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ABSTRACT

This paper introduces the notion of the (r, 5) incidence graph of an #-polytope P
as the bipartite graph whose nodes correspond to the r-faces and the s-faces of P with
an edge joining two nodes iff one of the corresponding faces contains the other. Various
types of connectivity are defined for incidence graphs and bounds for these connec-
tivities are established as functions of r, 5, and n. It is shown that these bounds are
also valid for a large class of cell-complexes.

1. INTRODUCTION

We define the (r, s) incidence graph, G(r, s; P), of an n-dimensional
convex polytope (n-polytope) P as follows: The nodes of G(r,s: P
correspond to the r-dimensional faces (r-faces) and the s-dimensiona!
faces of P (termed r-nodes and s-nodes, respectively). An edge joins an
r-node to an s-node il the corresponding r-face is contained in the cor-
responding s-face. No edge joins two r-nodes or two s-nodes. We always
assume that 0 <r < s <<n — 1 for an (r, 5) incidence graph. If x sz
node of an incidence graph, then £ denotes the corresponding face of the
polytope.

A graph G = (V, E) is a set ¥ of vertices and a set E of edges joininz
pairs of vertices. We assume that graphs have no loops or multip!:
edges. Two vertices are said to be adjacent if they are joined by an edge

The notion of an incidence graph generalizes the concept of the edcy
graph of a polytope P, which is the graph formed by the vertices arn!
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edges of P. We will often use the natural identification between the edge
graph of P and G(0, 1; P). In such cases, however, we will regard the
cdge graph as being embedded in the polytope and G(0, 1; P) as an ab-
stract graph. In particular, we will always consider edge paths (paths in
an edge graph) to lie on the polytope.

Balinski [1] has shown that, if P is an n-polytope, then the edge graph
of P is n-connected, that is, between every pair of vertices of P there
exist n paths which are disjoint except for end-points. The purpose of
this paper is to define various connectivities for incidence graphs and
establish bounds for them as Balinski did in the case of edge graphs.
Sections 2 and 3 are devoted to these definitions, collecting relevant
background results, and proving some elementary theorems. Sections 4
and 6 are concerned with one type of connectivity and Sections 7 and 8
with three other types. In Section 5 we prove a useful lemma on the
number of r-faces contained in a given set of s-faces. Section 9 is devoted
to extending some results of Klee [7} on separating sequences, and in
Section 10 we characterize polytopes with a particular value for one
connectivity. Some unsolved problems are included throughout.

2. PRELIMINARY RESULTS ON INCIDENCE GRAPHS

If 4 and v are two nodes of a graph, we say that a set X of nodes
separates u and v if every path between them contains at least one mem-
ber of X. Let U be a collection of nodes of a graph G. We call X a sep-
arating set for U in G either if X contains every member of U except
possibly one, or if X separates some two members of U ~ X. A set U
of nodes of G is said to be k-connected if k is the minimum cardinality
of a separating set for U. If U contains all the nodes of G, we say that
G is k-connecied.

We may also restrict the type of nodes which make up X. Then by
choosing various combinations of nodes for U and X a number of dif-

ferent connectivities may be obtained.

In the case of incidence graphs we are initially interested in six types
of connectivities. Let G = G(r, s; P) be an (r, s) incidence graph. We
say that G is a(r, s; P)-connected if U consists of r-nodes and X of
either r- or s-nodes. More precisely, G is a(r, s; P)-connected if the
r-nodes of G are «(r, s; P)-connected. In a similar fashion, we say
that G is:
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B(r, s; P)-connected if U consists of s-nodes and X of r- or s-nodes:
y(r, s; P)-connected if U consists of r-nodes and X of r-nodes;
d(r, s; P)-connected if U consists of r-nodes and X of s-nodes;
&(r, 5; P)-connected if U consists of s-nodes and X of r-nodes;

{(r, 5; P)-connected if U consists of s-hodes and X of s-nodes.

We also define
a(r, s; n) = min{e(r, s; P): P is an n-polytope}

and similar notions for the other connectivities.
Certain relationships among the connectivities are clear:

a(r, s; n) < min{y(r, s; n), o(r,s; n)}
p(r, s; n) < min {&(r, 5; n), &(r, s; 1)}

We conjecture that cquality always holds in (2.1), but our metheds
will not cover all values of n. Our best results in this direction appeas
in (6.4).

The two statements in (2.1) arc actually cquivalent because of a fur-
damental duality we will now describe. It arises from the existence of
dual polytope P° associated with each n-polytope P in the following was

P'={xe E* (x,y) <1 for all ye P}.

-

A general discussion of dual polytopes may be found in [10]. For w2
purposes, the most important results are:

If P is an n-polytope, then Q = P" is an n-polytope.
Moreover, Q° = P. (22

Each k-face F of an n-polytope P corresponds to a
unigue (n — k — 1)-face Ft of P°. (23

IfFcG<cP, then G'c< Ft <P, (Y

We say that two graphs G = (V, E) and G' = (V', E') are isomorp*.:
(written G =~ G') if there exists a biunique mapping #: ¥— V' such thu:
(@), Hv)) € E" iff (u, v) € E. From the above statements on dual poli-
topes it is easy to prove the following useful
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THEOREM.
If P is an n-polytope, G(r, s; P) ~
Gn—1—s,n—1-r; P, 2.5)

PrOOF: If Fis a node of G(r, 5; P) let #(F) = F*. From (2.2) and (2.3)
we see that & is biunique, and (2.4) shows that edges are preserved.

COROLLARY.
If P is an n-polytope, a(r,s; P) =
pin—1—s,n—1—r; PO, . (2.6)

COROLLARY.

a(r,s;n)=fn—1—s5,n—1—r;n). Moreover, if

P is an n-polytope such that o(r, s; P) = a(r, s; n),

then f(n — 1 —s,n— 1 — r; P9)

= =1 =5 n—1—r;n). 2.7)

In the same way as above it follows:

yirssny=40n—1—s n—1~—r; n), (2.8)
Or,s;m)=¢e(n—1—5n—1—r; n). 2.9)

Some additional definitions are needed before proceeding.

A hyperplane H is said to support a face F of a polytope P if P lics
antirely in one of the closed half-spaces determined by Hand if HN P
= F. Every proper face of a polytope is supported by at least one hy-
perplane.

A cell complex C is a collection of polytopes (termed cells of C) such
that:

(1) if P e C, then every face of P is a member of C;

(2) if both P and Q belongto Cand P N Q =~ @, then P N Qis a face
of both P and Q.

ifall of the cells are simplices, we say that Cis a simplicial cell complex.
We denote by | C| the set of all points which belong to some cell of C.

We can define an incidence graph G(r, s; C) for a cell complex C in
1way completely analogous to the way we did for polytopes. If 1 is the
maximum dimension of a cell in C, then we assume that 0 <r<s<n
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A strong n-cell complex is a cell complex such that:

(1) every cell is contained in an n-cell;

(2) every pair of n-nodes can be joined by an (n — 1, n) path. Our
connectivity results extend to this larger class of objects as the following
result shows. Since an #-polytope together with all of its faces is a strong
n-cell complex, the theorem cannot be improved.

THEOREM. Let C be a strong n-cell complex. Then
Jor s <n— 1, Kr,s; C)=.Hr, s: n),

Jor K =qa B,y,8,¢ and . (2.10)

ProoF: The proof of this theorem is based on the following construc-
tion, which is due to V. L. Klee. Let P and Q be n-polytopes with a com-
mon (n — 1)-face (or facet) F. Let P’ be a projective image of P which
leaves F fixed and which has the property that, if v is a vertex of P but
not of F, the orthogonal projection of v onto the hyperplane supporting
P' at F lies in the relative interior of F. Such a projective image may be
found by mapping a hyperplane which is exterior to P but which passes
sufficiently near the centroid of F onto the hyperplane at infinity. Such
a projective transformation will preserve not only the number of faces
of each dimension but also incidences between them. Let Q' be a similar
projective image of Q. If necessary, rotate Q' around an axis which
leaves F fixed until both P’ and Q' lie in a flat (a translate of a subspaces
of dimension n. Then P’ U Q' is a convex polytope which contains images
of all of the faces of both P and Q except F.

We will now proceed with the proof of the theorem. To be definite.
we will assume that. 9% = B. All the other cases are completely analogous.

Let X be a set of (B(r, s; n) — 1) nodes of G(r, 5; C), let F*, G* be twe
remaining s-nodes, and suppose £, 0" are n-cells of C such that £ < P
G < Or. Let

L N A
be an (1 — 1, n) path joining P* and Q". Choose s-nodes Fy*, 1 <i-<
t — 1, such that %% < N.: and F ¢ X. Set Fy® = F*, F,* = G~

By definition of f(r, s; n), an (r, s) path joins F;* to F%,; if both o*
them lie in the same n-cell of C. If they do not, construct an n-polytop:
Q; from P and P, as indicated above. Identify in the obvious wa:
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all of the faces of A and P, (except for Pn-1) with faces of 0. . Under
this correspondence, an (r, s) path exists in G(r, s; 0.) which joins
F?to Fi,; and misses X. Thus, an (r, s) path joining F;* to F%,, and
missing X exists in G(r, s; C). Since this argument is valid for all i
X does not separate /* and G* in G(r, s; C) and the conclusion follows,

COROLLARY.
Ky, ssm) = A, ssm)ifs <m < n

Jor K = qa, B, v, 0, & and . @2.11)

PROOF: Let P be an n-polytope and F(P) its boundary complex (the
cell complex formed by all proper faces of P). Then %#(P) is a strong
{n — 1)-cell complex, and it follows from (2.10) that Z(r, 5; B(P))
> K(r,s;n— 1), whenever s < n — 2. But HKr, s; P) = Hr, 5;.F(P)),
and hence Z(r, s;n) > H(r,s:n — I). Iterating this argument, we
obtain the result.

COROLLARY.
Hrsin) 2 Hr — ks —kyn— k) if k <r

Jor K= a,B,v,0, ¢ and ¢ . (2.12)

Proor: By (2.7) and @.1n),

alr, s;n) = B(n—1—s, n—1l—r;n)> p(n—1—s,n—1—r; n—k)
= a(r—k,s—k; n—k).

Exactly analogous proofs work for the other connectivities.

An important special typc of strong n-cell complex is the pseudo-
manifold. An n-dimensional pseudo-manifold may be defined as a finite,
simplicial, strong n-cell complex in which every (n — 1)-cell lies in
wso:w two n-cells. Of course, since pseudo-manifolds are topologic
objects, the “simplices” which make up the cell complexes are actually
homeomorphs of the standard simplex (which is a polytope). The dis-
tinction is not too important, as each simplicial cell complex is ho-
meomorphic cell by cell to a simplicial cell complex each cell of which
s a polytope.

In turn, the n-dimensional pseudo-manifold is a generalization of
the basic notion of the n-dimensional manifold (or n-manifold), which
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is a finite simplicial cell complex in which each point has a neighborhood
of the same homotopy type as the a-dimensional sphere. The proof that
each n-manifold is an a-dimensional pseudo-manifold may be found
in [9, p. 238].

Thus each a-manifold is homeomorphic to a strong n-cell complex.
Hence, if C is the cell complex associated to an #-manifold, G(r, s; C)
is the (r, s) graph of some strong n-cell complex. Combining this fact
with (2.10) shows that merely knowing the connectivities of an inci-
dence graph (or even of all of the incidence graphs of a cell complex)
is not sufficient to characterize those cell complexes which arise from
polytopes. Other conditions are needed, and it would be of great interest
to determine sufficient ones.

In view of the fact that each n-manifold is homeomorphic to a strong
n-cell complex, the following result takes on special interest:

Let K be a strong n-cell complex, and let L be a finite

cell complex such that | K| =|L|. (2.1%

The L is also a strong n-cell complex.

Proor: First suppose that K consists of a single n-cell, S. By consider-
ations of dimensionality, it is clear that each cell of L lies in an n-cell.
Let P, 0 be two n-cells of L and choose points x € P, y € §, such that
the line segment [x, y] does not intersect any cell of L of dimension less
than n — 1. Such a line segment will clearly determine an (n — I, m
path between P and Q.

Now suppose that K is a general strong n-cell complex. Once agair
it is clear that every cell of L lies in an n-cell. Suppose that S and T are
two n-cells of K with a common (# — 1)-cell U, and let P, 0 be twe
n-cells of L such that int$ M int P # ¢ #£intT Nint Q. If ther:
exists an s-cell R of L such that int R N rel int U # g, it is easy to find
an (n — 1, n) path from P to R and one from R to Q by the result:
of the first paragraph. Thus a path in G(n — 1, n; L) joins P to ¢
If no n-cell such as R exists, then choose two n-cells R, , R, in L suct
that relint (R, N Ry) N rel int U 7= ¢, and such that int R; N int §
S #int R, N int T. Then as above it is easy to use R, and R, to construst
an (n — 1, n) path from P to Q. It is clear how to extend this argumer:
to construct an (n# — 1, n) path between any two n-cells of L.

One other result which will be of use to us later is Dirac’s generals-
zation of Menger’s Theorem [2, p. 151]. It might be mentioned that the
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slightly weakened version given below can be proved much more simply
than in the original paper by using the Max-Flow Min-Cut Theorem,
Just as Balinski [1, p. 434] simplified the proof of Whitney’s Theorem.

THEOREM (DIRAC).

Let G be a graph and let A= {ay, ...,a;}, and B = {by, ..., b}
be two sets of nodes of G such that no node of A can be separated from any
node of B by a set with fewer than n nodes. Let My os Ay fhy s ooy oy
be non-negative integers such that A, + -+. A=y A oo 4y
Then there exist n paths in G such that:

(1) 4; of the paths start at a; ;
(2) p; of the paths end at b;;
() the paths are disjoint except for end-points.

(2.14)

Menger’s Theorem [8]. Let G be a graph and let a, b be two nodes of
G which cannot be scparated by any set of k — 1 nodes. Then at least k
paths, disjoint except for endpoints, join a and b. (2.15)

3. PRELIMINARY RESULTS ON POLYTOPES

In this section we collect a few known results about polytopes and use
them to prove some elementary theorems. Our first two results are es-
sentially due to Balinski [1]:

Let f be an affine function defined on an n-pol ytope P such that f(x) > 0
for some x € P. If u and v are two vertices of P such that f(u) >0,
) = 0, then there exists an edge path

U= Wy —>W = or >y, =1p

3.1)
oining them such that f(w;) >0 for 1 <<i<<ft— 1.

-PROOF: Let M = max{f (x): x € P} and assume f (u) < M. Let H be
a hyperplane which strictly separates u from the other vertices of P;
that is, « lies in one of the open half-spaces determined by H and the
remaining vertices of P lie in the other open half-space. Let Q = H N P.
Then f'is an affine function on @ which attains its maximum (on Q)ata
vertex ¢, . Let

H = {xe E" f(x) = f(u)}.
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By .mmm.:q:v:o:, H' intersects the interior of P and passes through «,
so it intersects the interior of Q. Hence, f(q,) > f(u). Since ¢, =
H 0 (u, u,) for some edge (u, u,), it follows that f (uy) > f (u).

If f(u;) << M, repeat the argument above to find a vertex u, adjacent
to uy such that f (1) > f (). Continue this process to generate a path
U=ty =ty — -+ —u such that f(u;) > f(u;_,) for 1 <i<k and
S (uy) = M. By hypothesis M > 0.

In a similar way construct a path v = yy —>p, —> ... — v, such
that £ (v;) > f(v;_y), and f(v,) = M. Since

F={xeP: f(x)=M}

is a face of P, we can join u; and v,, by an edge path lying entirely on F.

Since f(u;) > 0 for all / > 0, and S (v;) >0 for all j > 0, combining

these three paths gives an edge path with the required property. )
We can apply this lemma to prove two useful results:

THEOREM.
a0, 1;n) > n. (3.2)
PROOF: Let P be an n-polytope and let X be a set of n — | nodes in
G0, 1; P). Let u and v be two remaining 0-nodes. Associate to each
0-node of G(0, 1; P) the corresponding vertex of P and to each I-node
the midpoint of the corresponding edge. Let X' indicate the points of P
corresponding to members of X. Choose an additional vertex pofpP
and let H be a hyperplane passing through X’ and p. Let S be an affine
function so that

H = {x:/(x) = 0}.

If % is a vertex of P such that f(£) > 0, an edge path joining % to p
exists which avoids X' by (3.1). Similarly, if £(£) <0, an edge path
joining £ to p exists which avoids X'. In particular, edge paths exist which
miss X' joining both & and # to j, and thus joining & and # to each other.
The edge path between 4 and 7 is reflected in an obvious wayina (0, 1)
path missing X in G(0, 1; P) which joins u and ». Thus X does not
separate any two remaining 0-nodes of G(0, I; P) and the conclusion
follows.

Balinski’s Theorem is an immediate corollary.

The edge graph of an n-polytope is n-connected. 3.3)
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Let P be an n-polytope and let u, v be two vertices of P which do not lie
in a given face F of P. Then there exists an edge path joining u to v which
does not pass through F. (3.4)

ProoF: Let H be a hyperplane such that F= P N H and let f be an
affine function which vanishes on H and is positive on the interior of P.
By hypothesis f(u) >0 and f(v) > 0. The conclusion then follows
from (3.1).

If Fis a face of a polytope P, the anti-star of F, denoted ast(F), is the
set of all faces of P which do not intersect F.

Let P an n-polytope and v a vertex of P. Then ast(v) is a strong (n — 1)-

cell complex. 3.5)

PROOF: It is clear that every face of P which does not intersect v lies
in a facet which does not intersect v. All that remains is to show that an
(n — 2, n — 1) path joins every pair of facets in ast(F).

1t is easier to do this by considering the dual polytope P°. The facets
of ast(v) correspond to vertices of P® which do not lie in vt. By (3.4)
any pair of such vertices can be joined by an edge path which does not
pass through v*. Or, the corresponding O-nodes can be joined by a (0, 1)
path in G(O, I; ast(vt)). Hence, by (2.6) any two (n — l)-nodes in
G(n — 2, n — 1; ast(v)) are connected, and the result follows.

The facial lattice (or lattice of faces) of a polytope is the set of all of
its faces, including the empty face and the polytope itself, with a partial
ordering defined by set inclusion. Proofs of the next two results may be
found in [4, §3.4, exercise 9 (iii)] and [6, p. 712}, respectively.

Let P be an n-polytope and F a k-fuce of P. Then the lattice of faces of P
which contain F is isomorphic to the lattice of faces of an (n — k — 1)-
polytope Q where each t-face of P which contains F corresponds to a

(t — k — D)-face of Q. (3.6)

n+1
s+ 1
Moreover, equality is attained only for the n-simplex.

v s-faces for 0 < s < n.

3.7

Every n-polytope contains at least A

From these two theorems we can easily derive a useful corollary:
Let P be an n-polytope and F a k-face of P. Then P contains at least

Az B »v s-faces which contain F for every s > k. (3.8)

s—k
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PrROOF: Let N be the number sought. (3.6) N equals the number of
(s — k — l)-faces in some (n — k — 1)-polytope. From (3.7) it then
follows that
n—k
N> A T v

4. BOUNDS FOR - AND [-CONNECTIVITIES

Our first numerical bounds for a- and f-connectivities will be estab-
lished in this section. In the light of (2.7), once a general bound for
either one of the connectivities is established the other will follow imme-
diately. This same duality principle also allows us to choose between
two proofs of a given result and thus often simplifies our considerations

The main result of this scction is

THEOREM.
a(r,s;n) > n —r, (4.1

and its dual formulation,

B(r,s;m)>s5+ 1. (4.2

After these results have been established, some examples will be giver
to show that the bounds are exact whenever r =0,s=n—1, ors=r-1
We first establish

a0, s;m)=>n for 0 <s<n (4.2

Proor. The proof goes by induction on # for fixed 5. By (3.2) the resu':
is known for s = 1 for all n and in particular the proposition is true 2
stated for » = 2. We assume that a(0,s; k) =k for all s <<k —1
k<n-—1.

Let P be an n-polytope, where n > 3. Assume s> 2.

(A) Letj and ¢ be two adjacent vertices of P and let £ be the edge the:
determine. Remove a set X of n — 1 nodes from G(0, s; P) such tha:
neither p nor ¢ is a member of X. We wish to show that a (0, s) path st:”
connects p and ¢ in G(0, s; P).
n—1

By (3.8) there are at least Au 1

v s-faces of P which conta-
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the edge E. Since 2 < s < n — 1, there are at least n — 1 s-faces of P
which contain E. If a node corresponding to one of these faces is not in
X we have an easy (0, 5s) path remaining between p and q. If all these
nodes have been removed, then the only members of X are the s-nodes
corresponding to s-faces containing £. In this case, let

p=py—>p— - !v\&.” g
be another edge path between p and g (this exists by (3.3) since n > 2).
Since the only members of X are s-nodes corresponding to faces con-
taining the edge £, then for each i there exists an s-face £, such that
“w.,m mﬂm s and Nm:~ € Nw.,a. . A‘TCm'

Po—>Fy—>p—> - > Fy —p;

isa (0, s) path between p and ¢ and hence X docs not separate pand gq.

(B) Now let X be any set of n — 1 nodes in G(0, 5; P) and let p and ¢
be any two remaining O-nodes. Let

P=Po—>p > —>pi=q

be an edge path joining j to § which contains no vertex corresponding
to a member of X. This is possible by (3.3). By (A) a (0, s) path missing
Yexists between p; and p;., for 0 <i <t — 1. Joining these paths gives
a (0, s) path between p and q.

Thus no set of cardinality n — 1 can disconnect two O-nodes of
G(O,s; P). That is, «(0, s; P) > n. Since P was arbitrary, the result
follows.

From (2.12) we see that a(r,s;n) > «(0, s — r; n — r), and this
inequality together with (4.3) completes the proof of (4.1).

Now that lower bounds have been established for a- and f-connecti-
vities, we turn our attention to finding upper bounds for a(r, s; n) and
3(r,s; n). By considering the n-simplex, X" it is easy to see that

h+_v

r il (4.4)

Br,s;n) < A

This statement follows immediately from the fact that each s-node in

G(r, 55 2™) is adjacent to Aw : r-nodes since each s-simplex con-
. s 1 Lo

t =

ains exactly A\ . v r-simplices.
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By duality it follows that
QQ.LZQMA: N wv .

n—ys

(4.5)

Considering the bipyramid over the (n — 1)-simplex (that is, the poly-
tope formed by taking the union of two n-simplicies with a common
facet) we obtain another bound.

alr, s;m) < A " v : 4.6)
F- 1

ProoF: Let P be the bipyramid over the (# — 1)-simplex %™, Then
removing all of the r-nodes corresponding to r-faces in 2"~ will discon-
nect G(r, s; P). For let #and G be two r-faces of P such that g € F and
g € G, where p and § are the two vertices of P which do not lie in 2",
Observe that no face of P contains both p and ¢. Thus, on any (7, 5)
path between F and G there is a last node, A4, such that p € 4, but ne
node on the path between 4 and G corresponds to a face containing p.
Moreover, it is clear that 4 is an s-node since, if any r-face contains p.
then every s-face which contains it also contains p. Let B be the next
r-node in the path beyond A. Since 8 lics in a face containing p but does
not itself contain g, 8 lies in 2"

Thus, removing all of the r-nodes corresponding to r-faces contained in
2" will separate F and G. The conclusion follows.

The dual result, obtained by removing s-faces from a cylinder over
X reads:

@
A

n
Blr,s5n) < A v :
Combining these upper bounds with our previous lower ones, we sc¢
that our bounds are exact in three cases.
if r=20,
if r=0,

(4.8
4.9

a(r,s;n) =n —r s=n—1, ors=r-+1.

flr,s;n) =5+ 1

s=n—1, ors=r+4 L

f

5. A COMBINATORIAL LEMMA

In order to extend our results we need an estimate of the number ¢f
r-faces contained in a collection of s-faces. Klee (sce (3.7)) settled the
problem for a single s-face. Here we generalize his result to the case ¢f
a small number of s-faces.

P —
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If Fi, ..., F; are faces of a polytope P, o,(F, U --- U F,) denotes
the number of r-faces of P contained in one or more of the F;. In a
similar way we define o,(Fp ~ (F; U --- U F;_;)) as the number of
r-faces of P which are contained in F,, but not in any of the F; for i < k.

THEOREM. Let P be an n-polytope and let F,, ..., F, be k different
sfaces of P. If k < s 4+ 2, then

5.1

SQA)_C:.CENATFNVIAH-TNIJ.

r-1 r41—k%
Moreover, if equality holds:

(@) all of the F; are s-simplices,

(b) F; N F; is an (s — 1)-simplex if i # j,

The proof of this theorem is based upon the following observation:

O (FL U - U Fp) = 0(F) + oi(Fa ~(F, N Fy)) 4 « -+

+ o (F~ (VU F N Fy))

i<k

(5.2)

The remainder of the argument will be devoted to showing that each
term on the right-hand side attains its minimum value if P is the n-sim-
plex and the F; all lie in the same (s + 1)-face. The numerical bound in
(5.1) will then follow immediately by direct calculation. We conclude the
proof by showing that certain terms in (5.2) attain their minimum only
if (), (b), and (c) are satisfied.

DeriNiTION. Let P and Q be n-polytopes. A homeomorphism ¢: P — Q
is called a refinement homeomorphism if o=(F) is a cell complex of P
for any face F < Q.

Let P, Q be n-polytopes and let a: P — Q be a refinement homeo-
morphism. For k <n — 1, let F,, ..., Fy be k facets of P (not neces-
sarily distinct). Then there is a collection of k different facets of Q, G, ,
s Gp, Such that

P ~(F U - UF))Z2e(@~(G U - UGY). (54)

PROOF: First observe that if K'is a t-face of P, then o(K?) is contained
in a unique face K* of smallest dimension where u > f. It is clear that
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u=<n-—1, so that u=n — 1 whenever f==#n — |. For each £ let
G’ be the unique facet of Q such that o(F;) = G;'. Note that the G/
are not necessarily distinct.

Let L7 be an r-face in Q@ ~ (G, U -+ U G,'). Since ¢ is a homeo-
morphism, ¢='(L") does not lie in -G,/ U --+ U G:'), and thus it
does not lie in F; U -+ U F; since the latter is contained in i (CANV
<+ U Gy'). It is clear that at least one r-face of P lies in o~1(L") and that
this r-face will not lie in o~*(K") for any other r-face K™ of Q. Thus, for
each r-face in Q@ ~ (G, U -+ U G}'), there is at least one r-face in
P~ (F, U -+ U F). That is,

eP ~(FL U - UFY) =00 ~ (G U -+ U G)).

If the G’ are not all distinct, then removing additional facets until &
different ones have been selected will not increase that number of r-faces
in their complement. The statement follows.

If Pis QQ n-polytope, F an s-face of P, and F,, ..., F, (k <s + 2)
are different faces of P contained in F, then there is a collection of k dif-
Jerent (s — 1)-faces G, , ..., Gy of T" contained in an s-face G such that

e(F~(FU - UF) =0, (G~ (G U - UGY). (55)

ProoF: Let G be any s-face of P. By the proof of Griinbaum’s Refinc-
ment Theorem [5] it follows that there exists a refinement homeo-
morphism ¢ mapping P onto X" such that o(F) = G. For all i let F/
be an (s — 1)-face of P such that F; = F;/ < F. Then

O(F ~(FLU - UF)) = o F~(F/' U+ U F))
= 0/G~ (G U .-+ UGy)

where the last inequality follows from (5.4). This completes the proof.

Suppose that F, , ..., F; are k different s-faces of an n-polytope P where
k<s+2 Then for r <s, o, (F, U --- U F) =2 0{G U -+ UGy
where G, , ..., Gy are k different s-faces of Z* which all lie in an (s + 1r
Jace G. Moreover, equality holds iff all of the F; satisfy conditions (a).
(b), and (c) of (5.1). (5.60

PRrROOF. According to (5.2)

k
elFy U - UR) = 3 0,(F;~( U F,N F)).
=1 .

1<y

Fo———
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By (5.5), we have

oF;~( U Fi0 Fp)) = 0(G; ~ ( v G; NGy (5.7)
1<J

i<j
since G; M G is an (s — 1)-face of each for all i < j and since G, VU G;
#G; 0 Gy, for j 7 m. Using (5.2) to sum both sides of (5.7) the first
assertion of the proposition follows.

Now assume that ¢,(F; U -+ U F) = ¢,(G; U -+ U Gy). By (3.7)
it follows that ¢,(F,) = ¢,(G,) iff F, is an s-simplex. Since the ordering
of the F; is arbitrary, each of the F; is an s-simplex. We next observe
that

o(Fy ~ (Fy N F)) > 0/(G, ~ (G; N Gy))

unless dim(F; N F,) = dim(G, N G,) = 5 — 1. From this we see that
fiN F,is an (s — 1)-face of P and hence that F; N F;is an (s — 1)-
face of P for all i % j. Finally, we see that

0 (Fy; ~ ((F; N £) U (F, N Fy)) > 0,(G; ~ ((G, N Gy) U (Gy N G3)))

unless F; N Fy # F, N F, . For an s-simplex lacking two (s — 1)-faces
will always contain strictly fewer r-faces than an s-simplex lacking just
one s-face, and we know that G, N G, % G, N G, . Thus, FEnNF;+#
Fi N F, for any j == m and the proposition is established.

The proof of (5.1) is now complete except for computing the numer-
ical bound. Using (5.6) the problem reduces to evaluating ¢,(G, U
«+» U Gy) where the G; and G are as in (5.6). To do this note the total
s+ 2
r+1
not lie in any of the G, is the intersection of s - 1 — r of the remaining
s+2—k
r+1—k

number of r-faces in G is A v. and that each r-face which does

5+ 2 — k s-faces. Thus, A
G;. Hence,

v r-faces of G lie in none of the

GAQ_C.:CSVHAervatLiJ.

r-1 r+1—k%
This concludes the proof of (5.1).

It might be conjectured that the three conditions (a), (b), and (c) of
(5.1) would imply that all of the s-faces would lie in an (s + 1)-face.
This conjecture is secn to be false by considering the bipyramid P over an
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(s + I)-simplex, 2. There are s 1 2 s-faces in 3 which satisfy (a), (b).
and (c) but they do not lie in any (s + 1)-face of P. In Section 10 we
will return to this problem and show that for s — n — 2 the counter-
example above is essentially unique.

6. FURTHER CONNECTIVITY RESULTS
The theorem of the last section will applied through the following

LEMMA. Let P be an n-polytope and let X be a collection of s-nodes in
GO, s; P) such that card X < ANV Then there exists a (0, s) pdth

missing X between any two O-nodes of G(O, s; P). 6.1

Proor: Let p and ¢ be two vertices of P. By (3.3) there exist n disjoint
edge paths connecting j and ¢. Then for at least one of these paths, sas

P=Po—>pr—> - —p, =4,
there exist s-nodes F, , ..., F, which do not belong to X such that £; < F,
(I <i<r), where £; is the edge containing g; , and p; .

For, otherwise, on each of the n edge paths between p and ¢ there
exists an edge A; such that X contains every s-node corresponding to
an s-face containing 4; . Considering the dual polytope, this means that
every (n — s — 1)-face which lies in one of the » (n — s)-faces A’
corresponds to a member of X. But by (5.1),

On-s—1 AN»»C o C\A):»vNA n VIHAZV
n—3ys 5

n
s
The contradiction completes the proof.

Thus X must contain at least A v s-nodes, contrary to hypothesis.

With the above proposition at our disposal, it is not difficult to prove
that we need determine only the connectivity of those s-nodes whick
correspond to intersecting s-faces in order to evaluate B(r, 55 n).

In order to make this notion more precise, we introduce some addi-
tional notation.

We say that G(r, s; P) has connectivity o*(r, s; Py if a*(r, 5, P) is 2
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minimal cardinality of a set needed to separate some two r-nodes of
G(r, s; P) which correspond to r-faces having a common vertex. We also
define o/(r, s; P) as the minimal cardinality of a set needed to separate
some two r-nodes of G(r, s; P) which correspond to r-faces lying in the
same facet of P. In a similar way we may define 8¥(r, s; P), yI(r, s; n),
etc.

THEOREM.

’ (6.2)

z = min *més s; n), A va .

Itis clear from (4.7) and the definition of £¥(r, s; n) that B(r, s; n) <z
In order to show the reverse inequality, let P be an n-polytope and
remove a set X of z — 1 nodes from G(r, s; P). Let F and G be two
remaining s-nodes of G(r, s; P) and let ¢, be vertices of P such that
i€ F, and w € G. By (6.1), there exists a (0, s) path which contains no
member of X between » and w in G(0, s; P). Let this path be

f(r, s; n) = min Am,«? S; 1), A " 1 )

ProoF: Let

v—>Fy—>vy > F - > F —>w

Since z << B¥(r, 5; i), there exists an (r, 5) path which misses X joining F;
to Fyy; for all i. There also exist (r, 5) paths missing X which join F to F,
and G to F, . Combining all of these paths gives us an (r, s) path betwcen
Fand G which avoids X. Since Fand G were arbitrary, X is not a separat-
ing set. Thus B(r, s;n) >z and the result follows.

With the above result in mind we now turn our attention to estimating

#(r, 55 ).

THEOREM. for | <r <s<<n— 2,

B, ssm)y = pr— I,s — tyn — 1) +
. 5 . .
onl(, 1) e}

ProOF: Let p be any n-polytope and let £, G be two s-faces of P with
acommon vertex 7. Let X be a set of z — 1 nodes of G(r, s; P) which does

(6.3)
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not contain either F or G, where z is the value of the right-hand side of
(6.3). We shall show that there exists an (r, 5) path missing X and join-
ing F and G which is of one of the two following special types:

(1) Every node of the path corresponds to a face containing 7.
(2) Every node of the path, except for F and G, corresponds to a face
in ast(f).

Assume that no path of either type exists. Let H be a hyperplane whick
strictly separates # from the other vertices of £ and let Q=HnP
Define

Xi={KeX:veR}and Y={L:L=Rn I, Ke X,

Since no path of type (1) exists, every path from FN H to G N H in
G(r — 1, s — 1; Q) must contain a member of V. But distinct members
of X, determine distinct members of ¥ and so

card X, > a(r — 1, s — 1 N=ulr— 1, s ~1;n—1).

Each path of type (2) must connect an r-node adjacent to F to an
r-node adjacent to G by a path in G(r, s; ast(#)). The face F contains

()

at least one (s — |)-face in ast(#) and hence, by (3.7), at least
r-faces in ast(f). Similarly with G. Let

X, = {Ke X: Ke ast(s)}.
If no path of type (2) exists, then either all nodes adjacent to F (or G»
lie in X, or else a(r, s; ast(#)) other nodes lie in X, . That is,

N

card X, > 5_=?~.+ 1

v , alr,s; mﬁ?i .

Since ast(#) is a strong (n — 1)-cell complex by (3.5), it follows fro-
(2.10) that
a(r, 55 ast(9)) > a(r, s;n — 1).

Since X, and X, are disjoint,

card X > card X; +card X, > a(r — 1,5 — Iyn—1)

-+ min AA , J.M | v_ a(r,s;n — :W

P
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or card X > z, contrary to hypothesis. The contradiction completes
the proof.

It should be possible to obtain a strengthening of the above result by
allowing more general types of paths. A better bound might also take
into account the possibility of £and G having common r-faces. However,
we can still use (6.2) and (6.3) together to obtain a number of useful
corollaries.

B, 53 n) - Aa+ 1

x._._v moh.awA

5
\+_v+1l. (6.4)
s+ 1
r-1
establish the reverse inequality. Using (2.11), we see that the assertion
need be proved only for the case

A s
n = ’

and it will then follow immediately for all larger n.

We use induction on r and s to establish the result. By (4.9) the asscrtion
is true for all s and n when r = 0. Assume that the result is known for
all triples (r, s; n) when

Proor: By (4.7), u?ﬁiMA v for all n. Herc we must

_v+‘.+_

s
F<ry, § <8y, r<s and :NA\.+~v+x+ I.
Now it follows from (4.1) that
S,
wwmin-nz (%)
whenever
So
> .
:lAﬁchHVIT\olTH
_cmim this fact in (6.3), we find that
B¥(ror So;n) = Blryg — 1,5 — l;n— 1) + A , .“c | v . (6.5)
)

Applying our inductive assumption to f(r, — 1, so — 1, n — 1) (noting
that n is large enough that the inductive assumption applies to it), we
obtain
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V() . So \ | So [ s+l
\aéo.qo,ENAxov TAQ;._V[AJITHV.

The result now follows from (6.2), once it is established that

qo+_v A:v A So
< >
AJJT_ TS for n = re+ 1

(6.6

v+§+_.

For this, let £k = s, — r,. The inequality is trivial in case k is ] or 2.
For k> 3, 5, > 4 (since r, > I)and 2 <ry + 1 < sy — 2. Hence,

So

=
n= (5

v+5+_NN©o|:+§+_WNMQIJH.&Jr».

()<A= ()
So ro+ 1 “\rg+1
since n I,\m = 8o . This completes the proof.

In much the same way as in the above corollary we can combine (6.2¢
and (6.3) to get better lower bounds for p-connectivity. For example-

If | <r<n-—4, then plr,n—2;n) > (r+ Dm—r—1). 67

Proor: The proof goes by induction on r. For r — I, by (6.3)
B, n —2;n) > O, n — 3;n — 1)

+SS?:INVMQC‘:INW=I CV

H

n—2

W:IN‘T:::AA 5 v,ziwwww?lu,,

n

n—2

Bll,n—2;n) = 2(n — 2), and thus the result is true for r = 1.
Assume that the proposition is true for » — 1 and all x. Then, as abowz

Since A VN 2(n — 2) for all n, it follows from (6.2) the:

B(r,n — 2,my=pr—1,n—3,n— 1)

+55AAWMWV, ﬁﬁ:lwwzi :W
=rn—r—1)

+55 AAw.ﬂwV,zlxl _WWAT:::l‘IT
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= i e e Ny e ¢

since ANM WV = n — r — 1. The proof will be completed by applying
{6.2) once we show that Az M wv > (r+1)(m—r—1). But this
inequality follows casily from the fact that n > r + 3.

Combining the above result with (2.11), we obtain

If r#£0,s%n—1, and s%r <+ 1, then

B(rys;im) = (r+ 1) (s — r -+ 1). (6.8)
More results of this general nature could be given by utilizing a suitable
mixture of (6.2) and (6.3) as we have done above. Better results will
entail more restrictions on r and s, however, as further upper bounds are
attained. For example, (6.8) gives an exact bound for (1, 3; n), so a
better bound would have to exclude this case. Another approach is
probably needed to make a significant improvement in these bounds.
i Using the results of this section, we summarize some known values for
a(r, s; n) and f(r, s; n) by means of Table 1. We exclude the cases when
r=0ors=n — | as these bounds are exact for all values of .

TABLE 1

noro s a(r, s;n) B(r, s; n)
4 1 2 3 3
51 2 4 3

13 6 6
61 2 5 3

1 3 8§ <a<10 6

1 4 §<a<10 8§<8<10

23 4 4

2 4 6 8<4<10

3 4 3 5

We conclude by stating the dual formulation of the more important
tesults.

a(r, s, n) = min T\AS sy n), Ax .ﬂ | vw . (6.9)
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For | <r<s<n-—2

ad(r,s;n) = a(r,s;n — 1) (6.10)

+35*=|~.| _v.u?i_;l_uzlzf

n—ys

a(r, s; n) HA: lxv whenever s > Az — = \.v. 6.1
n—s n—gs
If r+£0,s%n—1, and s 54r + 1, then
oafr,s;n) = (n—s)(s —r+ 1) (6.12)

7. v, 6, e-, AND {-CONNECTIVITIES

We now turn our attention to investigating the connectivities of inci-
dence graphs in which only one type of node is removed. Precise defini-
tions of the four types we wish to consider were given in Section 2.
Essentially the same methods can be used to investigate these connec-
tivities as we have used to this point, but much better bounds can be
obtained here.

As before, these connectivities are paired in a natural way by dualins
We recall from Section 2 that:

y(ir,s;n)=Ll(n—1—s5,n—1-=r;n), (2.8:

oros;m)=e(n— 1 —s,n—1—r;n). 2.9

Using this duality and the examples of the #-simplex and the bipyramid
over the (n — 1)-simplex from Section 4, we find:

y(r, .ﬁS_MAtN { v (1.1,

n—r .
o(r, ?vaAz _ uvv (7.2
_ s 1 .
RrﬁvaAxnf_v‘ (7.3
&, s;m) < A N v . (7.4

For -and e-connectivities, we have the following strong result:

i

PR
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THEOREM. For all n,
o (s
m??EFA\..T ) v

Moreover, if s<<n— 2, then e(r,s; P) = ¢(r, s;n) iff P contains an
sface which is an s-simplex. (1.5)

Proor: It is clear that, if P is an n-polytope containing an s-face which
is an s-simplex, then

s+ 1

o . Nv A .

&(r, s; lex _v

To prove the opposite inequality, we let P be an »n-polytope and let X be

s+ 1
a set of A rl
s-nodes of G(r, s; P). By (4.2) there are s + 1 disjoint (s — 1, 5) paths
between F and G in G(s — 1, s; P). Assume that for one of these paths,
say

v — 1 r-nodes in G(r,s; P). Let F and G be two

F=F>F71'>F5—> ... — F =G,

there exist r-nodes Fy, ..., F}., which are not in X and such that F7
< F-1for all i. Then we can easily obtain an (r, s) path between F and
G which misses X, namely,

Fp > Ff — o - FS,

If no path such as that described above exists, this means that there are
atleasts 4 1 (s — I)-faces of P which contain only r-faces corresponding

_oBoa_uSmOmk.In:ongG.:.kooanmimm:ommﬁ Aw M H v T:oamf
contrary to assumption.

Thus, an (r, 5) path avoiding X always exist between F and G and the
first statement follows.

To show that s <n — 2 and &(r, s; P) = &(r, 5; n) implies that P
contains an s-simplex requires two additional lemmas.

LEMMA. Let P be an n-polytope, H a hyperplane, and H* one of the
open halfspaces associated with H such that H* N P # . Suppose F and
and G are two r-faces of P such that H+ N F = @ # H* O G. Then there
exists an (r, s} path joining F and G which contains no node corresponding
lo a face lying in H. (7.6)
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Proor: By (3.4) an edge path missing H joins any vertex in H+ n f

to any vertex in H+* N G. Choose s-nodes corresponding to faces con-
taining edges along this path. If r = 0, we are done.

If r > 0, observe that none of the faces containing any vertex v € H-
liec in H and that an (r, 5) path may be found joining any two s-nods
corresponding to faces which contain » such that each member of th?
path contains v.

Therefore the required path exists.

LemMmA. Let Fy, ..., F,,, be 5+ 2 s-fuces of an n-polytope P whic
satisfy the following three conditions:

(@) each F; is an s-simplex:

(b) F,Fjis an (s — D)-simplex if i # j;

©) FENF£F N F if j#k

(7.7

Then exactly s + 2 vertices of P are contained in one or more of the F,

PrOOF: Let v, , ..., v, be the vertices of P which lie in one or more ¢f
the F;. Without loss of generality assume that F, is the convex hull ¢
{V1 s Uy} (written F, = con{v; ,..., t,,»}). Using (b) we can likewiw
assume that

Fy=con{v,,...v, v}
Assume that v, € F; . Since Fy 0 Fy contains exactly s vertices, F, onuts
v; for some 1 <i<Cg; that is,

Fy = con{y,,

e Vi s Ving s ey Vi1, Vo)

1t is not possible that / = s + 1, for otherwise we would have F; n F.
= F, N Fy contrary to (c). If £ 5 4+ 2, then
Fys N Fy = con{y,,

s Uy by

an (s — 2)-simplex, which contradicts (b). Hence, t =5+ 2 and 12
proof is complete.

o Vicr s Vigr

Using these two lemmas it is easy to complete the proof of (7.5
Suppose that P is an n-polytope such that

e(r,s; P HMAQ+_V.

r+1
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s+ 1
r+1
G of G(r, 5; P). Using the reasoning from the first part of the proof, we
see that P contains at least s 4+ 1 (s — I)-faces, F,, 3

Let X be a set of A v r-nodes which separate two r-nodes F and

..y Fyy, which
contain only r-faces corresponding to members of X. Since card
Y= A.HH*T. Nv , it follows from (5.1) that these (s — 1)-faces satisfy
conditions (a), (b), and (c) of (7.7). Thus, they contain only s + 1
sertices in all.

Now let 4 be an r-face not lying in any of the F;, let z € relint A,
and let H be a hyperplane containing z as well as the vertices of P which
lte in one of the %,. , but not containing all of 4. Since s <un — 2,
we are specifying at most # points and such a hyperplanc can be found.

By (7.6) an (r, s) path missing X joins A to any r-node which does not
correspond to a face in one of the F;. Thus if B and € are s-faces each
of which contains r-faces which do not lie in one of the F;, an (r, s)
path missing X joins B and C. Since F and G are separated by X, every
rface in F, say, lies in one of the F,. By (3.7), since F is an s-face it
s+ 1
r+1
and the proof is complete.

contains A v r-faces iff F is an s-simplex. Thus £ is an s-simplex

n—r

@A\.ﬁSHA:lh

iff P contains an r-face which lies in exactly n — r facets.

v . Moreover, if r=1, 6@, s;P)=0(rs;n)
(7.8)

The result for y- and {-connectivities are unfortunately not as complete.
We do, however, have the following strong lower bound.

m?&swwﬁlaiJ+A=!~.v.

s —r S —r

THEOREM. 7.9)

In order to prove this statement we use the same type of reasoning

“used in Section 6. In fact, the same proof as in (6.2) may be given to

show

THEOREM. (7.10)

£(r, s3 1) = min ,T;? 55 1), A " vv .

s

Likewise, we can duplicate the proof of (6.3) to evaluate £¥(r, 5; n).
However, in this case, as we are considering only the removal of s-nodes,




492 SALLEE

N
r+1
possibility of removing r-nodes. Thus our new inequality may be written
as:

the term A v does not appear in our estimate as it arose from the

THEOREM.
Mrossmy=8(r—1,s —1;n— 1)+ 8(r, 531 — 1),
Jor l <r<s<n-—2 (7.11

These last two propositions can be used to prove (7.9) as soon as we
have a lower bound for (0, s; n). The needed result is:

(0, 55 1) > AMV . (712

ProOF: Let P be an n-polytope and let X be a sct of AAHV -1

s-nodes of G(0, s; P). Let F and G be two remaining s-nodes and let p

and g be two 0-nodes such that j € F, and e G. By (6.1), a (0, s) patk

which misses X joins p and ¢, and hence a (0, s) path which misses ¥
joins F and G.

The proof of (7.9) now follows by induction on r. If » = 0, the rest':

is given by (7.12) for all s and n. For r > 1, we use (7.11) and the ir-
ductive hypothesis:

ryssmy=8(r—1,s — 1;m— 1) 4 A=|~.l Hv

n—s— |

=c-n(" "7 _v;TAzlvlTT_v (13

s—r s—r s —r
N~.A:Ix|~v+A=!xv.
s—r s—r

Letting f(r, 5, n) denote the right-hand side of (7.13), it is easy -
verify that

S, s,n)<f(r—1,sn),
and thus that
n
fr, 5, 1) < f(0, s, ) HA ! v

Applying (7.10) completes the proof.
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In (7.10) we showed that to evaluate {(r, s; n), it usually suffices to
consider £¥(r, s; n). In the next theorem we strengthen this result to show
that we only need to evaluate ¥ for cones.

THEOREM. If {(r, 55 1) = L¥(r, 5; n), then there exists a cone P such that
Ar, 55 P) = (r, 55 n). Moreover, P contains two s-faces, F and G, each
of which contains the vertex of the cone, such that F and G can be separated
in G(r, 85 P) by a set of &(r, s; n) s-nodes. (7.14)

The proof requires two lemmas.

LEMMA. Let P and Q be n-polytopes and let o: P — Q be a refinement
homeomorphism which is linear on each face of P. If F is an s-face of Q,
and G, H are s-faces of P contained in o~Y(F), then for any r < s an (r,s)
path between G and H exists in G(r, s; a='(F)). (7.15)

ProoF: It follows from the conditions on ¢ that ¢(G) and o(H) are
s-polytopes contained in F. Choose points x € int ¢(G) and y € int o(H)
such that the line segment [x, y] does not intersect the o-image of any
face of P of dimension less than s — 1. Since [x, y] < F it determines
m an obvious way an (s — 1,s) path between G and H in G(is — 1,
$;07(F)). Given an (s — 1,s) path between G and H, it is an easy
matter to find an (r, s5) path between G and H in G(r, 5; o-1(F)).

LemmA. Let P and Q be n-polytopes and let o: P — Q be a refinement
komeomorphism which is linear on each fuce of P. Let F, G be two s-fuces
of P such that o(F) and o(G) are s-faces of Q. Then at least as many
s-nodes must be removed from G(r, s; P) to separate F and G as must be
removed from G(r,s; Q) to separate the nodes corresponding to o(F)

and o(G). (7.16)

PrOOF: For notational convenience, we will write ¢(F) as the node
corresponding to o(F), etc.

Suppose that m paths disjoint in s-nodes exist in G(r, s; Q) between
#(F) and o(G). Let these paths be:

o(F) > Fy = Ff — - — in, — 0(G),

QANHV >y - - Nwﬁ:.s_ — o(G).

Consider the “paths”:
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F— o (Ff) — g (Fy) — - G,

F—o ' (F]) » o (Fy) — - —G.

For each i, j let Gf; be an r-face of P contained in o (£7;). Choose
Gy in o=1(£%) such that G5; < G3;and choose H; such that G;,, < A,
(Gs; are chosen for 1 < J=<n;— 1 for all i, while m@. are chosen for
2 < j < n;for all {). By (7.15) an (r, 5) path joining H3; to G can be
found in G(r, s; 6-1(F%y)) for all i, j.

As o is a homeomorphism, no s-face of P lies in more than one of the
o7'(F3;). Hence, all the (r, 5) paths from Hj; to G% in G(r, s; 07 Y(Fy1
for different i, j are all disjoint. Connecting Hs; to G% ;4 by means of
G? ;.1 gives us m paths between F and G which are disjoint in s-nodes
This concludes the argument.

We can now prove (7.14). Assume that Q is an n-polytope such that
$¥(r, 55 Q) = &(r,s; n). Let Fand G be two s-faces of Q with a commer
vertex, # such that Fand G may be disconnected in G(r, s; Q) by remos-
ing exactly &(r, 5; n) s-nodes.

Let H be a hyperplane strictly separating # from the remaining vertices
of @,let O, = H N Q, and let P = convex hull {Q,, v}. Then the map
determined by rays through # is a refinement homeomorphism of ast(:"
onto @, , and it can easily be extended to a refinement homeomorphise
of @ onto P. Moreover, it is linear on faces of Q and o(F) and o(G) a2
s-faces of P. By (7.16) no more s-nodes must be removed from G(r,s: P
to separate o(F) from o(G) than were needed to separate F and G =
G(r, s; P). Hence, £¥(r, 53 P) == ¢(r, 53 n) and the result follows.

Note that the same arguments can be used to show that the minimur
d-connectivity is attained for two r-nodes with a common vertex. Tre
essential part of the proof revolves around the fact that the separatirg
set consists of s-nodes and not on the type of node which we were tryvie g
to separate.

It would be of interest to know if (7.14) could be improved still furtk:-
say to the point of being able to assert that, if ¥(r, s3n) = L(r.sim
we can always find two s-faces with a common (s — 1)-face whose co:-
responding nodes have a separating set of cardinality ((r, s; n). In st
a case, we could repeat the refinement argument used above on all of 72
vertices of the common (s — 1)-face and it would follow that o(r. s: =

= {(r, 5; Z™).

The upper bound for &(r, s; n) given carlier is not the best possibi
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A somewhat better one is given by:

Lrssm <3 A=|.JA:.LV. (7.17)

i=1 ! t

n
s
that we improve the previous bound for larger values of n.

Note that the sum on the right is A v in case 2s —r>n, but

PRrOOF: This estimate is obtained by considering the set X of all s-faces
of the n-simplex which intersect a particular s-face £, in at least an r-face.
Then the set of nodes corresponding to members of X will clearly sepa-
rate Fy from the other s-nodes of G(r, 5; 2"). It remains to determine the
cardinality of X,

Let X, be the set of s-faces of X" which intersect £, in a face of dimen-
sion £. Then

X=X, U- - UX,_.

Since all of the X, are distinct,
card X =card X, + ... + card X,_, .
s—t

Tofind card X, observe that if G is a ¢-face contained in Fy , then A S v

- P P - . 1
s-faces of X" will intersect £, in exactly G. Since F, contains Au + v

t-faces, st
cma.\SHA\NIQV AQKT_V.
s—t s—1

oma»\H.WH Axlav An+~v.

S \s—1 s— ¢

Hence

Setting i = s — ¢ and reversing the order of summation establishes the
result.

We conclude with the dual formulation of the more important results:

S!_!avAthvAthﬂvMY?.ﬁ:vMWﬂ Azl.xv Axl_.,ﬂv,

r r--1 1 i i

(7.18)

y(r, 85 1) == min </ (r, 55 1), " . (7.19)
r-1
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Iy(r, s;n) = pl(r, s; n), then there exists a cone P uznb that v(r, s; Py
= y(r, s; n). Moreover, P contains two r- faces, F and G, in its base suck
that F and G can be separated in G(r, s; P) by removing mknqS\ y(r, sim
r-nodes. (7.20s

8. ANOTHER TYPE OF CONNECTIVITY

B. Griinbaum suggested investigating the connectivities of incidence
graphs obtained by removing clusters of nodes, consisting of a central
node and all adjacent ones. Such a cluster would be analogous to the
usual case in an edge graph when removing a vertex in effect removes all
of the incident edges. In accordance with this suggestion, we define:

n(r, 5; P) [0(r, s; P)] to be the minimal cardinality of a set of r-nodes
[s-nodes] which, together with all s-nodes [r-nodes] adjacent to at leas
one of them, must be removed to separate some two remaining r-nodes
[s-nodes] or to leave just one unremoved r-node [s-node] in G(r, s: P

(8.1

We define %(r, s; n) and 0(r, 5; n) in the usual way and observe th:
basic duality:

n(rys;n) =00 —1 —s;n— 1~ r;n). (8.2¢

As with the other connectivities, our results extend to strong cell-
complexes, except for one reservation (sec (2.10) for proof):
Let C be a strong n-cell complex. Then
n(r,8;C) = n(r,s;n)
0(,5;C)=0(r,s;n)

Sor 0 <<r
for 0<r<s<n-—2.

<§<<n-—I.

It is the purpose of this section to establish the following dual resubz

THEOREM. #(r, 55 1) = n — 5 + 1. Moreover, if P is an n-polytope wizs
at least one r-face which is contained in exactly n — r JSacets, then y(r, 5. P
=n-—ys+ 1. (8.4

0(r, s; n) = r + 2. Moreover, if Q is an n-polytope with at least o7
s:face which is an s-simplex, then 0(r, s; Q) =r + 2. (83

|
' o
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We first prove that the bound stated is the best possible and that it is
attained for the type of polytope described. For this purpose it is more
convenient to prove the formulation in (8.5).

Let Q be as described in (8.5) and let £ be an a.mmno of Q which is an
ssimplex. Note that each r-face contained in F is the intersection of
s — r faces of dimension s — 1, and that F contains onlys+1( — 1)
faces. Thus, if F,, ..., E,,., are any r + 2 of these (s — 1)-faces, each
r-face contained in F will lie in at least one of :58 For1 <i<r+2,
let G; be an s-face of Q such that £; = G, N F. Then removing the G,
and all adjacent r-nodes in G(r, s; Q) will clearly separate F from any
remaining s-nodes.

In order to prove the inequality in the opposite direction, several
lemmas are needed.

n0,n — 1;n) > 2. (8.6)

PROOF: Let P be an n-polytope and remove one 0-node, p, from
G(r, s; P) together with all adjacent (n — 1)-nodes. Let u, v, be two re-
sm_E:m 0-nodes which correspond to the end- -points of an edge E.
Let £ be a facet containing £ but not . Thenu — F —visa O,rn—1)
path which remains between u and v.

Now assume that x and y are any two remaining O-nodes. Let

X =0 = (Xo, X)) > Xy =00 o xy =

% a (0, 1) path joining x and y. Since a (0, n — 1) path remains from
Yi to x4y for every i, a (0, n — 1) path joins x to ». The conclusion
follows.

70, 5;n) > n — 5 4 1. 8.7

Proor: We will use induction on # for s fixed. The result is given by
18.6) if n = s + 1. Assume that the result is known for n — 1.

Let P be an n-polytope and remove a set X of # — s 0-nodes and adja-
cent s-nodes from G(0, s; P). Let u, v be two remaining O-nodes i:o:
correspond to the end-points of an edge E. mchOmm pP€ X and let F
be a facet of P which contains £ but not p. Since F does not contain P
ttcontains no s-face which contains g. Hence, at most n — s — 1 0-nodes
of X lie in G(r, s; £). By our induction hypothesis, there exists a (0, s)
path which misses X in G(r, 5; £), and hence in G(r, s; P).

Now if x and y are any two remaining 0-nodes we can find a (0, 1)
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path which misses X connecting them, and use the result of the above
paragraph to find a (0, 5) path which joins x and y and avoids X. Hence X
does not separate the remaining 0-nodes and the result is proved.
nr,ssmy=nr—1L,s—l;n— 1D if r> 1. (8.8

PROOF: If r > 2, then the result is a corollary of (8.3) in the same was
as (2.12) follows from (2.10). However, here the restriction in 8.3
that s <n — 2 for 0-connectivity does not allow us to conclude that
n(1l,s;n) > 1(0,s — 1;n — 1). A separate argument is needed for this
final step.

Let P be an n-polytope and let X be a set of n — s I-nodes together
with adjacent s-nodes in G(1, s; P). Let F, , G, be two remaining 1-nodes

Assume that £, and G, have a common vertex 5. Let H be a hyper-
plane which strictly separates # from the other vertices of P and I¢:
Q = H N P. There is a biunique map defined by K — K N H betweer
the r-faces of P which contain # and the (+ — 1)-faces of Q. Morcorver.
this map preserves incidences.

Let

Py

X' ={FeG0,5s—1;0): F=GNnH forsomeGe X!
Since X' contains at most # — s 0-nodes together with their adjacer:
(s — 1)-nodes, a (0, s — 1) path which misses X" exists between Fo— K
and G, N H. This path is reflected in an obvious way in a (1, s) pat*
between F, and G, missing X. Thus X does not separate Fyand G, .

If £, and G, do not have a common vertex, let p be a vertex of £,
and ¢ a vertex of G,. By (8.7), there exist n disjoint (0, 1) paths
G(0, 1; P). Since n — s < n, at least one of these paths contains -~
member of X. Then we can use the result from the above paragrapss
to show that a (1,s5) path missing X joins F, and G,. The res.:
follows.

Having these last two lemmas at our disposal, it is easy to comple::
the proof of (8.4). For we have

n(rs;m) = nr—1, s—1;n—1) > -+« = 50, s—r, n—r) = n—s- |

Combining this inequality with the opposite one given at the beginn:-r
of the proof concludes the argument.

[ Tee—
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9, SEPARATING SEQUENCES

Let X and Y be disjoint sets of nodes in a graph G. X is said to totally
separate Y if every path between any two members of ¥ passes through X,

For any (r, s) incidence graph, let «,(r, s; P) denote the greatest in-
teger z such that z r-nodes of G(r, s; P) are totally separated by m other
nodes of G(r, s; P). To employ the same notations as above, Y consists
of z r-nodes of G(r, s; P) and X of m other nodes of G(r,s; P). In a
similar way, we define the maximal cardinality of a totally separated set
Yin G(r, s; P) to be:

B (ry 55 P) if Y consists of s-nodes and X of m other nodes;

v (ry 53 P) if Y consists of r-nodes and X of m other r-nodes;

0, (r, s; P) if Y consists of r-nodes and X of m s-nodes;

&y (ry 85 P) if Y consists of s-nodes and X of m r-nodes;

Su {ry 55 P) if Y consists of s-nodes and X of m other s-nodes;

mlr, s; P) if Y consists of r-nodes and X of m other r-nodes, together
with all s-nodes adjacent to at least one of them;

0, (r.5; P) il Y consists of s-nodes and X of m other s-nodes, to-
gether with all r-nodes adjacent to at least one of them.

The usual dualities are in evidence:
a(r,s;n)=Fun—1—s5,n—1—r; n), ©.1)
yulr,sin)y=8,mn—1—-s, n—1-—r; n), 9.2)
Our,s;n)=g,(n—1—5,n-—-1—r; n), (9.3)
Yl sin) = O,(n— 1 —5,n-—-1—r; n). 9.4)

We also remark the following inequalities:
oy (r, 55 1) = max{y,(r, s; n), 6,(r, s; n)}, 9.5)
N> $51) = max{y,(r, 5; n), 0,(r, s; n)}. (9.6)

Let u,(m, n) denote the maximum number of facets on an s-polytope
with m or fewer r-faces.
THEOREM.

vl 55 0) = p(m, n). 9.7

PROOF: Let P be an n-polytope with m or fewer r-faces and y,(m, n)
facets. Let Q be the polytope obtained from P by adding simplicial caps
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over the facets of P. Let ¥ = {v;,...,v,} be the collection of *“new"
vertices. Clearly, ¢ = pu,(m, n).

Let

W= {Fe G(r,s; Q): £isan r-face and contains no f,}.

We assert that W will totally disconnect G(r, s; Q) into u,(m, n) classes
where each class consists of all the r-nodes whose corresponding faces
contain some member of V. This assertion follows from the observation
that no facet of Q contains more than one 7; . Thus, no s-face contains
more than one #; . Let F, G be two r-nodes of G(r, s; Q) which are not
in W. Suppose #; € E t.€G, J # k. Then any (r, s) path from Fto G
in G(r, s; Q) eventually contains a last s-node whose corresponding face
contains #;. The next r-node along the path thus corresponds to a face
containing no #; and, hence, the r-node is a member of W. Thus W teo-
tally disconnects G(r, 55 Q) into g, {m, n) classes.

Observing that each member of W corresponds to an r-face of P
completes the proof.

Note that, in the above proof, it was essential that r-nodes formed ths
separating set, but that it was immaterial whether r- or s-nodes wer:
separated. So we could essentially duplicate the proof of (9.7) to show:

en(r, 53 0) = u,(m, n). [CAY.

Combining these last two inequalities with (9.5) and (9.6) and makir;
use of duality, we have:

K, s;0) = p,(m, n) for X == «, B, ¢, %, and 0. (9.9
H(r,syn) = py oy J(myn)  for K —a, 8,06, 0, 7, and 0.  (9.10+

For upper bounds we cannot extend our results significantly beyord
the theorem of Klee [7] who proved:

Let o,,(n) denote the maximum cardinality of a subset of vertices of tht
edge graph of an n-polytope which are totally separated by m other vertices
Then

1, ifm<n-—1,
Opn) =12, if m=n, (9.1
Ho(m, 1), ifm=n 1.

We will show that the same bounds extend to «,,, Vi » and 1, sep-
arating sequences with the aid of onc further definition and a lemm:
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Let P be an n-polytope and F a face of P. Let y be a point in E* which
is not in P, but which is sufficiently near the barycenter of F that it lies
below every supporting hyperplane of P which does not contain F
{that is, if H = {x: h(x) = 0} is a supporting hyperplane for P which
does not contain F, and /(x) > 0 for all x in P, then A(y) > 0). Let P’
be the convex hull of P and y (denoted P' = con {P, y}). Then we say
that P’ is obtained from P by a barycentric pulling of F. This notion gen-
eralizes the concept of pulling the vertex of a polytope introduced in [3).

LeMMA. Let P be an n-polytope such that a set Y of z 0-nodes [1-nodes]
in G(O, 1, P) can be totally separated by a set X of m other nodes. Then
there exists an n-polytope Q such that G(0, 1; Q) contains a set Y' of z
0-nodes [1-nodes) which are totally separated by a set X' of m other O-nodes.

9.12)

PROOF: Let £, ..., £; be the I-nodes of X, let Q be the polytope ob-
wined from P by a barycentric pulling of the £;, and let 4, , ..., G
be the “‘new™ vertices of Q. Make the obvious correspondence between
nodes in G(O0, 1; P) (except for E, ..., E;) and nodes in GO, 1; Q).
Let ¥’ be the nodes of G{0, |; Q) corresponding to members of ¥ and
ket X' be the nodes of G(0, 1; Q) corresponding to members of X ~
~{Ey, ..., E;} together with {q,, ..., g;}. Notice that, if ¥ consists of
O-nodes [I-nodes], then Y’ consists of 0-nodes [1-nodes].

Itis clear that X" consists only of 0-nodes and that it totally separates
Y'. For if u, v, are two members of Y', any (0, 1) path joining them cor-
responds to a (0, 1) path in G(0, 1; P) unless it uses a “new’” 0-node or a
“new” 1-node. But every “new’ O-node is a member of X’ and any
path passing through a “new” {-node also passes through a “new”
(-node. Thus any (0, 1) path between members of Y" either corresponds
a (0, 1) path in G(0, 1; P) missing X (contrary to hypothesis) or else
includes a member of X’. The conclusion follows.

0,u(0, 15 1) < «,(0, 15 1)

= Q\ZFAOu — w :v

- ::@Aow _w =v Ac—uv
1, it =n-—1.

=42, if m=n,
Ho(m, n), it m>n+4 1.
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Proor: It follows from (9.12) that

Ym0, 15 n) = 6,,(0, 1; n),
and that
Y0, 15 ) = «,(0, 1; n).

Combining this latter inequality with (9.5) shows that
Ys_ﬁou _w av = QSAOg 1; av.

By general considerations of the relation between an edge graph and the
corresponding (0, 1) graph of a polytope, it is easy to see that

w\Q:AOw 1; :v = Q\Eﬁov —w:v - QEA:V.

The proposition is then a consequence of 9.11).
We can also apply (9.12) to show:

B0, 15 1) = £,(0, 1; n) > £,,(0, L; n). .14

In general, equality does not hold on the right. For example, it is a
fairly easy matter to check that £(0, 1;3) = 3, while £,(0,1;3) = 2.

An interesting phenomenon occurs for certain Ny and 0, separating
sequences.

1, for m<<n-—s,

9.1%
X for m>n—s+ 1, 15

N0, 85 1) = ﬁoo
Proor: It follows from (8.4) that N0, 5;0) =1 for m<n—«
To establish the second statement, for any positive integer z let Q be

an s-polytope with at least z vertices, lct P, be a cone over Q, and fer

2 =<j<n—slet P; be a cone over P;_ ;. (P;is said to be a j-fold sus-

pension of Q.) Let F; be the vertex of P; which is not in P;_, . Clearl:

P,_; has dimension n.

Note that for any u each u-face of P; either contains g; or else lies 1
P; ;. Thus, every s-face of P,_, except ), contains one of the ;. Let ¢
be some vertex of Q. Then removing the 0-nodes {g,p, , ..., pu_s} -
gether with all adjacent s-nodes will totally separate the remaining 0-nodes
of G(0, 5; P,_,). Hence,

Ny z__AO.%“:vW b

i
t
m

i
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Since z was arbitrary the result follows for m — n — s 4+ 1. As it is
clear that #,, is non-decreasing in m, the result follows for all .

1, if m=1,

00, if m> 2. ©.16)

nulron —1;n) = A
Proor: Once again, the first statement follows from (8.4). For the
second, for any positive integer z, let Q be an (n — r)-polytope with at
least z r-faces, let P be the r-fold suspension of O,andletp, , ..., p, be the
“new” vertices of P. Note that every facet of P is either an r-fold suspen-
sion of a facet of Q or else an (r — 1)-fold suspension of Q. Hence,
every facet of P save one contains the r-face, £, determined by (4, p; .,
- Py) Where § is a vertex of Q. Let G be an r-face contained in the re-
maining facet.
Then removing F and G, together with all adjacent (n — 1)-nodes,
from G(r,s; P) will totally separate the remaining r-nodes. Hence,

n(r,nm—1;n) >z — 1.

Since z was arbitrary, the conclusion follows for #m = 2 and thus for all
larger m.

The dual statements of the two preceding theorems read:

ooy L ifm<r-1,

0,.(r, n I;n) = ﬁoow im0 9.17)

1, ifm=1,
0,0, 5; 1) = Ao«. it 2, (9.18)

10. A STRUCTURAL THEOREM
We recall:
n
. — i J .

y(r, §; n) = min *\ (r, 5; n), A r vw . (7.19)

In Section 7 we investigated the case in which y(r, s;n) = y/(r, 5; n)
(actually we studied the dual problem). Here we consider the remaining
situation.

Tivorem. Let Pobe an n-polytope such that pi(r, s; 1) = y(r, 83 n)
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- A ﬂ Mv. Then P can be decomposed into two n-polytopes P, and P,
r

with a common facet, P*~1, such that every face of P is a face of either P,
or Py and such that P*=' is an (n — 1)-simplex. (10.1

PrOOF OF THEOREM: Let Fand G be two r-nodes in a(r, s; P) which can

be separated by a set X of cardinality A v By assumption, F and

n
r+1
G do not lie in the same facet of P. Let A, B be facets of P such that
F < 4, G < B. By (4.2), there exist at least n disjoint (n — 2, n — 1)

paths between A and B. As in (6.1), if for one of these paths, say
A=A 1> A} — -« — AV = B,

there exist r-nodes Cy, ..., C}_, which are not members of X, and such
that &7 < A%~%for 0 <i <<t — 1, then an (r, s) path exists between F
and G.

But by assumption, no such path exists. Hence, there exist n(n — 2)-
faces of P, D, , ..., b: , such that every r-node corrésponding to a face in

one of them lies in X. By (5.1),

~ A n
Qxﬁb_c... Cb:vNA~.+~v.

But since X contains only A v r-nodes, every r-node in X corres-

n
r+1
ponds to a face in one of the ;. Moreover,

Q.‘Ab)—c C®~LHA‘:ﬂHv
Hence, by (5.1) the D, satisfy conditions (a), (b), and (c) of (7.7).
Thus, only » vertices, ¢, , ..., 7, , of P occur among the b...

Let Q = con {#,, ..., §,}. Since every n — 1 of these vertices deter-
mine a face of P, all n of them determine a unique hyperplane H. We
assert that Q = H N P.

For let P, = P N H. Clearly P, > Q. If Py 5 Q, then there exists 2
point p € (relint Py) N (rel bd Q). But every point on the relative
boundary of Q lies in one of the D; and hence in the boundary of P.
while rel int P, < int P, a contradiction. Hence, P, = Q.

From this fact it is easy to deduce that H does not intersect any face*

i
i
i
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of Pin a relatively interior point. For if £ is a facet of P different from Q,
then

- -~ ~ el n -
HNE=QNE=bdQNE=D,u---UD)nE=u0(D;nE).
1

But since each D; is an (n — 2)-face of P, D; N E contains no interior
point of £ for any i, and thus

H Norelint £ = ¢.

We finally observe that Q is not a face of P. Otherwise, we could use
the edge path constructed as in (3.4) which does not pass through Q
to show that the r-nodes in X do not separate Fand G.

Thus H intersects the interior of P, but not the relative interior of
any facet of P. We set P, = H* NP and P, = H~ N P, where H+
and H~ are the closed half-spaces determined by H. Clearly P, and P,
are the polytopes we seck, and P, N P, = Q is an (n — 1}-simplex, so
the proof is complete.

Precisely the same argument works for a-connectivity, so we can also
state the following

THEOREM. Let P be an n-polytope such that
H
W, 51 P) > ulr, s; P) — A Fo v .

Then P can be decomposed into two n-polytopes P, and P, with a common
facet, P=Y, such that every face of P is a face of either P, or P, and such
that P*-1 js an (n — 1)-simplex. (10.2)
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Seeing how structural differences between connecting networks lead to differences
H. SEiFrtRT AND W. THRELFALL, Lehrbuch der Topologie, Titbner, Leipzig, 1934 in their performance is a basic problem in telephone traffic theory. The object is to
transform combinatorial information about networks into an inequality between
suitable blocking probabilities. This paper stresses the relevance of routing to this
problem, and takes an initial step toward answering the equestion: What kinds of
relationships between two networks ensure that one is ‘“‘better” than the other?

A relation < is defined which partially orders all the possible networks v on given
inlets and outlets. With an assignment defined as a specification of what inlet is to be
: connected to what outlet, ¥, < v, means roughly that it is possible to map a subset of
: , . the states of », that is closed under hangups onto those of v, so as to preserve assign-
ments, and in such a way that only states comparable in the natural partial ordering
can have comparable images.

With b(», R) the probability of blocking of network v under routing rule R (appro-
priate to ), it is proved (i) that min b(», R) is isotone on <, and (ii) that v, < v,

R

implies the existence of an isomorph of the states of », within », . The latter result,
suggested by S. Darlington, provides a different, very natural proof of the isotony (i).
The intuitive meaning of these two results is that, if ¥; < v, , then any way of operating
r, can be mimicked in ¥, , so that the best way of routing in », gives a loss no greater
than that achieved by the best way of routing in #,.

M 10. H. WEyL, Elementare Theorie der konvexen Polyeder, Conunent. Math. Helr. T
i (1935), 290-306 (English translation by H. W. Kuhn in Contributions to the Theor:
of Games, Princeton University Press, Princeton, N, J., 1950, pp. 3-18).

1. INTRODUCTION AND SUMMARY

In the design of connecting networks it is customary to compare al-
ternative networks by estimating their respective carried loads and loss

: 507

e oo b




