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Abstract

Let A be a subspace arrangement and let x(.A,t) be the characteristic polynomial
of its intersection lattice L(A). We show that if the subspaces in A are taken from
L(B,), where B, is the type B Weyl arrangement, then x(.A,t) counts a certain
set of lattice points. One can use this result to study the partial factorization
of x(A,t) over the integers and the coeflicients of its expansion in various bases
for the polynomial ring R[t]. Next we prove that the characteristic polynomial of
any Weyl hyperplane arrangement can be expressed in terms of an Ehrhart quasi-
polynomial for its affine Weyl chamber. Note that our first result deals with all
subspace arrangements embedded in B,, while the second deals with all finite Weyl
groups but only their hyperplane arrangements.



1 Introduction and Background

An arrangement is a finite set
A={K,...,Kn} (1)

of proper subspaces of Euclidean space R". All the subspaces we consider will be
linear and so go through the origin. If each K; has dimension n—1, then A is called
a hyperplane arrangement. We sometimes refer to general arrangements as sub-
space arrangements to emphasize that they need not be hyperplane arrangements.
We write J A for the set-theoretic union of the subspaces in A, i.e., J-, K;.

The theory of hyperplane arrangements is a beautiful area of mathematics
which brings together ideas from topology, algebra, and combinatorics. Its roots
go back to the end of the 19th century but it is also an active area of research
today. The recent book [15] of Orlik and Terao covers both classical work and
recent developments in the field. Subspace arrangements, on the other hand, have
received relatively little attention yet, as was noted in the recent survey article
of Bjorner [2]. It is important to emphasize that in most cases it is not easy
to generalize results from the hyperplane case to the subspace case. Particularly
nicely behaved hyperplane arrangements are those which are associated with finite
Weyl groups (see, e.g., [14]). We wish to study these arrangements and certain
subspace arrangements related to them. We begin by establishing some notation
and terminology.

Let A be an arrangement as in (1) above, and assume, for simplicity, that there
are no containments among the K;. Let L = L(.A) be the set of all intersections
of these subspaces, ordered by reverse inclusion, called the intersection lattice.
(Concepts from lattice theory that are not explained here can be found in Stanley’s
text [17].) Note that L has a unique minimal element 0 corresponding to R, an
atom corresponding to each K, and a unique maximal element 1 corresponding to

=, K;. If Ais a hyperplane arrangement then L(.A) is a geometric lattice, but
in general it is not even ranked. If A and B are subspace arrangements such that
A C L(B), i.e. all the subspaces in A are intersections of subspaces in B, then we
say that A is embedded in B.

Given an arrangement A, let u(X) = u(0, X) denote the Mébius function of
the lattice L(.A); it is uniquely defined by

Z H(Y) = 03,x

Y<X

where §; x is the Kronecker delta. The Mobius function is one of the fundamental
invariants of any partially ordered set; see the seminal article of Rota [16]. The
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characteristic polynomial of A is

XA = 3 p)m, (2)

XeL(A)

Since the characteristic polynomial is just the generating function for the Mdbius
function, it is also of prime importance. Qur results in this paper give a combina-
torial interpretation for the characteristic polynomials of hyperplane arrangements
associated to Weyl groups and subspace arrangements embedded in some of these
Weyl arrangements.

For any finite Weyl group, W, there is a corresponding hyperplane arrangement
W whose elements are the reflecting hyperplanes of W. Initially we shall be inter-
ested in the case where W comes from one of the three infinite families A,, B, D,.
(The arrangement for C, is clearly the same as that for B,.) In terms of the coor-
dinate functions z,...,z, in R™, the associated hyperplane arrangements can be

defined as

A, = {z;=z; : 1<i<j<n},
D, = A U{z;=—-z; : 1<i<j<n}
B, = D,U{z;=0:1<i<n}

so that A, C D, C B,. Note that n here refers to the dimension of the space, not
the number of fundamental reflections (which is n — 1 for A, and n for the other
two).

2 Arrangements Embedded in B,

We shall now give our first main result: a combinatorial interpretation for the
characteristic polynomial of any subspace arrangement embedded in one of the
three infinite families of Weyl hyperplane arrangements. It was obtained in an
attempt to generalize Zaslavsky’s beautiful theory of signed graph coloring [23, 24,
25]. Given integers r < s, we let [r,s] = {r,r+1,...,s}. Note that if » = —s then
t = |[—s, s]| is odd, where |- | denotes cardinality. Note also that [—s, s]” is just the
cube of points in Z" centered at the origin with ¢ points on a side. So [—s,s]*\|JA
is the set of points of Z™ that are in this cube but not on any subspace from A.

Theorem 2.1 If AC L(B,) then for anyt =2s +1

X(A,t) = |[=s,s]™\ U Al.



Figure 1: The lattice points of [~2,2]*\ | B

Note that the hypothesis of the theorem does not preclude the possibility that
A may also be embedded in A, or D, as these are embedded in B,. Let us give
a concrete example of this result before proving it. Let

A=B;={z=0,y=0,z =y,z = —y}.

Also let s = 2 so that ¢ = 5. Then [—2,2]? and B, are shown in Figure 1. Removing
the lines of B, from the cube leaves 8 lattice points. On the other hand it is well
known that x(Bg,t) = (t — 1)(t — 3); see equation (3). So x(Bz,5) =4-2 =28 as
expected.

Proof of Theorem 2.1. We construct two functions f,g : L(A) — Z by
defining for each X € L(A)

f(X) = |Xn[_3a3]n|7
g(X) = I(xX\ | Y)n[-ss"
Y>X

Recall that L(.A) is ordered by reverse inclusion so that | i, y ¥ C X. In particular
g(R™) = |[—s,s]"\ U A|. Note also that X N[—s, s]" is combinatorially just a cube
of dimension dim X and side ¢ so that f(X) = t¥™X. Finally, f(X) = > y>x 9(Y)
so by the Mobius Inversion Theorem [16] -

s, s\ [JAl = ¢(0)

which is the desired result. ]

In the proof of Theorem 2.1, it was crucial that each of the subspaces X under
consideration had exactly t3™(X) points in [—s,s]". In fact, the only subspaces of
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R™ with this property are those in L(B,). So the method of proof of Theorem 2.1
cannot be applied directly to other arrangements.

We should also mention how our theorem is related to Zaslavsky’s theory of
signed graphs. Zaslavsky assigns to each hyperplane arrangement .4 contained
(as a subset) in B, a signed graph G4. The graph has vertices 1,2,...,n with
a positive (respectively, negative) edge from vertex ¢ to vertex j iff z; = z; (re-
spectively, z; = —z;) is in A. The graph G4 also has a half-edge at vertex z iff
z; = 0 is in \A. He then defines a chromatic polynomial P(G,t) for signed graphs
(generalizing the one for ordinary graphs) and shows that P(Gu,t) = x(A4,t). If
one thinks of the vertices of G4 as being coordinates, then a proper coloring of
G 4 in Zaslavsky’s sense turns out to be just an element of [—s, s]" \ | J.A. The ad-
vantages of our viewpoint are that it applies to subspace arrangements embedded
in B, (not just hyperplane embeddings) and that it admits an analog for all Weyl
hyperplane arrangements as we shall see in our second main theorem. We should
mention that Stanley [18] has independently formulated a version of Theorem 2.1
for arrangements embedded in A, using hypergraphs and symmetric functions.

3 Examples

First, let us show how Theorem 2.1 can be used to compute the well-known charac-
teristic polynomials for the three infinite families of Weyl hyperplane arrangements.
In the type A case we see that a point of [—s, s]”\ |J A, must have all coordinates
different. So there are ¢ = 2s + 1 choices for the first coordinate, ¢ — 1 for the
second, etc. This gives a total of

X(An,t) =t(t—1)-- (t—n +1).

It will be useful to have a notation for this falling factorial, so we will let (t), =
tt—1)---(t—n+1).

For B, the points in the cube minus the arrangement must all have different
absolute values and must be nonzero. The first coordinate can be chosen in t — 1
ways since zero is not allowed. The second coordinate can be anything except zero
and plus or minus the value of the first, giving ¢t — 3 possibilities. Continuing in
this way we see that

X(Bp,t)=(t—-1)(t—-3)---(t—2n+1). (3)

We will let ((t)), = t(t —2)- - (t —2n + 2) so that x(Ba,t) = ({t = 1))..
For the third family, note that any point of [—s,s]" \ |J D, can have at most
one zero coordinate. The points with no zero coordinate were counted in the B,



case. For those with one zero, there are n ways to pick this coordinate and the
remaining nonzero ones are accounted for as in B,-;. The total is thus

X(Dayt) = X(Bayt) + nx(But, ) = (£ = 1)(t = 8) -+ (t = 20 + 3)(t —n +1).

Notice that in all three of these examples x factors over the integers. In fact
for any Weyl hyperplane arrangement it is well known that the roots are just
the exponents of the corresponding group [22]. The characteristic polynomial
of a subspace arrangement S, embedded in a Weyl hyperplane arrangement H.,
from one of the three infinite families does not always have integral roots. But
it can happen that it factors partially and is in fact divisible by the polynomial
for a hyperplane arrangement H,,, m < n. Further, when one expands x(S,,?)
in terms of the basis {x(#;,t) : 7 > 0} for R[t] the coefficients vanish for
small 7, thus explaining the divisibility relation since for type A and B we have
X(H;,t)|x(H;s1,t). Finally, the coeflicients in the basis expansion turn out to be
nonnegative integers having a nice combinatorial interpretation which makes it
obvious when they are zero. The next few results will illustrate this point. Other
examples can be found in [5, 26] and are being pursued by Sagan.

To describe the subspace arrangements that we will consider, it is convenient
to have some notation. Let [n] = {1,...,n}. If I = {¢,4,...,k} C [n] then let z;
stand for the equation z; = z; = -+ = zx. So z; = 0 is the system of equations
z; =0 for all ¢ € I. Also let £ represent the set of all equations of the form

€T, =+ = €T

for €;,...,ex € {£1}. In each case we use the same symbol to denote the cor-
responding subspace(s). The k-equal and k, h-equal subspace arrangements are
defined by

Ao = {z; : I C[n]and |I| =k},
Dny = {xz; : I C[n]and |I| =k},
Bn,k,h = DprU {.’L‘J =0:JC [n] and IJI = h}

The A, arrangement first appeared in the work of Bjérner, Lovdsz and Yao [4],
motivated by its relevance to a certain problem in computational complexity. Its
study has been continued by these authors and Linusson, Sundaram, Wachs and
Welker in various combinations [3, 8, 6, 7, 13, 20, 21]. The B, s and D, were
introduced by Bjorner and Sagan in a paper [5] about their combinatorial and ho-
mological properties. Note that each of these subspace arrangements is embedded
in the hyperplane arrangement of the corresponding type and therefore in 5,,.
Consider the k-equal arrangement A, ; embedded in A, with x(A,) = (t),. It
will be convenient to let Sg(n,j) denote the number of partitions of an n-element
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set into j subsets each of which is of size at most k. Thus these are generalizations
of the Stirling numbers of the second kind.

Theorem 3.1 We have the expansion

X('An,k,t) = Zsk—l(n7j)<t>j (4)

and the divisibility relation

(B inse-11 | X(Ankst)- (5)

Proof. To get the expansion, consider an arbitrary point z € [—s, s]* \ | J Ank. So
z can have at most kK — 1 of its coordinates equal. Consider the z’s with exactly
J different coordinates. Then there are Si_1(n,j) ways to distribute the j values
among the n coordinates with at most k¥ — 1 equal. We can then choose which
values to use in (t); ways. Summing over all j gives the desired equation.

For the divisibility result, note that Sx_i(n,7) = 0if j < [n/(k — 1)] because
J sets of at most k — 1 objects can partition a set of size of at most n = j(k — 1).
Plugging this into (4) finishes the proof. [

We should note that expansion (4) was derived by Bjorner and Lovész [3] and by
Sundaram [19] using formal power series techniques. Analogs of this expansion for
type B and D can be found in a paper of Bjérner and Sagan [5] while applications
to the Boolean algebra are in Zhang’s thesis [26].

Corollary 3.2 Let A be a subspace arrangement.
(a) If A is embedded in A, and we write

n

X(A 1) =Y as(t); (6)

7=0

then a; € Z>q for all j, 0 < j < n. Furthermore if m is the largest index such that
am =0 then

<t>m+l | X(‘Aat)‘
(b) If A is embedded in B,, and we write

X(A, 1) = bi((t —1));
=0
then b; € Zxo for all 7,1 < 3 < n. Furthermore if m is the largest index such that

b, = 0 then
((t = 1))ms1 | x(A,1).



Proof. We will do part (a) as (b) is similar. Consider any X € L(.A,) and define
X% = (X \ UysxY) N [=s,s]" where Y € L(A,). Then we have X° C [JA if
X C K for some K € A. On the other hand we have X° C [—s,s]" \ | A if there
is no such K containing X. It follows that

[—s,s]"\ | J A = X°
X

where the disjoint union is over all X not contained in any subspace of .A. Taking
cardinalities on both side of this equation and using the fact that |X°| = (¢)dimx
shows that the a; in (6) are nonnegative integers.

For the divisibility relation, it suffices to prove that a; = 0 implies a;_, = 0.
But a; = 0 implies that every X € L(A,) of dimension j is contained in some
Ke A Thusany Y > X isin a K and a;_; = 0. ]

4 Weyl Hyperplane Arrangements

In this section we confine our attention to hyperplane arrangements that consist of
the reflecting hyperplanes of a Weyl group. For background information on Weyl
groups, including any concepts that we use without explanation, see the book of
Humphreys [11], whose notation we endeavor to follow. We shall obtain a combi-
natorial characterization of the characteristic polynomial of such an arrangement.
In rough outline, the characterization is similar to Theorem 2.1, but the lattice Z"
will be replaced with another lattice, the cube of side 2s + 1 will be replaced with
another polytope, and the restriction to odd values of ¢ will be replaced with other
congruences imposed on .

Unfortunately, both of the (mathematical) meanings of “lattice” — a poset in
which finite subsets have joins and meets, and a discrete subgroup of R™ — are
relevant to the present discussion. We rely on the context to make it clear which
is meant.

Let W be a finite Weyl group, determined by a root system @ spanning R". The
hyperplanes orthogonal to the roots constitute the Weyl arrangement W associated
to W, and the reflections in these hyperplanes generate W. Throughout this
section, we follow the convention of naming a Weyl arrangement by the script
letter corresponding to the name of the Weyl group. This agrees with the notation
in the preceding sections for B,, and D,,, but what we now call A, is the restriction,
to the hyperplane z; + 2+ - -+ + 2,41 = 0, of what was previously called A, ;.

Let Z(®) be the lattice in R™ consisting of those vectors z that satisfy (o, z) € Z
for all roots a € ®. This is the coweight lattice associated to ®, and it will play
the role that Z" played in Theorem 2.1.



Our analog of the cube [—s, s]” of lattice points is
P(®)={z € Z(®) | (o, ) < t for all a € ®}.

Of course we will be interested in counting the lattice points in P,(®) \ {JW.
Fix a simple system

A—':{O'l,...,O'n}

in ®. Thus, A is a basis for the vector space R", and, when any root A € ® is
written as a linear combination,

A= i Ci()\)di,
=1

of A, the coefficients ¢;()) are integers and are either all > 0 or all < 0. The fact
that the coefficients are integers implies that, if a vector = satisfies (o, z) € Z for
all @ € A, then it automatically satisfies the same for all « € ® and therefore
belongs to Z(®). In other words, in defining the coweight lattice, we could have
restricted attention to simple roots.

If ® is irreducible then among all the roots there is a highest one, ¢&, character-
ized by the fact that, for all roots A and all 7 € [n], ¢;(&) > c;(A). We shall write
simply ¢; for ¢;(&). One final ingredient for our theorem is the indez of connection,
f, which we define for irreducible root systems as

w
f=— ™)

.-clnn.cn

For an arbitrary root system, f is defined as the product of the indices of connection
for each irreducible component. (Humphreys defines f [11, p. 40] as the index of
the coroot lattice as a subgroup of the coweight lattice and derives (7) as his
Proposition 4.9. Since this formula is all we need to know about f, we take it as
the definition.)

Theorem 4.1 Let ® be a root system for a finite Weyl group with associated
arrangement W. Let t be a positive integer relatively prime to all the coefficients
C; = c,-(&). Then

1
XOW,1) = % | P(@)\ Uw‘ .
Proof. We may as well assume that ® is irreducible since if it is not then both
sides of the given equation decompose into a product of factors, one for each of the
irreducible components. We begin by representing vectors in a form convenient



for counting the points in P(®) \ [JW. For any z € R", let 2* be the n-tuple
consisting of the inner products of  with the simple roots, i.e., 2} = (0;,z). So
t € Z(®) if and only if z* € Z™. Also, z lies in the open fundamental chamber C
of W if and only if z* lies in the open positive orthant (Rs0)™.

Since P,(®) and W are both invariant under the action of the group W, we
can count the points of P,(®) \ [JW by first counting the ones in C and then
multiplying by the number of chambers (which equals the group’s order |W|). To
do the counting in C, we count instead the corresponding points z* in the positive
orthant of Z™ subject to the requirement z € P,(®). Note that since z* is in the
open positive orthant = is automatically not in | JW. For z* in Z" the requirement
that = € P,(®) is equivalent to the fact that, for all roots A,

t>(\ex) = Zci()\)x;‘.

But since the z} are all positive, these inequalities for all A € ¢ follow from the one
with the largest coefficients, namely the one for A = &. So our task is to count the
number 9(t) of points £* € (Zso)" that satisfy the one linear inequality 3 ¢;2} < t.
This 9 (t) is known as the Fhrhart quasi-polynomial of the open simplex bounded
by the coordinate hyperplanes and the hyperplane ), c;z* = 1; see [17], page 23511
It is also interesting to note that P;(®) is just the fundamental chamber for the
affine Weyl group corresponding to W.

Getting back to the task at hand, we must prove that ¥ (¢) - |W| = f - x(W,1)
when ¢ is relatively prime to all ¢;. Using our definition (7) of f we see that this
is equivalent to showing

x(W,t) = ¢(t) - n! H ci

for the appropriate values of ¢ and this is the form that we shall use in practice.
To compute 1 (t), we use its generating function vy(z) = 3_,9¥(¢) - z%. It is easy
to see that the generating function for n-tuples z* of positive integers with 3 ¢;z*

equal to ¢ is
n n ci

H(zci+z2c.‘+...):H1izq.

1=1 =1

To get the generating function for 3 c;z} strictly smaller than ¢, one just multiplies
this by z + 2% + z° + - - -, obtaining

ci

V4 e z
7(2)_1_2"H1__Zc,"

1=1

If we let m be the least common multiple of the ¢;’s, then all the fractions in this
product can be written with denominator 1 —2™. It follows, by the general theory
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of rational generating functions (cf. [17], Chapter 4), that (t) is, for positive ¢,
a quasi-polynomial with quasi-period m and degree n. This means that, when
restricted to values of t in any one congruence class modulo m, % is a polynomial
of degree n.

From here on, the proof is computational. One inserts into the formula for
~(z) the coefficients ¢; appropriate for a particular ® (cf. page 98 of [L1]), one
obtains a polynomial formula for 1 on each congruence class modulo m (either
by direct calculation or by computing enough values of 9 to uniquely interpolate
polynomials of the right degree), and one verifies that, for the congruence classes
prime to m (or equivalently prime to all the ¢;), the polynomial so obtained, when
multiplied by |W|/f, yields the (known) characteristic polynomial of W. Here are
some of the computations.

For A,, the ¢; are all 1, so

Zn+1

v(z) = (TW

Here the coefficients of the expansion are well known, and we find that ¢ (¢) = (*7*).
Multiplying by n![]; ¢; = n! we get (¢ — 1)n, the characteristic polynomial of A,.
(This differs from the characteristic polynomial of A, in the preceding section
because what was there called A, is the current A,,_; with all dimensions increased

by 1.)
For B,, the c; are all 2 except for a single 1, so ¢ is odd. The generating function

z ( 22 >"—1 z 21 42)?
1

7(z)=1—z. 1 — 22 —z (1= 22+t

1s

Here the expansion of (1 — 2?)™""! contains every even power 2% of z with coef-
ficient (k:") (and of course contains no odd powers of z). So, since ¢ is odd, the

coefficient of 2% in y(z) is
t—1)/2
s =2 (U707,
n
Multiplying by n![], ¢; = 2" 'n!, we get

2" - {(t —1)/2)n = ({t — 1))n,

the characteristic polynomial of B,,. We note that when ¢ is even a similar calcu-
lation gives

2" Iplp(t) = (t—2)(t—4)---(t—2n+2) - (t —n) = x(Dn,t - 1).
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We do not know any reason for this coincidence.

The computations for C,,, D,, and the exceptional root systems follow the same
pattern as those for A, and B,. The necessary information can be found in the
following table. In it, the ¢; are listed using the notation 1™1, ..., n™" which means
that the value j appears with multiplicity m;. Also for brevity x(W, 1) is expressed
by listing its roots which are just the exponents of W. m

w roots of x(W, 1) v(z) c;
A, 1,2,...,n T 1"
B,/Cy, 1,3,....2n— 1 (li_ig_g; 1,201
D, | 1,3,....2n—3,n—1 %TTF 13,273
Es 1,4,5,7,8,11 (D (e e 12,233
E; 1,5,7,9,11,13,17 e e e 1,2%,3%,4
Es | 1,7,11,13,17,19,23,29 | sooimmpaomnm =i | 223545 5,6
F, 1,5,7,11 Ty e 22,3,4
G 1,5 (e ey 2,3

We should mention that Haiman [10, §7.4] independently discovered this the-
orem and gave a proof which is more uniform but less elementary. Very recently
Christos Athanasiadis [1] has given another uniform demonstration. His main tool
is the following result of Crapo and Rota [9] which is similar in statement and
proof to Theorem 2.1 but replaces [—s, s]* by F, where F, is the finite field with
p elements, p prime.

Theorem 4.2 (Crapo and Rota) Let A be any subspace arrangement in R™ de-
fined over the integers and hence over F,. Then for large enough primes p we have

x(Ap)=IF\[JA. =

It is interesting to note that this result can also be obtained from results of
Lehrer [12] about the [-adic cohomology of hyperplane complements in C*. In
fact Lehrer has an [-adic cohomological interpretation of the characteristic polyno-
mial in the equivariant case. This suggests the problem of trying to find versions
of our two main theorems when there is an automorphism g of C* stabilizing A
and one considers the poset of all elements of L(A) fixed by g.
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