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Abstract. We are interested in a notion of elementary change between triangulations of
a point configuration, the so-called bistellar flips, introduced by Gel’fand, Kapranov, and
Zelevinski, We construct sequences of triangulations of point configurations in dimension
3 with n? + 2n + 2 vertices and only 4n — 3 geometric bistellar flips (for every even integer
n), and of point configurations in dimension 4 with arbitrarily many vertices and a bounded
number of flips. This drastically improves previous examples and seems to be evidence
against the conjecture that any two triangulations of a point configuration can be joined by
a sequence of flips.

Introduction

Given a finite point configuration A in the Euclidean space R? of dimension d we call
triangulations of A all the geometrically realized simplicial complexes which cover
the convex hull of A and which have their sets of vertices contained in .A. In this
paper we are interested in a notion of vicinity or elementary change between triangu-
lations of a given point configuration .4 known as a geometric bistellar flip (or flip, for
short).

This notion naturally arises in the theory of secondary and fiber polytopes [2], [9,
Chapter 7], [15], [21, Lecture 10]. In this theory, given a point configuration of dimension
d with n points, the regular [2], [12], [21] (also called coherent [9] or sometimes convex)
triangulations of .A are defined as those which coincide with an orthogonal projection of
the lower facets of a simplicial polytope of dimension d + 1. The secondary polytope of
A, introduced by Gel’fand et al. (see [9]) is an (n —d — 1)-polytope whose vertices are in
bijection with regular triangulations of .4 and whose edges are in correspondence with
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bistellar flips between regular triangulations (here n is the cardinality of .4; the number
n —d — 1 will be called the corank of A).

These properties of the secondary polytope imply that the collection of regular trian-
gulations of A is connected under bistellar flips and that any regular triangulation has at
least n — d — 1 flips. Nonregular triangulations with less thann — d — 1 flips have been
constructed by de Loera et al. in [6] and [8]. We call such triangulations flip-deficient.
For example, a construction from [8] gives, for each integer n, triangulations in R3 with
5n points and only 3n — 2 bistellar flips. In the following sections we drastically improve
these results by showing constructions of:

e For any positive even integer n, a triangulation of a point configuration in R? with
n% + 2n 4 2 vertices and 4n — 3 flips (Theorem 4).

o Triangulations of point configurations in R* with an arbitrarily large number of
vertices and a bounded number of flips (Theorem 10). The number of flips obtained
is easier to analyze in a vector configuration instead of a point configuration setting.
For any positive integer n we construct a simplicial fan covering the vector space
R3, with 151 + 2 rank-1 cones (vertices) and only nine bistellar flips (Theorem
12). For a point configuration in R* we can achieve a number of 21 flips, and an
arbitrarily large number of vertices (Remark 13).

We are interested in triangulations with few flips as an approach to the question of
whether any two triangulations of a point configuration can be connected by a sequence
of geometric bistellar flips. The answer is known to be positive in the cases of dimension
at most 2 (d < 2) or corank at most 3 (n < d + 4). In these cases it is also known that
no flip-deficient triangulations exist. Different proofs of connectivity in the case d < 2
exist, the oldest written one is probably in [11]. That no flip-deficiency exists in this case
is proved in [8]. Connectivity and no-flip-deficiency in the case n < d + 3 follow from
the fact, proved by Lee [12], that in this case all the triangulations are regular. The case
n = d+4is arecent result of Azaola and Santos (1], whose proof is based on the notion
of virtual chamber introduced in (7.

Another interesting case is that of cyclic polytopes. Rambau [15] has proved that the
set of triangulations is connected by flips when A is the collection of vertices of a cyclic
polytope C(n, d). On the other hand, there are triangulations of C(11, 5) with only four
flips, instead of five [16].

No negative example to the connectivity question is known, and the question itself is
a weak version of the so-called Baues problem for triangulations, posed by Billera et al.
[4] (see also [14], [17], and | 18]). The Baues problem asks whether the refinement poset
of all subdivisions of a point configuration A with n points in dimension d is homotopy
equivalent to an (n ~ d — 2)-sphere. The question has connections to oriented matroid
theory [5, Section 9.6], zonotopal tilings (via the Bohne—Dress theorem (5], [21]), and
combinatorial differential geometry, as introduced by MacPherson [13].

The fact that we can construct triangulations with very few geometric bistellar flips
seems to be evidence in favor of the existence of a negative example to the Baues question,
for three reasons: firstly, a trian gulation with no flips at all would be an isolated element in
the refinement poset, thus providing such an example; secondly, triangulations with very
few flips are nodes of very low order in the graph of triangulations of a point configuration,
which increase the chances of the graph being disconnected; thirdly, the cases mentioned
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above in which the graph of triangulations is known to be connected are more or less the
same ones for which triangulations are known not to have flip-deficiency. Exceptions to
this rule are the case of cyclic polytopes already mentioned and that de Loera et al. [8]
have proved that triangulations in dimension 3 with all the vertices in convex position
have no flip-deficiency, while the connectivity question is not settled in this case.

We mention also that another paper by the author [20] shows that when the notions
of triangulation and bistellar flip are generalized in the natural way to triangulations of
oriented matroids, there is a triangulation of a nonrealizable acyclic polytopal rank 34
oriented matroid on 38 elements with no flips. This can be considered a combinatorial
analogue of a triangulation with no flips of a 33-dimensional polytope with 38 vertices.
This uses a construction of Richter-Gebert [19].

1. Flips and Vector Configurations

Throughout the paper we work in the framework of simplicial fans of vector configura-
tions which is more general than that of triangulations of point configurations. This is
essentially the same approach as in [3].

Let A be a finite subset of the real vector space R?*! (this is what we call a vector
configuration of dimension d). A cone of A is the positive span pos(o’) of asubset o of A.
If o is linearly independent we say that the cone is simplicial. A face of a simplicial cone
pos(o) is the simplicial cone pos(t) generated by any subset  of 0. A facet of pos(a) is
amaximal proper face of it. A simplicial fan of Alis a collection T of full-rank simplicial
cones of A such that the intersection pos(o1) Npos(o,) of any two simplicial cones of T
is a face of both (possibly the face {0} = pos(B)) and that Upo:(a)eT pos(o) = pos(A).

Scaling the vectors of a configuration by positive scalars does not affect what simpli-
cial fans can be obtained. Hence we can consider all the vectors to lie in the unit sphere
S9 ¢ R In this setting, simplicial fans become simplicial complexes geometrically
realized in the sphere by geodesic simplices which use the points of A as vertices and
cover the convex hull of A (where the convex hull of A in the sphere is taken in an
obvious natural way: it is the intersection of the sphere with the positive span of A).
For this reason, and in order to unify the nomenclature, throughout this paper we use
the term triangulation of a vector configuration meaning simplicial Jan and convex hull
meaning positive span. We also apply the terms link, star, or join in a triangulation of
a vector configuration with the meaning they would have in the associated simplicial
complex (see [10]).

We say that A is rotally cyclic (or complete) if it positively spans R%*+!, We say that A
is acyclic (or pointed) if there is a linear functional / which is positive on every point of
A. In this case the vector configuration A is equivalent for the purpose of triangulations
to the configuration {a/h(a) | a € A}, which is a point configuration of dimension d in
the affine plane 4~'(1). Reciprocally, a point configuration A  R? can be regarded as a
vector configuration A’ € R*!, identifying the affine space R with an affine nonlinear
hyperplane in R¥*!_ In this sense the concept of triangulation (simplicial fan) of a vector
configuration is a generalization of the concept of triangulation of a point configuration.

Following the terminology of matroid theory, we call a minimal linearly dependent
subset of A a circuit (see [5] or [2 1] for details). The unique (up to a scalar factor) depen-
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dence equation in a circuit divides its elements into two parts Z = Z U Z_ containing
respectively the elements with positive and negative coefficient in the equation. The pair
(Z4, Z_) is called an oriented circuit; of course, if (Z, Z_) is an oriented circuit, then
sois (Z_, Z,), and the two of them are the only orientations of Z = Z, UZ_. Since our
interest will always be in oriented circuits we use the word circuit assuming they have
an orientation and call the underlying unoriented circuit Z the supportof (Z,,Z_).

We say that a circuit is acyclic if both Z4 and Z_ are nonempty (equivalently if its
support Z is an acyclic vector configuration). In a point configuration, all the circuits
are acyclic and they coincide with the so-called minimal Radon partitions; that is to
say, minimal pairs (Z,, Z_) such that the relative interiors of conv(Z.,) and conv(Z )
intersect in a point. The support Z of an acyclic circuit (Z,, Z_) can be triangulated in
exactly two ways:

TH(2) i= {conv(Z ~ (pDIp € Z,}  T_(Z) = {conv(Z — {Philpe z_}.

Definition 1. Let 7 be a triangulation of A and let (Z4+,Z_) C A be acircuit of A.
Suppose that the following conditions are satisfied:

(i) The triangulation T, (Z) is a subcomplex of 7.

(ii) Al the maximum-rank simplices of T, (Z) have the same link L in T In particular,
T,(Z) * L is a subcomplex of T. Here and in what follows we denote by A x B
the join of two simplicial complexes A and B [10].

In these conditions we can obtain a new triangulation 7" of A by replacing the subcomplex
T, (Z)* L of T with the complex T (Z) » L. This operation of changing the triangulation
is called a geometric bistellar flip (or a flip, for short) supported on the circuit (Z,,Z.).
We say that T and T’ are geometric bistellar neighbors. We call the flip of type (k, 1) if
Z, and Z_ have k and [ elements, respectively.

Observe that our definition of flip supported on a circuit explicitly assumes that the
circuit is oriented so that the star of the negative part of the circuit is “flipped out” and the
positive part is “flipped in.” This convention (which is not present in other definitions,
see page 231 of [9]) is important in our exposition.

When counting the number of flips of a triangulation in Sections 3 and 4 the properties
that we state as lemmas below will be helpful. Let conv(o;) and conv(o;) be two maximal
simplices of a triangulation T which share a facet conv(t). Let a; and a, be the two
vertices joined to 7; thatis to say,leto) = tU{a;}and o, = tU{az}. Then p = tU{q,, az}
is a spanning set of .4 with d + 1 elements, and there is a unique circuit (Z4.Z_) with
support contained in p, oriented so that a;, a, € Z,.. We say that the facet 7 is flippable
if there is a flip supported on that circuit. If we assume that all the vectors/points of .4
are used as vertices of T, then no flips of type (1, k) are possible and every flip of T has
one or more flippable facets. Reciprocally, a flippable facet can only correspond to one
flip. That is to say:

Lemma 2. In a triangulation which uses all the elements as vertices, an exhaustive
search of flippable facets gives all the possible flips.
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Fig. 1. A triangulation of the planar part of A,;.

Given a vector configuration 4 € R%*! and a nonzero vector a € A, we call the
contraction of A at a; and denote A/a, as the vector configuration {v — ((a; - v)/(q, -
ar1))a; | v e A\{a1}}). A/ay can be considered a vector configuration in one dimension
less since all its vectors are orthogonal to a;. For a point configuration A € RY, the
contraction at a point a; € A is the vector configuration 4/a; = (b —a; | b €
A\{a1}} C R,

Lemma 3. Let T be a triangulation of a point or vector configuration A. Let a; be
a vertex of one of the simplices of T which are removed by a flip on a certain circuit
(Zy,Z ). Then:

) (Z:\la1}, Z_\{a1}) is a circuit of A/a,.
(ii) link(ay) is a triangulation of the vector configuration A/a.
(iit) link(ay) has a flip supported on the circuit Z\la1}, Z_\{aq\ ).

Proof. Easy. Left to the reader. O

2, A Construction in Dimension 3

Let n be an even positive integer. Throughout this section we call A, the following point
configuration with n? 4 2n + 2 points in R3:

e The n? + 2 points (x, y, 0) € R? in the plane z = 0 whose coordinates x and y are
integer and satisfy

bl <2y <2n+1- x|,

2y # |x| + 1, 2y #2n — |x|.

We call these points the planar part of A,. Figure 1 shows a triangulation of the
planar part of A, (for n = 12) which will be used later.
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Fig. 2. Links of the points P; in the triangulation of Ag.

e The n points P; := (0,4, 1), fori =1, . .. » 1, “above” the planar part.
e The n points Q; := (0, i, —1), fori = 1,..., n, “below” the planar part.

The triangulation in Fig. 1 is obtained by considering all the possible triangles in the
configuration of the form [(x, ¥ 0,x+1,y+1,0),(x,y+1, 0] and [(x, y, 0), (x +
Ly+ 1,0, + 1, y,0)] for even x, all the triangles of the form [(x, 5.0, (x +
Ly 0, (x,y+ 1,0)) and {(x + Ly+1,0),(x,y+1,0), (x + 1, y,0)] for odd x,
and then completing with the introduction of the segments [(0, 0, 0), (0, 1, 0)], [(n —
2,n/2,0), (n — 1,n/2 4+ 1,0)] and [(—n + 2,n/2,0),(~=n+1,n/2 + 1,0)] and the
segments [(x — 1,y,0), (x + 1, y, 0)] for every “missing” integer point (x, y, 0) with
2y = |x| +1or2y = 2n — |x|. Our goal is to construct a triangulation of .4, which
extends this one and show that it has O(n) flips.

We proceed as follows: foreachi = 1, . .. » 11, we join P; to all the triangles in the pla-
nar part which have their vertices in the diagonal stipx+2i —2 <2y <x+2i+1. The
four shaded regions in Fig. 1 show the triangles to be joined to Py, Py, P;, and Pyy, respec-
tively. Then we insert tetrahedra of the form [P;, P4, P, Q1], where [P, Q] are certain
edges of the triangulation of the planar part, in order to “fill in the gaps.” This can be done
in a unique way to provide a triangulation of the upper half 4,\{Q;, ..., 0.} of A,.

Finally, we triangulate the lower half by applying the symmetry transformation [x —
—X; 2 = —z}. In other words, we consider diagonal strips in the planar part in the other
possible direction and join them to the points Qi, ..., @,. Let T, be the triangulation
of A, obtained in this way.

In order to clarify the construction Fig. 2 shows what we get as the link of each P;,
i =1,....,n (forn = 6). Upward arrows in the link of P: represent edges going to
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P4y and downward arrows represent edges going to P;_;. In particular, there will be
an edge [P;, Piy1)fori = 1,...,n — 1. The link of Q; is obtained from that of P; by
the symmetry [x — —x;z — —z]. The links of Prand Q;,i = 1,...,n, completely
characterize the triangulation, since every tetrahedron contains one of those points as a
vertex. Thick edges in the figure separate parts of the link of a point P; which are joined
to different points among the Q;’s. The shaded parts indicate some of the flips of the
triangulation, to be discussed now:

@)

(ii)

Suppose that a flip is supported in a circuit fully contained in the planar part.
This has to correspond to a flip in Fig. 1 but, moreover, all the triangles of the
planar part which disappear by the flip have to be joined to the same points P;
and Q;. In other words, the planar flip has to be contained in one of the links of
Fig. 2 and the triangles involved not be separated by a thick edge. A quick look
at Fig. 2 shows that there are no flips of this type.

Suppose that a flip is supported in a circuit C that contains a point P; and no Q;.
Since the circuits of type ({Pi_y, Piy1), {P;}) are clearly nonflippable, C must
contain exactly two consecutive points P; and P;, and either two or three points
in the planar part.

If C contains two points in the planar part, they are of the form (x, y, 0) and

- (x, y+1, 0). In this case the flip corresponds to moving the two triangles incident

(iii)
(iv)

to the edge [(x, y,0), (x, y + 1, 0)] up (from link(P;) to link(P;,,)) or down
(from link(P; ) to link(P;)).

For example, the two shaded triangles in the right-top corner of link(P;) in
Fig. 2 represent a flip in the circuit ({P;, (3, 5, 0}, {P4, 3,4,0)})). The tri-
angles [Ps;, P4, (3,4,0)] and [(3, 5, 0), Ps, (3,4,0)] are both present in the
triangulation and have the same link, consisting of the points (2,4, 0) and
(5,4, 0). After performing the flip in this circuit, the links drawn in Fig. 2
would change in that the two shaded triangles [(3, 5, 0), (3,4, 0), (2, 4, 0)] and
[(3,5,0),(3,4,0), (5, 4,0)] will now appear in link(P,) instead of link(Ps)
(with the corresponding changes in the upward and downward arrows). This is
what we call “moving up” two triangles and a similar “moving down” will be
possible with the two shaded triangles in the bottom-left corner of link(Ps).
Looking at Fig. 2 one checks that there are exactly n — 2 flips of this type, two
in link(P;) foreach odd i = 3,5,...,n — 1.

If C contains three points in the planar part, then these three points are the
vertices of a triangle and the flip corresponds to moving this triangle up or down
in a similar fashion. There are n flips of this type: two in link( P;) for each even
i=2,4,...,n—2plusonein link(Py) and one in link(P,).

By symmetry, we conclude that there are alson —2+n = 2n —2 flips in circuits
containing one of the points Q; and none of the P;.

Let (Z,, Z_) be a circuit which supports a flip and which contains at least one
P; and one Q;. Since Z, U Z_\{a} is a simplex in the triangulation for every
a € Z, and since P; and Q; are not joined by an edge, Z, C {P;, 0;}. In
fact, Z, = {P;, Qj} because otherwise the unique point in Z, should lie in the
relative interior of the convex hull of the simplex Z_ € T, and thus the point in
Z, would not be used in the triangulation, which is not the case. Since Z_ U {P:}
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and Z_ U{Q;} are simplices in the triangulation, Z_ has to be the set of vertices
of a simplex in the planar part of T, and the relative interior of this simplex
intersects the segment [ P;, Q;1- In particular, the point O, (i + j)/2, 0) must lie
in the relative interior of conv(Z_). Then:

o Ifi + jis odd, we call k = (i +Jj+1)/2. We must have Z_ — {0, k —
1,0), (0, k, 0)}. Since the segment [(0, k — 1, 0), (0, k, 0)] is joined in T,
to the points P, and Qy and to no other of the P;’s or Q;’s, we conclude
that i = j = k, which contradicts the fact that i + j is odd.

o If i + j is even, we call k = G+ j)/2. Then Z_ = {0, k, 0)}. This
point is joined to P,, Piy1, Ok, and Qyyq, and to no other P, or Q;. Thus,
in order to have i + j = 2k we must have i = j = k and the circuit
must be ({ P, Ok}, {(0, k, 0)}). For this circuit to be flippable, the segments
[Pr, (0, k, 0)] and [Qq, (O, k, 0)] need to have the same link, and this only
happens for k = n. Thus, there is only one flip of this type.

Summarizing, we conclude that:

Theorem 4. The point configuration A, C R3 hasn?+2n+2 points. The triangulation
T, of A, has 4n — 3 flips.

3. Stacking Layers of Prisms
Prisms

Our construction in dimension 4 will be based on the strategy of stacking several layers
of triangulated prisms in a concentric way without increasing the number of flips. A
similar technique has implicitly been used in the last construction in [8].

The standard d-dimensional prism is the point configuration {e,, ... ey, e1+e,...,
ed +eo} C R, where eg, e, ..., e, is an affine basis in R?. We say that a (vector or
point) configuration A is a d-prism if it consists of 2d + 2 points and there is a bijective
correspondence between them and the points in the standard prism which preserves cir-
cuits (in other words, if A has the same oriented matroid as the standard prism). That is to
say, the configuration A = {0,...,d,0,... ,d)is aprism if its circuits are the pairs of the
form ({i, j}, {j, i}), fori # Jj. Any prism is projectively equivalent to the standard one.

The subsets {0, ..., d}and {0,..., d} of a prism are the vertices of two simplicial
facets of the prism. We call these facets the floor and the ceiling of the prism respec-
tively, although which of them is the floor and which the ceiling is an arbitrary choice.
Triangulations of a d-dimensional prism are in bijective correspondence with permuta-
tions of the symbols [0,...,d]viathe following rule: to the permutation [ig, .. ., iy] we
associate the triangulation

{conv({io,...,i,,?,,...,E})|1=0,...,d}.

Moreover, two such triangulations differ by a bistellar flip if and only if the corre-
sponding permutations differ by a transposition. This correspondence is well known (see
Section 7.3 of [9]) and makes the secondary polytope of the prism a permutahedron.
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On the other hand, permutations of [0, .. ., d] correspond in an obvious bijective way
with acyclic orientations of the complete graph K411 on d + 1 vertices: we identify the
nodes of K1 with the d+ 1 symbols 0, .. ., d and orient the edges in K4, according to
the total order in the vertices given by the permutation. Transpositions in the permutation
correspond to reversing a single edge in the graph. Summing up:

Lemma 5. Let T UT be a prism with floor T and ceiling T. Then the triangulations of
the prism are in bijective correspondence with acyclic orientations of the 1-skeleton of
conv(t) and two triangulations differ by a bistellar flip if and only if the corresponding
orientations of the 1-skeleton differ by reorientation of a single edge.

A further observation will be used later. In the conditions of the statement, let lo,ilg €T
respectively be the unique source and sink in a given acyclic orientation of the 1-skeleton
of conv(r). In the triangulation of the prism corresponding to that orientation, the floor
conv(t) of the prism is joined to the vertex iy which is above the source ip and the ceiling
T is joined to the sink iy. Also, all the facets of the prism other than the ceiling and the
floor are prisms over facets of conv(t) and the restriction of T to them is obtained by
restricting the orientation chosen in the 1-skeleton of conv(t) to that facet.

Triangulating Layers of Prisms. Let T be a triangulation of a point or vector configu-
ration A and let O € A be a distinguished vertex. Let B be the subconfiguration of 4
consisting of the vertices in the link of O and let C be the subconfiguration of vertices not
in the star of O (so that A is the disjoint union of {0}, B and C). In the case of a vector
configuration, we assume further that {0} U B is acyclic and without loss of generality
we consider {O} U B to lie in an affine hyperplane.

Let ¢ be a positive real number smaller than 1 (we typically take c to be very close to
1). For each integer n, consider the following (point or vector) configurations:

B, :={c"P+(1-c"0; P € B}, A, :={0}UByU---UB, UC.

Thatis, By = B and B, is a copy of B,_, contracted toward O; A, is obtained adding
the n contracted copies of B to .A. We denote by c"t and c"a the images in B, of any
subset 7 or element a of B. This is a slight abuse of notation unless O is taken as the
origin of coordinates (which can be done for a point configuration but not for a vector
configuration).

In these conditions, the following is a polytopal subdivision (a fan in the standard
terminology for vector configurations) of A, the antistar of O in T together with, for
each simplex conv(t) of T in the link of O, the simplex conv({O} U c"t) and the cells
conv(cktUc* 1) foreachk = 1, ..., n. Observe that what we do is contracting the star
of O in T and inserting the cells conv(c*t U c*~!1) in between the star and the antistar.
Moreover, the cells conv(ctt U ¢*~'t) that we have introduced are (convex hulls of)
prisms, whose floor and ceiling are contracted copies of the simplices in the link of O
in T. Figure 3 shows an example of the construction.

The subdivision S, described above is called the subdivision obtained by inserting
n layers of prisms around O in T with parameter c. We call the kth layer of S,, for
k=1,...,n, the union of the prisms conv(c*t U c*~'1).
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Fig. 3. Insertion of four layers of prisms in a planar triangulation.

If we want to refine S, into a triangulation, we just need to triangulate each of the
prisms in the layers. We concentrate on a layer with index k. The prisms in the layer
have a simplicial facet in By and another one in B,. We consider the first one to be the
floor of the prism. In order to specify a triangulation of the layer we just need to give
an orientation to all the edges of S, which have their vertices in By_ in such a way that
each simplex is oriented acyclically. Figure 4 shows how to triangulate the third layer in
the example of Fig. 3.

Since the floor of each layer is a contracted version of the link of O in the original
triangulation 7', we conclude that:

Lemma 6. Let S, be the subdivision obtained by inserting n-layers of prisms around
the vertex O in a certain triangulation T. Let G be the 1-skeleton of the linkof O in T.
Then in order to refine S, into a triangulation it is sufficient to choose n oriented copies
G, ..., G, of the graph G, all of them acyclic on every simplex of the link, and use G;
to triangulate the ith layer, fori = 1, . .. ,n.

Inserting Layers with No Addition of Flips
Remember that flips in triangulations of a prism correspond to edges which can be

reversed in the orientation of the floor; then it will be interesting to us that the orientations
Gy, ..., G, which appear in Lemma 6 be “rigid” in the following sense:

(4] 0

Fig. 4. Orienting the edges in B we triangulate a layer of Fig. 3.
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Definition 7. Let K bea simplicial complex and let G be its 1-skeleton. We say that
an orientation of G is rigid (with respect to K) if it is acyclic on every simplex of
K but reversing the orientation of any single edge makes it cyclic in some simplex.
Following standard graph theory terminology we say that the orientation has no sources
or sinks if no vertex of G has all the orientations of its incident edges in-going or
out-going.

For a directed graph G, —G denotes the opposite orientation of G,

Theorem 8. LetT bea triangulation of a configuration A which uses all the elements.
Let O € A be one of the vertices of the triangulation and let L be the link of OinT.
Suppose that no two adjacent maximal simplices in L lie in the same hyperplane (we say
that the link of O is generic when it satisfies this condition). Let S, be the subdivision
obtained by inserting n layers around O, with the parameter ¢ which appears in the
construction sufficiently close to 1.

Let G be a rigid orientation of the 1-skeleton of L with no sources or sinks. Consider
the refinement T, of S, obtained as in Lemma 6 using Gy = G for even k and Gr=-G
Jor odd k. Then:

(i) T, has exactly the same number of flips as Ty, for every n.
(ii) For every flip of T, either all the fippable facets contain O or some Sfippable
Sacet has its vertices contained in ByUC.

Proof. Recall that we can count flips of T,, by saying which facets of T, are flippable,
as in Lemma 2 (we call facets of T, the facets of the maximal cells of T.).

Let T be a facetin 7. By construction, either T contains O, or is contained in By UC,
or is contained in By U By_,, for some k € {1,..., n}. The following cases (a)—(d) cover
all possibilities except for the case t By U C which we do not need to care about.
The four cases are illustrated in parts (a)~(d) of Fig. 5, where the facets under study are
drawn thicker:

(@) Let conv(c"t U {0)) be a facet of T, which has O as a vertex, and suppose that
it is flippable. By construction of Ty, conv(c"t U {0})) is the contracted version
of a certain facet conv(r U {O) of T with v C By = B, as is implicit in our
notation. The facet conv(t) is joined in T to at most two (perhaps one, but this
case is treated in an analogous way) points a and b in B, so that conv(c"t U {Oh
is joined to two points ¢"a and c"b.

Since the link of O in T is generic, O is in the support of the circuit contained
in {c"a, ¢"b, O} U . Moreover, {c"a, c"b} U c"t is not a simplex in T, (since
{c"a}Uc"r and {c"b)Uc" 1 are the ceilings of two different prisms in the nth layer).
Then, for the circuit to be flippable (with our sign convention), it is necessary
that O be in the negative part of the circuit. This implies that all the maximal
simplices to be removed by the flip (the shaded triangles in part (a) of Fig. 5)
have O as a vertex. In this case it is clear that the same flip can be performed in
Ty (actually, in T as well), changing c"a, ¢"b, and ¢"t for cla, ¢'b, and c'.
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Fig. 5. Different types of facets in the proof of Theorem 8.
We now see that no facet conv(c*r) with ¢kt ¢ Bytkefl,...,n)is flippable.

The facet conv(c*r) is joined to a vertex c*~'a in c*~7 and either to O (ifk = n)
or to an element c**'b in ¢"*'z, if k < n. More precisely, a is the sink of t in
the orientation G, of the 1-skeleton of L and, if k < n, b is the source of 7 in
Gi1. Since Gy and Gy, are opposite to one another, a = b. If conv(c*t) is
flippable, the circuit in which the flip is supported is ({0, ¢"~'a}, {c"a}) ifk = n
and ({ct~'a, c**'a), {c*a}) if k < n. Thus, the link of conv({c¥1a, c*a}) in T,
has to coincide with that of conv({c**+1a, c*a}) (or conv({0, c"a)), if k = n)
which implies that all the vertices in the link of conv({c*~'a, c*a}) belong to B,.
However, this would imply a is a sink of the orientation Gy of L. Since Gy = +G
and G has no sources or sinks, G} has no sinks.

Also, no facet interior to a prism ¢*~'t U ¢*1 can be flippable, because then the
circuit involved must be one of the circuits of a prism. Performing the flip is
equivalent to reversing the orientation of a certain edge in the graph G, which
is impossible because Gy is rigid.

Finally, let conv(t) be a facet having vertices both in B; and By_; for some
k € {1,...,n)}, but not interior to a prism. That is to say, the two maximal
simplices conv(z Ua) and conv(t Ub) sharing conv(t) belong to different prisms
of the same layer. If the facet is flippable, the flip is supported in the unique circuit
Z = (Z4, Z_) contained in T U {a, b}, oriented so that {a, b} C Z,. The fact that
no two facets in the link of O in T are coplanar implies that, if ¢ is sufficiently
close to 1, the segment conv({a, b}) is not contained in the kth layer. We assume
¢ to be so close to 1 that this happens. Then:

L
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(d.1) If Z = {a, b}, then this together with Z_ C ¢ implies that conv(r U{a})
and conv(t U {b}) (which are both contained in the kth layer) cover
conv(Z, U Z_). This contradicts the assumption that conv({a, b)) is not
contained in the kth layer.

(d.2) Ifthereisanelement p € Z, otherthana and b, theno = ZLUZ _\{p}
is a simplex of T, which contains a and b. In particular, a and b are
joined by an edge. The fact that conv({a, b}) is not contained in the kth
layer implies that this edge has not been introduced by the insertion of
layers. Thus, the only possibility is that k = 1, @ and b are in Bp, and o
is a simplex outside the layers. In particular, o only contains vertices in
By UC. The facets conv(o\{a}) and conv(o' \(b}) of o are flippable by
the flip, so that the flip is in the conditions of (i1).

The above case study implies that all the flips either are in the conditions of (a) or
(d.2) or all their flippable facets lie in By U C. This proves part (ii) of the statement. The
flips studied in (a) appear in 7} as mentioned above. The flips mentioned in (d.2) and
those with flippable facets in By UC only remove simplices from the first layer or outside
the layers. Thus, they are flips in 7; as well. This proves (i). ]

Remark 9. Among the hypotheses in Theorem 8, the only one which is difficult to
fulfill in a construction is a rigid orientation without sources or sinks of the 1-skeleton
of L. If A is a configuration in dimension d, the link L of a point is a triangulation of
the (d — 1)-sphere or the (d — 1)-ball. It is clear that no orientation in a triangulation of
the I-sphere or 1-ball is rigid. For the 2-sphere or the 2-ball the same is not obvious, but
still can be proved as follows.

Let T be a triangulation of the 2-sphere or the 2-ball with v vertices, e edges, and
¢ triangles. Let an orientation be given to each edge in such a way that every triangle
is acyclic. Then each triangle of T prevents one of its edges being reversed, which
implies that the number of edges whose orientations cannot be changed is at most ¢.
Thus, in order for the orientation to be rigid we would need to have ¢ > e. This is
impossible since t —e = x — v < 0 (where x = 1 for the 2-ball and x = 2 for the
2-sphere).

Still, a version of our construction can serve to insert layers of prisms in a three-
dimensional triangulation adding less flips per layer than vertices. The idea is to orient
the 1-skeleton of a triangulated 2-sphere or 2-ball in a way acyclic on each triangle and
with few reversible edges (edges whose reversal preserve acyclicness in triangles). The
best possible ratio of reversible edges versus number of vertices is 3/5, obtained by
orienting the 1-skeleton of a triangular bipyramid (five vertices, six triangles) with only
three reversible edges. Although it is impossible to do this without sinks or sources, this
idea is used in [8] to obtain triangulations in dimension 3 with 5n vertices and 3n — 2
flips.
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4. A Construction in Dimension Four
A Rigid Orientation of a Triangulation of the 3-Sphere

We now show a rigid orientation with no sinks or sources of the 1-skeleton of a triangu-
lation of the unit 3-sphere $* C R?, in order to apply Theorem 8 to it.

Our triangulation will have 15 vertices that we denote t; ;, h;, and vy fori, j=0,1,2
(indices will be regarded modulo 3 in what follows), with coordinates

ti; = 1 cos 2mi sin 27”) cos 2”j> sin 2rj )
iy = ,\/i 3 y 3 ] . 3 ’ 3 y
2ri 2mi 2 2nj
hi = (cos (%) , sin (%) 0, 0) . y= (0, 0, cos (%) , sin (%))

(we use the letters 7, v, and h because if we think of S3 in its stereographic projection
I into R? given by M(x, y, z,¢) = (x/(t = 1), y/(t = 1),2/(t — 1)), then the points
hi, t; j, and v; lie, respectively, on a horizontal circle, a torus around it, and its vertical
rotation axis).

The six points 4; and v; are the vertices of the j(_)-in" Ay x Ay of two triangles. The
nine points 1 ; are the vertices of the product A, x A, of two triangles. The common
refinement of these two polytopes has 18 facets, all of which are triangular prisms:
each of the six facets of A, x A, (which are 3-prisms themselves) is divided into
three subprisms by its medial axis and each of the nine facets of A, * A, (which are
tetrahedra) is divided into two prisms by a quadrilateral with vertices in the midpoints
of four edges.

Our triangulation T of 3 consists of the following 54 tetrahedra. For eachi = 0,1,2
and j = 0,1, 2:

Uris tijo i jts tier ), hiy tijo tir jo tigr jaa), Uhis Ridas tiv g, tigr, ),

(V5 tijs tivr g tigr ), . i j bt tigr ), 0o, Virs i gty tigr jn ]

Each of the two rows of tetrahedra above triangulates one of the 18 prisms mentioned,
for each choice of indices i and J- Since there are nine possible choices, this gives the
total of 18 triangulated prisms.

The permutations [t,"j —> t,'+1'j s hi — hi+l ;U —> Uj] and [t,"j > i, h; —
hi ; v; = v;] produce symmetries of the triangulation 7. They generate the symmetry
group of the triangulation, which acts transitively and with trivial stabilizer over the 18
subprisms. Thus, the symmetry group has 18 elements. The first three tetrahedra in the
list above are representatives for the three orbits of simplices.

There are two orbits of vertices in T, one containing all the t; ; and the other containing
the h; and v;. There are five orbits of edges. We show an orientation for a representative
of each and let the others be oriented by the action of the symmetry group: we orient
[hi — h;y] (six edges in the orbit), [tij — h;] (18 edges), [h; — fiv1,7] (18 edges),
[ti,j = ti11,;] (18 edges), and [tij = tiy1.j+1] (nine edges). Then
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Theorem 10.  The above is a rigid orientation of a triangulation of the 3-sphere with
no sources or sinks. Thus, there are triangulations of point configurations in R* and of
vector configurations in R® with an arbitrarily large number of vertices and a bounded
number of flips.

Proof.  The orientations shown for the edges produce the following acyclic orientations
on the three representatives of simplices: [£; ; — Lijy1 = hi = iy 1], [t:; —
h; — tiv1,j —> l,'+]'j+1], and [h; — tiv1,; — Livl,j+1 —> hiv1l. Reorienting any of the
five representatives of edges would produce a 3-cycle in a triangle of the triangulation;
for example, the five triangles are: [h; — tivij = hiyl, [ —> Lijv1 — ki),
i = fivijor = i) [ = b — tivjloand [t — #ij0 > Gy ).
Thus, the orientation is rigid. From the oriented cycles [hg — hy — hy — hy],
[vo = vi - v; — vg], and [tio = tix = tin = tigl, i =0, 1,2, it follows that no
vertex is a source or a sink.

For the final statement, we consider the 15 vectors in S* ¢ R? as points in R* and
consider the origin as an extra point. This gives a point configuration 4 with 16 points.
For each tetrahedra in the sphere with vertices {a, b, ¢, d} we consider the simplex with
vertices {0, a, b, ¢, d} in R*. This produces a collection of simplices of A; we perturb
a little the coordinates of every point so that the link of the origin O is generic. This
collection of simplices may not be a triangulation, if it does not cover the whole convex
hull of 4. However, it can always be completed to a triangulation, perhaps with the
addition of extra vertices. Thus, we can construct a triangulation of a point configuration
A’ in R* such that the link of one of the vertices is generic and admits a rigid orientation
of edges without sinks or sources. Theorem 8 tells us how to construct triangulations
with arbitrarily many vertices and a bounded number of flips from that. 0

Counting Flips

In what follows we look more closely at the above construction to compute an actual
bound for the number of flips mentioned in the statement of Theorem 10. Let A’ ¢ RS
be the following vector configuration: 4’ := {0, -0, tij hiyvp | i, j =1,2,3), where
0=(1,0,0,0,0),-0 =(-1,0,0,0,0),

p = o, ; V2 c 2ri sin 2ni c 2nj sin 2n j
Y2 Q’i.j,os 3/ 3 )"\ 3 ) 3 '
2mi 2mi
hi = (I,O!i cos (ﬂ) , @ sin (-ﬂ) , 0, 0) ,
3 3
2 2rj
(l, 0,0, o; cos (—;Lj—) , O sin (%)) )

for some positive coefficients a;j, o, and e (i, j =0, 1, 2).

The configuration 4’ is obtained from A by scaling the 15 vectors of A with the
coefficients o, embedding R in an affine hyperplane of R*> with a central vector O, and
including the opposite vector —O. Observe that A is (up to scaling) the contraction of
A’ at O (and at — O as well).

Yj

Il
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Let T’ be the triangulation of A’ obtained by joining the triangulation T of A to both
O and to -0, so that link(0) = link(—0) = T. The coefficients @;,j, ®;, and o; are
chosen sufficiently generic for the link of O in T to satisfy the genericity condition
required in the statement of Theorem 8.

Proposition 11.  The triangulation T = link(0) = link(—O0) has exactly nine flips,
supported on the nine circuits of the form ({tinr,j, tij+1h kg, Livl,j+1})-

Proof.  From the three representatives of simplices we conclude that there are six orbits
of facets, with the following bein g representatives of them:

conv(hi, b j, tiy1 j+1), conv(hi, t; j, tiry,j),
conv(hi, t; j, t; j11), conv(hi, tiyy j, tig1,j41),
conv(h;, hity, tigy, ), conv(ti j, 4 j41, tit1,j+1)

We see that the last five facets are not flippable:

— the two vertices joined to conv(hi, t; j, tiyy ;) are tiy1,j+1and ¢ ;_y. Since 2t +
Livi,jrr+ 4 jq = 2«/§h,- + ti11,5, the associated circuit is ti g, tigr g, fLij-1},
{hi, tig1,j)). The circuit is not flippable, since conv(h;, Livt,j41s bijot1, tigy,j) is
not a simplex in the triangulation.

— the vertices joined to conv(h;, 4 j, t; j41) are h;_; and tiy1,j+1. Since 4 j1 =
livr,j+1 + (l/x/i)h,'_l + (2/«/5)}1,, the associated circuit is ({t,"j.*_]}, {ti+1.j+l’
h;_1, hi}). It is not flippable since conv(t; j+1, tig1,j+1, hi_1) is not a simplex in
the triangulation.

— the vertices joined to conv(h;, lit1,js tivr,j+1) are hiyy and 4 ;. Since hiyy +
«/ft,;j = h; + \/Eti.{.]‘j the associated circuit is i j, hima )}, (b, fiy1,;)), and it
is not flippable since the links of conv(t; j, hi, tiy1 ;) and conv(hyy, h;, tivr;)
are not the same; the first one consists of the vertices fit1,j+1 and 4 ;_y and the
second one of Ligrj+1and tiyg .

— the two vertices joined to conv(hi, hiyq, tiyy ;) are fit1,j+1 and £;4y j4o. The as-
sociated circuit is ({t;11,;, tig1,j11, tivt,j+2h Ahin1}), since fiyy)j; + tigg j0q +
tiv1,j42 = (3/v/2)h;y1. The link of conv(tivr j» bt j+1, hiyr1) contains £ ;4
while the link of conv(tivy, j, tiy1,j42, hiv1) contains tiy2,j. Thus, the facet is not
flippable.

— the vertices joined to conv(t; j, ti 41, tiz1, j+1) are h; and v;. The associated circuit
is ({t; ;). {h;, v;}) since «/ft,",- = h; + v;. It is not flippable since the links of
conv(h;, t; ;) and conv(vj, &, ;) do not coincide; h;_, is a vertex in one but not in
the other.

Thus, the only possible flippable facets are conv(hi, t j, ti11,j41) and its images
under the symmetry group. The vertices joined to this facet are ; j+1 and iy ;
and the circuit is ({t,-’j_'.], t,'+1'j}, {t,-,j, tii1,j+1)) since Ljy1 + tiyj = Li; +
ti+1,j+1. The circuit supports a flip since the facets conv(t j, tiyy,j, tiz1, j41) and
conv(ti j, ti j+1, tigr, j+1) are joined to the same vertices, namely h; and v;. O
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Theorem 12. Inserting n layers in the triangulation T' with a parameter ¢ sufficiently
close to 1 gives a triangulation T,, of a vector configuration in R® with 15(n + nD+2
vertices and nine flips.

Proof. By part (ii) of Theorem 8, all the flips of T, have a flippable facet containing O
or with its vertices in By U {—O}.

Let C be a circuit which produces a flip in which a flippable facet contains 0. Gener-
icity of the link of O implies that O is in the support of the circuit and that the rest of the
elements in the circuit lie in the link of O, that is, they are in B,. In other words, C is of -
the form (¢"C, U {0}, ¢"C_) or (c"Cy, c"C_U{0)). The first case is impossible since
then conv(c"C4. Uc"C_) would have to be a simplex in our triangulation T, which is not
the case. Thus, the flippable circuit is of the form (c"Cy4, c"C_U{0})). Lemma 3 implies
that (¢"C,,c"C_)hastobe a flippable circuit in link(O), considered as a triangulation
of a vector configuration in R%. That is, (c"Cy, c"C.) is the copy in B, of one of the
nine circuits of the configuration .4 which supports a flip of T. Thus, we conclude that
the only circuits which can produce flips with flippable facets containing O are those
of the form (¢"Cy., c"C_ U {0}), where (C4, C_) is a flippable circuit of T. There are
nine possibilities for (C,., C_).

No flippable facet can have all its vertices in Bo: If conv(ct) is a flippable facet with
its vertices in By, then one of the vertices joined to conv(c®ty) is — O and the other one
is one of the vertices c!a of c!7. Thus, the corresponding circuit is ({c'a, -0}, {c%a)).
A flip supported on that circuit would imply that a is a sink of the oriented graph used
to construct the triangulation of the first layer, which is not the case.

Then part (ii) of Theorem 8 tells us that the remaining flips have a flippable facet
containing — Q. Genericity of the link of O implies genericity of the link of —O. Thus,
—O is in the circuit which supports the flip and the rest of the points in the circuit are in
Bo. Let (c°CLU{—0}, °C_) or (c°Cy4, °C_U{—0}) be that circuit. Similar arguments
as in the star of O prove that (C4+, C_) is the copy in By of one of the nine circuits of A
which supports a flip of T and that — O cannot be in the positive part of the circuit. Thus,
the circuit is of the form (c°C., c°C_ U {~0}), for one of the nine flippable circuits
(Cy,C)of T.

We conclude that all the flippable circuits are of the form (c°C4,C_U{-0)) or
(c"Cy, c"C_U{0}), where (Cy, C_)is aflippable circuit of T. This, in principle, gives
18 possibilities. However, for each circuit (Cy, C_) of T, (c°Cy, °C_U{0}) is acircuit
of A, if and only if (c” C4, c"C_U{0)) is a circuit as well (this follows easily from the
construction of the layers). The latter is a circuit if and only if (¢"C,LU{-0},c"C_)isa
circuit (since O and — O are opposite vectors). Finally, only one of (¢"C, U{— 0}, ¢"C_)
and (c"Cy, ¢"C_ U {—0}) can be a circuit. This means that each flippable circuit of T
produces (at most) one instead of two flippable circuits in 7;/. Although we do not prove
it, it is easy to show that each flippable circuit of T indeed produces a flippable circuit
of T, or otherwise the link of O could not be generic. 0

Remark 13. One may ask how many flips can be obtained in an acyclic version of
the last construction. This amounts to removing the star of —O and completing to a
triangulation, perhaps with additional vertices, in Theorem 12. This case is more dif-
ficult to analyze because the simplices to be added in order to complete to a trian-
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gulation depend on the values chosen for the parameters o which perturb the points.
The following argument shows that a number of flips lower or equal to 21 can be
obtained. We think that a value of nine flips can be obtained with a more careful
analysis.

Consider the point configuration 4 in R* consisting of the origin O and the following
15 points:

t,-j=%(cos(?-ﬁ),sin(?—ﬂ),cos(%rl—,B),sin(?—ﬂ)),
_ Y (FE . 2750\ n (%
h,—(cos( 3 ),sm( 3 ),0,0), v,—(0,0,cos( 3 ),sm( 3 ))

These are the same points of Section 4 except for the parameter 8 in the points ¢;,
which we take to be positive and smaller than /12. In these conditions the following
18 tetrahedra and 18 square pyramids are the facets of conv(A). Foreachi = 0, 1, 2 and
Jj=0,1,2:

[hi,ti,j,ti,j+1,ti+1,j.ti+l,j+1], [his Bisr, tig j, tign ],

v, 8 j, 4 41, it g tivrjul,  [v5, vjg, L+t bl jy1]

In other words, each of the 18 subprisms mentioned in Section 4 is broken into a square
pyramid and a tetrahedron by the introduction of the parameter B. The only minimal
nonsimplicial faces of conv(A) are the nine quadrilaterals [t; Pl bty i, j ).
The triangulation T of Section 4 refines conv(A) and, thus, Joining T to O we obtain a
triangulation of A, that we still call T,

The link of O does not have the genericity property required in Theorem 8. We can
get this by changing the three points ;; to O + (1 — a)t;;, for a small positive constant
o (we are moving these three points slightly toward O). This perturbation breaks the
coplanarity of the former nine quadrilaterals but makes the unijon of the simplices that
we have so far nonconvex. The nonconvex parts can be filled in with the following six
4-simplices. For each | — 0,1,2:;

[Pis tii, b, tig s, tirvividy [vi, i, g, i 4, littigr).

Now we can count the number of flips in this triangulation with the same arguments
as in the proof of Theorem 12. The six quadrilaterals that have been perturbed convex
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