 2671 67589
BGPRTR 20 34 64 35 20 76
BOX1 231 261 651 262 492 1173
CERIA3D 3576 824 17602 825 3576 17851
CHEMCOM 288 720 1566 721 625 2180
CPLEX1 3005 3221 8944 3222 3223 10883
EX72A 197 215 467 216 412 897
EX73A 193 211 457 212 404 879
FOREST6 66 95 210 96 71 226
GALENET 8 8 16 9 16 38
GOSH 3792 10733 97231 10734 3792 97433
GREENBEA 2393 5405 30885 5406 2941 31926
ITEST2 9 4 17 5 9 26
ITESTS6 11 8 20 9 11 31
KLEIN1 54 54 696 55 54 700
KLEIN2 477 54 4585 55 477 4600
KLEIN3 994 88 12107 89 994 12115
MEXP 1383 1500 5027 1501 1383 5755
MONDOU2 312 604 1208 605 1520 3088
PANG 361 460 2652 461 453 2587
PILOT41 410 1000 5141 1001 717 5860
QUAL 323 464 1646 465 835 2662
REACTOR 318 637 2420 638 932 3699
REFINERY 323 464 1626 465 835 2641
VOL1 323 464 1646 465 835 2662
WOODINFE 35 89 140 90 69 208

Table 1. Problem Test Bed

In order to facilitate the analysis of results, we partitioned the problems into 3
sets according to their size. We considered “small” problems to be those having fewer
than 100 rows and 100 columns. “Medium” problems are those with between 100 and
1000 rows and 100 to 1000 columns. The remainder are “large” problems.

Table 2 presents the results of our 3 approaches on the small problems. The
measures we use in comparing the approaches are total solution time of the covering
problem (CPU seconds), number of 11Ss found in solving the covering problem opti-
mally, number of pivots to first 11S, average number of pivots per 11S, and the smallest
cardinality IIS. In analyzing infeasibility, it may be useful to measure the size of an
LIS in terms of the number of actual constraints it contains, rather than constraints

and variable bounds. Note that TIS size refers to the number of constraints and

13

variable bounds exclusive of non—negativity bounds. Information on non-negativity
bounds is available with the solution approach, we have chosen to not include it in
the 11IS reporting. The columns for average 11S size and smallest cardinality IS are
thus subdivided into I1S size and number of actual constraints.

On most problems, very little time is spent in solving the min weight covering
subproblem, and from 50% to 95% of the time is spent in identifying I1Ss — solving
the alternative system LP. Therefore, another reasonable measure of how well each

algorithm performs is the number of simplex pivots required to find an IIS.

Problem Algorithm | Cover | # I1Ss Pivots Avg. T1S Smallest 11S

Time 11S1 | Avg. | Size | Rows | Size | Rows
BGPRTR I1S_.COV_1 0.19 1 18 | 100 | 7.0 7.0 7 7
BGPRTR I1IS_COV_3 0.20 1 14 80| 14.0 | 14.0 14 14
FOREST6 IIS_COV_1 0.73 2 124 | 50.3 | 64.0 59.0 64 59
FOREST6 I1IS_.COV_2 0.71 2 124 | 51.0 | 64.0 59.0 64 59
FORESTS6 IIS_.COV3 0.61 2 81| 29.3|69.5| 645 69 64
GALENET IIS-COV_ 0.19 1 7 3.5 6.0 3.0 6 3
GALENET IIS_.COV3 0.20 1 5 3.0] 6.0 3.0 6 3
ITEST2 IIS.COV_1 0.38 3 4 20| 3.7 3.7 3 3
ITEST?2 IIS.COV2 0.35 3 4 201 3.7 3.7 3 3
ITEST2 IIS_.COV3 0.36 3 4 18| 3.7 3.7 3 3
ITEST6 IIS.COV_1 0.65 3 6 28| 3.3 3.3 3 3
ITEST6 IIS.COV_2 0.69 3 9 40| 3.3 3.7 3 3
ITEST6 IIS_.COV.3 0.65 6 3 1.71 3.7 3.7 3 3
KLEIN1 1IS_.COV_1 0.89 1 162 | 81.5 | 561.0 | 51.0 51 51
KLEIN1 IIS_.COV_3 0.82 1 116 [71.5 [51.0 | 51.0 51 51
WOODINFE | IIS.COV_1 0.46 2 24| 126 | 2.0 1.0 2 1
WOODINFE | IIS.COV_2 0.41 2 24| 1261 2.0 1.0 2 1
WOODINFE | IIS.COV_3 0.48 2 9] 11.0| 2.0 1.0 2 1

Table 2. Results for Small Problems

The first few pivots made by OSL during Phase 1 will be random. This is done initially
to speed up the simplex algorithm, and later other pricing schemes are used. This
means that when re-running a problem with the same algorithm we will have variance
in our solution times. On the problems we looked at, this variance was typically 5%
or less. For this reason, we will consider time differences between algorithms to
be significant only if they are greater than 10%. In this light, no significant time
difference is found between the algorithms on the small problem test bed. On the 4
problems where all 3 algorithms were run, [IS_.COV_2 was faster on 2, IIS_.COV_3 and
IIS_COV_1 were faster on 1 each, with all three indistinguishable on one. If we try to
verify our assumptions on strengths of each algorithm, we see that IIS_COV_3 takes
fewer pivots both to find the first 1IS and on average; but requires more 11Ss to solve
the cover problem only on ITEST6. 1IS_COV_1 does find smaller I ISs on average than

the other algorithms, however, not much more information can be obtained from the

14

small problems.

Algorithmic comparisons for the “mid-sized” problems are presented in Table
3. We have several interesting problems in terms of the size of the min weight 115
covering problem solved. With these harder problems, we see a number of interesting
trends. In 10 of the 12 problems, IIS_.COV_3 takes fewer pivots to find an initial T1S
as expected. However, this algorithm has the lowest average number of pivots per 1S
in only 7 of the 12 problems. What we see is that both IIS.COV_1 and [1S_COV_2
typically take more pivots to find an initial solution. However, only a few pivots,
typically fewer than 25, are needed to find I1Ss satisfying optimality conditions for
the alternative system after the initial basic feasible solution is found. Thus some
of the advantage of IIS.COV_3 is lost when finding many IISs. In fact, on those
problems where 1IS.COV_3 took fewer pivots to find its initial I1S but had a higher
average pivot value, an algorithm needing to find a larger number of 11Ss to solve the
covering problem had the lowest average pivot value. Thus the more [1Ss one needs
to find, the less important the initial number of pivots becomes in terms of solution
time.

Additionally, we see that IIS_.COV_3 solves the covering problem faster on 8 of
the 9 problems with time distinctions. We also note that it finds the smallest average
11S on 3 of the 9 problems where distinction is made, and finds more [Ss in solving
the cover on only 4 problems and finds the least I1ISs in solving the cover 5 times
(excluding ties). This seems to contradict the intuition that we would find I ISs faster,

but require more I1Ss to solve the covering problem.

15

Problem Algorithm | Cover | # I1Ss Pivots Avg. T1S Smallest T1S
Time IIS1 | Avg. | Size | Rows | Size | Rows
BGDBGI1 I1S_.COV_-1 8.05 33 112] 124 8.1 7.4 2 2
BGDBGI1 IIS.COV_2 6.15 24 112 | 14.6 7.0 6.5 2 2
BGDBGI1 IIS_.COV_3 7.74 36 34 8.6 6.9 6.1 2 2
BGETAM IIS.COV_1 | 10.42 5 242 | 206.8 | 68.0 | 62.2 8 7
BGETAM IIS.COV2 | 11.79 6 150 | 145.4 | 59.5 | 51.7 13 12
BGETAM IIS_.COV_3 9.24 7 20 | 89.1 | 173.1 | 140.7 18 17
BOX1 I1IS_.COV_1 1.46 2 13 36.01 53.56 1 525 10 9
BOX1 IIS_COV_3 1.46 2 121 343 | 545 53.5 10 9
CHEMCOM | IIS_.COV._1 3.74 2 1771 136.0 | 26.0 | 16.0 25 15
CHEMCOM | IIS_.COV_2 3.73 2 177] 142.0 | 24.0 | 14.0 23 13
CHEMCOM | IIS_.COV_3 3.63 1 13712045 | 27.0| 15.0 27 15
EXT72A IIS.COV_1 1.35 3 104 | 27.0| 69.0| 68.0 59 58
EXT72A IIS.COV_2 1.66 3 104 | 395 70.3| 69.3 61 60
EXT72A IIS_COV_3 1.22 2 108 | 36.0| 66.5| 655 59 58
EX73A IIS.Cov_ 0.92 1 88 | 44.0 | 28.0 | 27.0 28 27
EX73A IIS_COV_3 0.97 1 79| 425 | 26.0 | 25.0 26 25
KLEIN2 I1S.COV_-1 8.03 13 597 | 854 | bB3.2 | 53.2 53 53
KLEIN2 IIS.COV_22 5.46 4 574 | 173.8 | 54.0 [54.0 53 53
KLEIN2 IIS_.COV_3 5.38 6 476 | 113.9 | 55.2 | 55.2 53 53
PANG IIS_.COV_1 3.21 1 392 | 2045 | 16.0 | 13.0 16 13
PANG IIS_.COV_22 2.59 1 250 [127.5 | 16.0 | 13.0 16 13
PANG IIS_.COV_3 2.65 2 183 | 76.3 | 195 | 16.0 18 15
QUAL IIS.COV_1 8.05 5 707 | 149.3 | 1854 | 124.0 | 142 92
QUAL IIS.COV2 | 12.12 5 707 | 223.2 | 184.8 | 103.6 | 143 82
QUAL I1S.COV_3 7.40 6 558 | 107.9 | 180.6 | 124.0 | 134 90
REACTOR | IIS.COV_1 5.58 2 152 | 192.0 5.0 1.0 5 1
REACTOR | IIS_.COV22 4.44 2 152 | 125.7 5.0 1.0 5 1
REACTOR | IIS.COV.3 3.89 2 100 | 119.3 5.0 1.0 5 1
REFINERY | IIS_.COV_.1 | 22.26 38 665
REFINERY | IIS_.COV_2 | 19.99 31 665 | 48.1 | 134.0 | 89.0 93 63
REFINERY | IIS_.COV.3 | 16.51 23 577 | 72.6 | 145.7(934 97 62
VOL1 IIS.COV_.1 | 13.45 13 699 { 83.3 | 180.8 | 121.7 | 137 91
VOL1 IIS.COV_2 | 20.70 10 699 { 278.5 | 180.3 | 121.6 | 137 91
VOL1 IIS_.COV_3 | 10.75 8 715 | 138.6 | 182.6 | 120.9 | 160 104

As we look at the results for the large problems (Table 4), we see that an undirected
search for 11Ss is faster. IIS.COV_3 again dominates, being the fastest algorithm on
8 of the 9 problems, taking the fewest pivots to the first IS on all problems, and

taking fewest average number of pivots on 6 of 9 problems. It also finds the smallest

Table 3. Results for Mid—sized Problems

average [IS on 4 of 6 problems where distinction is made.

16

Problem Algorithm | Cover | # I1Ss Pivots Avg. 11S Smallest 11S

Time IIS1 Avg. | Size | Rows | Size | Rows
BGINDY IIS.COV_1 | 139.19 1| 1908 | 1140.0 3.0 3.0 3 3
BGINDY IIS.COV.3 | 126.34 1 219 | 1114.0 3.0 3.0 3 3
CERIA3D IIS.COV_l | 56.32 3] 1905 | 758.0 | 123.3 | 123.3 | 73 73
CERIA3D IIS.COV.2 | 66.46 3| 2406 | 921.0 | 141.3 | 1413 | 74 74
CERIA3D IIS.COV.3 | 26.45 8 538 99.0 | 144.8 | 1448 | 73 73
CPLEX1 IIS.COV.1 | 38.50 11 1473 | 1214.5 5.0 5.0 5 5
CPLEX1 IIS.COV.3 | 33.83 1 212 | 1058.5 5.0 5.0 5 5
GOSH IIS.COV_1 | 563.91 11 6009 [3305.5 [49.0 | 49.0 | 49 49
GOSH IIS.COV_3 | 637.34 2| 1885 | 2350.0 | 72.0 | 72.0 68 68
GREENBEA [IIS.COV_1 | 410.50 3 2983 | 1955.8 9.0 6.3 4 2
GREENBEA | IIS.COV_2 | 359.93 4| 2983 | 131961 17.8(15.0 4 2
GREENBEA | IIS.COV_3 | 322.34 3 10 | 1442.8 8.3 5.3 4 1
KLEIN3 IIS.COV.1 | 97.16 29 | 1571 | 506.0 [101.7 | 101.7 | 95 95
KLEIN3 IIS.COV2 | 49.77 12 | 1560 | 538.8 | 87.4 | 87.4 | 86 86
KLEIN3 IIS.COV.3 | 36.34 21| 1137 2056 | 858 | 858 | 84 84
MEXP IIS.COV1 | 12.37 2 377 | 157.0 8.0 8.0 7 7
MEXP 1IS.COV_3 8.76 1 176 | 237.5 6.0 6.0 6 6
MONDOU2 | IIS.COV_1 | 17.69 14 503 60.8 | 163.5 | 146.6 [22 17
MONDOU2 | IIS.COV.2 | 118.63 13 503 58.1 | 182.3 | 163.8 | 22 17
MONDOU2 | IIS.COV3 | 17.11 9 460 62.6 | 146.9 | 128.9 [22 17
PILOT41 IIS.COV.l | 28.82 1 659 | 930.0 1.0 1.0 1 1
PILOT4I IIS.COV.2 | 18.05 1| 1010 | 629.0 1.0 1.0 1 1
PILOT4I 1IS_COV_3 7.20 1 86 | 202.5 1.0 1.0 1 1

Table 4. Results for Large Problems

We also compare (Table 5) the information provided by the IIS cover to that
obtained from 118 isolation via MINOS (from [4]). Many of the problems in this test
bed were created by taking a feasible LP instance and modifying a single bound or
constraint until the problem was infeasible. Four of the problems in the test bed
we know to be infeasible in original form - BGDBG1, BGPRTR, GREENBEA, and
MONDOU?2. Of these problems, only BGPRTR has an IS cover of 1 (and requires
a single 1IS to solve the cover). Thus although there are a large number of problems
in the test bed having singleton IIS covers and requiring only a single 1S to find
their cover, this may be an artifact of their construction. We feel that the min weight
I1S cover will be a valuable tool in debugging LPs at the model development and

integration stage.

17

Problem MINOS(IIS) Min I1S Cover Smallest I1S

Rows | Cardinality | IISs Found | Size [Rows
BGDBG1 2 12 38 2 2
BGETAM 7 1 5 8 7
BGINDY 1 1 3 3
BGPRTR 5 1 1 7 7
BOX1 8 1 2 10 9
CERIA3D 73 1 3 73 73
CHEMCOM 7 1 2 23 13
CPLEX1 5 1 1 5 5
EX72A 58 1 3 59 58
EX73A 24 1 1 26 25
FOREST6 55 1 2 64 59
GALENET 2 1 1 6 3
GOSH 1 1 49 49
GREENBEA 1 2 3 4 1
ITEST2 3 2 3 3 3
ITEST6 2 2 3 3 3
KLEIN1 50 1 1 51 51
KLEIN2 51 1 4 53 53
KLEIN3 74 1 21 84 84
MEXP 5 1 1 6 6
MONDOU2 15 3 9 22 17
PANG 11 1 1 16 13
PILOT41 1 1 1 1 1
QUAL 76 1 61 134 90
REACTOR 1 1 2 5 1
REFINERY 47 1 38 92 61
VOL1 80 1 10] 131 91
WOODINFE 1 2 2 2 1

Table 5. Min IIS Cover and MINOS I1S Isolation Comparison

9 Conclusions and Avenues for Further Research

We are currently working on implementing a version of our algorithm to solve on the
cone directly (either in the alternative system, or in the original infeasible system).
We feel that the results obtained thus far are very promising, and that we can speed
up the IS identification procedure by solving on the cone to provide multiple I1Ss
for the initial covering subproblem.

Additionally, the extra time spent heuristically attempting to find small cardinal-
ity I1Ss or minimally overlapping [1Ss does not appear to make the problems any
easier to solve. A method of making these techniques more viable would be to use
every 1 IS found while attempting to find the optimal extreme point of the alternative
system. Currently, only the I1S found at the final extreme point solution is added to
the covering problem during each I1S identification phase.

We have also developed a version of the code which initially finds all disjoint 11Ss

18

before solving the cover. The motivation for pursuing this algorithm is to quickly
find a good bound on the size of the cover. Experiments with this code also look
promising.

We are also examining the use of heuristics to solve the covering problem at
intermediate steps. At the present time, this is of secondary concern. We are focusing
more attention on the theoretical structure of the min weight 1S covering problem.
We are attempting to identify facets of this problem which can be included in a branch
and cut type algorithm.

Additionally, since the linear separator or linear discriminant problem can be
recast as the problem of finding a maximum feasible subystem of an infeasible linear
program, we have been exploring the use of this algorithm to solve this and other

related problems.

10 Acknowledgements

The authors wish to thank Harvey Greenberg for his many discussions on the topic
and for several algorithmic recommendations. We also wish to thank John Chinneck
for informing us of the existence of the NETLIB infeasibility library and providing

comments on draft versions of this paper.

19

References

[1]
2]

3]

8]

[9]

Berge C., Hypergraphs, North-Holland, Amsterdam, 1989.

Chakravarti N., Three Approaches to Post-Infeasibility Analysis, WPS-147(90),
Indian Institute of Management, 1990.

Chinneck J., Finding Minimal Infeasible Sets of Constraints in Infeasible Math-
ematical Programs, Technical Report SCE-93-01, Department of Systems and
Computer Engineering, Carleton University, Ottawa, Canada, 1993.

Chinneck J., Finding the Most Useful Subset of Constraints for Analysis in an
Infeasible Linear Program, Technical Report SCE-93-07, Department of Systems
and Computer Engineering, Carleton University, Ottawa, Canada, 1993.

Chinneck J. and Dravnieks E., Locating Minimal Infeasible Constraint Sets in

Linear Programs, ORSA Journal on Computing Vol. 3 (1991), 157-168.

Chvatal V., A Greedy Heuristic for the Set Covering Problem, Mathematics of
Operations Research, Vol. 4 (1979), 233-235.

Fan K., On Systems of Linear Inequalities, in Annals of Mathematical Studies
Number 38: Linear Inequalities and Related Systems, edited by Kuhn H.W. and
Tucker A.W., Princeton University Press, Princeton, NJ., 1956, pp. 99-156.

Gary M. and Johnson D., Computers and Intractability, W.H. Freeman, New
York, 1979.

Gleeson J. and Ryan J., Identifying Minimally Inconsistent Subsystems of In-
equalities, ORSA Journal on Computing, Vol. 2 (1990), 61-63.

[10] Greenberg H.J., Diagnosing Infeasibility for Min-Cost Network Flow Models,

Part I: Dual Infeasibility, IMA Journal of Mathematics in Management, Vol. 1
(1987), 99-110.

[11] Greenberg H.J., Diagnosing Infeasibility for Min-Cost Network Flow Models,

Part II: Primal Infeasibility, IMA Journal of Mathematics in Business and Indus-
try, Vol. 4 (1988), 39-50.

20

[12] Greenberg H.J., An Empirical Analysis of Infeasibility Diagnosis for Instances of
Linear Programming Blending Models, IMA Journal of Mathematics in Business
and Industry, Vol.4, 163-210.

[13] Greenberg H.J., How to Analyze Results of Linear Programs, Part 3: Infeasibility
Diagnosis, Interfaces, Vol. 23, No. 6 (1993).

[14] Greenberg H.J., Consistency, Redundancy, and Implied Equalities in Linear Sys-

tems, draft version 1993.

[15) Greenberg H.J. and Murphy F.H., Approaches to Diagnosing Infeasibility for
Linear Programs, ORSA Journal on Computing, Vol. 3, No. 3, (1991), 253-261.

[16] Motzkin T.S., Contributions to the Theory of Linear Inequalities, Doctoral Dis-
sertation, University of Basel, 1933, translated by D.R. Fulkerson, in Theodore S.
Motizkin: Selected Papers, edited by D. Cantor, B. Gordon, and B. Rothschild,
Birkhauser,1983.

[17] Nemhauser G. and Wolsey L., Integer and Combinatorial Optimization, John
Wiley and Sons, 1988.

[18] Ryan J., Transversals of 1IS-Hypergraphs, Congressus Numerantium, Vol. 81
(1991), 17-22.

[19] Ryan J., IIS-Hypergraphs, draft version 1994.

[20] Sankaran J.K., A Note on Resolving Infeasibility in Linear Programs by Con-
straint Relaxation, Operations Research Letters, Vol. 13 (1993), pp. 19-20.

[21] Schrijver, A., Theory of Linear and Integer Programming, John Wiley and Sons,
1986.

[22] van Loon J., Irreducibly Inconsistent Systems of Linear Inequalities, European

Journal of Operations Research, Vol. 8 (1981), pp. 283-288.

21

