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Abstract

Given an infeasible system of linear inequalities, we show that the problem of identifying
all minimally infeasible subsystems can be reduced to the problem of finding all vertices
of a related polyhedron. This results in a shorter enumeration than that performed by
a previous method to solve this problem.

1 Introduction

Let A be a rational m X n matrix and let b be a rational m-vector. Suppose that a model
developer has determined that the system of linear inequalities Az < b is infeasible. We
consider the problem of achieving a consistent system by dropping as few inequalities as
possible. In order to do this, the minimally infeasible subsystems must be identified. A
minimally infeasible subsystem is a subsystem of Az < b that is infeasible, but which could
be made feasible by dropping any inequality from it. In order to achieve a consistent set
of inequalities, the model developer must drop one constraint from each of the minimally
infeasible subsystems.

Given the minimally infeasible subsystems, the problem of finding a maximum cardinality
feasible subsystem is an integer covering problem. Let y;, 7 = 1,...m be a variable whose
value will be 1 if the ith constraint is chosen to be deleted, and 0 otherwise. Suppose there
are r minimally infeasible subsystems and let S;, 7 = 1,...,r, be the set of indices of the

inequalities in the jth minimally infeasible subsystem. Then the solution to the following
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integer covering problem gives the minimum number of inequalities that must be dropped

in order to achieve a consistent system:

min 17y
subject to

ZiESjyi 217j:17"'ara
vi >0,6=1,...,m.

Any set covering heuristic could be used to find a near maximum cardinality feasible

subsystem.

In [7], Jeroslow and Wang have shown that integer programming problems arising from
the problem of satisfying Horn Clauses in propositional logic, can be solved as linear pro-
gramming problems. Thus, the methods described here could be used to identify minimal
inconsistencies in a logical rule base constructed using Horn Clauses.

A strongly redundant inequality constraint can be identified by reversing the sense of the
inequality and then testing for infeasibility. The minimally infeasible system will, in this
case, give a minimal dependency set for the redundant constraint (see [6]).

Methods for diagnosing infeasibility in networks have been studied by Greenberg (see
[4] and [5]). In [3], Glover and Greenberg discuss the analysis of infeasibility in integer
programming problems through “logical testing”.

In general, the number of minimally infeasible subsystems is exponential in the number
of constraints. Thus enumerating all minimally infeasible subsystems is unavoidably a com-
putationally intensive process. The method of enumeration we propose is a pivoting method,
as is an earlier method proposed by Van Loon [8]. However, whereas Van Loon’s method in

general enumerates many bases that do not give information about the minimally infeasible



subsystems, our method enumerates only bases that do correspond to minimally infeasible
subsystems.

Van Loon’s method discovers all minimally infeasible subsystems through enumerating
the bases of the system {(z,s) € Q"*™|Az + Is = b}. In general, a given minimally
infeasible subsystem will be enumerated many times, and bases will be enumerated that do
not necessarily correspond to minimally infeasible subsytems.

We show that the minimally infeasible subsytems are in one to one correspondence with
the vertices of the polyhedron, P = {y € Q™|yTA =0, yTb < —1, y > 0}. This is a simple
consequence of Farkas’s Lemma and elementary polyhedral theory. Thus enumeration of
the minimally infeasible subsystems is accomplished by enumerating the vertices of P. In
the absence of degeneracy, the bases enumerated are in one to one correspondence to the
minimally infeasible subsytems. If degeneracy is present, several bases may correspond to
the same vertex of P (and hence the same minimally infeasible subsystem).

Enumerating the vertices of P involves listing at most (and usually less than) (7:) feasible

bases. Van Loon’s method on the other hand requires the enumeration of (m;:") bases.

2 Identifying Minimally Inconsistent Subsystems

Given a rational vector y, the support of y will denote the indices of its nonzero components.

Theorem. Let A be a rational m x n matrix and let & be a rational m-vector. Then the
indices of the minimally infeasible subsystems of the system Az < b are exactly the supports
of the vertices of the polyhedron P = {y € Q™yTA =0, yTb < -1, y > 0},
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An efficient algorithm for finding all extreme points of a polytope or polyhedron is given
by Dyer [1]. In the absence of degeneracy, the algorithm, called ENUMERATE, has a worst
case time bound of O(st?v) where s is the number of inequalities, ¢ is the number of variables,
and v is the number of extreme points. In the presence of degeneracy, v in the above bound

would be replaced by the number of feasible bases.

Example. Consider the following example (from [8]).
I -1 0 (
0 2 1 (
-1 —1jz<| =2 (
0 -1 -2 | (
-2 -1 -4 ] (5

This system has the minimally infeasible subsystems: {1,2,3}, {1,2,5}, and {2,4}. In order

to find the minimally infeasible subsystems, one must traverse the vertices of the polyhedron

1 -1 0
0 2 1

P=Syly"| -1 -1 |=0y"| -2 |<-1Ly>0
0 —1 —9
—2 1 —4

After three pivots which are required to find an initial feasible tableau, Dyer’s method [1]
makes 4 more pivots and completes the visitation of the vertices of P. The three vertices are
as follows: i)y1=1,y2:1,y3=1,y4=0,y5=0,ii)y1=0,yz=%,y3=0,y4=§,y5=0,
i)y =4, 92 = %, ys=0,ys =0, y5 = % The supports of these three extreme points are
the index sets of the three minimally infeasible subsystems given above. Van Loon’s method

will take 11 pivots to identify all minimally infeasible subsystems.

Before proving the theorem, we need to present the following lemmas. Lemma’s 1 and 2
are both simple results in elementary polyhedral theory. For completeness, we have included
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a proof of Lemma 1. A proof of Lemma 2 can be found in [2] for example.

For ease of notation, we will denote a ray {Ay|A > 0}, where y # 0 is a vector, simply by

Lemma 1. Let K = {y € Q"|yTA =0, y > 0}. Let S be the set of extreme rays y of K
satisfying y7b < 0. Without loss of generality scale the elements of S so that yTbo = —1 for
all y € S. Then S is equal to the set of extreme points of P = {y e QmyTA =0, yTb <

—1, y > 0}.

Proof. Let K(S) denote the cone generated by 5. It is easy to check that S actually forms
a set of extreme rays of K(S), and that P C K(S). Thus it suffices to show that the extreme
rays y of K(S) (scaled so y7b = —1) are exactly the extreme points of P.

Let y be an extreme ray of K(S5), scaled so that yTh = —1, and suppose that it is not
an extreme point of P. Then there exist y; € P, 1 =1...,k, and A\i 2 0, t=1,...,k, with
y = YF Ay and ©F A = 1. Since P C K(S), each y; € K(S), thus contradicting the
fact that y is extreme in K(S5).

Now suppose that y is extreme in P, and not extreme in K(S). Then there exist y; €
K(S),i=1...,k,and \; >0, i =1,...,k, with y = % M. By also scaling the A’s,

the y;’s can be scaled so that each yIb = —1, and thus each y; € P. Then —1 = yTh =

k

=1

XiyZb = —Y% A, Thus sk A = 1 and we have written y as a convex combination

of elements of P. Thus y cannot be extreme in P, which gives a contradiction. B

We also need to make use of the following version of the well-known Farkas Theorem of

the Alternative (see e.g. [2]).



Lemma 2. Let A be an m X n rational matrix and let & be a rational m-vector. Then

exactly one of the following statements holds:
1. there exists © € Q" such that Az < b;

2. there exists y € Q™ with y > 0, yTA =0, and y7b < 0.

We now can prove the theorem.

Proof of Theorem. Let K be defined as in the statement of Lemma 1. Then from Lemma
1, it suffices to show that the supports of the extreme rays of K satisfying y7b < 0 index the
minimally infeasible subsystems.

Let A;z < by be a subsystem of Az < b which is minimally infeasible, and let m be the
number of rows of A;. Assume that the rows of the system Az < b have been reordered so
that the rows from A,z < by are the first m; rows. Then by Lemma, 2, there exists w € Q™
with y = (w,0) € K and yTb < 0. Note that w > 0, for if not, applying Lemma 2 to the
subset of rows of A; corresponding to the nonzero components of w would show that A; is
not minimally infeasible. Thus w > 0 and the support of y indexes the rows of the minimally
infeasible subsystem A,z < b;. Now we must show that there is an extreme ray of K having
the same property. Suppose y is not an extreme ray. Then there exist y; € K, ¢ =1,...,k,
and \; >0, : =1,...,k, with y = Y8, X\;y;. Without loss of generality we can assume that
each of the y; are extreme rays of K. Further, for at least one of the y;, (say y1), y7b < 0.
Note that since each A; > 0 and each y; > 0 we must have that the support of y; is contained

in the support of y. However the support of y; cannot be properly contained in that of y, or



as above, Az < by would not be minimally infeasible. Thus the support of y; indexes the
rows of the minimally infeasible subsystem Az < b;.

Now suppose that y is an extreme ray of K and that yTb < 0. Let Az < by denote
the subsystem of Az < bindexed by the support of y, and let m, be the number of rows of
A;. Let w € Q™ be the vector consisting of the nonzero components of y. Then w > 0,
wTA; = 0, and wTby < 0, so that Ajz < by is infeasible, by Lemma 2. Suppose that the
subsystem A;z < b; is not minimally infeasible. Then, again applying Lemma 2, there is a
vector u with u > 0, uTA = 0, and uTb < 0 whose support is properly contained in that of
y. Without loss of generality, scale u so that y —u > 0. Note that y — u will have at least
one nonzero component. Further, y —u € K. Then y = u+ (y —u), and thus is a nontrivial
combination of elements of K. This contradicts the assumption that y was extreme in K

and hence the system A;z < b; is minimally infeasible. D
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