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Introduction

The gdal of this wbrk is to find a realistic upper bound
for the maximal number of facets of 3-dimensional
Dirichlet stereohedra. We reduce the gensl upper
bound of Delaunay (390) to 198 number of facets-for
3-dimensional Dirichlet strechedra.

A stereohedral tiling of the Euclidean space RY is
a dec mposition of IR? into convex congruent poly-
topesl{ les) whiclﬁ intersect properly and whose sym-
metr)h group acts transitively on the tiles. A stere-
ohedron|is a convex polytope which is the tile of a
stereohedral tiling.

The followmg 1§ a particular way to obtain stereo-
hedrdl tilings. [Given a crystallographic group G and
a point P with trivial stabilizer by the action of G,
the Voronoi diagram of the orbit GP of P is a stere-
ohedral ‘tiling and, in particular, the Voronoi region
Vorg (P) is a séereohedron. Such stereohedra are
¢alle ‘ irichlet sTereohedm

The\number\ of laspects of a crystallographic group
G is thelorder of the quotient group G/Gr, where G
is th  sitbgroup of translations of G. The fundamen-
tul theorem of the theory of sterechedra, due to De-
launay ([Delaunay’61], see [Stogrin’75] for a proof in
English) states that a stereohedron in d-space whose
associated crystallographic group has a aspects is
bounded above by 2¢(a+ 1) — 2. For d = 3, the max-
imal nuumber of aipects that a crystallographic group
¢an have is 48, which produces a bound of 390 for the
number |of facets.

On the other hénd, the stereohedron with the max-

I . . . .
imum nurnber of facets known is a Dirichlet one cor-

respopd ng to a cubic group and it has 38 facets
( Engql’ 36]).

There seems to be an agreement that the maximum
number |of facets ihas to be closer to 38 than to 390
([Gru-She’80, page 960}; [Engel’86, page 214]). It is
not known whether all stereohedra are combinatori-
ally équwalent to Dirichlet stereohedra, but the ab-
sence of|any method to study stereohedra in general
leads to' consider the special case of Dirichlet stereo-
hedra ([ bru She’80], page 965).

The results obtained so far are summerized in the
following table : |
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Groups with reflexions

Reflexions Aspects | Groups | Facets
3 < 48 22 <11
2 < 48 44 <20
1 <24 34 <24

Groups without reflexions
Cryst. system | Aspects | Groups | Facets
non-cubic <16 107 < 102
cubic <24 20 < 198
cubic 48 3 < 162

1 Groups with reflexions

We classify the groups which contain reflexions ac-
cording to whether the set of normal vectors to the
reflexion planes span a 1-dimensional, 2-dimensional
or the whole 3-dimensional space. We say that the
group “ has reflexions in 1, 2 or 3 independent direc-
tions”, respectively.

Let G be a crystallographic group which contains
reflexions and G, the subgroup of G generated by re-
flexions. We define the reflezion cells of G to be the
minimal regions of the space with all facets supported
by reflexion planes. The reflexion cells are all congru-
ent to one another and tile the space, since they are
Dirichlet domains of G,..

Proposition 1 Let R be a reflexion cell and P € R.
Let S = GPNR be the subset of GP inside R. Then,
Vorgp(P) = RNVorg(P).

The neighbours of P outside R will be at most one
for each facet of R. We call external neighbours of P
those outside R and internal neighbours those inside

R.

Groups with reflexions in 3 independent di-
rections

Let G be a group with reflexions in 3 indepen-
dent directions. Reflexion cells for these groups are
bounded regions (3-polytopes) with at most 6 facets.
Therefore the number of external neighbours is at
most 6. The points GP N R lie on a sphere , then us-
ing Euler formula for the sphere one can prove easily
that the maximum number of internal neighbours of
P is at most 5. From the above observations we have
that Vorgp(P) has at most 11 facets.



Grodps with reflexions in 2 independent di-
rections

Let G be a group with reflexions in 2 independent
directions. In' this case, the reflexion cell R is an
infinite ‘prism having as “base” one of the 5 possible
bounded reflexion cells in 2 dimensions.

The number of external neighbours is at most 4.
Concerq‘ing the internal neighbours, it happens that
the points inside the prism R lie on a small number of
parallel lines on the direction of the prism. The num-
ber of these lines is at most the number of symmetries
of the planar reflexion cell. If P € Rand ! C R is
one of the parallel lines which contains points of the
orbit, then P has at most 2 neighbours on {. Since
the maximum number of parallel lines is 8, we have
that: Vorgp(P) has at most 20 facets.

Groups with reflexions in 1 direction
~ Let 'G be a group with reflexions in 1 direction.
For these groups the reflexion cell is an infinite band,
thus P has at most 2 external neighbours. We can
assume the family of the reflexion planes to be the
horizontal planes;at odd integer heights and R to be
the band between z = 1 and z = —1. Let h be the
horizontal plane which contains the point P. All the
points of the drbit of P inside the band R lie on the
planes h or —Ah.

Let Go = {g € G|g(a) = a,V horizontal plane a}.

On the plane hf, P has at most 6 neighbours, since
GPnNh = GyP, and Gy is a planar crystallographic
group. ‘

G either is p6 ior it has at most 4 aspects.

Using} similar arguments to those that Delaunay
uses for proving the fundamental theorem of stere-
ohedra, we prove that P has at most 4 neighbours
for eachl aspect of the 2-dimensional crystallographic
group Go in the plane —h. We have then at most
16 intgrfml neighl;)ours in —h, except perhaps for p6.
Nevertheless, when Gy = p6, it can be proved eas-
ily thatFP has at most 6 neighbours in —h. Thus

VorGI:%(P) has at most 24 facets.
L ‘

2 Groups without reflexions

Any crystallographic group with more than 4 aspects
contains a translation perpendicular to er two
(we assume this to be the vertical direction).

- All neighbours of P are inside the horizontal infi-
nite band centered at P of width 2.

~ Let a and 3 be two horizontal planes, then GP N
a and GP N 3 are orbits of the same 2-dimensional
crystallographic group (namely Gp) on the planes a
and f, respectively.

In these conditions, if @ is a neighbour of P, then
Vorg,g(@)NVorg,p(P) # 0. Since Vorg,o(Q) and
Vorg,p(P) are vertical infinite prisms, we have to
study how the|Dirichlet domains of two different or-
bits in a plana:r crystallographic group intersect.

Let G be a planar crystallographic group and D
a fundamental dqmain for Go.

Without loss of generality, we assume P to lie in a
fixed fundamental subdomain D, for Go: the quotient
of D by its symmetries.

Given D, a fundamental subdomain for Gy, we de-
fine:

- the extended Voronoi region corresponding to D,
the union Extg,D; of all Voronoi regions Vorg, p(P)
when P moves inside Dj;.

- influence region of D, the union Infl(D;) of
all fundamental subdomains D' of Go such that
Extg,D, N Extg, D, # 0.

If P and @ are in fundamental subdomains D,
and D/ respectively, then the number of regions of
Vorg,Q which intersect Vorg,p(P) is at most the
number of fundamental subdomains equivalent to D},
contained in Infl(D,).

Non-cubic systems

Using the above property, we study each of the 4
groups with 16 aspects and we obtaingy an upper
bound of 94.

Each of the rest of groups has no more than 12
aspects, therefore Vorgp(P) has at most 102 facets.

The cubic system

Note that in the cubic system each translational
vector is perpendicular to the others. Therefore we
can apply the planar approach explained above 3
times, for each of the translational direction.

We study each of the 3 groups with 48 aspects from
the cubic system and"c')lbtainw a maximal number of
162 facets for Vorgp(P).

Any other group has no more than 24 aspects, thus
Vorgp(P) has at most 198 facets.
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