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Abstract. Itis proved that inR® the volume of any polyhedron is a root of some polyno-
mial with coefficients depending only on the combinatorial structure and the metric of the
polyhedron. As a consequence, we have a proof of the “bellows conjecture” affirming the
invariance of the volume of a flexible polyhedron in the process of its flexion.

1. Introduction

Let P be a polyhedral surface iR%. A continuous deformation d? is called aflexion

if it changes only (some or all of) dihedral angles®fand keeps each face congruent

to itself. The first example of a flexible polyhedron embeddeRir(i.e., without self-
intersections) was found by Connelly [6]. Shortly after that it was noticed that the volume
of Connelly’s flexing polyhedron, as well as of others constructed later, does not change
during their flexion and therefore Connelly [7] suggested that this property is common for
all flexing polyhedra. Since then his conjecture (hamed for obvious reasons the “bellows
conjecture”) has been considered to be one of the most interesting problems in flexion
theory.

The first attempt to solve this problem was made by Sabitov [12] and it was based
on the approach proposed in [9] and [11]. The prospects of this approach were shown
first by Pavlova [10] for the case of some simple polyhedra. At present two proofs of the
bellows conjecture are known [8], [13]; both are based on the same geometric idea as the
one in [12], but use different algebraic tools for its realization. Here we give an extended
English version of [13] with some modifications in the presentation of the proof.

The article is organized as follows. In Section 2 we introduce some necessary def-
initions. In Section 3 we explain our approach to the bellows conjecture (this section

* This work was supported by RFFI (Russia) Grant No. 96-01-00836.
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may be omitted without loss of understanding of the following text). The main result
and its corollaries are formulated in Section 4. Proofs are given in Section 5-8. Finally,
in Section 9 we address some applications of the results.

2. PolyhedrainR® and Their Generalized Volume

Given a simplicial 2-compleX, a polyhedron(or a polyhedral surfacein R® with
combinatorial structur& is defined as a continuous m&p |K| — R®, where|K | is
the body (carrier) oK. Of course, the map is supposed to be linear on each simplex
of K. We consider only the case whf| is homeomorphic to an orientable 2-manifold
of genusg > 0. Often by a polyhedron we also mean the im&¢K |) c RS rather
than the magP. That image will sometimes also be denoted®yhen it causes no
confusion.

Note that the ma® is not required to be injective giK |, or even on a single simplex
of K, which means that thgeometric polyhedron nay have degenerate faces, self-
intersections, or even self-superpositions. To define the volume of a polyhedron in these
singular cases, we use the concepgeferalized volumeThe polyhedrorP with the
orientation naturally inherited fror is called aroriented polyhedronChoose a point
O in R® and compose the suln V; of coherently oriented volumes of all the tetrahedra
spanned by the poir® and the faces oP.

Definition. V = >V, is called thegeneralized oriented volunté P.

Evidently, the value of generalized volume is independent of the choice of point
O. ltis also clear that for any embedded polyhedron its usual oriented volume and its
generalized volume actually coincide.

Recall that the oriented volume of a tetrahedron with vert@e®l;, M,, M3 is equal
to one-sixth of the mixed product of vectd®aVi, i = 1, 2, 3, so the generalized volume
V (P) is a polynomial in coordinates of the verticesff

3. Motivations for Our Approach to the Problem
3.1. Volumes of Some Simple Polyhedra

The Volume of a Tetrahedron It is well known that the volumé/ of a tetrahedron
(see Fig. 1) with given lengths of the edded, I3, 14, Is, l¢ may be calculated by the
following formula:
V2 = ZlERA+ 15+ 12 +15 =12 —15) + 120502 + 15 +15+12—15—19)
F 122012415 412412-13-12) 121212 121212121212 —121212]). (1)
Thus the oriented volumé of any tetrahedron may be regarded as a root of a polynomial
equation of the form

QV)=V2+a()=0,
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wherel = (12, ...,12) denotes the set of the squares of the lengths of the edges(land
is a polynomial inl with rational coefficients.

The Generalized Volume of a Polyhedron with Five Verticdsis easy to show that

such a polyhedro® always has three vertices of degree 4 and two vertices of degree
3. So the combinatorial structure &fis determined uniquely and is shown in Fig. 2,
where the base of the quadrangular pyramid is supposed to be dissected by one of its
diagonals. Decomposing into two tetrahedra{Apy p2p4) and (Ap,psps), we have

V = VOI(P) = Va124+&Varzg, € = £1. Hencev? — 2(V12+V22)V2+ (Vl2 —V22)2 =0,
whereV; = Vai24, Vo = Vaz3s. Replacing the values Mf andV22 by their expressions

in the form of (1), we obtain that the volume of any polyhedron with five vertices is a
root of a polynomial equation of the form

QV) =V 4+ a(HV2 + ax(l) =0, )

wherel denotes the set of the squares of the edge lengths of the polyhedran, apd
are some polynomials inwith rational coefficients.

We would like to emphasize that (2) is valid for all polyhedra with five vertices
independent of their actual configuration R¥. For example, consider some possible
cases:

(1) V1 = V, # 0. Then we hav&(V) = V# — 4V2V?2 = 0. ThereforeV = +£2V,
in the case where verticgg and p; are separated by the plane passing through
verticespp, ps, and A; andV = 0 in the case where verticgg and p; are
not separated by that plane. In both cases the voluniisfa root of the same
equation (2).

(2) Vo = 0, V; # 0 (in Fig. 3 vertexps is in the planelApzps)). ThenQ(V) =
(V2 -VH?% =0, and henc® = +V;.

(3) The lengthday = a4, l24 = 0. ThenV; = 0, V, = 0. HenceQ(V) = V4 =0,
and soV = 0. By the way, in this case the polyhedrénh(see Fig. 4) admits

A
K A
P4
P
P [ P4 3

P2 P2

Fig. 3 Fig. 4
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nontrivial flexions, namely, the rotation of the three fatas, ps), (Apsps4), and
(p2p3pa) (this one is a degenerate face) about the &Xis) = (Aps); however,
the value of volume is always a root of the same equafow) = V* = 0.

By the above argument, we deduce fhist observationin the simplest cases the
volume of polyhedra satisfies a polynomial equation with coefficients independent of
the positions of vertices and polynomially dependent only on the squares of the lengths
of the edges.

3.2. Polyhedra as Algebraic Varieties

As we know from Section 2, a polyhedroniR? is defined as a map: K — R®, where
|K | is the carrier of a simplicial compleiX . Since all faces oK are triangles an® is
linear on each face, it follows that the m&pis completely determined by the images
Mi(Xi, Vi, z),1<i < n,ofnvertices ofK . Therefore, for each polyhedrdhin R®, we
can assign a poinyl (X, Y1, Z1, . . ., Xn, ¥n, Z1) € R and, conversely, with any point
M e R® we can obviously associate a polyhedi®rin R? so that there is a bijective
(even homeomorphic in a corresponding topology) relaRém P < M € R,

The number of edges &f ise = 3n— 6469, whereg > 0 s the topological genus of
the polyhedrorP. Under a given numbering of the vertices®fassume that the edges
are numbered by the inddéx= k(, j), 1 < k < e, wherei andj are numbers of the
vertices joined by the edde The lengths of edges are given by the following equations:

X=X+ -y +@—z)’=If, 1l<k<e €
Now we consideall solutions(x, ..., z,) of (3) with the restriction that the lengths
Iy are fixed. Thus we obtain all polyhedra R? with rigid facesisometricto P, and
having the same combinatorial structl¢e In order to exclude the polyhedra obtained
by a parallel translation dP, we add three equations to (3):

ZXiZO, Zyizo, Zzizo. (%)

It is easy to show that the solutions of (3)—(4) are situateR3hin a ballB c R® of

a finite radiug depending on the combinatorial structi¢eand onl = (12,...,12),
the squares of the lengths of the edges. So thésaft polyhedra inR3 isometric to
P and having the same combinatorial structifrés in a homeomorphic relation with
the algebraic variety defined by system (3)—(4). Howevek,in the ballB may have
only a finite number of compact components (which may have different dimensions).
If we add three new equations to (3)—(4) excluding continuous rotatioRs tsfenany
one-point component ok corresponds to arigid polyhedron fhand the other ones are
composed by flexing polyhedra i Hence we have come to tsecond observatioi
the bellows conjecture if true, then the volumes of all polyhedr@ lmave only a finite
number of possible values.
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4. The Main Result

Starting from these observations, we have suggested (see, for example, Section 8 in [9]
by the author) that instead of seeking a proof of the bellows conjecture considahing
flexiblepolyhedra, it would be more hopeful to try proving a more general conjecture,
namely, the volume aény polyhedronP in R? is a root of some polynomial equation
Q(V) = 0 with coefficients depending only on its metric and combinatorial structure.

In fact, we prove the following theorem:

Theorem 1. Let P be an oriented polyhedral surface i Raving a given combina-
torial structure K and given values of edge lengihdl< k < e, where e is the number
of edges of PLet P be the set of all polyhedra in®Rvith the same combinatorial struc-
ture K and having the same lengths of the edges ashn there exists a polynomial
equation

Q) =V +a1(I)V2N—2+...+aN(|) -0 (5)

such that the generalized volume of any polyhedron fiis a root of this equation
Moreover the coefficients;aare polynomials inl) = (12, .. .,12) with rational coeffi-
cients depending on K

Corollary 1.  For all polyhedra isometric to a given polyhedrahere is only a finite
number of possible values of their volumes

Thus we can say that the volume of a polyhedron is a finitely valued function of the
polyhedron’s metric, and therefore it is natural to interpret the theorem as a generalization
of Heron’s formula for the area of a triangle.

Corollary 2.  The bellows conjecture is true

Indeed, the volum¥ of a flexible polyhedrorP is a continuous function of positions
of its vertices. However, by Corollary 1, in the process of flexiofPo¥/ can take only
a finite number of values, so thdtremains constant.

Remarks. (1) The algebraic meaning of the theorem is as follows. Denotg by
(X1,...,2Zn), 1 < k < e, the polynomials in the left-hand side of (3). The volume
V (P) is a polynomial over the same variables, ..., z,). The theorem asserts that
this polynomialV (xg, ..., z,) algebraically depends on the polynomiglg, that is,
thereisapolynomia(V, 1, ..., ¥e) suchthaQV (Xq, ..., Zn), Y1 (X1, ..., Zn), . . .,
Ye(X1, ..., Zy)) = 0 over the ringR(Xy, ..., Zy). It seems that the existence of a poly-
nomial identity forV andy is not very difficult to establish as is pointed out in [12];
however, in general all the coefficients férin Q may be equal to zero for some values

of (I). In [13] we showed the existence (over the ring of rational numbers) of such a
polynomial Q(V) with the leader coefficient 1. After this in [8], with help of places’
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theory, the existence of such a polynomial over the ring of integers whose leading co-
efficient is also 1 if the independent variablegnis taken equal to 12 is established.

For our polynomialQ(V) in (5) we know not only the existence but a method for its
construction too. The numerical coefficientsjil ) are rational numbers, but in fact one
could trace out that fo¥ = 12V the coefficients of the corresponding polynomial are
integral; in particular, the leading coefficient is 1, exactly as in [8].

(2) Our method of constructing a required polynomial gives many such polynomials.
However, excluding the case of octahedra [3], we know neither the minimum degree of
these equations nor th@anonicalform. Of course, using our method, we can construct
all possible polynomial€Q(V) and take their greatest common divisor over the ring
R[I12,...,12] (may be even oveR[ly, ..., l¢]), but we do not know if it is a required
polynomial of minimum degree.

(3) The theorem is true also for polyhedra with nontriangular rigid faces because we
can decompose them into triangles by adding diagonals.

(4) Alexandrov has constructed [2] the example of a flexible polyhedron in three-
dimensional spherical spa& for which the volume does change under flexion. There-
fore the property that the volume may be a function of the polyhedron’s metric is not
stable as for the curvature’s variation of the ambient Euclidean space because in Alexan-
drov’s example the curvature & may be chosen arbitrarily close to zero.

(5) It is known that apart from the volum€ of a polyhedron, there exists one
more geometric magnitude, namely, the mean curvatuod a polyhedron, which also
conserves its value during flexion [1]. By definitiod, = >, l«(7 — ¢k), wherel, are
the edge lengthgy are dihedral angles at the corresponding edges, and the sum is taken
over all the edges of polyderon. It is noticed in Section 9 that if we know a valie of
in general, we can find only a finite number of polyhedra having this volume (of course,
we suppose the combinatorial structure and metric of polyhedra to be known and fixed)
and consequently a finite number of possible valudd of hen the following questions
arise: (a) What kind of relatiorf (V, H) = 0 exists betweeW andH; in particular, is
it polynomial or not? (b) Given some consistent value¥ aindH, do they define the
corresponding polyhedron uniquely or not?

5. The Cayley—Menger Equation
It is known that ten distances between five pointsRthcannot be chosen arbitrarily
but must satisfy the Cayley—Menger equation, see, for example, [4] or [5]. Denbte by

with two subscripts the distance between the corresponding points, see Fig. 5 on which
the complete graph of five points is drawn. Then the Cayley—Menger equation may be

A
P2 ”1

Fig. 5
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written in the form

01 1 1 1 1
1151z 0 15 1 =C
1515 1z, 012
AN TR )

4A 41 42 43

We aim to present this equation in a suitable form. For this, first we calculate the
determinant,A, on the left-hand side of the equation. We put= 12, y = 13, and
present the elements of any column containira;dy as the sum of these elements with
zero; using the well-known property of the determinant having a column-sum we obtain

60 1 1+0 140 140 140
1 0 13,+0 13,+0 13,40 1%,+0
1 12, 0+0 1440 O+x 1%,+0
1 13, 13,40 040 13,40 O+y
1 15, 0+x 15,40 0+0 13+0
1 12, 15,40 04y 1540 0+0
0 1 1 140 0 1+0| |0 1
1
1
1
1
1

0 1+0 0 1+0
0 1% I13,+0 0 I3,+0f |1 0 O I13+0 0 13,+0
_ 12, 0 12,+0 X If4-|-0+1 12, 0 15,+0 x 12,40
- 15 12, 0+0 O O+y| |1 15, 0O 0+0 O O+y
124 0 13,40 0 13,+0| |1 13, x 15,+0 0 1%3+0
7o 12, O+y O O0+0| (1 13, 0O O+y O 0+0
0 1 1 140 1 140 [0 1 O 1+0 1 140
1 0 13 I1%,+0 13 13,+0 (1 0 0 I%,+0 I3 13+0
LIt 12, 0 15,+0 0 12,+0 L 12, 0 15,+0 0 12,40
1 15, 13, 0+0 1% O+y| |1 15, O 0+0 13 O+y/|
113, 0 13+0 0 13440 |1 13, x 13,+0 0O 12,40
112, 12, O+y 12, 0+0| |1 12, 0 O+y 13, 0+0

Performing this procedure for the columns containing the sums/Gve presentA
as the sum of 16 determinants:

01 1 1 0 1 0 1 1 0 0 1
10 12,12, 012/ [1 0 12, 0 0 12,
At 12, 0 12, x 13, e 12, 0 0 x I3
T 113,13, 0 0 O 112, 15, 0 0 0
112, 0 12, 0 1] [1 12, 0 0 0 12
112, 12, y 0 0| [112, 12 0 0 O
0 1 1 1 O 0 1 1 0O
1 0 I3 125, 0 0 |1 0 13 0 0 O
Lt 20 1 x 0, 115 0 0 x 0
112, 12, 0 0 vy 112, 12 0 0y
112, 0 13 0 O 112 0 00
112, 12, 0 00 |1 12 12 y 00
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01 0 1 0 01 000
10 012, 00 |1 0 000
112, 0 12, x 0| [1 12, 0 0 x 0
T11 12, 0 0 0oyl Tl1 12 00 0y
2A 2A
112, x 12, 0 0 [112, x 0 0 0
112, 0 0 0 112, 0y 00
0101 0 1 0 1 00 0 1
1 0 012 012/ [1 0 0 0 012
112, 0 13, x 12| |1 12, 0 0 x I3
Tl 1z, 0 0 o o112, 0 0 0 O
1 15, x 13, 0 13] |1 12, x 0 0 I3
112, 0 0 0 0| [1 12, 0y 0 0
o1 1 1 1 1 o 1 1 1 1
10 15 1% 155 15 |2 0 1% 1% 1% 0
112, 0 12, 0 12| |1 12, 0 12, 0 0
g 13 0 13 0TIz, 15 0 13 0
112, 0 12, 0 13| [1 12, 0 12, 0 O
134 1% 0 13 Of 1 15 1% 0 13 0
01 10 1 1 [0 1 1 0 1 d
10 12, 0 12, 12/ [1 0 12, 0 12, 0
112, 0 0 0 1] [112, 0 0 Ox O
Tl 15, 15, 0 13 O Th 15, 1, 0 13
112, 0 0 0 12| [112, 0 0 0 O
1A 1y 15 O 1 0Ga 1y 150
01 0 1 1 1 0o 1 0 1 1 d
1 0 012, 12, 12/ |1 0 012, 12, 0
112, 012, 0 12| (112, 0 12, 0 0O
Tz, 0 0 1z o|T|1 12, 0 0 1% vy
1 15, x 15, 0 13| |1 15, x 15, 0 O
112, 0 0 12, 0| [112, 0 0 12, 0
0100 1 1/ o 1 00 1 d
1 0 0012 12/ |21 0 0 012 0
112,00 x 12/ 112, 00 0 ¢
tliz, 0 012, o711, 0 0 12 y|
112, x 0 0 13| [1 12, x 0 0 0
1130 0y 15 0 1136 0y 15 0

Denote each determinant in the above sumpy 1 < i < 16, where the number
corresponds to the position &f as the summand in this sum. The direct calculation of

eachA; gives
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0 1 1 1 0 1 1 1

1 0 12 12 1 0 12 12
A2+A3=Xy Al A2| Al A4 ,

12, 0 BT 5 0

AT 1 I PO A A

Ag = A1g = XY2(124 +150),

As = Ag = yx*(155 +12,),

Ag = —X2y2, A7 = _X2(|§A - l‘%A)Z’ A = _y2(|]2_A - |§A)27
0 1 1 1 1
1 9 1%, I%2 [43
AlO—All—y 1 |%A 0 |]22 01,
115 0 15 0
1 I4A I4l 0 |34
0 1 1 1 0 1 1 1
— 1 0 I,ZQB IA4 1 0 l;%\Z |A3
Autbs=XV1 20 0 17|12, 17 0|
1 130 1% 0 11 0 5

o1 1 1 1 1

_ 1A 12 14
Ae=1 12, 12, 0 12, 0
112, 0 13, 0 12,
112,12 0 12, 0

Now we introduce new notationi, = p, 12, = g. Calculating in a similar fashion, we
obtain:

0 1 21 21 21 0 1 1 1
1 0 I2A |3A I4A 1 0 |2 |2
A1+A13=2x| |1 |]2_A 0 0 Ol+p 1 12 I?éA ‘(l)A

1 I%A 0 I%B 0 1 |%A |%3 0
115, 0 12, 0 an 34

0 1 1 1

1 0 12, 12
+q 2A 3A ,

L1z 0 I

1 |4A 0 I34
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01 1 1 1 o 1 1 1
10 B B B[ o
Ao+ A1 = 2y|2pgli,+1]1 12, 0 0 O —pl] 2 &
Ll 0 1m0 115 0 12
112, 0 0 13, 4A 34

0 1 1 1

1 0 13 13

a2, 0 0o||
115 1% 0

0 1 1 1 O 1 1 1
1 0 I3, 15, |1 0 13, 13,

Aot Azt Autls =2V 2 g 12170112, 0 0

112, 0 0| 112, 0 I3
0 1 1 0 1 1
—qil 0 I3]|-plt 0 12]].
P O A

Ag = A17— P(A1g+ A1) — q(Azo + Az1) = —2pgAzz + p?Azz + g% Az, Where

01 1 1 1 1
TR LY S,
— 1A — 2A 3A
Az =1y 56 0 0 15 o A= ) 5 15 0
1 I%A 0 Iy 8 134 1134 0 I3
112, 0 0 12 0
o1 1 1 1 01 1 1 1
10 15 15 1A 10 15, 135 1Ga
Aig=11 15, 0 15 O], Ap=1|112 0 0 0,
112, 0 0 12 112, 12, 0 12
112, 0 12, 0 112, 0 13 0
01 1 1 1 01 1 1 1
10 12, 154 13, 10 13, 3. 1A
Ap=11 135, 0 0 I%|, An=[11}, 0 0 0],
112, 0 12, 0 112, 0 12, 0
1152 0 0 13 113 15 0 15
01 1 1 01 1 1
_ L 0 1B 13 _ 10 13 13,
A=Tliz 0 g0 8T Tlo 15 o
1 1A 14 0 1150 0 13

Note that the coefficien,s at p? is equal to 16 vdl (triangle(ps, ps, A)) and that atj?
is 16 vof (triangle(ps, ps, A)).



The Volume as a Metric Invariant of Polyhedra 415

Later we heavily use the Cayley—Menger equation whenever the pRimts p2, ps,
ps; are the vertices of a polyhedrdn in a general configuration (this means that the
coordinates of the vertices are algebraically independent; in particular, no three vertices
lie on the same line). For this reason we have to present this equation in a short and, on the
other hand, sufficiently informative form. Denotellathe set12,, 12, 12, 12, 125, 13,).
The Cayley—Menger determinantcan be regarded as a polynomial over the variables
X, Y, p, q with coefficients depending dn.

When no three of five point8, p1, p2, P3, P4 lie on the same line, some coefficients
are certainly distinct from zero, for example,z and A4 at p? andg?. We denote all
of them by subscripted. The coefficients that can be equal to zero, for some specific
values ofil »), are denoted big with a subscript, for example, the coefficients atand
y are so. Now the Cayley—Menger equatieh = 0 can be presented in the following
form:

—A = —Ag— (As+ Ag) — (A7+ A12) — (Ag+ Age)
—(A0+ A11) — (A1 + Agz) — (A2 + Az + Awg+ Ags) — Ag
= Xy’ + alp)y + bu(a)]
+x[a2(1a) y*+b2(1 o) py+ba(l A)AY-+ba(l A) p+bs(1 A)G+bs(l A)y+b7(1 )]
+[as(a) P* + a1 A)9* + be(1a)y* + 85(1 4) pAy + bro(l o) P + bra(l a) Py
+ b12(1A)qy + b1zl a) p + bral A)q + b1s(1a) Y + b16(l A)]
=0 (6)

We will also need some interpretation of the Caley—Menger equation as a polynomial
equation for one of the variablgsor q. Therefore it is useful to have this presentation,
say, forp:

ap? + (aqy+ bxy+bg+ bx+ by +b)p
+(x2y? 4+ axy? + ayx® + ag® + bx? + by? + bgxy
+ bgx+ bgy+ bxy+ bg+ bx + by +b) = 0. @)
Here we omit the subscripts for the coefficients because we only pay attention to the

distribution of the degrees of, y, q between the coefficients fqu?, p, and p°. (For
example, note that there is no monomiglg.) The equation fog has the same form.

Remark. Itis essential to notice that the coefficiept f-a(l o)y +b(l a)] at x? is equal
told, + 15, +15, + 203,02, — 22,12, — 212,12, = —16 voP (triangle(pz, ps, A)) o itis
nonzero for any general configuration of points.

6. The Main Lemma

First we fix our terminology. We say that a polyhedr®rhas the property Qf for P
and for all polyhedra fron the above theorem is valid.

1 In fact, for polyhedrorP in a general positiononeof Cayley—Menger coefficients is equal to zero; thus
we distinguish them by the equality or the nonequality to zero under the simplest condition that there be no
three points lying on the same line ih
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We say that a 3-cycle (a cycle composed by three edges)emptyif it is not the
boundary of a face of the polyhedrdh For example, in the polyhedron of Fig. 2 the
3-cycle(Ap;p3) is empty.

We say that a simplicial compleX is of class kg if K has at least one vertex which
is not incident to any empty 3-cycle. Note thakifhas a vertex of degree 3, thé&nis
of classK.

Now we can formulate our next lemma.

Lemma 1. Suppose that all the polyhedra with n vertices and given ger®dpave
the property QLet P be a polyhedron with # 1 vertices which has the combinatorial
structure of class Kwith the same genus @hen P has the property Q too

7. Proof of the Lemma

Suppose first that a polyhedrédhwith n 4 1 vertices and of combinatorial typ€y is
in the general position, i.e., the coordinates of its vertices are algebraically independent.
We proceed by induction on the degraef a vertex which is not incident to any empty
3-cycle. If P has a verteXA of degreem = 3, then the lemma is evident. Before making
the induction step “fronm to m + 1" with an arbitrarym, we dwell on the step “from
3 to 4,” which will help us demonstrate our idea for the general case. Sé, lbet a
vertex of degree 4 which is not incident to any empty 3-cycle and l& &énote the
star of the vertexA. Number the vertices of the boundary of &tin a cyclic order,
say, po, P1, P2, ps Starting from an arbitrary vertex. On the basePoive construct two
polyhedraP; andP,, both having a vertex of degree 3. Namely, for the constructid® of
we remove the edgAp ), i = 1, 2, with the two incident facesp;_1Ap ), (piAp+1),
and then replace them by new fadgs_1pi pi-1) and(pi_1Ap.1); see Fig. 6. These
operations are possible because the diagdmgls,) and(p; ps) are not edges dP and
therefore in the new polyhedi, and P, both are incident exactly to two faces.

The vertexA is of degree 3 irP, and P,. Denote the lengths of the diagonafs p,)

Fig. 6
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and (py ps) by d; andd,, respectively; the subscript indicates the number of the point
“between” the ends of the corresponding diagonal. By the induction base, the volumes
V1 = vol(Py) andV, = vol(P,) are roots of some polynomial equations of the form

Q =V +ald, v P+ =0, i=12 8)

Let Vi be the volume of the tetrahedrdAp _1 pi pi+1) completingP; up to P. Then
for the volumeV (P) we have

Vi =V — eV, e=41, i=12 (9)
Substituting the valu®; from (9) to (8), and using the equalities
m-1 m-1
VAT =3 CEVAVENTY —evivg Y CEPVERVEMTRY =12,
k=1 k=0
we obtain (after routine algebraic manipulations) equations of the form
VAN AL A2 VYN AT (L A2 VEVO =0, (10)
already without. It means that these equations do not depend on a particular position of

St A relatively to the rest part d?. Now, in (1Q) substitute the value of3 accordingly

1) as functions ofl, d?) and get
1

VAN B (L dHVAN T2 4 BR (1, dHVO =0, i =12 11)

We can consider (1) also as polynomial equations @f. For this, present (1)1 as
follows:

Co0. V)T ...+ Ccd, v =0, i=12 (12)
where X; < 12N; is the maximum of thel;'s degrees in the polynomial equation
(1) when(l) = (12,...,12) are regarded as independent variables. Ififer 1 or 2
one hasK; = 0, then the corresponding equation j(lakes the fomCﬁI)(I ,V?) =
VAN 4 ... = 0, so that foV we have the required equati@(V) = V2N + ... =0
with N = 2N;. LetK; > 0,i = 1,2. Substitute irC/’(1,V?), 0 < j < K;, the
value ofl = (12,...,12) andV as polynomial functions ofxs, . . ., z). If all functions
obtained by this procedure are identical to zero, again we come to a desired equation
Q(V) = C|(<|i)(| ,V2) = V4N ... = 0. If at least one of these functions is not identical

to zero, then foP the coefficient at the corresponding degree;dé not equal to zero
becauseP is in a general position. For brevity, we suppose that the first such coefficient
isCy’ (1, V?), so we have equations of the form (L@&ith CJ’(I, V?) #0,i =1, 2.

Now we recall that ten distances between five poilatgo, p1, P2, ps Satisfy the
Cayley—Menger equation (6). In our cage= d?, y = d2 and other distances, in
particular p andq, are the lengths of the edges Bf Therefore we can denote them
all by (1). Then the corresponding Cayley—Menger equation can be rewritten in the
following form:

d2(d3 + ad, + b) + di(ad3 + bd, + b) 4 (bdZ 4 bd, + b) = 0, (13
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whered; = d?, d, = d2 (we do not write the variablep andq because in the case in
question they are known to be the lengths of the edpgs:) and{po ps)). Furthermore,
we omit the subscripts of the coefficiertandb. Since the leading coefficients in ()2
and (13) are different from zero, we can elimindieby using the resultant of (1and
(13). This procedure leads to the following equation:

((]22+...) (a622+-~-) (b622_|_...) * 0

0 (622+...) 0

: " o —0,
Cél)(I,VZ) cPd,v? (VANL Ly 0

0 Cél>(|’v2) c (VAN

where by %” we denote the coefficient aif in (13). We recall that in the coefficients
C{? the degree oW is less than #l;. Therefore, calculating this determinant of size
(K1 4+ 2) x (K1 + 2), we obtain the following equation:

dZZKl (VN .)+(]22K1*1(aV8N1+. . .)+622K1*2(bV8N1+. )4 d(bVEN4. L) = 0,

(14
Now we can eliminate), from (14), and rewrite (13) for d, = d2. It is easy to see that
the resultant equation is as follows:

VEeNL L gy8NL L % 0
0 AVA:L: R
C(()2>(|,V2) c52>(|,v2) VAN L 0
0 Céz>(|’v2) R VZACRT

It follows that the greatest degreeVfis 2N = 8K, N; + 8K 1N, (because the degree
of V inthe coefficientS:i(z) is less than Hl,) and the leading coefficient is 1. Therefore,
we have come to the desired equat@V) = V2N + ... = 0, where the degreeN?
of Q(V) satisfies A < 96N;1N,. Thus, if the degree of the vertekis 4, the induction
step has been performed.

Suppose now that the lemma has been proved for vertices of degree less than or equal
to m, and consider the case where veri&has degreen + 1. Note that for the case
of a vertex of degree 4 the elimination process used in our considerations turned out
to be possible due to the availability of relation (13) between the diagonals and edges
of St (A). So, proceeding to the study of the general case, we should try to find also a
relation between the edges and diagonals q#Stwhen vertexA is of degreen + 1.
However, first we obtain analogs of (}and (12) starting with the construction of new
polyhedraP,, 1 < i < m — 1, in which vertexA has degreen. For this, we denote
the vertices on the boundary of (&t (in a cyclic order) bypo, p1, ..., pm Starting
from some vertex and replacing the two faces incident to the édgédoy new faces,
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(Pi—1Ap+1) and(pi_1pi pi+1), incident to the diagonalp;_1 pi+1). Denote byd; the
length of this diagonal. Then, by the induction hypotheégiss vol(P,) is a root of some
polynomial equation of the following form:

ViZN‘ +a§i)(l,di)\/iZNi_2+...=0, 0<i<m 15)

Furthermore, by the same argument as above for a vertex of degree 4, we come to the
conclusion tha¥ (P) andd; satisfy the following equation:

VAN LB, dHVAN 24 1 BY (Ld)VO=0,  O0<i=m (16)

(These equations are written for all verticesagbt A), but for the construction oP,
we use only those correspondingte: 1, ..., m— 1.) Equation (16 can be presented
also as a polynomial equation fdr as follows:

C(()i)(l’vz)diZKi ++CI((I.)(I’VZ) =0, a7)

whereCy' (1, V2) = V4N ..

If at least one of equations ()7does not depend otj for somei whenl?, ..., |2
are regarded as independent variables, then we already have the required polynomial
equation forV(P): Q(V) = Cg’(I,V?) = VN 4 ... = 0. Consider now another
possible case when the coefficientslaare identical to zero if andV are replaced by
their expressions as functions of vertex coordindtes. . ., z,). In this case we also
have the required equation ff: Cr(<|.) (I, V3 = 0. So we can assume that &] > 0
and (after taking into account the fact that polyhedpois in the general position) that
all the coefficient{ (I, V) # 0.

Consider now the spatial polyg@riSt A), the boundary of the star &. Draw in this
polygon all the diagonals issuing from the verfaxand also all diagonals joining the
verticesp,_; andpi+1, 1 <i < m; see Fig. 7.

Let D; be the length of the diagonal from vertggto pi, 2 <i <m-—1, and let
di be the length of the diagonal joining verticps 1 andpj;1, 1 <i <m, Dy = dy,
Dm_1 = dn. We take for every five pointéA, po, pi_1, pi, Piz1), 2 <1 <m-—1, the
corresponding Cayler—-Menger equation:

«D?+ B D +y =0, (18)
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wherea;, Bi, yi must be written according to (6) witk = D;, y = di, p = Dj1,
q = Di_1 andD; = D?, d = d?. In the case where we write (6) as a polynomiapin
we use (7), denoting the coefficients by the letterg, h with subscripts corresponding
to the number of (18.

Now we eliminateDy,_1, Di_, . . ., D3 from these equations successively. Start from
Dm_1. For this end consider two equatiofis8,,_;) and(18,_») written as follows:

Om-1 Dr%]f]_ + Bm-1 Ijmfl + VYm-1
= (@2, +a™ Vdn_y + b )BE
+ (aém_l)ar%71 + b(zm_l)dm71 Dmfz + bém_l)dm71 + bim_l) Dmfz + b(5m_l)) Dmfl
+ @™ YB2 4+ b P@ , + ™ V1D + bV By
+bf" Pdn 1+ by Y) =0 (18n-1)
(we took into account that in our cage= Dy, is the length of the edgo pm)).
fm72 Drzn,l + Om-2 |:_)mfl + hm72
=a™?D2 ;4 [ ?dn_2Dm_3 + b ?dn_2Dm_2 + b Dp_3
+ bém_z) Dm-2 + bim_z)dmfz + bém_z)] Dm-1
+[Dg 205 »+ aémiz) DF,_o0m-2 + az(tmfz) D205, » + aémiz) D3
+ b"?d2 , +bi"?D2 , + the terms without the square of variables]
(18n-2)
The resultant of18,_1) and(18,_») as the determinant of a4 matrix is the following:

dr%_1+... a_dr%_1+... a[i)rzn_2_|_... i 0
0 a2, +--- ad? | +--- ab2 ,+--- _0
a"? gmig) DE ,di ,+aDg g+ 0 -
0 ay Omn_2(@Dm_3+ bDpy_2) + - - - hm-2

where the elemem,,_» is equal to the written elemeajs; andh,_; is equal taags in the
standard notations of matrix elements; for brevity we have also omitted the subscripts
of some coefficienta.

Calculating this determinant, we obtain an equation of the following form:

G 2D o+’ 5D 5 4 -+ + G 5D 5, =0, 19
wherec (with super- and subscripts) are some polynomial®jf s, dm_1, dm_» With
coefficients depending o).

We study the structure of functiomsnore thoroughly. The generigh termR; of the
resultant of(18,,_1) and(18,_>) has the form
R = £@m-0" (B0t im0 (fn-2)"0 (Gm-2)"t (hm-2)"?
and, according to the theorem on the weight of the resultant's member, the following
equalities on exponentsandu hold:

uy +ud+uy =2, v+ v =20 w2y ol +20)) =4
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Substituting the values of,,_1, ..., hn_2 in R we obtain

R = £a"(d5_, +adm-1 + b)*°@ds_; + bdm-1Dm2 +-- )™
X(a[_)rzn_z + bam—l Ijm—2 + baan_l)Mz (adm—z Ijm—3 + bam—z Dm—z +-- ')Ul
x(dg ,DF ,+abg s+,

where for the sake of brevity we have omitted supersctiptr © andv as well as the
subscripts of the coefficientsandb; moreover, in parentheses we have written only the
greatest degrees of the corresponding variables.

Taking into account the conditions imposediaf . . ., vo, by the formula forR;, we
come to the following conclusions: (1) in eveRy the greatest degree (5 215 4;(2)
the greatest degree @3 is 4; (3) the greatest total degree Bf,_» and D,,_3 is 4
(indeed, the total degree &> andDp_3in R is 1 + 2us + v1 + 25 = 4); (4) the
greatest degree of,_1 in R is 2uo + 21 + 2u = 2(uo + p1 + p2) = 4; (5) for the
degrees ofl,_, we havev; + 2v, < 4 with equality to 4 iffu; = o = vy = 0, v, = 2;
(6) the greatest total degreedyf_1 anddy,_» is 8; and, finally, (7) the coefficiemjﬁr?l2
atD? _,in (19) contains the monomidf,_,d* , with coefficient 1. So we can present
polynomial equation (19) in the following form:

Di L[d? ,d? | +---(there is no degree @y, 3)]
+ D3 ,(d? ,dt , + --- (maybe there is a term with the first
degree oDy,_3))
+ -+ Dy o(DE_s(badi ds 4+ +--) =0. (20)

Now we can eliminateD,,_, from (20) and (18_3), and so on. As the induction hy-
pothesis, suppose that aftér — 1) eliminations we have come to the equation of the
following form:

Do (@r - dn + - )+ -+ DG [ DKy (BT S - dT N 4y + -] =0,

_ ~ (21)
whereT (k) = 2%, the greatest degree Bf,_ andDy,_ «+1) IS T (K), their greatest total
degreeis als® (k), the greatest degree of eakthm—k < i < m—1,isT (k), the greatest
total degree ofl, m—k <i <m— 1, iskT(k), and, finally, in the coefficient d])T( )
the monomiald® - .. dT® has the coefficient 1. We show that after the ehmmatlon
of Dm_k from (21) and (18_ 1)) we obtain a polynomial equation f@, .1, and
Dm—+2 With properties similar to those of (21). Indeed, rewrite (21) an¢h(181))
as follows:

To-1
Dmfk

fmk-1DZ _ + Om—k-_1Dmk 4+ hm_k_1
= aim_k_l)D2 +[a, (m—k— )am (k+1) Dm—k+2) +b(m_k_l)dm7(k+l) Dm-—(kt1)
+ " D ka2 + b Dy
+bflm k= dm—(k+l) +bé V1D
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32 (m k—1)
+ D3I sn + 2 D e Im-s1)
(m—k—1) (m—-k-1) ;2 (m—k—1)
Dm—(k+1>dm—<k+1> + 385 D — (k+2) + b OIm (k+1)

+ a
+ " UD2 ) + (terms without the square of variablis
The generaith term of the resultant of these equations is of the form

; ) _ } _
+C5°C1* -+ Cr ey (@0m— (k1) Dm—(k+2) 4 BOm— 1 Dm-erny + -+ )™
12 N2 J B 32
a”(Df_ ki1 95 ki +aDE_ ki1 Omkrn) + @Dm-krn A i)
N2 32 N2
+ aDmi(k+2) + bdmf(k+l) + mef(k+1) + . ')UZ, (22)

where for brevity we have omitted the supersc(iptfor .« andv and also the subscripts
of the coefficientsa andb; moreover, in parentheses we have written only the leading
degrees of the corresponding variables. Tirendv satisfy the equations:

po+p1+ -+ purth =2, vo 4+ v1 + vp = T(K),
p1 4 2p2 4 -+ T (Kt k) + vi+ 2v2 = 2T (K).

From these equations and (22) we can easily verify that the maximal degdae @f. 1,
in the resultant ige; + 2u2 + -+ + T(Kprr + vi + 2v2 = 2T(K) = T(K+ 1);
the degree oDy,_ k+2) 1S V1 + 2vp < 2T (k) with the equality forvg = 0, v; = 0,
v, = T (k). Hence the greatest degreelm, k+2) 18 2T (k) = T(k + 1) too. The same
is true for the greatest total degree®f,_ +1) and Din_ +2)- Moreover, it is clear that

the factordZ ., ;) occurs only in the produdim 1+ - hm—-1 = hy*,_;, so that in

the coefficient aD 1Y, the monomiatd] “i7,, dT(k”) -di®™ has coefficient 1.
Thus, it has been verified that the elimination process (by the induction hypothesis) after

(m — 3) steps gives us an equation of the following form:
D, ™2, ™?d]™?...d1 " ..y 4...+Dla(d,dy,...,dn 1) =0, (23

becauseD; is the distance betweegm and p; known as the length of the edgpop1).
Therefore, in (23), all the coefficients depend onlylgr? < i < m—1, and(l) including
the last coefficiena at D9. SinceD, = dj, we can represent (23) as the equation for
di, da, ..., o1

alT(m—z)(dzT(m—z) o dT(ni—Z) T+ le(m—z)—l(bdzT(m—z) o dT(nI—z) o)
m— m—

44 d%bdy ™2 ... dTMP . =0, (24)
where byb we denote some coefficients (in general different) depending on the lengths
of the edges. Equation (24) is the analog of (13) for a vertex of degree 4, and it reflects
the fact that arim + 1)-hedral angle has — 2 degrees of freedom.

Now we use (24) for the successive elimination of varialolgs . ., dy_1. Let us
make the first step. Consider equation;§{¥@r i = 1 as a polynomial equation fal;:

A @OV 4. 4 4 AV ) =0, 17
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where 2M; < 4N;. For brevity, denote the exponehtm — 2) by T and the coefficient
atd? by the symbol &” in (24). The resultant of (24) and (}¥gives an equation of the
following form:

ag...a;71+... bazT~-~a,T1,1+-~~ * 0
a(HVM ¢ ... VANL L 0 -
0 a(HVM ... VA R

which can be rewritten as follows (recall that in the resultant the Krstrows are
composed by the coefficients of (24) and the last T (m — 2) ones are taken from

(17)):
dptdst - dpla(VE ) )
+&£—1*1(a§1 . &r'r-]l_l(bvsi T T R N ag(. ) =0, (25)

wherelL; = T(m—2)K; andS = 4T (m — 2) N; are the greatest degrees, respectively,
of d,2 <i < m-—1, andV. Now we can eliminatel, using (17%) (which is (1)
rewritten ford, = d?) and (23). We obtain an equation which we can denote by)25
Using this equation and its analogs, we can continue to elimthate= 3,4, ..., by a
similar procedure, and every time fdr besideq18) we have an equation (the analog
of (25,)) with the leading terrrﬂiL”dile1 ...d5 VS whereli_; = LKy =
Tm—2)Ky---Kj_1, S-1 = Ki_1S_2 + 4N;_1L;_,. Before the last step we have
(17,,_1), and an equation of the form

drmz (VS 4y 4 drm VS 4y 40 (by, VS 4 =0,

m

where §,_, is the greatest degree df, andb,..., are some coefficients polynomially
depending oril). Hence it follows that their resultant gives the desired equatioN for

QV)=VN ta,(HhvN24 ...+ ay() =0, (26)
where N = S, _>Kn_1 + 4Nm_1Lm_o.

Remark. If we start the elimination oD; from (17) with somej < mfori =
i—1,j—2,...,1, and, after obtaining an analog of (24), repeat the eliminatiad),of
we will finally obtain an equation relating andD;.

Our arguments were valid under the assumption that the considered polyledron
in a general position. Otherwise, by a small perturbation, we can trang?ciora near
polyhedraP, which is in a general position, and obtain fér the following equations:
Q:(V.) = 0. These equations are of the form (26) in which the polynonaals) have
numerical coefficients independentathey depend only on the combinatorial structure
K of P and on the choice of the verté¥. Taking the limit ofQ, ase — 0, we obtain
for V (P) the same equation (26). The lemma has been proved.
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8. Proof of the Theorem

Suppose first that the gengsof polyhedra under consideration is zero. Suppose also
that the theorem has been proved for all polyhedra of gensgs0 with the number
of vertices at mosh. Let P be a polyhedron witm + 1 vertices. IfP has an empty
3-cycle G, we can cutP aroundG and thereby obtain two polyhedra with boundary,
both having less than + 1 vertices. Pasting their boundaries by triangular faces, we
obtain two polyhedrd; and P, of genusg = 0. Evidently,V (P) = &1(Py) + &2V (Py),
& = £1. By the induction hypothesis, bof, and P, have propertyQ, so it can be
easily seen that the same is true Btoo.

If P does not have an empty 3-cycle, it has a combinatorial structure oitypad,
therefore, the lemma is applicable.

Suppose now that the theorem has been proved for all polyhedra of genus at most
g — 1 > 0. Let P be an arbitrary polyhedron of gengs Let P, be a polyhedron of
genusg with the minimum possible number of vertices. It is evident thahecessarily
has an empty 3-cyclé, for otherwise we could decrease the number of vertices. We cut
Py aroundG and paste two holes by triangular faces of opposite orientation. As a result,
we obtain one or two polyhedra of genus less t@awhich have propert@. Thus, the
theorem is true for any polyhedron of gergisvith the minimum possible number of
vertices. So for polyhedra of gengghe base of induction is ready. Now we apply the
lemma, if this is possible. Otherwise, the considered polyheBrbas an empty 3-cycle.
Then, repeating the above argument, we obtain the desired result again. The theorem has
been proved.

9. Applications
9.1. The Isometric Realizations

Suppose thdK | is the carrier of a geometric simplicial 2-compli&xwith given lengths

of the edges. ThelK | can be regarded as a 2-manifold with a prescribed polyhedral met-
ric. One of the most important problems of metric geometry is the problem of isometric
realization of|K | as a polyhedral surfade in R3. There are many different settings of

this problem; we require that the combinatorial structur& afould be conserved, that

is, |K| must be a natural development®f Up to the present time, the problem in such

a general setting is far from being solved and there was no result of a positive or nega-
tive nature. Even the celebrated Alexandrov’s theorem on the existence of an isometric
realization of any convex polyhedral metric as a convex polyhedr&? oloes not guar-
antee thaP will inherit the combinatorial structure & . However, the main result of the
present article immediately implies that for the existence of an isometric realization of
|K|in R¥itis necessaryhat (5), originating from the combinatorial structurekofwvith

the given metric, has at least one rdGt > 0. Moreover, (5) gives us a priori all possible
values of volume for the polyhedra sought, even without solving the existence problem.
As to the construction of such polyhedra, we have designed [14] an algorithm which (in
the generic case) gives a required polyhedron or otherwise establishes its nonexistence.
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9.2. Volume as an Algebraic Number

From (5) one can come to the trivial conclusion that if the lengths of the edges of a
polyhedron are algebraic numbers, then its volume is an algebraic number too. The author
believes that this observation could be a starting point for finding a deep explanation of
the fact that the third Hilbert problem has an affirmative answer on the plane, where a
polygon (even with integer values of lengths of the edges) may have a transcendental
value of the area. Meanwhile, in space the answer is negative; recall that this problem is
concerned with the question of equipartity of the two polytopes having equal volumes.
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