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Abstract. It is proved that inR3 the volume of any polyhedron is a root of some polyno-
mial with coefficients depending only on the combinatorial structure and the metric of the
polyhedron. As a consequence, we have a proof of the “bellows conjecture” affirming the
invariance of the volume of a flexible polyhedron in the process of its flexion.

1. Introduction

Let P be a polyhedral surface inR3. A continuous deformation ofP is called aflexion
if it changes only (some or all of) dihedral angles ofP and keeps each face congruent
to itself. The first example of a flexible polyhedron embedded inR3 (i.e., without self-
intersections) was found by Connelly [6]. Shortly after that it was noticed that the volume
of Connelly’s flexing polyhedron, as well as of others constructed later, does not change
during their flexion and therefore Connelly [7] suggested that this property is common for
all flexing polyhedra. Since then his conjecture (named for obvious reasons the “bellows
conjecture”) has been considered to be one of the most interesting problems in flexion
theory.

The first attempt to solve this problem was made by Sabitov [12] and it was based
on the approach proposed in [9] and [11]. The prospects of this approach were shown
first by Pavlova [10] for the case of some simple polyhedra. At present two proofs of the
bellows conjecture are known [8], [13]; both are based on the same geometric idea as the
one in [12], but use different algebraic tools for its realization. Here we give an extended
English version of [13] with some modifications in the presentation of the proof.

The article is organized as follows. In Section 2 we introduce some necessary def-
initions. In Section 3 we explain our approach to the bellows conjecture (this section
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may be omitted without loss of understanding of the following text). The main result
and its corollaries are formulated in Section 4. Proofs are given in Section 5–8. Finally,
in Section 9 we address some applications of the results.

2. Polyhedra inR3 and Their Generalized Volume

Given a simplicial 2-complexK , a polyhedron(or a polyhedral surface) in R3 with
combinatorial structureK is defined as a continuous mapP: |K | → R3, where|K | is
the body (carrier) ofK . Of course, the mapP is supposed to be linear on each simplex
of K . We consider only the case when|K | is homeomorphic to an orientable 2-manifold
of genusg ≥ 0. Often by a polyhedron we also mean the imageP(|K |) ⊂ R3 rather
than the mapP. That image will sometimes also be denoted byP when it causes no
confusion.

Note that the mapP is not required to be injective on|K |, or even on a single simplex
of K , which means that thegeometric polyhedron Pmay have degenerate faces, self-
intersections, or even self-superpositions. To define the volume of a polyhedron in these
singular cases, we use the concept ofgeneralized volume. The polyhedronP with the
orientation naturally inherited fromK is called anoriented polyhedron. Choose a point
O in R3 and compose the sum

∑
Vi of coherently oriented volumes of all the tetrahedra

spanned by the pointO and the faces ofP.

Definition. V =∑Vi is called thegeneralized oriented volumeof P.

Evidently, the value of generalized volume is independent of the choice of point
O. It is also clear that for any embedded polyhedron its usual oriented volume and its
generalized volume actually coincide.

Recall that the oriented volume of a tetrahedron with verticesO, M1, M2, M3 is equal
to one-sixth of the mixed product of vectorsO Mi , i = 1,2,3, so the generalized volume
V(P) is a polynomial in coordinates of the vertices ofP.

3. Motivations for Our Approach to the Problem

3.1. Volumes of Some Simple Polyhedra

The Volume of a Tetrahedron. It is well known that the volumeV of a tetrahedron
(see Fig. 1) with given lengths of the edgesl1, l2, l3, l4, l5, l6 may be calculated by the
following formula:

V2 = 1
144[l

2
1l 2

5(l
2
2 + l 2

3 + l 2
4 + l 2
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1 − l 2

5)+ l 2
2l 2

6(l
2
1 + l 2

3 + l 2
4 + l 2

5 − l 2
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+ l 2
3l 2
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2
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2+l 2
5+l 2

6−l 2
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4)−l 2
1l 2
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4−l 2
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3l 2

5−l 2
1l 2

3l 2
6−l 2

4l 2
5l 2

6]. (1)

Thus the oriented volumeV of any tetrahedron may be regarded as a root of a polynomial
equation of the form

Q(V) = V2+ a(l ) = 0,
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Fig. 1 Fig. 2

wherel = (l 2
1, . . . , l

2
6) denotes the set of the squares of the lengths of the edges, anda(l )

is a polynomial inl with rational coefficients.

The Generalized Volume of a Polyhedron with Five Vertices. It is easy to show that
such a polyhedronP always has three vertices of degree 4 and two vertices of degree
3. So the combinatorial structure ofP is determined uniquely and is shown in Fig. 2,
where the base of the quadrangular pyramid is supposed to be dissected by one of its
diagonals. DecomposingP into two tetrahedra,〈Ap1 p2 p4〉 and 〈Ap2 p3 p4〉, we have
V = vol(P) = VA124+εVA234, ε = ±1. HenceV4−2(V2

1 +V2
2 )V

2+ (V2
1 −V2

2 )
2 = 0,

whereV1 = VA124, V2 = VA234. Replacing the values ofV2
1 andV2

2 by their expressions
in the form of (1), we obtain that the volume of any polyhedron with five vertices is a
root of a polynomial equation of the form

Q(V) = V4+ a1(l )V
2+ a2(l ) = 0, (2)

wherel denotes the set of the squares of the edge lengths of the polyhedron, anda1,a2

are some polynomials inl with rational coefficients.
We would like to emphasize that (2) is valid for all polyhedra with five vertices

independent of their actual configuration inR3. For example, consider some possible
cases:

(1) V1 = V2 6= 0. Then we haveQ(V) = V4 − 4V2
1 V2 = 0. Therefore,V = ±2V1

in the case where verticesp1 and p3 are separated by the plane passing through
vertices p2, p4, and A; and V = 0 in the case where verticesp1 and p3 are
not separated by that plane. In both cases the volume ofP is a root of the same
equation (2).

(2) V2 = 0, V1 6= 0 (in Fig. 3 vertexp3 is in the plane〈Ap2 p4〉). Then Q(V) =
(V2− V2

1 )
2 = 0, and henceV = ±V1.

(3) The lengthsl A2 = l A4, l24 = 0. ThenV1 = 0, V2 = 0. HenceQ(V) = V4 = 0,
and soV = 0. By the way, in this case the polyhedronP (see Fig. 4) admits

Fig. 3 Fig. 4
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nontrivial flexions, namely, the rotation of the three faces〈Ap2 p3〉, 〈Ap3 p4〉, and
〈p2 p3 p4〉 (this one is a degenerate face) about the axis〈Ap2〉 = 〈Ap4〉; however,
the value of volume is always a root of the same equationQ(V) = V4 = 0.

By the above argument, we deduce thefirst observation: in the simplest cases the
volume of polyhedra satisfies a polynomial equation with coefficients independent of
the positions of vertices and polynomially dependent only on the squares of the lengths
of the edges.

3.2. Polyhedra as Algebraic Varieties

As we know from Section 2, a polyhedron inR3 is defined as a mapP: K → R3, where
|K | is the carrier of a simplicial complexK . Since all faces ofK are triangles andP is
linear on each face, it follows that the mapP is completely determined by the images
Mi (xi , yi , zi ), 1≤ i ≤ n, of n vertices ofK . Therefore, for each polyhedronP in R3, we
can assign a pointM(x1, y1, z1, . . . , xn, yn, zn) ∈ R3n and, conversely, with any point
M ∈ R3n we can obviously associate a polyhedronP in R3 so that there is a bijective
(even homeomorphic in a corresponding topology) relationR3 ⊃ P↔ M ∈ R3n.

The number of edges ofP ise= 3n−6+6g, whereg ≥ 0 is the topological genus of
the polyhedronP. Under a given numbering of the vertices ofP, assume that the edges
are numbered by the indexk = k(i, j ), 1 ≤ k ≤ e, wherei and j are numbers of the
vertices joined by the edgek. The lengths of edges are given by the following equations:

(xi − xj )
2+ (yi − yj )

2+ (zi − zj )
2 = l 2

k , 1≤ k ≤ e. (3)

Now we considerall solutions(x1, . . . , zn) of (3) with the restriction that the lengths
lk are fixed. Thus we obtain all polyhedra inR3 with rigid facesisometricto P, and
having the same combinatorial structureK . In order to exclude the polyhedra obtained
by a parallel translation ofP, we add three equations to (3):∑

i

xi = 0,
∑

i

yi = 0,
∑

i

zi = 0. (4)

It is easy to show that the solutions of (3)–(4) are situated inR3n in a ball B ⊂ R3n of
a finite radiusr depending on the combinatorial structureK and onl = (l 2

1, . . . , l
2
e),

the squares of the lengths of the edges. So the setP̃ of polyhedra inR3 isometric to
P and having the same combinatorial structureK is in a homeomorphic relation with
the algebraic varietỹA defined by system (3)–(4). However,Ã in the ballB may have
only a finite number of compact components (which may have different dimensions).
If we add three new equations to (3)–(4) excluding continuous rotations ofP, thenany
one-point component of̃A corresponds to a rigid polyhedron iñP and the other ones are
composed by flexing polyhedra iñP. Hence we have come to thesecond observation: if
the bellows conjecture if true, then the volumes of all polyhedra inP̃ have only a finite
number of possible values.
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4. The Main Result

Starting from these observations, we have suggested (see, for example, Section 8 in [9]
by the author) that instead of seeking a proof of the bellows conjecture consideringonly
flexiblepolyhedra, it would be more hopeful to try proving a more general conjecture,
namely, the volume ofanypolyhedronP in R3 is a root of some polynomial equation
Q(V) = 0 with coefficients depending only on its metric and combinatorial structure.
In fact, we prove the following theorem:

Theorem 1. Let P be an oriented polyhedral surface in R3 having a given combina-
torial structure K and given values of edge lengths lk, 1≤ k ≤ e, where e is the number
of edges of P. Let P̃ be the set of all polyhedra in R3 with the same combinatorial struc-
ture K and having the same lengths of the edges as P. Then there exists a polynomial
equation

Q(V) = V2N + a1(l )V
2N−2+ · · · + aN(l ) = 0 (5)

such that the generalized volume of any polyhedron fromP̃ is a root of this equation.
Moreover, the coefficients ai are polynomials in(l ) = (l 2

1, . . . , l
2
e) with rational coeffi-

cients depending on K.

Corollary 1. For all polyhedra isometric to a given polyhedron, there is only a finite
number of possible values of their volumes.

Thus we can say that the volume of a polyhedron is a finitely valued function of the
polyhedron’s metric, and therefore it is natural to interpret the theorem as a generalization
of Heron’s formula for the area of a triangle.

Corollary 2. The bellows conjecture is true.

Indeed, the volumeV of a flexible polyhedronP is a continuous function of positions
of its vertices. However, by Corollary 1, in the process of flexion ofP, V can take only
a finite number of values, so thatV remains constant.

Remarks. (1) The algebraic meaning of the theorem is as follows. Denote byψk

(x1, . . . , zn), 1 ≤ k ≤ e, the polynomials in the left-hand side of (3). The volume
V(P) is a polynomial over the same variables(x1, . . . , zn). The theorem asserts that
this polynomialV(x1, . . . , zn) algebraically depends on the polynomialsψk, that is,
there is a polynomialQ(V, ψ1, . . . , ψe)such thatQ(V(x1, . . . , zn), ψ1(x1, . . . , zn), . . . ,

ψe(x1, . . . , zn)) ≡ 0 over the ringR(x1, . . . , zn). It seems that the existence of a poly-
nomial identity forV andψk is not very difficult to establish as is pointed out in [12];
however, in general all the coefficients forV in Q may be equal to zero for some values
of (l ). In [13] we showed the existence (over the ring of rational numbers) of such a
polynomial Q(V) with the leader coefficient 1. After this in [8], with help of places’
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theory, the existence of such a polynomial over the ring of integers whose leading co-
efficient is also 1 if the independent variable inQ is taken equal to 12V is established.
For our polynomialQ(V) in (5) we know not only the existence but a method for its
construction too. The numerical coefficients inai (l ) are rational numbers, but in fact one
could trace out that for̃V = 12V the coefficients of the corresponding polynomial are
integral; in particular, the leading coefficient is 1, exactly as in [8].

(2) Our method of constructing a required polynomial gives many such polynomials.
However, excluding the case of octahedra [3], we know neither the minimum degree of
these equations nor theircanonicalform. Of course, using our method, we can construct
all possible polynomialsQ(V) and take their greatest common divisor over the ring
R[l 2

1, . . . , l
2
e] (may be even overR[l1, . . . , le]), but we do not know if it is a required

polynomial of minimum degree.
(3) The theorem is true also for polyhedra with nontriangular rigid faces because we

can decompose them into triangles by adding diagonals.
(4) Alexandrov has constructed [2] the example of a flexible polyhedron in three-

dimensional spherical spaceS3 for which the volume does change under flexion. There-
fore the property that the volume may be a function of the polyhedron’s metric is not
stable as for the curvature’s variation of the ambient Euclidean space because in Alexan-
drov’s example the curvature ofS3 may be chosen arbitrarily close to zero.

(5) It is known that apart from the volumeV of a polyhedron, there exists one
more geometric magnitude, namely, the mean curvatureH of a polyhedron, which also
conserves its value during flexion [1]. By definition,H =∑k lk(π − ϕk), wherelk are
the edge lengths,ϕk are dihedral angles at the corresponding edges, and the sum is taken
over all the edges of polyderon. It is noticed in Section 9 that if we know a value ofV
in general, we can find only a finite number of polyhedra having this volume (of course,
we suppose the combinatorial structure and metric of polyhedra to be known and fixed)
and consequently a finite number of possible values ofH . Then the following questions
arise: (a) What kind of relationf (V, H) = 0 exists betweenV andH ; in particular, is
it polynomial or not? (b) Given some consistent values ofV andH , do they define the
corresponding polyhedron uniquely or not?

5. The Cayley–Menger Equation

It is known that ten distances between five points inR3 cannot be chosen arbitrarily
but must satisfy the Cayley–Menger equation, see, for example, [4] or [5]. Denote byl
with two subscripts the distance between the corresponding points, see Fig. 5 on which
the complete graph of five points is drawn. Then the Cayley–Menger equation may be

Fig. 5
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written in the form ∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 l 2

A1 l 2
A2 l 2

A3 l 2
A4

1 l 2
1A 0 l 2

12 l 2
13 l 2

14
1 l 2

2A l 2
21 0 l 2

23 l 2
24

1 l 2
3A l 2

31 l 2
32 0 l 2

34
1 l 2

4A l 2
41 l 2

42 l 2
43 0

∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

We aim to present this equation in a suitable form. For this, first we calculate the
determinant,1, on the left-hand side of the equation. We putx = l 2

13, y = l 2
24 and

present the elements of any column containingx andy as the sum of these elements with
zero; using the well-known property of the determinant having a column-sum we obtain

1 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1+ 0 1+ 0 1+ 0 1+ 0
1 0 l 2

A1+ 0 l 2
A2+ 0 l 2

A3+ 0 l 2
A4+ 0

1 l 2
1A 0+ 0 l 2

12+ 0 0+ x l214+ 0
1 12

2A l 2
21+ 0 0+ 0 l 2

23+ 0 0+ y
1 l 2

3A 0+ x l232+ 0 0+ 0 l 2
34+ 0

1 l 2
4A l 2

41+ 0 0+ y l243+ 0 0+ 0

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1+ 0 0 1+ 0
1 0 l 2

A1 l 2
A1+ 0 0 l 2

A4+ 0
1 l 2

1A 0 l 2
12+ 0 x l214+ 0

1 l 2
2A l 2

21 0+ 0 0 0+ y
1 l 2

3A 0 l 2
32+ 0 0 l 2

34+ 0
1 l 2

4A l 2
41 0+ y 0 0+ 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1+ 0 0 1+ 0
1 0 0 l 2

A2+ 0 0 l 2
A4+ 0

1 l 2
1A 0 l 2

12+ 0 x l214+ 0
1 l 2

2A 0 0+ 0 0 0+ y
1 l 2

3A x l232+ 0 0 l 2
34+ 0

1 l 2
4A 0 0+ y 0 0+ 0

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1+ 0 1 1+ 0
1 0 l 2

A1 l 2
A2+ 0 l 2

A3 l 2
A4+ 0

1 l 2
1A 0 l 2

12+ 0 0 l 2
14+ 0

1 l 2
2A l 2

21 0+ 0 l 2
23 0+ y

1 l 2
3A 0 l 2

32+ 0 0 l 2
34+ 0

1 l 2
4A l 2

41 0+ y l243 0+ 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1+ 0 1 1+ 0
1 0 0 l 2

A2+ 0 l 2
A3 l 2

A4+ 0
1 l 2

1A 0 l 2
12+ 0 0 l 2

14+ 0
1 l 2

2A 0 0+ 0 l 2
23 0+ y

1 l 2
3A x l232+ 0 0 l 2

34+ 0
1 l 2

4A 0 0+ y l243 0+ 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

Performing this procedure for the columns containing the sums 0+ y we present1
as the sum of 16 determinants:

1 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 0 1
1 0 l 2

A1 l 2
A2 0 l 2

A4
1 l 2

1A 0 l 2
12 x l214

1 l 2
2A l 2

21 0 0 0
1 l 2

3A 0 l 2
32 0 l 2

34
1 l 2

4A l 2
41 y 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 0 1
1 0 l 2

A1 0 0 l 2
A4

1 l 2
1A 0 0 x l214

1 l 2
2A l 2

21 0 0 0
1 l 2

3A 0 0 0 l 2
34

1 l 2
4A l 2

41 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 0 0
1 0 l 2

A1 l 2
A2 0 0

1 l 2
1A 0 l 2

12 x 0
1 l 2

2A l 2
21 0 0 y

1 l 2
3A 0 l 2

32 0 0
1 l 2

4A l 2
41 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 0 0
1 0 l 2

A1 0 0 0
1 l 2

1A 0 0 x 0
1 l 2

2A l 2
21 0 0 y

1 l 2
3A 0 0 0 0

1 l 2
4A l 2

41 y 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
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+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 0 0
1 0 0 l 2

A2 0 0
1 l 2

1A 0 l 2
12 x 0

1 l 2
2A 0 0 0 y

1 l 2
3A x l232 0 0

1 l 2
4A 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 0
1 0 0 0 0 0
1 l 2

1A 0 0 x 0
1 l 2

2A 0 0 0 y
1 l 2

3A x 0 0 0
1 l 2

4A 0 y 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 0 1
1 0 0 l 2

A2 0 l 2
A4

1 l 2
1A 0 l 2

12 x l214
1 l 2

2A 0 0 0 0
1 l 2

3A x l232 0 l 2
34

1 l 2
4A 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 0 1
1 0 0 0 0 l 2

A4
1 l 2

1A 0 0 x l214
1 l 2

2A 0 0 0 0
1 l 2

3A x 0 0 l 2
34

1 l 2
4A 0 y 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 l 2

A1 l 2
A2 l 2

A3 l 2
A4

1 l 2
1A 0 l 2

12 0 l 2
14

1 l 2
2A l 2

12 0 l 2
23 0

1 l 2
3A 0 l 2

32 0 l 2
34

1 l 2
4A l 2

41 0 l 2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 0
1 0 l 2

A1 l 2
A2 l 2

A3 0
1 l 2

1A 0 l 2
12 0 0

1 l 2
2A l 2

12 0 l 2
23 0

1 l 2
3A 0 l 2

32 0 0
1 l 2

4A l 2
41 0 l 2

34 0

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 1 1
1 0 l 2

A1 0 l 2
A3 l 2

A4
1 l 2

1A 0 0 0 l 2
14

1 l 2
2A l 2

12 0 l 2
23 0

1 l 2
3A 0 0 0 l 2

34
1 l 2

4A l 2
41 y l234 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 0 1 0
1 0 l 2

A1 0 l 2
A3 0

1 l 2
1A 0 0 0x 0

1 l 2
2A l 2

12 0 l 2
23 y

1 l 2
3A 0 0 0 0

1 l 2
4A l 2

41 y l234 0

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 1 1
1 0 0 l 2

A2 l 2
A3 l 2

A4
1 l 2

1A 0 l 2
12 0 l 2

14
1 l 2

2A 0 0 l 2
23 0

1 l 2
3A x l232 0 l 2

34
1 l 2

4A 0 0 l 2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 1 1 0
1 0 0 l 2

A2 l 2
A3 0

1 l 2
1A 0 l 2

12 0 0
1 l 2

2A 0 0 l 2
23 y

1 l 2
3A x l232 0 0

1 l 2
4A 0 0 l 2

34 0

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 1 1
1 0 0 0 l 2

A3 l 2
A4

1 l 2
1A 0 0 x l214

1 l 2
2A 0 0 l 2

23 0
1 l 2

3A x 0 0 l 2
34

1 l 2
4A 0 y l234 0

∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 0 0 1 0
1 0 0 0 l 2

A3 0
1 l 2

1A 0 0 0 0
1 l 2

2A 0 0 l 2
23 y

1 l 2
3A x 0 0 0

1 l 2
4A 0 y l234 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

Denote each determinant in the above sum by1i , 1 ≤ i ≤ 16, where the numberi
corresponds to the position of1i as the summand in this sum. The direct calculation of
each1i gives

11 = 113 = x

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 l 2

A1 l 2
A2 l 2

A4
1 l 2

2A l 2
21 0 0

1 l 2
3A 0 l 2

32 l 2
34

1 l 2
4A l 2

41 0 0

∣∣∣∣∣∣∣∣∣∣
,
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12+13 = xy


∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

A1 l 2
A2

1 l 2
3A 0 l 2

32
1 l 2

4A l 2
41 0

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

A1 l 2
A4

1 l 2
2A l 2

21 0
1 l 2

3A 0 l 2
34

∣∣∣∣∣∣∣∣
 ,

14 = 116 = xy2(l 2
1A + l 2

3A),

15 = 18 = yx2(l 2
2A + l 2

4A),

16 = −x2y2, 17 = −x2(l 2
2A − l 2

4A)
2, 112 = −y2(l 2

1A − l 2
3A)

2,

110 = 111 = y

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 l 2

A1 l 2
A2 l 2

A3
1 l 2

2A 0 l 2
12 0

1 l 2
3A 0 l 2

32 0
1 l 2

4A l 2
41 0 l 2

34

∣∣∣∣∣∣∣∣∣∣
,

114+115 = xy


∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

A3 l 2
A4

1 l 2
1A 0 l 2

14
1 l 2

2A l 2
23 0

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

A2 l 2
A3

1 l 2
1A l 2

12 0
1 l 2

4A 0 l 2
34

∣∣∣∣∣∣∣∣
 ,

and we leave19 without any change so far:

19 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 l 2

A1 l 2
A2 l 2

A3 l 2
A4

1 l 2
1A 0 l 2

12 0 l 2
14

1 l 2
2A l 2

12 0 l 2
23 0

1 l 2
3A 0 l 2

32 0 l 2
34

1 l 2
4A l 2

41 0 l 2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣
.

Now we introduce new notations:l 2
12 = p, l 2

14 = q. Calculating in a similar fashion, we
obtain:

11+113 = 2x


∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 l 2

2A l 2
3A l 2

4A
1 l 2

1A 0 0 0
1 l 2

2A 0 l 2
23 0

1 l 2
4A 0 l 2

34 0

∣∣∣∣∣∣∣∣∣∣
+ p

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

3A l 2
4A

1 l 2
2A l 2

23 0
1 l 2

4A l 2
34 0

∣∣∣∣∣∣∣∣
+ q

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

2A l 2
3A

1 l 2
2A 0 l 2

23
1 l 2

4A 0 l 2
34

∣∣∣∣∣∣∣∣
 ,
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110+111 = 2y

2pql23A +

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 l 2

1A l 2
2A l 2

3A
1 l 2

1A 0 0 0
1 l 2

3A 0 l 2
23 0

1 l 2
4A 0 0 l 2

34

∣∣∣∣∣∣∣∣∣∣
− p

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

A1 l 2
A3

1 l 2
3A 0 0

1 l 2
4A 0 l 2

34

∣∣∣∣∣∣∣∣
+ q

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

A2 l 2
A3

1 l 2
1A 0 0

1 l 2
3A l 2

23 0

∣∣∣∣∣∣∣∣
 ,

12+13+114+115 = 2xy


∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

1A l 2
2A

1 l 2
3A 0 l 2

23
1 l 2

4A 0 0

∣∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

2A l 2
3A

1 l 2
1A 0 0

1 l 2
4A 0 l 2

34

∣∣∣∣∣∣∣∣
− q

∣∣∣∣∣∣
0 1 1
1 0 l 2

2A
1 l 2

3A l 2
13

∣∣∣∣∣∣− p

∣∣∣∣∣∣
0 1 1
1 0 l 2

3A
1 l 2

4A l 2
34

∣∣∣∣∣∣
 ,

19 = 117− p(118+119)− q(120+121) = −2pq122+ p2123+ q2124, where

117 =

∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1 1
1 0 l 2

1A l 2
2A l 2

3A l 2
4A

1 l 2
1A 0 0 0 0

1 l 2
2A 0 0 l 2

23 0
1 l 2

3A 0 l 2
23 0 l 2

34
1 l 2

4A 0 0 l 2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣
, 122 =

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

2A l 2
3A

1 l 2
3A l 2

23 0
1 l 2

4A 0 l 2
34

∣∣∣∣∣∣∣∣ ,

118 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 l 2

1A l 2
3A l 2

4A
1 l 2

2A 0 l 2
23 0

1 l 2
3A 0 0 l 2

34
1 l 2

4A 0 l 2
34 0

∣∣∣∣∣∣∣∣∣∣
, 119 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 l 2

2A l 2
3A l 2

4A
1 l 2

1A 0 0 0
1 l 2

3A l 2
23 0 l 2

34
1 l 2

4A 0 l 2
34 0

∣∣∣∣∣∣∣∣∣∣
,

120 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 l 2

1A l 2
2A l 2

3A
1 l 2

2A 0 0 l 2
23

1 l 2
3A 0 l 2

23 0
1 l 2

4A 0 0 l 2
34

∣∣∣∣∣∣∣∣∣∣
, 121 =

∣∣∣∣∣∣∣∣∣∣
0 1 1 1 1
1 0 l 2

2A l 2
3A l 2

4A
1 l 2

1A 0 0 0
1 l 2

2A 0 l 2
23 0

1 l 2
3A l 2

23 0 l 2
34

∣∣∣∣∣∣∣∣∣∣
,

123 = −

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

3A l 2
4A

1 l 2
3A 0 l 2

34
1 l 2

4A l 2
34 0

∣∣∣∣∣∣∣∣ , 124 = −

∣∣∣∣∣∣∣∣
0 1 1 1
1 0 l 2

3A l 2
4A

1 l 2
2A l 2

23 0
1 l 2

3A 0 l 2
34

∣∣∣∣∣∣∣∣ .
Note that the coefficient123 at p2 is equal to 16 vol2 (triangle〈p3, p4, A〉) and that atq2

is 16 vol2 (triangle〈p2, p3, A〉).
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Later we heavily use the Cayley–Menger equation whenever the pointsA, p1, p2, p3,

p4 are the vertices of a polyhedronP in a general configuration (this means that the
coordinates of the vertices are algebraically independent; in particular, no three vertices
lie on the same line). For this reason we have to present this equation in a short and, on the
other hand, sufficiently informative form. Denote byl A the set(l 2

1A, l
2
2A, l

2
3A, l

2
4A, l

2
23, l

2
34).

The Cayley–Menger determinant1 can be regarded as a polynomial over the variables
x, y, p,q with coefficients depending onl A.

When no three of five pointsA, p1, p2, p3, p4 lie on the same line, some coefficients
are certainly distinct from zero, for example,123 and124 at p2 andq2. We denote all
of them by subscripteda. The coefficients that can be equal to zero, for some specific
values of(l A), are denoted byb with a subscript1; for example, the coefficients atx and
y are so. Now the Cayley–Menger equation−1 = 0 can be presented in the following
form:

−1 = −16− (15+18)− (17+112)− (14+116)

−(110+111)− (11+113)− (12+13+114+115)−19

= x2[y2+ a1(l A)y+ b1(l A)]

+x[a2(l A)y
2+b2(l A)py+b3(l A)qy+b4(l A)p+b5(l A)q+b6(l A)y+b7(l A)]

+[a3(l A)p
2+ a4(l A)q

2+ b8(l A)y
2+ a5(l A)pqy+ b10(l A)pq+ b11(l A)py

+ b12(l A)qy+ b13(l A)p+ b14(l A)q + b15(l A)y+ b16(l A)]

= 0 (6)

We will also need some interpretation of the Caley–Menger equation as a polynomial
equation for one of the variablesp or q. Therefore it is useful to have this presentation,
say, forp:

ap2+ (aqy+ bxy+ bq+ bx+ by+ b)p

+(x2y2+ axy2+ ayx2+ aq2+ bx2+ by2+ bqxy

+ bqx+ bqy+ bxy+ bq+ bx+ by+ b) = 0. (7)

Here we omit the subscripts for the coefficients because we only pay attention to the
distribution of the degrees ofx, y,q between the coefficients forp2, p, and p0. (For
example, note that there is no monomialxpq.) The equation forq has the same form.

Remark. It is essential to notice that the coefficient [y2+a(l A)y+b(l A)] at x2 is equal
to l 4

34+ l 4
2A+ l 4

4A+ 2l 2
2Al 2

4A− 2l 2
34l

2
4A− 2l 2

2Al 2
34 = −16 vol2 (triangle〈p2, p4, A〉) so it is

nonzero for any general configuration of points.

6. The Main Lemma

First we fix our terminology. We say that a polyhedronP has the property Qif for P
and for all polyhedra fromP̃ the above theorem is valid.

1 In fact, for polyhedronP in a general positionnoneof Cayley–Menger coefficients is equal to zero; thus
we distinguish them by the equality or the nonequality to zero under the simplest condition that there be no
three points lying on the same line inP.
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We say that a 3-cycle (a cycle composed by three edges)L is emptyif it is not the
boundary of a face of the polyhedronP. For example, in the polyhedron of Fig. 2 the
3-cycle〈Ap2 p3〉 is empty.

We say that a simplicial complexK is of class K0 if K has at least one vertex which
is not incident to any empty 3-cycle. Note that ifK has a vertex of degree 3, thenK is
of classK0.

Now we can formulate our next lemma.

Lemma 1. Suppose that all the polyhedra with n vertices and given genus g≥ 0 have
the property Q. Let P be a polyhedron with n+ 1 vertices which has the combinatorial
structure of class K0 with the same genus g. Then P has the property Q too.

7. Proof of the Lemma

Suppose first that a polyhedronP with n+ 1 vertices and of combinatorial typeK0 is
in the general position, i.e., the coordinates of its vertices are algebraically independent.
We proceed by induction on the degreem of a vertex which is not incident to any empty
3-cycle. If P has a vertexA of degreem= 3, then the lemma is evident. Before making
the induction step “fromm to m+ 1” with an arbitrarym, we dwell on the step “from
3 to 4,” which will help us demonstrate our idea for the general case. So, letA be a
vertex of degree 4 which is not incident to any empty 3-cycle and let StA denote the
star of the vertexA. Number the vertices of the boundary of StA in a cyclic order,
say,p0, p1, p2, p3 starting from an arbitrary vertex. On the base ofP we construct two
polyhedraP1 andP2, both having a vertex of degree 3. Namely, for the construction ofPi

we remove the edge〈Api 〉, i = 1,2, with the two incident faces〈pi−1Api 〉, 〈pi Api+1〉,
and then replace them by new faces〈pi−1 pi pi+1〉 and〈pi−1Api+1〉; see Fig. 6. These
operations are possible because the diagonals〈p0 p2〉 and〈p1 p3〉 are not edges ofP and
therefore in the new polyhedraP1 andP2 both are incident exactly to two faces.

The vertexA is of degree 3 inP1 andP2. Denote the lengths of the diagonals〈p0 p2〉

Fig. 6
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and〈p1 p3〉 by d1 andd2, respectively; the subscript indicates the number of the point
“between” the ends of the corresponding diagonal. By the induction base, the volumes
V1 = vol(P1) andV2 = vol(P2) are roots of some polynomial equations of the form

Qi = V2Ni
i + a(i )1 (l ,d

2
i )V

2Ni−2
i + · · · = 0, i = 1,2. (8i )

Let V0i be the volume of the tetrahedron〈Api−1 pi pi+1〉 completingPi up to P. Then
for the volumeV(P) we have

Vi = V − εV0i , ε = ±1, i = 1,2. (9i )

Substituting the valueVi from (9i ) to (8i ), and using the equalities

V2m
i =

m−1∑
k=1

C2k
2mV2kV2(n−k)

0i − εV V0i

m−1∑
k=0

C2k+1
2m V2kV2(m−k−1)

0i , i = 1,2, . . . ,

we obtain (after routine algebraic manipulations) equations of the form

V4Ni + A(i )1 (l ,d
2
i ,V2

0i )V
4Ni−2+ · · · + A(i )2Ni

(l ,d2
i ,V2

0i )V
0 = 0, (10i )

already withoutε. It means that these equations do not depend on a particular position of
St A relatively to the rest part ofP. Now, in (10i ) substitute the value ofV2

0i accordingly
(1) as functions of(l ,d2

i ) and get

V4Ni + B(i )1 (l ,d
2
i )V

4Ni−2+ · · · + B(i )2Ni
(l ,d2

i )V
0 = 0, i = 1,2. (11i )

We can consider (11i ) also as polynomial equations ind2
i . For this, present (11i ) as

follows:

C(i )
0 (l ,V2)d2Ki

i + · · · + C(i )
Ki
(l ,V2) = 0, i = 1,2, (12i )

where 2Ki ≤ 12Ni is the maximum of thedi ’s degrees in the polynomial equation
(11i ) when(l ) = (l 2

1, . . . , l
2
e) are regarded as independent variables. If fori = 1 or 2

one hasKi = 0, then the corresponding equation (12i ) takes the formC(i )
Ki
(l ,V2) =

V4Ni + · · · = 0, so that forV we have the required equationQ(V) = V2N + · · · = 0
with N = 2Ni . Let Ki > 0, i = 1,2. Substitute inC(i )

j (l ,V2), 0 ≤ j < Ki , the
value ofl = (l 2

1, . . . , l
2
e) andV as polynomial functions of(x1, . . . , zn). If all functions

obtained by this procedure are identical to zero, again we come to a desired equation
Q(V) = C(i )

Ki
(l ,V2) = V4Ni + · · · = 0. If at least one of these functions is not identical

to zero, then forP the coefficient at the corresponding degree ofdi is not equal to zero
becauseP is in a general position. For brevity, we suppose that the first such coefficient
is C(i )

0 (l ,V2), so we have equations of the form (12i ) with C(i )
0 (l ,V2) 6= 0, i = 1,2.

Now we recall that ten distances between five pointsA, p0, p1, p2, p3 satisfy the
Cayley–Menger equation (6). In our casex = d2

1, y = d2
2 and other distances, in

particular p andq, are the lengths of the edges ofP. Therefore we can denote them
all by (l ). Then the corresponding Cayley–Menger equation can be rewritten in the
following form:

d̄2
1(d̄

2
2 + ad̄2+ b)+ d̄1(ad̄2

2 + bd̄2+ b)+ (bd̄2
2 + bd̄2+ b) = 0, (13)
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whered̄1 = d2
1, d̄2 = d2

2 (we do not write the variablesp andq because in the case in
question they are known to be the lengths of the edges〈p0 p1〉 and〈p0 p3〉). Furthermore,
we omit the subscripts of the coefficientsa andb. Since the leading coefficients in (121)
and (13) are different from zero, we can eliminated̄1 by using the resultant of (121) and
(13). This procedure leads to the following equation:∣∣∣∣∣∣∣∣∣∣∣∣∣

(d̄2
2 + · · ·) (ad̄2

2 + · · ·) (bd̄2
2 + · · ·) ∗ · · · 0

0 (d̄2
2 + · · ·) · · · · · · · · · 0

...
. . .

...
...

...
...

0 · · · (d̄2
2 + · · ·) · · · · · · ∗

C(1)
0 (l ,V2) C(1)

1 (l ,V2) · · · (V4N1 + · · ·) · · · 0
0 · · · C(1)

0 (l ,V2) · · · · · · (V4N1 + · · ·),

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

where by “∗” we denote the coefficient at̄d0
1 in (13). We recall that in the coefficients

C(1)
j the degree ofV is less than 4N1. Therefore, calculating this determinant of size

(K1+ 2)× (K1+ 2), we obtain the following equation:

d̄2K1
2 (V8N1+· · ·)+d̄2K1−1

2 (aV8N1+· · ·)+d̄2K1−2
2 (bV8N1+· · ·)+· · ·+d̄0

2(bV8N1+· · ·) = 0.
(14)

Now we can eliminatēd2 from (14), and rewrite (122) for d̄2 = d2
2. It is easy to see that

the resultant equation is as follows:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

V8N1 + · · · aV8N1 + · · · · · · ∗ · · · 0
0 V8N1 + · · · · · · · · · · · · · · ·
...

. . .
...

... · · · · · ·
0 · · · V8N1 + · · · · · · · · · ∗

C(2)
0 (l ,V2) C(2)

1 (l ,V2) · · · V4N2 + · · · · · · 0
...

. . .
...

. . .
...

0 · · · C(2)
0 (l ,V2) · · · · · · V4N2 + · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

It follows that the greatest degree ofV is 2N = 8K2N1+8K1N2 (because the degree
of V in the coefficientsC(2)

i is less than 4N2) and the leading coefficient is 1. Therefore,
we have come to the desired equationQ(V) = V2N + · · · = 0, where the degree 2N
of Q(V) satisfies 2N ≤ 96N1N2. Thus, if the degree of the vertexA is 4, the induction
step has been performed.

Suppose now that the lemma has been proved for vertices of degree less than or equal
to m, and consider the case where vertexA has degreem+ 1. Note that for the case
of a vertex of degree 4 the elimination process used in our considerations turned out
to be possible due to the availability of relation (13) between the diagonals and edges
of St (A). So, proceeding to the study of the general case, we should try to find also a
relation between the edges and diagonals of St(A) when vertexA is of degreem+ 1.
However, first we obtain analogs of (11i ) and (12i ) starting with the construction of new
polyhedraPi , 1 ≤ i ≤ m− 1, in which vertexA has degreem. For this, we denote
the vertices on the boundary of (StA) (in a cyclic order) byp0, p1, . . . , pm starting
from some vertex and replacing the two faces incident to the edgeApi by new faces,
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〈pi−1Api+1〉 and〈pi−1 pi pi+1〉, incident to the diagonal〈pi−1 pi+1〉. Denote bydi the
length of this diagonal. Then, by the induction hypothesis,Vi = vol(Pi ) is a root of some
polynomial equation of the following form:

V2Ni
i + a(i )1 (l ,di )V

2Ni−2
i + · · · = 0, 0≤ i ≤ m. (15i )

Furthermore, by the same argument as above for a vertex of degree 4, we come to the
conclusion thatV(P) anddi satisfy the following equation:

V4Ni + B(i )1 (l ,d
2
i )V

4Ni−2+ · · · + B(i )2Ni
(l ,d2

i )V
0 = 0, 0≤ i ≤ m. (16i )

(These equations are written for all vertices of∂(St A), but for the construction ofPi

we use only those corresponding toi = 1, . . . ,m− 1.) Equation (16i ) can be presented
also as a polynomial equation fordi as follows:

C(i )
0 (l ,V2)d2Ki

i + · · · + C(i )
Ki
(l ,V2) = 0, (17i )

whereC(i )
Ki
(l ,V2) = V4Ni + · · ·.

If at least one of equations (17i ) does not depend ondi for somei whenl 2
1, . . . , l

2
e

are regarded as independent variables, then we already have the required polynomial
equation forV(P): Q(V) = C(i )

Ki
(l ,V2) = V4Ni + · · · = 0. Consider now another

possible case when the coefficients atdi are identical to zero ifl andV are replaced by
their expressions as functions of vertex coordinates(x1, . . . , zn). In this case we also
have the required equation forV : C(i )

Ki
(l ,V2) = 0. So we can assume that allKi > 0

and (after taking into account the fact that polyhedronP is in the general position) that
all the coefficientsC(i )

0 (l ,V2) 6= 0.
Consider now the spatial polygon∂(St A), the boundary of the star ofA. Draw in this

polygon all the diagonals issuing from the vertexp0 and also all diagonals joining the
verticespi−1 and pi+1, 1≤ i ≤ m; see Fig. 7.

Let Di be the length of the diagonal from vertexp0 to pi , 2 ≤ i ≤ m− 1, and let
di be the length of the diagonal joining verticespi−1 and pi+1, 1 ≤ i ≤ m, D2 = d1,
Dm−1 = dm. We take for every five points(A, p0, pi−1, pi , pi+1), 2 ≤ i ≤ m− 1, the
corresponding Cayler–Menger equation:

αi D̄
2
i + βi D̄i + γi = 0, (18i )

Fig. 7
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whereαi , βi , γi must be written according to (6) withx = D̄i , y = d̄i , p = D̄i+1,
q = D̄i−1 and D̄i = D2

i , d̄i = d2
i . In the case where we write (6) as a polynomial inp,

we use (7), denoting the coefficients by the lettersf , g, h with subscripts corresponding
to the number of (18i ).

Now we eliminateD̄m−1, D̄m−2, . . . , D̄3 from these equations successively. Start from
D̄m−1. For this end consider two equations(18m−1) and(18m−2) written as follows:

αm−1D̄2
m−1+ βm−1D̄m−1+ γm−1

:= (d̄2
m−1+ a(m−1)

1 d̄m−1+ b(m−1)
1 )D̄2

m−1

+ (a(m−1)
2 d̄2

m−1+ b(m−1)
2 d̄m−1D̄m−2+ b(m−1)

3 d̄m−1+ b(m−1)
4 D̄m−2+ b(m−1)

5 )D̄m−1

+ (a(m−1)
3 D̄2

m−2+ b(m−1)
6 d̄2

m−1+ a(m−1)
4 d̄m−1D̄m−2+ b(m−1)

7 D̄m−2

+ b(m−1)
8 d̄m−1+ b(m−1)

9 ) = 0 (18m−1)

(we took into account that in our caseq = Dm is the length of the edge〈p0 pm〉),
fm−2D̄2

m−1+ gm−2D̄m−1+ hm−2

:= a(m−2)
1 D̄2

m−1+ [a(m−2)
2 dm−2Dm−3+ b(m−2)

1 d̄m−2D̄m−2+ b(m−2)
2 D̄m−3

+ b(m−2)
3 D̄m−2+ b(m−2)

4 d̄m−2+ b(m−2)
5 ] D̄m−1

+ [ D̄2
m−2d̄2

m−2+ a(m−2)
3 D̄2

m−2d̄m−2+ a(m−2)
4 D̄m−2d̄2

m−2+ a(m−2)
5 D̄2

m−3

+ b(m−2)
6 d̄2

m−2+ b(m−2)
7 D̄2

m−2+ the terms without the square of variables].

(18m−2)

The resultant of(18m−1)and(18m−2)as the determinant of a 4×4 matrix is the following:∣∣∣∣∣∣∣∣
d̄2

m−1+ · · · ad̄2
m−1+ · · · aD̄2

m−2+ · · · 0
0 d̄2

m−1+ · · · ad̄2
m−1+ · · · aD̄2

m−2+ · · ·
a(m−2)

1 gm−2 D̄2
m−2d̄2

m−2+ aD̄2
m−3+ · · · 0

0 a(m−2)
1 d̄m−2(aD̄m−3+ bD̄m−2)+ · · · hm−2

∣∣∣∣∣∣∣∣ = 0,

where the elementgm−2 is equal to the written elementa43 andhm−2 is equal toa33 in the
standard notations of matrix elements; for brevity we have also omitted the subscripts
of some coefficientsa.

Calculating this determinant, we obtain an equation of the following form:

c(0)m−2D̄4
m−2+ c(1)m−2D̄3

m−2+ · · · + c(4)m−2D̄0
m−2 = 0, (19)

wherec (with super- and subscripts) are some polynomials inD̄m−3, d̄m−1, d̄m−2 with
coefficients depending on(l ).

We study the structure of functionsc more thoroughly. The generali th termRi of the
resultant of(18m−1) and(18m−2) has the form

Ri = ±(αm−1)
µ
(i )
0 (βm−1)

µ
(i )
1 (γm−1)

µ
(i )
2 ( fm−2)

ν
(i )
0 (gm−2)

ν
(i )
1 (hm−2)

ν
(i )
2

and, according to the theorem on the weight of the resultant’s member, the following
equalities on exponentsµ andµ hold:

µ
(i )
0 + µ(i )1 + µ(i )2 = 2, ν

(i )
0 + ν(i )1 + ν(i )2 = 2, µ

(i )
1 + 2µ(i )2 + ν(i )1 + 2ν(i )2 = 4.
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Substituting the values ofαm−1, . . . , hm−2 in Ri we obtain

Ri = ±aν0(d̄2
m−1+ ad̄m−1+ b)µ0(ad̄2

m−1+ bd̄m−1D̄m−2+ · · ·)µ1

×(aD̄2
m−2+ bd̄m−1D̄m−2+ bd̄2

m−1)
µ2(ad̄m−2D̄m−3+ bd̄m−2D̄m−2+ · · ·)ν1

×(d̄2
m−2D̄2

m−2+ aD̄2
m−3+ · · ·)ν2,

where for the sake of brevity we have omitted superscripts(i ) for µ andν as well as the
subscripts of the coefficientsa andb; moreover, in parentheses we have written only the
greatest degrees of the corresponding variables.

Taking into account the conditions imposed onµ0, . . . , ν2, by the formula forRi , we
come to the following conclusions: (1) in everyRi the greatest degree of̄Dm−2 is 4; (2)
the greatest degree of̄Dm−3 is 4; (3) the greatest total degree ofD̄m−2 and D̄m−3 is 4
(indeed, the total degree of̄Dm−2 andD̄m−3 in Ri isµ1+ 2µ2+ ν1+ 2ν2 = 4); (4) the
greatest degree of̄dm−1 in Ri is 2µ0 + 2µ1 + 2µ2 = 2(µ0 + µ1 + µ2) = 4; (5) for the
degrees of̄dm−2 we haveν1+ 2ν2 ≤ 4 with equality to 4 iffµ1 = µ2 = ν1 = 0, ν2 = 2;
(6) the greatest total degree ofd̄m−1 andd̄m−2 is 8; and, finally, (7) the coefficientc(0)m−2

at D̄4
m−2 in (19) contains the monomial̄d4

m−1d̄4
m−2 with coefficient 1. So we can present

polynomial equation (19) in the following form:

D̄4
m−2[d̄4

m−2d̄4
m−1+ · · · (there is no degree of̄Dm−3)]

+ D̄3
m−2(b1d̄4

m−2d̄4
m−1+ · · · (maybe there is a term with the first

degree ofD̄m−3))

+ · · · + D̄−m−2(D̄
4
m−3(b4d̄4

m−2d̄4
m−1+ · · ·)+ · · ·) = 0. (20)

Now we can eliminateD̄m−2 from (20) and (18m−3), and so on. As the induction hy-
pothesis, suppose that after(k − 1) eliminations we have come to the equation of the
following form:

D̄T(k)
m−k(d̄

T(k)
m−k · · · d̄T(k)

m−1+ · · ·)+ · · · + D̄0
m−k[ D̄T(k)

m−(k+1)(bd̄T(k)
m−k · · · d̄T(k)

m−1+ · · ·)+ · · ·] = 0,
(21)

whereT(k) = 2k, the greatest degree ofD̄m−k andD̄m−(k+1) is T(k), their greatest total
degree is alsoT(k), the greatest degree of eachd̄i ,m−k ≤ i ≤ m−1, isT(k), the greatest
total degree of̄di , m− k ≤ i ≤ m− 1, iskT(k), and, finally, in the coefficient at̄DT(k)

m−k

the monomiald̄T(k)
m−k · · · d̄T(k)

m−1 has the coefficient 1. We show that after the elimination
of D̄m−k from (21) and (18m−(k+1)) we obtain a polynomial equation for̄Dm−(k+1) and
D̄m−(k+2) with properties similar to those of (21). Indeed, rewrite (21) and (18m−(k+1))
as follows:

c0D̄T(k)
m−k + c1D̄T(k)−1

m−k + · · · + cT(k) D̄
0
m−k = 0,

fm−k−1D̄2
m−k + gm−k−1D̄m−k + hm−k−1

:= a(m−k−1)
1 D̄2

m−k + [a(m−k−1)
2 d̄m−(k+1) D̄m−(k+2) + b(m−k−1)

1 d̄m−(k+1) D̄m−(k+1)

+ b(m−k−1)
2 D̄m−(k+2) + b(m−k−1)

3 D̄m−(k+1)

+ b(m−k−1)
4 d̄m−(k+1) + b(m−k−1)

5 ] D̄m−k
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+ [ D̄2
m−(k+1)d̄

2
m−(k+1) + a(m−k−1)

3 D̄2
m−(k+1)d̄m−(k+1)

+ a(m−k−1)
4 D̄m−(k+1)d̄

2
m−(k+1) + a(m−k−1)

5 D̄2
m−(k+2) + b(m−k−1)

6 d̄2
m−(k+1)

+ b(m−k−1)
7 D̄2

m−(k+1) + (terms without the square of variables)].

The generali th term of the resultant of these equations is of the form

±cµ0
0 cµ1

1 · · · cµT(k)

T(k) (ad̄m−(k+1) D̄m−(k+2) + bd̄m−(k+1D̄m−(k+1) + · · ·)ν1

aν0(D̄2
m−(k+1)d̄

2
m−(k+1) + aD̄2

m−(k+1)d̄m−(k+1) + aD̄m−(k+1)d̄
2
m−(k+1)

+ aD̄2
m−(k+2) + bd̄2

m−(k+1) + bD̄2
m−(k+1) + · · ·)ν2, (22)

where for brevity we have omitted the superscript(i ) for µ andν and also the subscripts
of the coefficientsa andb; moreover, in parentheses we have written only the leading
degrees of the corresponding variables. Theµ andν satisfy the equations:

µ0+ µ1+ · · · + µT(k) = 2, ν0+ ν1+ ν2 = T(k),

µ1+ 2µ2+ · · · + T(k)µT(k) + ν1+ 2ν2 = 2T(k).

From these equations and (22) we can easily verify that the maximal degree ofD̄m−(k+1)

in the resultant isµ1 + 2µ2 + · · · + T(k)µT(k) + ν1 + 2ν2 = 2T(k) = T(k + 1);
the degree ofD̄m−(k+2) is ν1 + 2ν2 ≤ 2T(k) with the equality forν0 = 0, ν1 = 0,
ν2 = T(k). Hence the greatest degree ofD̄m−(k+2) is 2T(k) = T(k+ 1) too. The same
is true for the greatest total degree ofD̄m−(k+1) and D̄m−(k+2). Moreover, it is clear that
the factord̄2T(k)

m−(k+1) occurs only in the producthm−k−1 · · · hm−k−1 = hT(k)
m−k−1, so that in

the coefficient atD̄T(k+1)
m−(k+1) the monomiald̄T(k+1)

m−(k+1)d̄
T(k+1)
m−k · · · d̄T(k+1)

m−1 has coefficient 1.
Thus, it has been verified that the elimination process (by the induction hypothesis) after
(m− 3) steps gives us an equation of the following form:

D̄T(m−2)
2 (d̄T(m−2)

2 d̄T(m−2)
3 · · · d̄T(m−2)

m−1 + · · ·)+ · · · + D̄0
2a(l , d̄2, . . . , d̄m−1) = 0, (23)

becauseD̄1 is the distance betweenp0 and p1 known as the length of the edge〈p0 p1〉.
Therefore, in (23), all the coefficients depend only ond̄i , 2≤ i ≤ m−1, and(l ) including
the last coefficienta at D̄0

2. SinceD̄2 = d̄1, we can represent (23) as the equation for
d̄1, d̄2, . . . , d̄m−1:

d̄T(m−2)
1 (d̄T(m−2)

2 · · · d̄T(m−2)
m−1 + · · ·)+ d̄T(m−2)−1

1 (bd̄T(m−2)
2 · · · d̄T(m−2)

m−1 + · · ·)
+ · · · + d̄0

1(bd̄T(m−2)
2 · · · d̄T(m−2)

m−1 + · · ·) = 0, (24)

where byb we denote some coefficients (in general different) depending on the lengths
of the edges. Equation (24) is the analog of (13) for a vertex of degree 4, and it reflects
the fact that an(m+ 1)-hedral angle hasm− 2 degrees of freedom.

Now we use (24) for the successive elimination of variablesd̄1, . . . , d̄m−1. Let us
make the first step. Consider equation (17i ) for i = 1 as a polynomial equation for̄d1:

d̄K1
1 (a1(l )V

2M1 + · · ·)+ · · · + d̄0
1(V

4N1 + · · ·) = 0, (17′1)
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where 2M1 < 4N1. For brevity, denote the exponentT(m− 2) by T and the coefficient
at d̄0

1 by the symbol “∗” in (24). The resultant of (24) and (17′1) gives an equation of the
following form:∣∣∣∣∣∣∣∣∣∣∣∣∣

d̄T
2 · · · d̄T

m−1 + · · · bd̄T
2 · · · d̄T

m−1 + · · · · · · ∗ · · · 0
...

. . .
...

...
...

...

0 · · · d̄T
2 · · · d̄T

m−1 + · · · · · · · · · ∗
a1(l )V2M1 + · · · · · · · · · V4N1 + · · · · · · 0

...
. . .

...
...

. . .
...

0 · · · a1(l )V2M1 + · · · · · · · · · V4N1 + · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0,

which can be rewritten as follows (recall that in the resultant the firstK1 rows are
composed by the coefficients of (24) and the lastT = T(m− 2) ones are taken from
(17′1)):

d̄L1
2 (d̄

L1
3 · · · d̄L1

m−1(V
S1 + · · ·)+ · · ·)

+d̄L1−1
2 (d̄L1

3 · · · d̄L1
m−1(bVS1 + · · ·)+ · · ·)+ · · · + d̄0

2(· · ·) = 0, (251)

whereL1 = T(m− 2)K1 andS1 = 4T(m− 2)N1 are the greatest degrees, respectively,
of d̄i , 2 ≤ i ≤ m− 1, andV . Now we can eliminatēd2 using (17′2) (which is (172)
rewritten ford̄2 = d2

2) and (251). We obtain an equation which we can denote by (252).
Using this equation and its analogs, we can continue to eliminated̄i , i = 3,4, . . . , by a
similar procedure, and every time ford̄i besides(18′i ) we have an equation (the analog
of (251)) with the leading termd̄Li−1

i d̄Li−1
i+1 · · · d̄Li−1

m−1V Si−1, whereLi−1 = Li−2Ki−1 =
T(m − 2)K1 · · · Ki−1, Si−1 = Ki−1Si−2 + 4Ni−1Li−2. Before the last step we have
(17′m−1), and an equation of the form

d̄Lm−2
m−1 (V

Sm−2 + · · ·)+ d̄Lm−2−1
m−1 (b1V Sm−2 + · · ·)+ · · · + d0

m−1(bLm−2V
Sm−2 + · · ·) = 0,

whereSm−2 is the greatest degree ofV , andb(···) are some coefficients polynomially
depending on(l ). Hence it follows that their resultant gives the desired equation forV :

Q(V) = V2N + a1(l )V
2N−2+ · · · + aN(l ) = 0, (26)

where 2N = Sm−2Km−1+ 4Nm−1Lm−2.

Remark. If we start the elimination ofD̄i from (17j ) with some j < m for i =
j − 1, j − 2, . . . ,1, and, after obtaining an analog of (24), repeat the elimination ofd̄i ,
we will finally obtain an equation relatingV andDj .

Our arguments were valid under the assumption that the considered polyhedronP is
in a general position. Otherwise, by a small perturbation, we can transformP to a near
polyhedraPε which is in a general position, and obtain forPε the following equations:
Qε(Vε) = 0. These equations are of the form (26) in which the polynomialsai (lε) have
numerical coefficients independent ofε (they depend only on the combinatorial structure
K of P and on the choice of the vertexA). Taking the limit ofQε asε→ 0, we obtain
for V(P) the same equation (26). The lemma has been proved.
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8. Proof of the Theorem

Suppose first that the genusg of polyhedra under consideration is zero. Suppose also
that the theorem has been proved for all polyhedra of genusg = 0 with the number
of vertices at mostn. Let P be a polyhedron withn + 1 vertices. IfP has an empty
3-cycleG, we can cutP aroundG and thereby obtain two polyhedra with boundary,
both having less thann + 1 vertices. Pasting their boundaries by triangular faces, we
obtain two polyhedraP1 andP2 of genusg = 0. Evidently,V(P) = ε1(P1)+ ε2V(P2),
εi = ±1. By the induction hypothesis, bothP1 and P2 have propertyQ, so it can be
easily seen that the same is true forP too.

If P does not have an empty 3-cycle, it has a combinatorial structure of typeK0 and,
therefore, the lemma is applicable.

Suppose now that the theorem has been proved for all polyhedra of genus at most
g − 1 ≥ 0. Let P be an arbitrary polyhedron of genusg. Let P0 be a polyhedron of
genusg with the minimum possible number of vertices. It is evident thatP0 necessarily
has an empty 3-cycleG, for otherwise we could decrease the number of vertices. We cut
P0 aroundG and paste two holes by triangular faces of opposite orientation. As a result,
we obtain one or two polyhedra of genus less thanG which have propertyQ. Thus, the
theorem is true for any polyhedron of genusg with the minimum possible number of
vertices. So for polyhedra of genusg the base of induction is ready. Now we apply the
lemma, if this is possible. Otherwise, the considered polyhedronP has an empty 3-cycle.
Then, repeating the above argument, we obtain the desired result again. The theorem has
been proved.

9. Applications

9.1. The Isometric Realizations

Suppose that|K | is the carrier of a geometric simplicial 2-complexK with given lengths
of the edges. Then|K | can be regarded as a 2-manifold with a prescribed polyhedral met-
ric. One of the most important problems of metric geometry is the problem of isometric
realization of|K | as a polyhedral surfaceP in R3. There are many different settings of
this problem; we require that the combinatorial structure ofK would be conserved, that
is, |K |must be a natural development ofP. Up to the present time, the problem in such
a general setting is far from being solved and there was no result of a positive or nega-
tive nature. Even the celebrated Alexandrov’s theorem on the existence of an isometric
realization of any convex polyhedral metric as a convex polyhedron inR3 does not guar-
antee thatP will inherit the combinatorial structure ofK . However, the main result of the
present article immediately implies that for the existence of an isometric realization of
|K | in R3 it is necessarythat (5), originating from the combinatorial structure ofK with
the given metric, has at least one rootV2 ≥ 0. Moreover, (5) gives us a priori all possible
values of volume for the polyhedra sought, even without solving the existence problem.
As to the construction of such polyhedra, we have designed [14] an algorithm which (in
the generic case) gives a required polyhedron or otherwise establishes its nonexistence.
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9.2. Volume as an Algebraic Number

From (5) one can come to the trivial conclusion that if the lengths of the edges of a
polyhedron are algebraic numbers, then its volume is an algebraic number too. The author
believes that this observation could be a starting point for finding a deep explanation of
the fact that the third Hilbert problem has an affirmative answer on the plane, where a
polygon (even with integer values of lengths of the edges) may have a transcendental
value of the area. Meanwhile, in space the answer is negative; recall that this problem is
concerned with the question of equipartity of the two polytopes having equal volumes.
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