THE NUMBER OF TRIANGULATIONS OF THE

cycLic POLYTOPE C(n,n —4)
Miguel Azaola Francisco Santos
azaola@matesco.unican.es santos@matesco.unican.es

Universidad de Cantabria
Departamento de Matematicas, Estadistica y Computacion
Av. de los Castros s/n, 39005 Santander, SPAIN

September 13, 2000

Abstract

We show that the exact number of triangulations of the cyclic poly-
tope C(n,n —4) is (n + 4)2°F —n if n is even and (3—;‘%) 2°% —n
if n is odd. These formulas were previously conjectured by the second
author.

Our techniques are based on Gale duality and the concept of virtual
chambers. They further provide formulas for the number of triangu-
lations which use a specific simplex. We also compute a tight upper
bound for the number of regular triangulations of C(n,n — 4) in terms
of n.

Introduction

By a triangulation of a finite point set A C R? we mean a simplicial complex
geometrically realized in R with vertex set contained in A and which covers
the convex hull of A. If A is the vertex set of a polytope P this definition
agrees with the standard definition of triangulation of P. The collection of
all triangulations of a fixed point set has attracted attention in recent years
for its connections to algebraic geometry [17], combinatorial topology [4, 15]
and optimization [7].

The cyclic polytope C(n,d) of dimension d and with n vertices (n > d)
is the convex hull of any n distinct points on the affine moment curve of
degree d, defined as ['4(t) := (t,12,...,1%) € R% ¢t € R. Cyclic polytopes
play a central role in geometric combinatorics for several reasons: They are
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neighborly, which implies that they have the maximum possible number of
faces of each dimension among all polytopes of dimension d with n vertices
(18, Theorem 8.23]. They are universal in the sense that for each fixed n
and d there is a number N(n,d) such that any N(n,d) points in general po-
sition in R? will contain n points which are the vertices of a cyclic polytope
C(n,d) (and no other polytope has this property) [6, Proposition 9.4.7]. In
a context closer to this paper, the set of triangulations of a cyclic poly-
tope has a bit more structure than the set of triangulations of an arbitrary
polytope. Edelman and Reiner defined two (conjectured to be isomorphic)
poset structures on this set [9], Rambau proved that all triangulations of
C(n,d) are connected under bistellar operations [12] (while point config-
urations and polytopes without this property exist [16]), and the so-called
generalized Baues problem in the case of cyclic polytopes is essentially solved
1,2, 14].

Our main result in this paper is a proof of the following closed formula
for the number of triangulations of the cyclic polytope C(n,n — 4). This
formula had previously been conjectured by the second author. As pointed
out by Reiner [15, page 325], this and the well-known Catalan number for the
number of triangulations of a convex polygon are the only known nontrivial
closed formulas counting triangulations of a polytope.

Theorem 1 The number of triangulations of the cyclic polytope C(n,n—4)
18:

e (2m +4)2™2 — 2m if n = 2m for an integer m (Theorem 2.6).

e 3m +4)2™3 — (2m — 1) if n = 2m — 1 for an integer m (Theorem
2.9).

A more uniform way of writing the even and odd cases is that the number
of triangulations of C(n,n — 4) equals (an + ﬁ)2£5_4 —n where @ = 1 and
B =4ifniseven and a = 3/(2v2) and B = 11/(2v2) if n is odd. It is
interesting to relate this formula to the following ones for other parameters
of the cyclic polytope:

e C(n,0) (n copies of the same point) has n triangulations, if multiple
points are dealt with in the natural way, ﬁttlng, for example, the
results of [7].

e C(n,1) (n different points along a line) has 2”2 triangulations.

e C(n,2) (a convex n-gon) has ﬁ(%:‘:;) =0 (3;—/"2) triangulations.

e C(n,n —4) (this paper) has © (n2”/2) triangulations.
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e C(n,n—3), C(n,n—2) and C(n,n — 1) have, respectively, n, 2 and 1
triangulations. The case of C(n,n — 3) follows from [10}. The others
are trivial.

Concerning C(n,n — 5), its number of triangulations for n up to 12 ap-
pears in [1, 14]. The numbers for C(13,8), C(14,9), C(15, 10) and C(16,11)
are, respectively, 35789, 159613, 499 900 and 2677865. We thank Jorg
Rambau for these numbers, computed by him with his public software
TOPCOM [13]. Dividing the number of triangulations of C(n,n — 5) by the
number of triangulations of C(n,2) gives, for n from 5 to 16, the following
intriguing sequence:

1, 875, 1, .96, 1.20, 1.16, 1.48, 1.33, 1.64, 1.30, 1.49, 0.9987.

The sequence stays surprisingly close to 1, and is neither decreasing nor
increasing, even if we separate odd and even values of n.

*

Our methods are based on Gale duality and oriented matroid theory.
More precisely, on the concept of virtual chamber introduced in [7, Section 5].
This same tool was used in [3] to prove that the flip-graph of triangulations
of d + 4 points in dimension d is always connected.

Let A = {a1,...,a,} be a finite point configuration in R%. We ho-
mogenise A, which means that we embed R? as an affine hyperplane not
passing through the origin in R and consider A as a vector configuration
in R4, We say that d + 1 is the rank of A and n —d — 1 its corank.

Definition 2 Let A be a vector configuration in R*. A triangulation of A
is any collection of linear bases contained in A whose positive spans are (the
maximal elements of) a simplicial fan covering the positive span of A.

For a vector configuration obtained by homogenisation of a point con-
figuration, the definitions of triangulation in the vector and point contexts
agree.

Let B be a Gale transform of A. This is any vector configuration B =
{b1,...,bp} C R™ %! such that the kernels of the linear maps e; — a; and
e; — b; are orthogonal complements of one another ({ei,...,e,} denotes
the standard basis in R™). Equivalently, such that >>{" ;a; ® b; = 0 in
R4 @ R* %1, Observe that there is an implicit bijection between A and
B in this definition, given by the labels.

If A and B are Gale transforms of each other, then a vector (Aq,...,Ap) is
the sequence of values of a linear functional on one of them if and only if it is
the sequence of coefficients in a linear dependence of the other. In particular,
the oriented matroids of A and B are dual to each other and, hence, any
information of A which depends only on its underlying oriented matroid such
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as the set of triangulations of 4 (see [7]) can be retrieved from the oriented
matroid of B. In the case of interest to us, this translates our corank 3
problem into a rank 3 one, but we have to characterize triangulations of A in
terms of B. This is done with the concept of virtual chamber, defined below.
Observe that, by Gale duality, each linear basis of A is the complement
of a linear basis of B and vice-versa, under the identification between the
elements of A and B by their labels.

Definition 3 ([7, Section 5]) Let A and B be vector configurations which
are dual to each other. A wvirtual chamber of B is a collection of linear bases
of B whose complements form a triangulation of A.

In the following result, being in general position for a vector configuration
. k . . .
in R* means that every k elements are a basis. Our configuration B will
have this property since the property holds for the vertex set of a cyclic
polytope and is preserved by Gale duality.

Lemma 4 ([7]) Let C be a collection of linear bases of a vector configura-
tion B in general position. Then, the following two conditions are equivalent:

(i) C is a virtual chamber of B.

(i1) C shares ezactly one basis with every triangulation of B.

The implication from (i) to (ii) holds without the general position as-
sumption. This implication, in a sense, explains the name “virtual cham-
ber”. The chamber fan of the vector configuration B is the common refine-
ment of all its triangulations. The same definition for a point configuration
gives what is known as the chamber complex of the configuration. The
chambers are the maximal cells in either case. For any given chamber, the
collection of linear bases of B whose positive spans contain that chamber are
a particular example of virtual chamber and two different chambers produce
different virtual chambers. Hence, a chamber can be considered as a special
case of virtual chamber. In fact, chambers of B are the virtual chambers
corresponding to the so-called regular triangulations of 4 [5, 10], of interest
to us in Section 4.

Following the analogy with (geometric) chambers, when a basis 7 is an
element of a virtual chamber C we will say that C lies on 7. With this,
Lemma 4 can be rephrased as “C is a virtual chamber of B if and only if it
lies on exactly one maximal simplex of every triangulation of B”.

We have now all the ingredients to sketch our computation of the number
of triangulations of C'(n,d). Essentially, we fix a certain triangulation T of
B and count how many virtual chambers of B (i.e. triangulations of A)
lie on each maximal simplex of T. The question is how to compute the
number of virtual chambers which lie on a given simplex. When B is the
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Gale transform of the vertex set of C(n,n —4), the particular triangulation
T that we consider consists of simplices with certain special property that
we call admissibility. We manage to define a partially-ordered-set (poset) for
each admissible simplex whose ideals are in natural bijection with the virtual
chambers which lie on the simplex. The central part of the paper is devoted
to the study of these poset structures in order to enumerate their ideals.
Along the way we will come across the problem of computing the number of
virtual chambers of a convex m-gon. The number obtained is 2™~ —m, the
same as the number of maximal straightline thrackles with vertices in the m-
gon, computed in [8]. The number also equals the normalized volume of the
second m-dimensional hypersimplex A(2,m + 1) = [0,1]™ N {(z1,...Zm) :
1 < S x; < 2}, since the maximal thrackles biject to the simplices of a
certain unimodular triangulation of A(2,m + 1) (see again [8]).

*

The structure of this paper is as follows. Section 1 outlines our method
and translates the problem of counting triangulations of a corank 3 point
configuration A to that of counting ideals in certain posets arising from the
Gale transform of 4. Section 2 makes use of the specially nice structure
of the Gale transform of C(n,n — 4) to prove Theorem 1. Sections 3 and
4 contain two other numerical results on triangulations of C(n,n — 4) also
provided by our techniques:

e We compute the number of triangulations of C(n,n — 4) which use
any specific full-dimensional simplex, if n is even (Theorem 3.3). The
technique is in principle valid for odd n as well, but the case study
involved is much more complicated.

e We compute the exact maximum number of regular triangulations of
point configurations having the same oriented matroid as C(n,n — 4)
(Theorem 4.3). This number is a polynomial of degree four (as follows
from [5, Theorem 5.7]) and contrasts with the exponential number of
all triangulations. The polynomial versus exponential behaviour of
regular versus non-regular triangulations of C(n,n — 4) had already
been pointed out in [7, Section 5|, although the exponential lower
bound for the number of triangulations stated there is Q(2%/%), instead

of the © (nQ”/ 2) proved here.

1 Counting virtual chambers in rank 3

Virtual chambers in rank 3

Let B be a rank 3 vector configuration in general position, such as the Gale
transform of the vertex set of C'(n,n —4). The oriented matroid of a vector
configuration does not change under a positive scaling of an element. Hence,
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without loss of generality we may assume that all the elements of B lie on the
unit 2-sphere S2. The positive span of a subset S C B is then substituted
by its spherical convex hull (i.e. the intersection of the positive span with
the unit sphere) and we denote it conv(S). This motivates that we call
triangles the bases of B. We will often refer to independent sets (i.e. subsets
of bases) as simplices. We call the simplices with one and two elements,
points (or vertices) and edges, respectively. In this setting, a triangulation
of B is a geometric triangulation of conv(B) C 52 by (spherical) triangles of
the configuration.

The relative interior of a subset S of B is the sphere S? intersected with
the relatively open cone of strictly positive linear combinations of elements
of S. We say that two simplices of a configuration overlap if their relative
interiors have nonempty intersection. Observe that, since we call simplices
the subsets of B and not their convex hulls, overlapping simplices can be
disjoint.

If two edges [; and ls of B overlap, then their relative interiors meet in
a single point. We say that l; and Iy cross each other. A simplex o of B
is said to be empty if conv(c) N B = o. It is clear that if an empty edge !
overlaps an empty triangle 7, then either [ crosses two edges of T or IN T is
a vertex of both ! and 7 and [ crosses the opposite edge of 7. Note also that
since B is in general position, all its edges are empty.

Definition 1.1 Let B be a rank 3 configuration. An empty triangle 7 of B
is said to be admissible with respect to one of its vertices p if no edge of B
which overlaps 7 has p as a vertex.

Remark 1.2 If 7 has an edge ! which is not crossed by any other edge of
the configuration, then 7 is admissible with respect to the vertex opposite
to [. The converse is not true.

An edge [ of B defines two sides, which are the two hemispheres in which
52 is divided by the unique great circle which contains I. A virtual chamber
C will be said to lie on a certain side of an edge [ if there is a triangle of
C contained in that (closed) side of I. By part (i) of the following Lemma,
a virtual chamber cannot lie on both sides of an edge. But it can lie on
neither of the two sides of it.

Lemma 1.3 Let C be a virtual chamber of a rank 3 configuration B in gen-
eral position. Then:

(i) Any two triangles of C overlap.

(ii) If S C B contains a triangle of C, then any triangulation of S contains
an element of C.
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(iii) If an edge | overlaps an empty triangle of C, then C lies on some side

of L.

Proof: (i) If o and 7 are in C, then their complements o* and 7* are simplices
in a triangulation of the Gale transform B. In particular, o0* and 7* are
weakly separated, meaning that there is a linear functional strictly negative
on o* \ 7*, zero on o* N 7* and positive on 7* \ ¢*. In B, this implies that
there is a linear dependence on oUT with strictly positive coefficients on o\ 7
and negative coefficients on 7\ 0. Adding and subtracting in these linear
dependence certain positive multiples of the elements of o N 7 if needed, we
conclude that some vector is a common strictly positive combination of o
and 7. I.e. ¢ and 7 overlap.

(ii) Let 7" be any triangulation of S which uses a simplex 7 € C. Since
B is in general position, there are triangulations T>Tand T DT of B
such that T\ T = 7"\ T". Since 7 is in C, no simplex of 7"\ T" is in C, which
implies that exactly one simplex of T is in C.

(iii) In the conditions of the statement, let S =1U 7. By a case study, it
is easy to conclude that there is a triangulation 7" of S consisting of triangles
all lying on some side of . By part (ii) one of these triangles is in C. See
the details in [3, Proposition 3.2]. O

Virtual chambers in rank 3 as poset ideals

Given a poset (partially ordered set) (P, <) and two subsets I, F C P, we
say that I is an ideal if for every pair of elements z,y € P withz < y
and y € I, it holds that x € I. Analogously, F is a filter if for every pair
of elements z,y € P with z < y and z € F, it holds that y € F. Ideals
and filters are sometimes called lower and upper ideals respectively. The
complement of an ideal is a filter and vice versa. If the ordering relation is
reversed, then ideals and filters exchange.

Let 7 := {p,q,r} be a triangle of a rank 3 configuration B, admissible
with respect to p. We denote by Q(7) the set of edges which overlap 7 and
we define the following binary relation in Q(7): )y <, lo if I; # I and Io
does not overlap the triangle I; U{p}. Observe that if {; <, l2, then the rays
from p through g and from p through r meet conv(l;) before conv(ly). The
converse is not true, but this property implies that the relation <, does not
have cycles. Hence, its transitive closure is a partial order, that we denote
<p. If Iy <p Iy we say that I, is closer to p than I3. A chain I} <, --- <, lg
of edges in (2(7), <p) will be called a strong chain if every consecutive pair
of edges share a vertex.

Let C be a virtual chamber lying on 7. By part (iii) of Lemma 1.3, C lies
on a side of every edge of (7). Let I(C) be the set of edges in () which
have p and C on opposite sides. Equivalently, I(C) := {l € Q(7) : lU{p} € C}.
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Proposition 1.4 For every virtual chamber C lying on 7, I(C) is an ideal
of (§(1), <p). Moreover, the correspondence C — I(C) is a bijection between
virtual chambers which lie on 7 and ideals of (U(7), <p).

Proof: Let us see that I(C) is an ideal. Let l,1; € (1) with {; <, I and let
Iy € I(C). First suppose that I1 <, lo. We consider a triangulation T of 7Ul
which uses the triangle lo U {p}. The remaining triangles of T are contained
in the side of l> opposite to p. Since C lies on the side of I, opposite to p, C
lies on some of the remaining triangles. The condition /; <, I implies that
none of the remaining triangles overlaps l; U {p}, which implies l; € I(C).
Hence, C — I(C) is a well-defined map from virtual chambers lying on 7 to
ideals in (2(7), <p).

Conversely, for each ideal I of Q(7), let C(I) be the following collection of
triangles of B: (a) Triangles whose convex hull contains 7 and (b) Triangles
containing p in their convex hulls and with exactly one edge in Q(7)\ I. (c)
Triangles not containing p in their convex hulls and with exactly one edge
in Q(7) N I. We claim that C(I) is a virtual chamber, i.e. that it contains
one triangle from each triangulation T' of B.

If no edge of a triangulation T overlaps 7, then the triangle of T contain-
ing 7 in its convex hull is the only triangle of T in C(I). Otherwise, since
7 is empty and admissible with respect to p, the collection of edges of T
which overlap 7 forms a a strong chain l; <p --- <, ly. Observe that there
is a unique triangle o of T containing p in its convex hull and overlapping 7,
that o must have a unique edge in Q(7) and that such an edge must be ;.
If [y ¢ I then o is the only triangle of T in C(I). Finally, if [; € I then let 4
be the biggest index such that [; € I. Clearly, the triangle of T incident to
l; on the side opposite to p is the only triangle of T in C(I).

The fact that the correspondences C — I(C) and I — C(I) are inverse of
each other is straightforward. a

Remark 1.5 Proposition 1.4 translates the problem of counting virtual
chambers in an admissible triangle to counting ideals in a certain poset.
This will suffice for counting triangulations of corank 3 cyclic polytopes
since, as we will see, their Gale transforms can be triangulated with admis-
sible triangles.

But, in fact, the technique can be modified to deal with non-admissible
triangles as well. Let 7 be a non-admissible triangle in a rank 3 configuration
B. We can assume that 7 is empty, otherwise we triangulate its convex hull
by empty triangles. Let p be a vertex of 7 and let [ = {g,7} be the opposite
edge. We consider the ordered sequence (from g to r) of edges {p,p;},
© = 2,...,k which overlap 7. Set p; := ¢ and pg4; := r. The triangles
7 = {p,pi,Pi+1}, ¢ = 1,...,k — 1 are admissible with respect to p, they
intersect properly and, since 7 is empty, they cover 7. In rank 3, any set
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of triangles which intersect properly can be completed to a triangulation,
which implies that each virtual chamber of B lying on 7 lies on exactly one
of the triangles 7;. Moreover, the bijection between virtual chambers of B
lying on 7; and ideals of (£2(7;), <p) restricts to a bijection between virtual
chambers lying both on 7; and 7 and ideals of (€(7;), <p) not containing I.
Summing up, we can count virtual chambers in 7 by adding the numbers of
ideals of (£2(7;), <p) which do not contain the edge I.

2 Counting virtual chambers of C(n,n — 4)*

Combinatorial structure of C(n,n — 4)*

A sign sequence of length n is any element of {—1,0,+1}". The support of
a sign sequence is its set of non-zero coordinates. Recall that in oriented
matroid theory the circuits of a vector configuration A are the sign sequences
with minimal support produced by the coefficients of linear dependences in
A, and the cocircuits of A are the sign sequences with minimal support
produced by the values of non-zero linear functionals on A. Either circuits or
cocircuits suffice to characterize the oriented matroid of A and two oriented
matroids are dual to each other if and only if the circuits of one are the
cocircuits of the other.

Let C(n,n—4) = {a,-..,a,} denote the vertex set of a cyclic polytope of
dimension n—4 with n vertices. Let py,...,p, be points in a non-great circle
v in §2, taken in order along the circle. Let C(n,n — 4)* := {b1,...,bn},
where b; := (—1)'p;, for i = 1,...,n. Part (i) of the following statement
appears in [18, Ex. 6.13], and part (ii) is essentially Gale evenness criterion
for cyclic polytopes.

Lemma 2.1 (i) For each quadruple {biy, big, big, biy } with i1 < iy < i3 <
iy the signs sign(b;;) = (=1)%17, j € {1,2,3,4} give one of the two
(opposite) circuits with support in that quadruple.

(ii) The oriented matroids of C(n,n—4) and C(n,n—4)* are dual to each
other.

Proof: Since the vectors {py,...,pn} are in convex position in an affine plane
embedded in R3, the coefficients in the unique (up to a scalar factor) linear
dependence between four vectors {pi,,Pi,,Pis,Pis} With i1 < 4o < i3 < 44
alternates signs. This, together with the formula b; = (—1)'p; proves part
(1).

For part (ii) we will prove that this same rule gives the cocircuits of
C(n,n —4). Let f be a functional producing a cocircuit of C(n,n —4). For
the support of the associated sign sequence to be minimal, f must vanish on
at least n — 4 points of C(n,n —4) (recall that C(n,n — 4) has rank n — 3).
Moreover, since C(n,n — 4) is in general position, no nonzero functional
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vanishes on more than n — 4 of its points and there is a unique (up to a
scalar factor) functional vanishing on each subset of n — 4 points.

Let f be an affine functional vanishing on C(n,n—4)\ {ai, , ai,, 6z, @iy }-
Suppose without loss of generality that sign(f(a;,)) = (=1)%+!. The mo-
ment curve of degree n — 4 has at most n — 4 intersections, counted with
multiplicity, with the affine hyperplane {f = 0}. Hence, the sign of f along
the moment curve changes on each of the n — 4 points of C(n,n — 4) \
{aiy, aiy, a4y, ai, } and nowhere else. This implies the claim. O

Observe that, in general, C'(n,n—4)* is not going to be a Gale transform
of C'(n,n — 4) according to our definition, in which the points of C(n,n —4)
are taken along the moment curve. But it has the same oriented matroid
as a Gale transform, and hence the same collection of triangulations and
virtual chambers.

To simplify the notation, from now on we will refer to each point b; €
C(n,n — 4)* by its label 4 € {1,...,n}. C(n,n — 4)* is contained in two
opposite circles in $? one with the set of “odd points” {1,3,5,...} and the
other with the “even points” {2,4,6,...}. The points in each circle define a
spherical polygon, so that the sphere is divided into two polygons (odd and
even) plus a topological band between them.

A triangle 7 of C'(n,n — 4)* will be said to lie on one of the polygons if
its convex hull is contained in that polygon and will be said to lie on the
band if its convex hull is contained in the band.

Lemma 2.2 (i) An edge in the boundary of one of the polygons is crossed
by no other edge of C(n,n — 4)*. In particular, it overlaps no empty
triangle.

(it) Every triangulation of C(n,n — 4)* by empty triangles uses all the
boundary edges of the two polygons. Hence, all its triangles lie either
on one of the polygons or on the band.

(111) A triangle lies on one of the polygons if and only if its three vertices
are in that polygon.

(iv) For a triangle T which has vertices from the two polygons the following
conditions are equivalent:
(a) T is empty.
(b) T is admissible.
(c) 7 lies on the band.

(d) T has one edge in the boundary of one of the polygons and T is not
one of the following triangles: {i,i4+1,i+2} withi € {1,...,n—2}
or, if n is even, {n,1,2} or {n —1,n,1}.
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Proof: That an edge [ in the boundary of the polygons does not cross any
other edge can be proved geometrically. Or it can be derived from Lemma
2.1 that ! cannot be the positive part of a circuit of C(n,n—4)*. The second
part of part (i) holds because any edge overlapping an empty triangle must
cross at least one of the edges of the triangle.

Part (ii) is a consequence of part (i): let { be a boundary edge of one
of the polygons and let z be a point in the relative interior of I. If T is
a triangulation by empty simplices, z must lie on the relative interior of a
unique simplex of T. This simplex cannot be a triangle or an edge other
than [ itself, by part (i).

Part (iii) is trivial. In part (iv), the equivalence of (d) with any of (a),
(b) or (c) is easy to establish: let [ be the edge of 7 having its two vertices
in the same polygon. For 7 to be either empty, admissible or to lie on the
band it is clearly necessary that ! be an edge of that polygon. The converse
is true unless 7 is one of the triangles excluded in part (d), whose convex
hull contains the whole polygon. m|

Let C be a virtual chamber and let T be a triangulation of C(n,n — 4)*
all whose triangles lie either on one of the polygons or on the band (we
will see later that such triangulations exist). We say that C lies on the odd
polygon, the even polygon or on the band if it lies on a triangle of 7" on the
odd polygon, the even polygon, or the band, respectively. According to part
(i) of Lemma 1.3 applied to the two polygons this definition is independent
of T. In what follows we will count the number of virtual chambers on each
polygon and on the band.

Virtual chambers of a polygon

Let M be the configuration consisting of the vertices of one of the two
polygons of C(n,n — 4)*.

Lemma 2.3 There is a natural correspondence between virtual chambers of
C(n,n — 4)* lying on M and virtual chambers of M (as a configuration by

itself).

Proof: By part (i) of Lemma 2.2, every triangle of M containing an edge in
the boundary of M is admissible with respect to the opposite vertex, both
in M and in C(n,n — 4)*. Clearly, M can be triangulated with triangles of
that type: take any point p in M and triangulate M by coning p to every
boundary edge of M not containing p.

Moreover, only edges in M overlap conv(M) and, hence, for those trian-
gles, the poset Q(7) is the same in M and in C(n,n —4)*. By Proposition
1.4 the number of virtual chambers of M and of C(n,n — 4)* lying on each
of those triangles is the same. O
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Although we will not use this fact, one direction of the correspondence
stated in Lemma 2.3 is very easy to state: each virtual chamber C of C(n,n—
4)* lying on M restricts to a virtual chamber of M by just forgetting the
triangles of C not contained in M.

Lemma 2.3 allows us to forget C(n,n — 4)* for a while and speak rather
of a polygon P whose vertices are labelled from 1 to m. We will compute
the number of virtual chambers in P by adding the virtual chambers which
lie on the triangles 7; := {1,7 — 1,4} for ¢ = 3,...,m since these triangles
are admissible with respect to 1 and define a triangulation of P. In Q(7;) we
consider the ordering <; of “being closer to 1”. Our task is to count ideals
of (Q(Tl)a <1)'

Note that

) = {{5,k} : 2<i<i—1i<k<m}\{{i -1},

with the partial order {j,k} <; {j',k'} if and only if j < 5/ and k > K.
We extend Q(7;) to a larger poset Q(7;) := Q(n;) U {{i — 1,7}} by setting
{¢ — 1,4} as the maximum of Q(7;). The ideals of Q(7;) are those of Q(7;)

plus Q(7;) itself. The Hasse diagram of Q(7;) is shown in Figure 1.

{i-1,i}

{i-1,m}
{2,i}

{2,m}

—

Figure 1: The Hasse diagram of the poset £(r;).

Proposition 2.4 (i) The poset Q(r;) has (7)) — 1 ideals.

(it) A polygon with m vertices has 2™~ — m virtual chambers.

Proof: Ideals in Q/(;,) are in bijection with maximal left-to-right monotone
paths through the lattice points in a (¢ —2) x (m — i+ 1) rectangle as shown
in Figure 2. The number of such paths is ((m—it.l_);" (=2)) = (™~,)), which
proves part (i).

For part (ii), add the virtual chambers in each triangle 7;, i.e., the num-
ber of ideals in each poset Q(7;). O
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(@) (b)

Figure 2: Part (a) represents an ideal of Q/(;Z) as a path through the edges
of its Hasse diagram (black dots). The ideal is the set of elements below the
path. It corresponds to a path through the vertices of the “dual diagram”
(white dots) represented in (b).

Virtual chambers on the band: the even case

We now assume n to be even and let mn = n/2. All indices will be regarded
modulo n. Let Teyen be the following set of triangles, all lying on the band
according to part (iv) of Lemma 2.2.

Toven = {{20 + 1,2 + 2,2 +4},{2 +1,2i + 3,2 +4} : 0 < i <m — 1}.

These triangles form a triangulation of the band, by which we mean
that adding to them triangulations of the odd and even polygons we get a
triangulation of C(n,n — 4)*. For a proof of this, observe first that each
boundary edge of any of the polygons appears exactly once in Teyen. The
rest of edges used in Tpyey, are those of the form {i,7+ 1} and {4, + 3} with
i odd, each lying on two triangles of Teyen. The first ones in {¢ — 2,4,7 + 1}
and {4,i+ 1,4+ 3} and the second ones in {4,7+ 1,7+ 3} and {i,7+ 2,4+ 3}.
Lemma 2.1 implies that in each case the two vertices opposite to the edge
have the same sign in the circuit formed by the four points, i.e. that the
two triangles lie on opposite sides of the edge.

Figure 3 shows the triangulation Tye, of the band. In this figure and
the subsequent ones, the following flattened, twisted, planar representation
of the band is used: the odd and even points are placed on two parallel
lines in the plane, with 2; — 1 and 2¢ facing each other. The sequence of
points is meant to be repeated infinitely, or the left and right ends of the
figure be identified. There are different ways to draw a straight line segment
joining an even and an odd vertex, and we choose to take the one of greatest
positive slope, considering a vertical line as having infinite positive slope.
With this choice, two edges cross in the representation if and only if they
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cross in C(n,n — 4)*.

2m-2 2m

2 4 6

/ //
@

2m-3 2m-1 1 3 5

Figure 3: The set of triangles Teyen in our twisted representation of the
band.

Since Teyen 1s a “triangulation of the band”, in order to count the virtual
chambers in the band we can add the virtual chambers in the triangles of
Tepen- These triangles are all equivalent under the oriented matroid sym-
metry group of C(n,n — 4)*, generated by the cyclic permutation i + 5 + 1
and the order-reversion of the indices ¢ — n + 1 — 4. As a conclusion, the
number of virtual chambers in the band will be 2m times the number of
virtual chambers in any triangle of T,yen, €.g. the triangle {1,2,4}.

As stated in Lemma 2.2, the triangle 7 = {1,2,4} is admissible with
respect to the vertex 1. Therefore, our task is to compute the number of
ideals of (€2(7), <1). Figure 4 represents the triangle 7 (with m = 5) and the
edges in (7). These edges are those crossing either {1,2} or {1,4} which,
by Lemma 2.1, are respectively {{2¢,2j +1} : 2 < i < j < m — 1} and
{{24,25 +1} : 3 <1 < j <m — 1}. Since the second set is contained in the
first, we have

Qr)={{24,2j +1} : 2<i<j<m-—-1}

8
®

L 2=

. *~ -
5 7 9 1 3 5 7
Figure 4: All the edges which cross {1,2,4} for m = 5.

The poset structure in Q(7) is that (2¢,25+1) <; (27,25’ +1) if and only
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if i > ¢ and j > j'. Hence, the Hasse diagram of (2(7), <) is as depicted
in Figure 5.

{4.5)

{4,2m-1}

{2Zm-2,2m-1}

Figure 5: The Hasse diagram of (7).

Proposition 2.5 (i) The number of virtual chambers lying on the trian-
gle {1,2,4} of C(2m,2m — 4)* is 2™~ 2,

(i1) The number of virtual chambers of C(2m,2m — 4)* lying on the band
is m2™m 1,

(143) The total number of virtual chambers of C(2m,2m — 4)* is (m +
2)2m=1 — 2m,.

Proof: Let 7 = {1,2,4}. Ideals of (§2(7), <1) are in bijection with maximal
left-to-right monotone paths in the “dual diagram” shown in part (b) of
Figure 6. These, in turn, are in bijection with maximal monotone paths
in the complete binary tree of depth m — 2. This proves part (i) and the
symmetry remarks stated above prove part (ii).

For part (iii) we have to add the m2™~! virtual chambers on the band to
the 2! —m on each of the two polygons, which gives the stated number. O

Theorem 2.6 The cyclic polytope C(2m,2m — 4) has (m + 2)2™~! — 2m
triangulations. a

Virtual chambers on the band: the odd case

We intend now to apply the same technique to C(2m — 1,2m — 5)* as in
the even case. Hence, we start by choosing a triangulation of the band. We
define:

Togq = {{20+ 1,20 + 2,20 +4},{20 + 1,20 + 3,20 + 4} : 0 < i <m — 3}V
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() (®)

Figure 6: Part (a) represents an ideal of Q(7) as a path through the edges
of its Hasse diagram, which corresponds to a path through the vertices of
its dual diagram, depicted in part (b).

u{{2m — 3,2m — 2,2}, {2m — 3,2m — 1,2}, {2m — 1,1,2}}

That this is indeed a triangulation of the band can be proved following the
same ideas as in the even case, but it is easier to deduce it from the triangula-
tion of the even case. Observe that the configuration C'(2m —1,2m —5)* (up
to oriented matroid equivalence) can be obtained from C(2m,2m — 4)* by
deleting the element 2m. This is obvious from the description of C(n,n—4)*
as points alternating on two opposite circles. Let T be a triangulation of
C(2m,2m — 4)* extending Teyen and using the triangle {2m — 2,2m, 2} of
the even polygon. Let T' be the triangulation obtained from T by remov-
ing the four triangles {2m — 3,2m — 2,2m},{2m — 3,2m — 1,2m}, {2m —
1,2m, 2}, {2m—2,2m, 2} and inserting {2m—3,2m—2, 2}, {2m—3,2m—1,2}
instead. Then T” is a triangulation of C(2m,2m — 4)* not using 2m, i.e.
it is a triangulation of C'(2m — 1,2m — 5)*. Moreover, it triangulates the
polygons and the band and the triangulation of the band that it produces
is precisely Tpqq. See Figure 7.

The triangles of Tpgqq are all admissible (this is automatic, by Lemma
2.2(iv)). Hence, we can compute the number of virtual chambers in each
triangle of Tpqq using Proposition 1.4. The only new difficulty with respect
to the even case is that Tpgq is not preserved under any non-trivial oriented
matroid symmetry of C(2m — 1,2m — 5)*. In fact, C(2m — 1,2m — 5)* has
only one non-trivial symmetry: the reversal of indices.

Lemma 2.7 The number of virtual chambers of C(2m —1,2m —5)* in each
triangle of Tyqq ts:

(3) 2m=2 — ST (M73Y for the triangle {2i + 1,2 + 2,2i + 4}, with i €
{ k 0} k
0,...,m—3}.
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2m-6 2m-4 2m-2 2 4

T

2m-7 2m-5 2m-3 2m-1 1 3

Figure 7: The set of triangles T,qq depicted here, together with arbitrary
triangulations of the two polygons, define a triangulation T' of C(2m —
1,2m — 5)*. The deleted vertex 2m has been drawn in white. Dashed lines
represent the edges of Teyen, which were incident to 2m.

(i) 272 — % _o (™3) for the triangle {20 + 1,2 + 3,2i + 4}, with i €
{0,...,m —3}.

(iii) 2™2 for the triangle {2m —1,1,2}.

(iv) 23 for each of the triangles {2m — 3,2m — 2,2} and {2m — 3,2m —
1,2}.

Proof: For parts (i) and (ii) we use the following trick. Let 7 be a triangle of
C(2m,2m — 4)* which does not use the element 2m and which is admissible
with respect to the vertex ¢. Then, 7 is also admissible with respect to 2
as a triangle of C(2m — 1,2m — 5)*. We can consider the poset of edges
(Q(7), <;) in C(2m—1,2m—5)* or in C(2m,2m —4)* and the former is just
the subposet of the latter obtained by dropping the edges which use 2m.

Observe further that by symmetries of C'(2m, 2m—4)* all the triangles in
parts (i) and (ii) can be transformed into the triangle {1,2,4} whose poset
of edges (in C(2m,2m — 4)*) was studied above. Indeed:

(i) For each i € {0,m — 3}, the shift j — j—2i sends {2:+1,2i+2, 2i +4}
to {1, 2,4} and the element 2m, to be removed, to the element 2m — 23
(here and in what follows indices are regarded modulo 2m).

(ii) For each ¢ € {0,m — 3}, the shifted reversal j — 2: + 5 — j sends
{21+ 1,2 + 3,2i + 4} to {1,2,4} and the element 2m, to be removed,
to the element 27 4 5.

Let 7 = {1,2,4} and consider its poset (2(7),<1) in C(2m,2m — 4)*,
whose Hasse diagram was described in Figure 5. For part (i) we want to
remove from this Hasse diagram the positive-slope diagonal corresponding
to edges which overlap {1,2,4} and use the vertex 2m — 2i. The Hasse
diagram is in fact the same one obtained by removing the edges {27,2j + 1}
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for m — 4 < j < m — 1, as shown in Figure 8. We call '(7) this second
poset.

{45} {45}

N \é 2m-2i,2m-2i+1} {4,2m-1}

{4.2m-1} /\o {2m-2i,2m-2i+1}

{2m-2i,2m-1}

{2m-2,2m-1} “o{2m-2,2m-1}

(a) ®

Figure 8: Part (a) shows the Hasse diagram of Q(7) (in black) together with
the missing elements (in white) with respect to the corresponding poset for
the even case. Part (b) is the Hasse diagram of Q'(7) (in black), a poset
isomorphic to (7) which is obtained by removing the elements {27, 25 + 1},
for m —i < j <m — 1, from the corresponding poset for the even case.

Hence, the number of virtual chambers of C(2m — 1,2m — 5)* which lie
on 7 is the number of ideals of Q'(7), which are in bijection with maximal
left-to-right monotone paths through the edges of its dual diagram, depicted
in Figure 9. In order to see how many of those paths have been lost with
respect to the even case we consider the vertices of the dual diagram labelled
from 0 to ¢ — 1 in Figure 9(b). For each zig-zag path ending at one of the
labelled vertices there would have been two ways to extending the path in
the even case. That is to say, the number of paths in the odd case is obtained
subtracting to 272 the numbers of paths which end at the labelled vertices.
For the k-th vertex this number is (). This finishes part (i).

For part (ii) we have to repeat the same process, but now we remove from
Q({1,2,4}) the edges which use 2i + 5, which form a negative-slope diagonal
in the Hasse diagram. The situation is completely symmetric, except for
an increase of 1 in the number of elements of the poset removed for each 1.
This finishes part (ii).

In part (iii), still the same technique can be applied since the shift ¢ —
3—isends {2m—1,1,2} to {1,2,4}. The edges to be removed are now those
using the vertex 3, but it turns out that no edge of £2(7) uses that vertex.
Hence the number of virtual chambers is, as in the even case, 2™ 2.

In part (iv) there is no symmetry of C(2m,2m — 4)* sending the given
triangles to {1,2, 4}, so we will compute the poset of edges overlapping each
of the two triangles explicitly.

Let 1y = {2m — 3,2m — 2,2}. Since no edge using 2m — 3 or 2m — 2
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(@ (b)

Figure 9: Part (a) shows the Hasse diagram of €'(7) (black dots) and one
of its ideals in the form of a path through the vertices of the dual diagram
(white dots). Part (b) shows how we label the vertices of the dual diagram
which have lost paths passing through them with respect to the situation in
the even case. The path ending at the k-th vertex represented in (b) would
have had two possible rightwards extensions before the removal.

overlaps 71, the edges overlapping 71 are exactly those crossing the edge
{2m — 3,2m — 2}. Lemma 2.1 tells us that the edges of C(2m — 1,2m — 5)*
crossing {2m — 3,2m — 2} are those of the form {2i,2j + 1} with 1 < i <
j < m—3. The order is {2i,2j + 1} <om-—3 {27,275’ + 1} if and only if ¢ > 4’
and j > j'. It turns out that this is the same poset we would have for the
triangle {1,2,4} in C(2m — 2,2m — 6)*, except for a shift of two units in all
the indices. Hence, the number of ideals is 2™ 3.

The same happens with the triangle 7 = {2m — 3,2m — 1,2}. The
edges overlapping it are those crossing the edge {2,2m — 1}, i.e. the edges
{2i,25 + 1} with 2 < ¢ < j < m — 2. The poset structure is now given by
<, and it is the opposite to the one before. Ideals of this poset are filters
of the previous one, but the number is unchanged. O

Proposition 2.8 The number of virtual chambers of C(2m — 1,2m — 5)*
lying on triangles of Toqq is (3m — 2)2™73.

Proof: By Lemma 2.7 the number N of virtual chambers in T,y is

m3 : m— 3 m—3
Z 2m—2 + 2m—‘2 _ Z 4 + 2m—2 +92. 2m—3 —
=0 k=0 k k-1

m-3 1
=(@m-22"2 -3 3 (mk_2>

=0 k=0



20 Miguel Azaola and Francisco Santos

If we call ‘
‘L fm—2
k=0

we have 272 = A; + A,,_;_3 which implies (m — 2)2™"? = 2(2;’53 A;).
Hence
N = (4m — 4)2™3 — (m — 2)2™3 = (3m — 2)2™ 3.

Theorem 2.9 The number of triangulations of the cyclic polytope C(2m —
1,2m — 5) is (3m + 4)2™73 — (2m — 1).

Proof: To the number obtained in Proposition 2.8 we have to add the num-

bers of virtual chambers of the two polygons defined by C(2m —1,2m — 5)*,

which have m and m — 1 vertices, respectively. By Proposition 2.4, their
numbers of virtual chambers are 2™~! —m and 2™~2 — (m — 1), respectively.
O

3 Triangulations of C(2m,2m —4) which use a fixed
simplex

As observed in Remark 1.5, our technique for counting virtual chambers in
an admissible triangle can be adapted to non-admissible ones. In this section
we will count the number of virtual chambers in any particular triangle
of C(2m,2m — 4)*, although the technique will still use some particular
properties of this configuration rather than the general method outlined in
Remark 1.5. One can do analogous calculations in the case of C(2m—1,2m—
5)* but there are many more cases to be studied and much less symmetry,
so we prefer to restrict our study to the even case.
We first prove two additional results:

Lemma 3.1 Let M be a convez m-gon. Let S be a subconfiguration con-
sisting of k consecutive vertices of M. Then, the number of virtual chambers
of M lying on S (i.e. lying on triangles of any triangulation of S) equals

k—2 m—1
> ( l ) — (k —1).
=0

Proof: Consider the vertices of M labelled from 1 to m, and without loss of

generality suppose that S = {1,... k}. Then, the following is a triangulation
of S:

{Li-1,0}:1€{3,... .k}
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Moreover, by Proposition 2.4, the triangle {1,/ — 1,!} contains (T_—;) -1
virtual chambers of M. Adding this number for [ from 3 to k gives

ko fm—1 k=2 (1

which coincides with the number stated. |

Lemma 3.2 Let 7 be any empty triangle in C(2m,2m — 4)* not contained
in one of the polygons. Then, there are exactly 2™ 2 wirtual chambers of
C(2m,2m —4)* in 7.

Proof: The subgroup of combinatorial symmetries of C(2m,2m — 4)* gen-
erated by i — i+ 2 and ¢ — 2m — i + 1 (which has 2m elements), applied
to 7, produces 2m empty triangles not contained in either of the polygons,
i.e. lying on the band by Lemma 2.2. It is easy to check that these 2m
triangles form a triangulation of the band, very similar to the triangulation
Teven depicted in Figure 3. By symmetry, all the 2m triangles contain the
same number of virtual chambers, i.e. the m2™~! virtual chambers in the
band divided by 2m. O

Theorem 3.3 Let 7 be a triangle in C(2m,2m — 4)*.

(1) If T is contained in one of the two polygons, let 7 = {i,j,k} with
i < j < k. The number of virtual chambers of C(2m,2m — 4)* lying
on T equals

()55 (0)

where a, b and c are the numbers of points in the same polygon as T

between each two vertices of 7. lLe., a = 55+ —1, b = E%Z ~1 and
c = 2mti—k _ 1
= 2mi )

(i) If T does not lie on either of the polygons, then there is a combinatorial
symmetry of C(2m,2m — 4)* which sends T to a triangle 7' = {i,j,k}
with i < j < k and with i odd and j and k even. Then the number of
virtual chambers of C(2m,2m — 4)* lying on 7 equals

k=j_q

(5@ 5 ("))
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Proof: The case of 7 lying on a polygon is easy in the light of Lemma 3.1:
Joining to 7 triangulations of three configurations as the one in Lemma 3.1
with the parameter k£ taking the values a + 2, b+ 2 and ¢ + 2 produces a
triangulation of the whole polygon, which has 2™~! — m virtual chambers.
Hence, the number of virtual chambers in 7 equals

™l _m — Z(m—> +(a+1)-

—Z( > (b+1)— i:(ml_1>+(c+1),

=0
as desired since a + b+ c¢c=m — 3.

In part (ii), 7 has two vertices in one polygon and the third vertex in the
other polygon. The combinatorial symmetry of the statement can be taken
as one of the two which send this third vertex to the vertex 1. Without loss
of generality we assume in the rest of the proof that 7 = {4, j, k} with 7 odd,
jand k even and ¢ < j < k.

A point [ is in the interior of the triangle 7 exactly when the circuit with
support in {7, j,k,{} has the same sign in 7, j and k and the opposite sign
in [. By Lemma 2.1 this happens if and only if [ is even and between j and
k. We consider the subconfiguration S = {4,5,j + 2,7 +4,...,k} consisting
of the vertices of 7 and its interior points. We can triangulate the part of
conv(S) in the even polygon as in Lemma 3.1, which gives

Lt B |
2 (m—l)_k—j
it l 2

virtual chambers, and the part in the band with the %—"1 empty triangles
{{i,,0 +2}: 1€ {j,j+2,5+4,...,k —2}}, each containing 2™ 2 virtual
chambers by Lemma 3.2. O

Hence, the following table gives the number of triangulations of the cyclic
polytope C(2m, 2m—4) which use the simplex C(2m, 2m—4)\ {1, j, k} under
the assumption that ¢ < j < k and depending on the parities of kK — 7 and
j — 1. The first two rows are just the formulas in Theorem 3.3, where the
value of a, b and ¢ can be found. The last two rows are the translation of
the second row to the case that k& — j be odd.

j—tand k— j even Zl -0 (m 1) El =0 &ml 1) Sico (m 1)
E=)
j —io0dd, k—j even Bigm2-1)+3%,3 ' )
j —1ieven, k—j odd l—-(2m 2—1 +ZIJT; 1(mz~1)
) ] ) 2mii—k -1 _
j—iodd, k—jodd Imdickom=2 _ 1) 4+ 3,7 ™
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4 Regular triangulations of C(n,n — 4)

A regular triangulation of a d-dimensional point configuration A is a tri-
angulation of A which can be obtained as the orthogonal projection of the
lower envelope of a (d + 1)-dimensional polytope (see [5] or [18] for details).
The bijection between triangulations of 4 and virtual chambers of its Gale
transform B sends the regular triangulations to the geometric chambers of
B, i.e. the full-dimensional cones in the chamber fan that we defined in the
introduction.

The chamber fan of a configuration does not depend only on the oriented
matroid. We intend here to compute the maximum possible number of
chambers among all the coordinatizations of the oriented matroid of C(n,n—
4)*. That is to say, the maximum possible number of regular triangulations
of a polytope realizing the oriented matroid of C(n,n — 4).

For the next lemma, we recall that in oriented matroid theory a vector
configuration is called totally cyclic if its positive span is the whole space.
The statement holds equally if B is not totally cyclic, except that the formula
changes by 1 because of the use of Euler’s formula for a ball instead of a
sphere.

Lemma 4.1 Let B be a rank 3 totally cyclic vector configuration in general
position. Let N be the number of (opposite pairs of) circuits of B having
two positive and two negative elements. Then, the mazimum number of
chambers produced by realizations of the oriented matroid of B is

N + (Z) -n+2.

Moreover, the mazimum is achieved in any realization in which no three
edges cross in a common point. This happens if B is sufficiently generic
among the realizations of its oriented matroid.

Proof: We first prove that there is a realization of the oriented matroid
of B in which no three edges have a common crossing. Indeed, let k¥ be
the number of triplets of edges crossing in a point. If k£ < 1 then a slight
perturbation of the coordinates of one of the six vertices involved in a triple
crossing decreases the number of such crossings, and does not change the
oriented matroid by our general position assumption. On the other hand,
if £ = 0 then sufficiently small perturbations cannot create triple crossings.
This proves the assertion.

Next we will prove that if B has no triple crossings then it has exactly
the stated number of chambers. This, together with the fact that small
perturbations cannot decrease the number of chambers, implies that the
stated number is indeed the maximum.
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Embedding B in the 2-sphere as we have done in this paper, the chamber
complex of B (i.e. the intersection of the chamber fan with the unit sphere) is
a polyhedral subdivision of the sphere whose numbers of cells of dimensions
2, 1 and 0 we denote fo, f; and fo. We want to compute fo. The number
fo equals n plus the number of crossing points between edges of B, which
under the assumption of no triple crossings equals V.

f0=N+n.

On the other hand, 2f; equals the number of incidences between 0-cells
and 1-cells in the cell decomposition. That is to say,

2f1 = 4N+’I’L('I’l - 1)

where the term n(n — 1) comes from the fact that n — 1 edges are incident
at each point of B. By Euler’s formula for the 2-sphere

f2=f1—f0+2:N—n+<;L>+2. 0

Proposition 4.2 The number of (pairs of) circuits with two elements of
each sign in C(n,n — 4)* equals

o 6(7) +3(3) if n = 2m is even, and

¢ 6(7)+(5) —m+1ifn=2m—1is odd.

Proof: Suppose first that n = 2m is even. We know that no edge of
C{(2m,2m — 4)* crosses the boundary of any of the two polygons defined
by C(2m,2m — 4)*, so if two edges cross, then either both are edges of the
band or both are edges of one of the polygons. Let B and P be the numbers
of crossings of edges of the band and of the even polygon, respectively. Then

N =B+ 2P.

The number P is the number of crossings between edges of an m-gon,
but any four vertices of an m-gon define a unique crossing, so

P=<’Z’).

For computing the number B, we first compute the number of edges of
C(2m,2m — 4)* crossing a certain edge {a,b} of the band. Let us assume
a = 1 and, hence, b = 2j is even, in order that {a,b} be in the band. Let
{d',b'} be another edge in the band, and assume that o’ is odd and ¥’ is
even. According to Lemma 2.1, under these assumptions {1,b} and {a’,b'}
cross each other if and only if 1 <o’ <V <borl < b< b <a'. Taking
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into account the parities of a’, ¥’ and b, the first case gives (¢ ;1) possibilities
and the second gives (™;7) (for the first number, observe for example that
each pair of indices 1 < ¢ < j' < j — 1 gives the edge having a' = 2i' 41
and b’ = 2j5').

Adding up these numbers for j € {1,...,m} we conclude that the total
number of crossings between edges of the band one of which contains the
point 1 equals

£02)50)- () () =)

Now, by the symmetries of C(2m, 2m—4)* the same is valid for any other
vertex: the number of crossings in the band between edges one of which
contains any specific vertex is 2(’;). Since each crossing uses 4 vertices, the
number of crossings in the band equals

o= 5o (3) = (5) (75 ) () =4(0) 2 5)

Hence,
m m
N=B+2P = .
N 6(4)+3(3)

For the odd case, remember that C'(2m—1,2m—5)* can be obtained from
C(2m,2m — 4)* by deleting the point 2m. Then, the number of crossings in
C(2m — 1,2m — 5)* equals the total number of crossings in C(2m,2m — 4)*
minus the crossings in C(2m, 2m—4)* involving the vertex 2m. This number
is 2("y) crossings in the band plus (™ 1) crossings in the even polygon.
Hence, in the odd case we have

w1 +a(5) 2 (5) - (1) el () e

Theorem 4.3 The number of regular triangulations of C(n,n — 4) is at
most:

(i) 6(7) +3(5) +4(3) —m+2  if n=2m for some positive integer

m.

(i) 6(7) +5(y) —4m +5 if n = 2m — 1 for some positive integer m.

Moreover, these formulas give the exact number of regular triangula-

tions in any sufficiently generic coordinatization of the oriented matroid of
C(n,n —4).
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Proof: This is straightforward frogn Lemma 4.1 and Proposition 4.2, taking
into account that (3) —n + 2 = 2=3244 which if n = 2m gives

2m2~3m+2:4<7;> —m42
and if n = 2m — 1 gives

4m®* —4dm+1—-6m+3+4
5 =

2m2—5m+4=4(’;) —3m+4

Remark 4.4 One may ask about the minimal, instead of maximal, number
of regular triangulations in realizations of the oriented matroid of C(n,n—4).
This would correspond to computing the number of chambers in the “least
generic” realization of the dual oriented matroid. It is reasonable to think
that, if n = 2m is even, the realization in which each half of the points form
a regular m-gon is a good approximation of this “least-generic” case. The
number of chambers in a regular m-gon has been computed in [11]. The
result is 'g—: + ©(m3), exactly as in the most-generic case. This leads to the
conjecture that the number of regular triangulations in every realization of

C(n,n —4) is %:— + ©(n?), as in the generic case.
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