A TRIANGULATION OF THE n-CUBE

John F. SALLEE

The Applied Mathematics Group, University of Washington, Seattle, Washington; Boeing Computer Services, Seattle, Washington; 3024 N.E. Blakeley, Seattle, WA 98105, USA

Received 23 October 1980 Revised 9 July 1981

This paper is concerned with estimating $\varphi(n)$, the minimum number of n-simplices required to triangulate an n-cube.

ntroduction

1967, H. Scarf developed a finite algorithm for approximating a fixed point continuous mapping of a simplex into itself [8]. This algorithm was refined extended by H. Kuhn, B.C. Eaves and O. Merrill, among others. (See amardian [4] and Todd [10] for these and other references.) Several althms use a technique of pivoting among simplices which triangulate an abe, and there is some hope that reducing the number of simplices in a ngulation may lead to more efficient algorithms. This paper is concerned with mating $\varphi(n)$, the minimum number of n-simplices required to triangulate an abe. We show in particular that

$$L_n \leq \varphi(n) \leq P_n$$

Fre $P_1 = 1$ and the P_i satisfy the recursion

$$P_{n+1} = (n+1)(P_n + 2^{n-1}) + 2^{n+1} - (n-1),$$

d where

$$L_n/H_n \approx \frac{1}{4}\sqrt{e} (n+1)^{\frac{1}{2}},$$

being the number of simplices given by Hadamard's inequality. As is plain on the large gap between them, these bounds are far from sharp. In particular, a upper bound of 0.477(n!) should be compared with the fact that n! is monthly quoted [3] as the value $\varphi(n)$. We also show that $\varphi(4) = 16$ and $\varphi(4) = 16$. His proof is interesting in that it uses one of Mara's theorems. 12-365X/82/0000-0000/\$02.75 © 1982 North-Holland

2. The triangulation

We use, without specific reference, a number of basic properties of (converpolytopes. They can all be found in the book by Grunbaum [2]. In particular, n-polytope is an n-dimensional, compact, convex set with a finite number extreme points (vertices). And an n-simplex is an n-polytope with n+1 vertices An affine set is a translate of a linear set. For $A \subseteq \mathbb{R}^n$, aff $A \pmod{A}$ is the intersection of all affine (convex) sets which contain A.

A triangulation of an n-polytope P is a finite set S of n-simplices such that

(ii) for all $a, b \in S$, $a \cap b$ is a face of both a and b.

An *n*-complex is a finite set C of *n*-polytopes such that $P_1 \cap P_2$ is a face of both P_1 and P_2 for all $P_1, P_2 \in C$.

In the rest of this paper, P will be an n-polytope, C an n-complex and S a set of n-simplices unless the context clearly indicates otherwise.

S is a triangulation of C if (i) for each $P \in C$ there is a subset of S which triangulates P, and (ii) no proper subset of S has this property. If v is a vertex of P, then a face F of P is opposite v if $v \notin F$.

If v is a vertex of P and S is a triangulation of the complex of facets opposite v, then the set $S_v = \{ con(\{v\} \cup s) : s \in S \}$ is a triangulation of P.

The notation $A \subseteq B$ means $A \subseteq B$ and $A \neq B$. If $P = F_n \supset F_{n-1} \supset \cdots \supset F_0 \neq \emptyset$ is a sequence of faces of P and $v_n, v_{n-1}, \ldots, v_0$ is a sequence of vertices of P such A_i that $v_i \in F_i$ and $v_{i+1} \notin F_i$ for $0 \le i \le n-1$, then the v_i 's are the vertices of an *n*-simplex. To see this note that $v_{i+1} \notin \text{aff}\{v_i, \dots, v_0\}$ for $0 \le i \le n-1$.

These ideas lead naturally to the following construction of a triangulation for a complex C. Let v_1, v_2, \ldots, v_L be an ordering of the set of vertices of the polytopes of C. For each face $F \neq \emptyset$ of $P \in C$, let $i_F = \min\{k : v_k \in F\}$ and $V_F = v_{i_F}$. Each sequence of faces $P = F_n \supset \cdots \supset F_0 \neq \emptyset$ with $v_{F_{i+1}} \notin F_i$ for $0 \le i \le n-1$ has an associated simplex $s = \text{con}(\{v_{F_n}, \dots, v_{F_0}\})$. Let $S_C(v_1, \dots, v_L)$ be the set of all simplices generated by sequences of faces as defined above.

Lemma. For any complex C, the set $S_C(v_1, \ldots, v_L)$ is a triangulation of C.

Proof. By induction. For n = 2, the lemma is obviously true.

Assume that the result holds for n and let C be a complex of (n+1)-polytopes. Let C_n be the complex of facets of the polytopes of C. Then $S_{c_n}(v_1,\ldots,v_L)$ is a triangulation of C_n . For any polytope $P \in C$, the complex of facets opposite v_P is triangulated by a subset S' of $S_{C_n}(v_1,\ldots,v_L)$. Each simplex in S' has an associated sequence of faces $F_n \supset \cdots \supset F_0 \neq \emptyset$. Since $v_P \notin F_n$, this sequence can be extended to the sequence $P = F_{n+1} \supset F_n \supset \cdots \supset F_0$. Thus

$$S_P = \{\operatorname{con}(\{v_P\} \cup s) : s \in S'\} \subseteq S_C(v_1, \dots, v_L)$$

is a triangulation of P.

In order to guarantee that $S_C(v_1,\ldots,v_L)$ is a triangulation

ow that if then there $v_{F_{n-1}}, \cdots$ Clearly $\{v_F$ ontain v_P. T $v_{F_n} = v_{F_n}$, th $v_{F_n} = v_{F_{n-1}}, \quad \text{th}$ $v_0 \supset \cdots \supset F_0'$ $v_p, v_{F'_n}, \dots, v_{F'_n}$

Theorem. Ln-cube. Ther

 P_{n+}

Proof. For t odd number a hyperplane hyperplane 1 $(0, \ldots, 0)$. I simplex who set of odd v€ through the v and H_v^+ be truncated cu of even vert $|A^n| = 2^{n-1}$. triangulation Let Sⁿ be $A^n \subseteq S^n$, thu the triangul simplex face faces and n generate Pn each genera in $S^{n+1}-A$

 P_n

3. An upp-

Sequences (
et faces
correspond
to simplifies
est puede
futuro

properties of $\lim_{n \to \infty} [2]$. In particular, with a finite intimatope with n+1, aff A (con A)

n-simplices suct

 $P_1 \cap P_2$ is a face

n-complex and sise.

is a subset of v erty. If v is a

ex of facets opp

 $\supset F_{n-1} \supset \cdots \supset F_n$ e of vertices of are the vertices

 $\leq i \leq 1$. of a triangulation

set of vertices $k: v_k \in F$ and

for $0 \le i \le n - v_L$) be the second

angulation of G

ue. x of (n+1)-polymen $S_{c_n}(v_1, \ldots, v_n)$ f facets opposite implex in S' have, this sequence

on of C, we must

that if $s = \text{con}(\{v_P, v_{F_{n-1}}, \dots, v_{F_0}\})$ is a simplex in $S_{c_n}(v_1, \dots, v_L)$ containing there is an associated sequence of faces $P = F_{n+1} \supset F'_n \supset \dots \supset F'_0$ such that

arly $\{v_{F_{n-1}}, \dots, v_{F_0}\}\subset \{v_P, v_{F_n'}, \dots, v_{F_0'}\}$. is a set of vertices in an (n-1)-face of P which does not arly $\{v_{F_{n-1}}, \dots, v_{F_0}\}$ is a set of vertices in an (n-1)-face of P which does not in v_P . If v_P , then v_P is an v_P is the required sequence of faces. If $v_{F_{n-1}}$, then by induction there is a sequence of faces of F_n' such that $v_{F_{n-1}}$, with $\{v_{F_{n-1}}, \dots, v_{F_0}\}\subset \{v_{F_n'}, \dots, v_{F_0'}\}$. Hence $\{v_P, v_{F_{n-1}}, \dots, v_{F_0}\}\subset \{v_{F_n'}, \dots, v_{F_0'}\}$. This proves the lemma.

Frem. Let $\varphi(n)$ be the minimum number of simplices required to triangulate an be. Then $\varphi(n) \leq P_n$, where $P_1 = 1$ and

$$P_{n+1} = (n+1)(P_n - 2^{n-1}) + 2^{n+1} - (n+1) \quad \text{for } n \ge 1.$$

For the *n*-cube $I^n = [0, 1]^n$, we will call a vertex $v = (v_1, \ldots, v_n)$ odd if an number of the v_i 's are 1 and even otherwise. For each vertex v of I^n , there is perplane which passes through the vertices adjacent to it. For example, the replane $H = \{x: x_1 + \cdots + x_n = 1\}$ passes through the vertices adjacent to 0 = 1, 0 = 1. It can be shown by a simple induction that 1 = 1 is the 1 = 1 be the lex whose vertices are the vertices of 1 = 1 adjacent to 1 = 1. For 1 = 1 is the 1 = 1 be the closed halfspace which contains the vertices adjacent to 1 = 1 be the closed halfspace which contains the rest of 1 = 1 denote the least of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the set 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the set 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the set 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the set 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the set 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the set 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the set 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the set 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains the rest of 1 = 1 be the closed halfspace which contains th

It S^n be the triangulation of C^n given by the lemma and $P_n = |S^n|$. Clearly, S^n , thus $S^n - A^n$ is a triangulation of T^n and $|S^n - A^n| = P_n - 2^{n-1}$. Consider riangulation S^{n+1} of C^{n+1} . To triangulate T^{n+1} we note that T^{n+1} has 2^n lex faces and 2(n+1) faces congruent to T^n . Of these faces, n+1 simplex and n+1 T^n -faces are adjacent to $v_{T^{n+1}}$. Each T^n -face opposite $V_{T^{n+1}}$ will rate $P_n - 2^{n-1}$ simplices and the $2^n - (n+1)$ simplex faces opposite v_{n+1} will represent the simplex for a total of $(n+1)(P_n - 2^{n-1}) + 2^n - (n+1)$ simplices T^{n+1} . Thus

$$P_{n+1} = |S^{n+1}| = |S^{n+1} - A^{n+1}| + |A^{n+1}|$$

$$= (n+1)(P_n - 2^{n-1}) + 2^n - (n+1) + 2^n$$

$$= (n+1)(P_n - 2^{n-1}) + 2^{n+1} - (n+1).$$

An upper bound

The common triangulations of I^n require n! simplices. The first ten values of P_n 1, 2, 5, 16, 67, 364, 2445, 19296, 173015 and 1720924.

Consider the ratio $P_n/n!$. Since

$$\frac{P_{n+1}}{(n+1)!} = \frac{P_n}{n!} - \frac{2^{n-1}}{n!} + \frac{2^{n+1}}{(n+1)!} - \frac{1}{n!} \le \frac{P_n}{n!}$$

for $n \ge 3$, the sequence is decreasing. We also have

$$\frac{P_{n+1}}{(n+1)!} \ge \frac{P_n}{n!} - \frac{2^{n-1}}{n!} - \frac{1}{n!} \ge \frac{P_n}{n!} - \frac{2^n}{n!}$$

and by induction

$$\frac{P_{n+k}}{(n+k)!} \ge \frac{P_n}{n!} - \frac{2^{n+i}}{(n+i)!} \ge \frac{P_n}{n!} - \sum_{i=n}^{\infty} \frac{2^i}{i!}$$
$$\ge \frac{P_n}{n!} - \left(e^2 - \sum_{i=0}^{n-1} \frac{2^i}{i!}\right).$$

For n = 10,

$$\frac{P_n}{n!} = 0.47636$$
 and $e^2 - \sum_{i=1}^{q} \frac{2^i}{i!} = 0.00034$.

Thus $P_n/n! \in [0.47600, 0.47636]$ for $n \ge 10$.

4. A lower bound

From Hadamard's inequality, if M is a (1,-1) $n \times n$ matrix, then $|\det(M)| \le n^{n/2}$. Thus any (0,1) $n \times n$ matrix M satisfies the inequality $|\det(m)| \le n^{n/2}/2^{n-1}$. By the well-known formula [9] for the volume of a simplex, the maximum volume, V_n , of a simplex in I^n satisfies $V_n \le (1/n!) |\det(M)|$, where M is a (0,1) $(n+1) \times (n+1)$ matrix. Let

$$H_n = (2^n \cdot n!)/(n+1)^{(n+1)/2}$$

Then $\varphi(n) \ge 1/V_n \ge H_n$ and H_n/P_n approaches 0 as n becomes large, which shows that there is a huge gap between H_n and P_n .

However, if we consider only triangulations of I^n whose vertices coincide with those of I^n we can do slightly better. For $K \subseteq R^n$, let V(K) denote the volume of K. If K is a set of subsets of R^n , we will use V(K) instead of $V(\cup K)$. If F is a facet of the polytope P and S is a triangulation of P, we will say that a simplex $s \in S$ belongs to F if a facet of s is a subset of F. If S_1 and S_2 are the sets of simplices belonging to two adjacent facets of I^n , then

$$V(S_1) = 1/n$$
 and $V(S_1 \cap S_2) \le 1/n(n-1)$.

Theorem. If S is a triangulation of I^n whose vertices coincide with those of I^n and $L_n = \frac{1}{2}(H_n + n \cdot H_{n-1})$, then $|S| \ge L_n$ and $L_n/H_n \approx \frac{1}{2} + \frac{1}{4}\sqrt{e(n+1)^{\frac{1}{2}}}$ for large n.

Proof. Let F_{i_1} and F_{i_2} be distinct pairs of opposite facets of I^n for $1 \le i \le n$ and

 $\{s \in S : s\}$

V(B)

osee this later of sets cets which

V(I

(is a straig) total volume east $\frac{1}{2}$. The $(1/n)V_{n-1}$, 1

Finding a difficult pro

5. Dimensi

For n = 0and 16 sim

φ

For n =simplex to simplex is **ha**ving are from a st simplices; facets each more simi simplices have 6 or one has t since the there mu For nFor " P_{ϵ}

s belongs to F_{i_1} or F_{i_2} . Then for each i, $V(A_i) = 2/n$. If $B_k = \bigcup_{i=1}^k A_i$,

$$V(B_k) \ge \sum_{i=1}^k \left(\frac{2}{n} - \frac{4(i-1)}{n(n-1)}\right).$$

his last inequality, note that $B_k = B_{k-1} \cup A_k$. There are 4(k-1) intersected belonging to the two facets which determine A_k and the 2(k-1) hich determine B_{k-1} . Hence

$$V(B_k) = V(B_{k-1}) + V(A_k) - V(B_{k-1} \cap A_k)$$

$$\geqslant \sum_{i=1}^{k-1} \left(\frac{2}{n} - \frac{4(i-1)}{n(n-1)} \right) + \left(\frac{2}{n} - \frac{4(k-1)}{n(n-1)} \right).$$

traightforward exercise to show that $V(B_k) \ge \frac{1}{2}$ for $k = \lfloor \frac{1}{2}(n+1) \rfloor$. Thus the dumes of the simplices in S which belong to at least one facet must be at the volume of a simplex which belongs to a facet is less than or equal to $|S| \ge \frac{1}{2}(H_n + nH_{n-1})$ and the theorem follows.

ling a lower bound for $\varphi(n)$ significantly better than H_n seems to be a problem.

mension n≤6

n=3 and n=4, it can be shown that the minimum triangulations require 5 simplices respectively, thus

$$\varphi(3) = P_3 \quad \text{and} \quad \varphi(4) = P_4.$$

t=3, $|B_1| \ge 4$ and $V(B_1) \le \frac{2}{3}$, showing that there must be at least one more to fill I^n . For n=4, we use the facts that the maximum volume of a is $\frac{3}{24}$ and that if a facet has exactly five simplices, the simplex with base area $\frac{1}{3}$ can belong to only that facet. The fact that $\varphi(4) \ge 16$ then follows straightforward consideration of the following cases: all facets have 5 es; there is a facet having 6 or more simplices, but no opposite pair of each having 6 or more simplices; there is a pair of opposite facets with 6 or implices each. For example, in the second case, there must be at least 11 es with total volume less than or equal to $\frac{1}{2}$. Since no two opposite facets or more simplices, there must be at least 4 simplices with bases of area 2, he maximum altitude of a simplex belonging to a facet is 1. It is clear that must be at least 2 more simplices to fill the remainder of I^4 .

n = 5, $\varphi(5) \le P_5 = 67$. It is not known whether or not equality holds.

n = 5, $\varphi(5) = 15 - 67$. It is not known that q = 6, since there is a triangulation of q = 6, with only 344 simplices while 364, it is likely that $\varphi(n) < P_n$ for all $n \ge 6$.

have

34.

1) $n \times n$ matrix, then the inequality $|\det(m)| \le n$ ne of a simplex, the |n!| = M, where M

as n becomes large, which

In whose vertices continued in the vertices V(K) denote the V(U'K) of P, we will say that F. If S_1 and S_2 are the then

1).

ces coincide with those of $\frac{1}{2} + \frac{1}{4}\sqrt{e(n+1)^{\frac{1}{2}}}$ for large $\frac{1}{4}$.

te facets of I^n for $1 \le i \le n$

Acknowledgement

I would like to thank Victor Klee for his suggestions and encouragement.

References

- [1] R.W. Cottle, Minimal triangulation of the 4-cube, Discrete Math. 40 (1982) 25-29, in the
- [2] B. Grunbaum, Convex Polytopes (Interscience, London, 1967).
- [3] J.G. Hocking and G.S. Young, Topology (Addison-Wesley, Reading, MA, 1961).
- [4] S. Karamardian, ed., Fixed Points, Algorithms and Applications (Academic Press, New York
- [5] P.S. Mara, Triangulations of a cube, M.S. Thesis, Colorado State University, Fort Collins, Co.
- [6] P.S. Mara, Triangulations for the cube, J. Combin. Theory (A) 20 (1976) 170-176.
- [7] H.J. Ryser, Combinatorial Mathematics (The MAA, 1963).
- [8] H. Scarf, The approximation of fixed points of a continuous mapping, SIAM J. Appl. Math. 15
- [9] D.M.Y. Sommerville, An Introduction to the Geometry of *n*-Dimensions (Dover, New York)
- [10] M.J. Todd, The Computation of Fixed Points and Applications (Springer-Verlag, Berlin, 1976).

PR

A

erete Mi th-Holla

Do

Dep-

Rec

Rev

W opti reite an i In I and

Ιı cha: a qu and

NO the ope

1'. Intro

. In pa numero be foun telepho **inform**a the rest The 1 I; secoi We wil theoret The nu receive. labels.

0012-3