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Abstract

We prove that any bounded, centrally symmetric object K in the plane can
be inscribed in an ellipse E touching its boundary 8K at at least four points.
Two applications of this result in the context of Voronoi diagrams and Delaunay
oriented matroids for convex distances are given.

KeEYwoRrDS : COMPUTATIONAL GEOMETRY

Our result

This note is devoted to prove the following result, illustrated in figure 1.

Theorem 1.1 Let K be a compact, centrally symmetric body in the plane E?,
not contained in a straight line. Then, there exists an ellipse E contatning
K and such that the boundaries 6K and OF intersect in at least two pairs of
opposite points.

Fig. 1. Inscribing K in an ellipse through four points.
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For convenience, in Theorem 1.1 and in the rest of the paper the word
ellipse and also the word circle will be used meaning not only the “curve” but
also its interior region. We will say boundary of an ellipse/circle (or use the
symbol §) when referring to the curve. The word compact means “bounded
and topologically closed”, as usual. The condition of K being closed is not
essential (because our result applies to its boundary), but the conditions of
being bounded and centrally symmetric are necessary: an unbounded object
can never be inscribed in an ellipse and some non symmetric objects (such as a
triangle) cannot be inscribed through more than three points.

Theorem 1.1 is proved with the following sequence of lemmas.

Lemma 1.2 Let K be a compact, centrally symmetric, convez body tn the plane
EZ2, not contained in any straight line. Then, there exists an ellipse E such that
OK and OF intersect in at least three pairs of opposite poinis.

Proof: Let P, P', Q and @’ be any two pairs of opposite points in §K, not in
a straight line. Then, either there exists a third pair of opposite points R, R’
in K such that PQRP'Q'R’ is a strictly convex, centrally symmetric hexagon,
or K coincides with the cuadrilateral PQP’'Q’ (recall that K is assumed to be
convex). In the first case there exists an ellipse passing through the six points.
In the second case, if we slightly reduce any ellipse passing through P, Q, P’
and @' we will obtain an ellipse passing through four pairs of opposite points of
the boundary of the cuadrilateral. g

Lemmma 1.3 Let K be a compact, centrally symmetric, convez body in the plane
E2, not contained in any straight line. Then, there exists a circle C and a linear
transformation | of the plane such that the image M of K throughl is contained
in C and the boundaries OM and 8C intersect in at least two pairs of opposite
points.

Proof: Let us apply Lemma 2.2 to K and then let us make a linear transfor-
mation !’ in the plane sending the ellipse E obtained there into a circle C’. Let
M’ =U(K). Let f :[0,27] — Ry be the map describing M’ in polar coor-
dinates, as a function of the angle. Then, f is periodical of period 7 (because
of M’ being centrally symmetric) and takes the same value in three different
points 0 < z < y < z < 7 (the points where M’ intersects the circle C'). In
these conditions, f has at least two local maxima in a period. In fact, either
at least two of the open intervals (z,y), (y,z) and (z,z + 7) contain a local
maximum of f, or one of them (say (z,y)) contains a local maximum and z is
another local maximum, or the three points z, y and 2z are local maxima.

Let @ and 8 be two local maxima of f in the period [0,7) and suppose
without loss of generality that o is actually a global maximum. Consider the
collection of linear transformations I, (0 < r < 1) that fix the direction in which
B is and that contract its perpendicullar direction by a ratio r. Call f, the
transformed of f by I, i.e. f, = fol.. Then, for r close to 0 § is clearly a



global maximum of f.. Call ry the supremum of the values of r for which this
happens. Our claim is that in these conditions # is a global maximum for f,,
but it is not the only one.

To prove the claim, the fact that 4 1s a global maximum of f,, for r arbitrarily
close to 7o implies that it is also a global maximum of f.,. On the other hand,
for any r > ro the absolute maximum of f, is not attained on £, nor in a certain
interval [ — ¢, + €] around B (because £ is a local maximum of every f,).
Consider a sequence r; > ro > ... with limit ¢, and for every r; let 4; be an
absolute maximum of I.;,. Then the sequence ¥; has at least one limit point ¥
in the compact [0,8 — €] U [8 + ¢, 7] and this limit point must be an absolute
maximum of f; .

The claim finishes the proof of the lemma as follows. Let [ =, ol', M =
I(K) =1,,(M") and C be the circle of radius f.,(8). This circle contains M and
the boundaries M and 8C intersect in the two pairs of opposite points in the
directions of 8 and 7. g

Proof: (of Theorem 1.1). If K is convex let us apply lemma 1.3 to it, and obtain
a circle C and a linear transformation ! sending K to a convex M in such a way
that M C C and dCNIM consists on at least two pairs of opposite points. The
inverse image E = [7}(C) is then an ellipse in the conditions of Theorem 1.1.

If K is not convex, apply the previous remark to its convex hull conv(K).
We will prove that any point in dconv(K) N OE is also in 0K NOE, and that
will finish the proof. Let P be one of the intersection points in dconv(K)NEE.
As we have Jconv(K) C conv(K) = conv(6K), P is contained in a segment
[Q, R] with @, R € 8K C E. Then, as P € JE, the only possibility is P = @ or
P =R. Thus, P€ 0K. g

2 Two Applications

In [5] and in [10] (see also the extended abstract in [9]), Theorem 1.1 has been
used in the context of Voronoi diagrams and Delaunay oriented matroids for con-
vex distance functions in the plane. In this section we will summarily describe
these results, emphasizing the role of Theorem 1.1 in their proofs.

Let K be a compact, convex body in the Euclidean plane E? with the origin
in its interior. For any two points P and @ in the plane, K defines a K-distance
function from P to @ (denoted Dk (P, Q)) as the minimum scaling factor A that
makes a scaled translation P 4 AK of K centered at P to pass through ). The
map Dk : E? x E2 — R, so obtained is called the conver distance function
induced by K. Voronoi diagrams for convex distance functions were introduced
in [3]. They have also been studied in [4], [5], [6], [7] and [8].

The words smooth and strictly conver applied to a convex distance function
Dg mean that its unit ball K is respectively smooth (it has one only support-
ing line at each boundary point) and strictly convex (its boundary contains no



straight line segment). These two properties have important geometrical con-
sequences, namely that every three points are either collinear or Dg-cocircular
(but not both) and if they are cocircular then there exists one only Dg-circle
passing through them. Concerning Voronoi diagrams and Delaunay triangula-
tions, a Voronoi diagram with respect to a non-strictly convex distance function
may have “edges” with non empty interior and a Delaunay triangulation with
respect to a non-smooth convex distance function may not be a triangulation
of the whole convex hull of the sites (see [5] for details).

Here we will always assume that the convex K (which is called the unit
ball of Dg) is centrally symmetric, in which case Dg is actually a metric. If
K is an ellipse, then the distance Dg is an affine transform of the Euclidean
distance and thus Voronoi and Delaunay triangulations for Dg are also affine
transforms of Euclidean Voronoi and Delaunay diagrams. Theorem 3 in [5]
(reproduced below and whose proof is based in Theorem 1.1) shows that for
any other K, the Voronoi diagram and Delaunay triangulation of some point
sets S with respect to the metric Dg will have a topological type forbidden with
the Euclidean distance.

Proposition 2.1 ([§]) If D is a symmetric, convez distance function whose
defining convez K is not an ellipse, then there exists some collection S of nine
points whose Voronoi diagram with respect to distance Dg has not the topological
type of any Fuclidean Voronot diagram.

Proof: (sketch) The proof is made via Delaunay triangulations, instead of
Voronoi diagrams. Delaunay triangulations are defined as being the (topologi-
cal) duals of Voronoi diagrams, having the Voronoi sites as vertices and straight
line segments as edges (even if in degenerate cases they are not true triangu-
lations). They are only well-defined if the distance Dg is strictly convex, but
Proposition 2.2 is trivially true for non-strictly convex distance functions.

Using our Theorem 1.1 one can find nine points as in figure 2.a, the four in
each corner lying in a scaled translation of the boundary of both the unit ball
K and in an ellipse E. This implies that the Delaunay triangulation of those
nine points respect to the distance Dk is actually as in figure 2.a.

2(a) 2() 2(c)
Fig. 2. An Euclidean and two non-Euclidean Delaunay triangulations.

Now, the fact that F is exterior to K implies that a certain perturbation of
the four corner points along their respective ellipses gives a Delaunay triangu-



lation as the one in figure 2.b or 2.c, which are topologically forbidden for the
Euclidean distance (see [5] for details). g

The second result in this section concerns oriented matroids defined from cir-
cles, which in [10] are called Delaunay oriented matroids (see [1] for information
on oriented matroids) and regularity of Delaunay triangulations.

A triangulation T of the convex hull of some point set S in the plane is called
regular (sometimes the words coherent or conver are used) if the point set can be
lifted in 3-space in such a way that the faces of the lower envelope of the lifted
point set project down onto the faces of T. The fact that Delaunay triangula-
tions for the Euclidean distance are regular is well-known and sometimes called
the lifting property of Delaunay triangulations: the Delaunay triangulation of
a point set S can be computed as the projection of the lower envelope of the
lifting of the sites into the paraboloid z = z? + y? in 3-space (cf. [2]). For a
smooth, strictly convex distance function K, the Delaunay triangulation of any
point set S is still a triangulation of its convex hull conv(S), but in Proposition
2.3 below we prove that it will be a non-regular triangulation for some point
sets, whenever the defining convex K is not an ellipse. Thus, these distances
do not have a “lifting property”: Delaunay triangulations for convex distance
functions cannot be computed as being the projection of the lower envelope of
any lifting of the sites.

The Delaunay oriented matroid DOM(S) of a set S of sites describes how
circles and lines partition S. More precisely, the covectors of DOM(S) are
the signed partitions of S obtained as the interior, exterior and boundary of
arbitrary circles, or the two half-planes defined by an arbitrary line and the line
itself. The concept can be generalized to non-Euclidean metrics, in particular
to convex distance functions, changing Euclidean circles for the Dg-circles of a
convex distance function Dg (i.e. the scaled translations of the unit ball K).
Nevertheless, it i1s not clear a priori whether the resulting covectors will satisfy
the axioms for an oriented matroid.

In [10] we show that, if the convex distance function is strictly conver and
smooth, then the set of covectors obtained using Dg-circles is actually an orient-
ed matroid for any point set S, but with one important difference with respect to
the Euclidean case: Euclidean Delaunay oriented matroids are realizable, again
because of the lifting property of Euclidean Delaunay triangulations. In the
contrary, for any smooth, strictly convex distance D with non-elliptical unit
ball K we can find eight points with non-realizable Delaunay oriented matroid
with respect to Dg.

Proposition 2.2 [10] Let Dk be a smooth strictly convez distance in the plane.
If Dg is not affinely equivalent to the Euclidean distance, then there ezists
a set S of eight points such that the combinatorial structure of the Delaunay
triangulation of S (with respect to Dg ) contains the eight triangles in figure 3.5
and such that points Py, Py, Ps and Ps are collinear, as well as points Ps, Py,
P; and Ps. Thus,



i) the Delaunay oriented matroid DOMp, (S) obtained for them with respect
to Dk is not realizable.

it) the Delaunay triangulation is not regular (it is not the projection of the
lower envelope of any point set in 3-space).

Fig. 3. Eight points with non-realizable D. O. M.

Proof: (sketch) Let us again apply Theorem 1.1 to the unit Dg-ball K and,
without loss of generality, let us suppose that the ellipse E obtained in the
Theorem is actually a circle (modifying K by a linear transformation, if needed).
Call A, A’, C and C’ the four points obtained in Theorem 1.1, lying both on
8F and on 8K (as in figure 3.a). Consider another four points B, B’, D and D’
lying on 8F and outside K, with arcs [4, B], [C, D], [4’, B'] and [C’, D’] being
of equal length.

Now, let the point set S consist on the eight points in figure 3.b, obtained
as

P = A, P,=D, P =B, P,=C,

Py :P4+BD', Ps =Py, + BA,
P7:P6+DB=P2+AICI, P8:P6+DC=P2+AIB’.

By construction, points P; P, Ps Pg and P3P4P;Ps are collinear. Also, points
PPy P3 Py, P3P4PsPs, Ps PsP;Ps and Py P3Py Py are cocircular with respect to
Euclidean circles but, with respect to the distance D, their Delaunay triangu-
lation contains the eight triangles in figure 3.b (for example, triangles P; Po Py
and P, P3P; come from the fact that there exists a Dg-circle passing through
P, and P, and having P, and P; outside). This finishes the proof of the first
statement.

We will only complete the proof of part (ii) of the Proposition. See [10]
for the proof of (7). If the triangulation was regular, there would be a lifting
{Q1,..-Qs} of {Py,..., Ps} whose lower envelope would project down onto the
triangulation. Consider the intersection point O of the lines Py P»PsPs and
P3P, P;P; and call v the vertical line passing through it. Call A, B, C and D
the intersections of v with the lines passing, respectively, through Q;Q2, @3Q4,
Qs5Q6 and Q7Qs. The fact that triangles Q;Q2Q4 and Q1(3Q4 are in the lower



envelope of the lifting implies that A is below B in v. With the same arguments
for the other triangles we conclude that B is below C, C is below D and D is
below A. That is a contradiction. g
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Fig. 3./Eight points with non-realizable D. O. M.



