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Construction ofreal algebraic
plane curves with given topology

Francisco Santos

Abstract. We study the problem of finding an algebraic curve in the real (affine or
projective) having each of the topological shapes that an algebraic curve can have. Our
aim is to give an effective algorithm that, with input a topological model T for the
algebraic curve, gives a polynumial whose zero set is isotopic to T, with a bound for the
degree needed in terms of some topological invariants of the model {number of connected
components, number and order of multiple points,...). studied here.

We show a method to comstruct such a polynomial which works if the topological
model has only double singularities and, in that case, gives a degree An+2K or 1n+2K—1
polynomial, where n and K are the numbers of double points and connected components
of the model.

The construction is based on a preliminar topological manipulation of the topological
model, and then some perturbation techniques to obtain the polynomial.

0. Introduction.

If we have two subsets A and B in a topological space X, and a global isotopy
which moves A to B we say that (4, X) and (3. X)) are topologically equivalent, or
that 4 and D have the same topological shape in X . In the context of real algebraic
geometry an interesting question is knowing which are the possible pairs (V. IR"),
or (V,IRIP™) up to topological equivalence, with V an algebraic set.

The answer to this question is far from trivial in the general case (see for
example [BCR], or [AK]). but simple if we restrict ourselves to the real (affine
or projective) plane: any imbedded graph in IRIP® with even order {possibly zero)
in every vertex has the shape of an algebraic set, and conversely any algebraic set
Ve IRIP? has the same shape that an imbedded graph with even order. For IR >
the characterization is the same except that there can be a certain number (finite
and even) of branches going to infinity.

The proofs of this characterization normally use polynomial approximation of
™ functions. and thus say nothing about the degree needed to ‘realize’ a given
topological shape by an algebraic curve. Our goal is to give a new. constructive
proof of the characterization. and to bound the minimal degree of a polynomial
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whose zero set has a given shape in terms of its number of some topological invari-
ants of the given shape. Note that every plane real algebraic set can be obtained
as the zero set of a single polynomial, so we are going to speak of algebraic curves,
rather than algebraic sets.

This problem is somehow related to Iilbert’s 16th problem. which asks for
the possible topological configurations of the ovals of algebraic M-curves in the
projective plane. (A nonsingular algebraic projective curve of degree d is an M-
curve if it has {d — 1)(d — 2)/2 ovals, which is the greatest number of ovals it
can have, according to ITarnach’s Theorem.) the main differences are that in our
problem we deal with possibly singular curves, and that we pose the inverse ques-
tion to ITilbert’s: instead of asking what possible shapes an algebraic curve with
fixed degree can have we ask what degree we need to construct an algebraic curve
with given shape. The perturbation techniques we use in the final part of the con-
struction (cf. Th.2.7) are similar to some also used in Ililbert’s problem. (See for
example {Vi] and [Gu].)

The construction we propose works {both in the projective and the affine plane)
if the topological model we want to realize is compact and has only double singular
points, and in this case the bound obtained is that every topological model in the
projective plane can be realized with degree d = 4N + 2K, or d = 4N + 2K -1
(depending on the parity of the topological model. cf. Definition 3.5 and Corollary
5.4). where N is the number of singular points and K the number of connected
components in the topological model.

For nonsingular curves this bound gives d = 2K, or d = 2K — 1 which is trivial
(for we can construct any non singular model as a product of K circles, or may
be K — 1 circles and a line), but also optimal (if the model consists on K nested
ovals it can not be “realized” by an algebraic curve of degree lower than 2K).
For singular curves we shall give examples of models with K components and ¥
double points in them which cannot be realized algebraically with degree lower
than 2N + 2K, so our bound is reasonably close to the optimal one (cf. section
6.2).

The paper begins with to sections devoted respectively to introduce the back-
ground on algebraic curves we wil need, and to proof the main result on pertur-
bations that will be used in the construction (Theorem 2.7). Section 3 introduces
some topological procedures to be used as a previous work on the topological
model. and sketchs the algorithm for the construction. which is developed in sec-
tions 4 and 5. Finally in section 6 we make some final comments, including the
possible generalization to higher order singularities.

1. Algebraic curves. Singularities.

Although we have announced results both in the projective and the affine planes
we will work always in the projective plane; the affine results will be a consequence
of the projective ones. Thus, throughout the paper we will use the term algebraic
curve or simply curve as an abbreviation for plane projective real algebraic curve,
meaning by this a real homogeneous polynomial f € IR[X.Y, Z] in three variables,
considered up to a constant factor. Sometimes we will call curve the zero set of f,
Vi={f(z.y.2) =0} C IRIP2, but always having in mind which is the polynomial
who defines it.

We consider the real affine plane imbedded in RIP? by the canonical map
(z.y) — (¢.y.1), and so the origin of RIP? is the point (0.0.1). the infinity line
is the projective line {# = 0} and the affine curve associated to f is wﬁauw\v
f(z.9.1)

A point (z.y.2) € V¢ is a singular point of f if fx(z.y.2) = fr{z.y.2) =
fz(x.y.2z) = 0. We say that a singular point P = (z.y.z) is an r-fold singular
point (or.that it has order r) if all the derivatives of f up to order » — 1 vanish at
(2.9.z) and there is an order r derivative of f not vanishing at (&, y. z). If we make
P =(0,0.1) (the orign) by a change of projective coordinates, then the order of
P coincides with the lowest degree of the monomials in the affine associated curve
fle.y) = f(z.y.1). (According to this. sometimes we will consider nonsingular
points as order 1 points. and points not in the curve as order 0). In these conditions,
in a small neighbourhood of P. f is the product of a certain number of analytic
branches, each of which can be parametrized by a series in the form

z=apt™+ ...
y = b,1" + ...
z=1

with a;.b; € € for 1 > n. The branches are said to be in primitive form if not both
a, and b, equal to 0 and the exponents of ¢ in the non zero terms of the series
have no common factor (i.e. if the exponents cannot be lowered by a change of
parameter u = t* for any & > 1 (see [Wa] or [Se]).

The number 7 is called the erder of the branch, and the line defined by 2 : y =
an : b, is the tangent line of the branch. A branch is called nonsingular if it has
order 1.

The sum of the orders of all the branches passing by P equals to the order 7 of
P: in particular, there are at most r branches passing by P. Moreover, the tangent
lines of the branches at P coincide with the linear factors of the part f. of lowest
degree in the associated affine curve, and the sum of the orders of branches with
a fixed tangent line, say z : y = a : b, equals the multiplicity of the factor bz — ay
in fr.

Each analytic branch has the (local) topological shape either of an isolated
point (if it is a complex branch, i.e. if it cannot be parametrized with all the
a; and b; real numbers) or of a line passing by P (if the branch is real). so the
topological (local) shape of the curve in a neighbourhood of P is that of a certain
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number s of lines passing by P. This number is at most the order of P, and can
be 0, meaning that P is an isolated point of the curve.

We shall be concerned mainly with two types of singularities: nondegenerate
singularitics and 2-fold sinqularities having two real different branches:

An r-fold point P of f is called non-degencrate if there are r different tangent
lines at P, i.e. if all the branches at P are non singular and have different (real
or complex) tangent lines. If P is the origin. an easy characterization exists: the
origin is an r-fold nondegenerate point if and only if the part f, of lowest degree
of f has degree r and is square-free.

Tor nondegenerate r-fold points we can say that not only the topological shape
but also the differential shape of f in a neighbourhood of P is that of a certain
number s of straight lines intersecting at P, where s is the number of real branches
at P, i.e. the number of real linear factors of f.. if P is the origin. 5 must be a
number from 0 to r and congruent to r modulo 2, because each complex branch
appears joint with its conjugated. If s = r, i.e. if the r branches at P are real. we
will say that P is a real-nondegenerate r-fold point.

A 2-fold singularity with two real different branches is always diffeomorphic to
the singularity of the curve X?—Y¥ for some positive and even integer k (see [Vi]).
In the terminology of {AGYV] and [Vi] it is then called an A;_; singularity. The
actual value of k¥ — 1 (which is called the Milnor number of the singularity), will
not be important for us, and thus we shall call A~ sinqularities those singularities
which are of type A} for some even k.

Curves with A~ singularities in a point P can be obtained (and will usually
be in our constructions) multiplying two curves f and g. both passing by P. non
singular in it and with no common factor (or at least with no common factor
passing by P).

2. Perturbation of curves.

Tor the construction of the curve in §5 we will need to perturb some given curve,
in order to change its topology in a controlled way. Ilere we give the technical
results which enable us to do that. The main results are Propositions 2.4, 2.5 and
2.6 which combined give Theorem 2.7. Both 2.4 and 2.6 are particular cases of the
‘Lemma on the class of a point’ and the ‘Lemma on isotopy’ from [Gu]. and 2.5
can easily be deduced from [Vi]. Nevertheless, we give proofs of them. using little
algebraic background.

Definitions 2.1 Let f and g be two algebraic curves of the same degree n. A
perturbation of f by g is any curve of the form f + £¢4. with £ € IR, and we say
that a property is true for small perturbations of f by g if there exists an ¢p such
that the property is true for any perturbation of f by g with |¢| < £.

A regular domain G will be for us an open set in IRIP? whose boundary is
a finite union of disjoint rectangles, meaning by a rectangle anything which is
a rectangle for some projective system of coordinates. We say that a curve f is
requlerly disposed in GG if it has only a finite number of singularities in (. no
singularity on its boundary and crosses this boundary transversally.

We say that two curves f and g are transversal to one another if they intersect
only at non singular points of both of them, and they have different tangents at
these intersection points.

Lemma 2.2 Let {f;} be a family of univariate real polynomials of the same
degree, whose coefficients vary continuously with one or more parameterst € R",
and suppose that for t = 0 fo has r real roots (counted with multiplicities) in a
certain closed interval I. Then, for sufficiently small values of the parameters t
the polynomial f; has at most r roots (counted with multiplicities) in 1. Moreover,
if the r roots of fo in I are different and not in the extremal points of I then f;
has exactly v different real roots in I, for smallt.

Proof. Let d be the degree of the polynomials {f;}. Then, the d complex roots
of the polynomials f; vary continuously with ¢, (see for example [BRY]); thus, for
small ¢, the roots of fo which were outside the interval I remain outside (because
of I being closed) and the number of roots in I cannot increase. Moreover, for the
number of roots to decrease, some of the r roots of fo in I must get out from [
either as a real root (and that implies fo having a root in a extremal point of [),
or as a complex one (and that implies fp having a double root in I. because a
complex root can only appear jointly with its conjugated). O

Lemma 2.3 Let f and g be two curves of the same degree, and let IV be an open
neighbourhood of the zero set of f. Then the perturbed curve f +cq is contained
i U for e sufficiently small.

Proof. Letus call (e, X.Y,Z) = f(X.Y.Z)+¢g(X.Y.Z). which is a continuous
function in R x RIP? and suppose that the lemma is not true. Then there exists
a sequence {£;} which tends to zero. and for each ¢; a zero z; of f+ ;¢ outside /.
Now, RIP*\I/ is conmpact, so {; } contains a convergent subsequence. which we still
notate {z;}. with some limit 2 outside I7. Then, the sequence {(¢;. )} C R xRIP*
tends to (0, z). and by continuity of I, I'(0.z) = 0. But I'(0,2) = f(z), which
gives the contradiction, because z is not in the zero set of f (it is not in I/). O

Proposition 2.4 Let f be a curve with a real-nondegenerate r-fold point at P,
and let g be another curve of the same degree d than f and order at least r at P.
Then a small perturbation of f by g still has a real-nondegenerate r-fold point at
P, and moreover there exists a small rectangle U around P such that the perturbed
curve f + &g is tsotopic to f in I/, for small ¢.

Proof. Without loss of generality we can suppose that P is the origin, and work
with affine coordinates, for the problem is local.
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Tirstly, f + £g has an order r singular point at the origin, because f and g
have no terms of degree lower than r. and the term of degree r. which is f, + €g,.
does not vanish for small €. Moreover, the r projective roots of f, + £g, vary
continuously with ¢, and so they must be all different and real for small ¢, because
they are different and real for £ = (). We conclude then that the perturbed curve
has a real-nondegenerate r-fold point, for small «.

To find the rectangle {7 for the isotopy, eventually rotating the coordinate axes,
we can obtain that neither the part of lower degree f, of f. nor the part of higher
degree fa. have X as a factor (i.e. f has not a vertical tangent at the origin, and
does not pass through the projective (0.1,0) ). In these conditions. f(0.Y) has an
r-fold root at Y = 0, and f(z.Y) has degree d for every fixed .

Call m; < m2 < ... < m, the slopes of the r tangent lines of f at P. and take
r+ 1 lines Iy, ...l passing by P and with slopes a9 < m; < a1 < ma < ... <
m, < a, (i.c. such that f.(z.Y’) has alternatively opposite signs at them. for every
z #0).

Now. if we choose an 39 > 0. such that f(0.Y) has only 0 as a root in [—yo. 10
and zy sufficiently small. we have:

i} =10 < zoay and zoar < o.

i) f(z.Y) has at most r roots in the interval [—yo. yo]. for every ¢ € [—zq. 2o).
t11) for every z € [—z.2o]. f has the same sign than f. at the /; lines (i.e.,
alternatively opposite signs).

Statement (i¢) comes from Lemma 2.2, and (i) can be obtained because along
each of the /;’s {i.e.. making the substitution ¥ = ;X in f) we have

FX,aX) = [N, ;i X) 1+ o X + ...+ agr X4T),

where a; = frpi(X. i XN)/(fr{X. a; X)X'?) are real constants.

Consider then the rectangle I/ = [—zo.20] X [~¥o.70]. and let us proof the
proposition.

By (#ii) and (i), for every & € [—xg.20] f(2.Y) has at least r roots in the
interval [—yo. 70] and because of (i) it cannot have more than r roots, so f(\.Y)in
I/ has the shape of r lines crossing at P, one going between each pair of consecutive
{; lines.

Now let us call F(e, X.Y) = f(N.Y) +eg(X,Y). Along the lines I; we have

now
Fe. X.aiX) = fr(X.a:X)(Bole) + Bu(e)X + ... Fa-r(e)X4T),

with 3;(0) = a;, 30(0) = 1. and the 3; varying continuously with ¢. In particular,
for ¢ € [—o. zo] and small €. I' has along each line /; the same sign that f, had
and, thus, I'(¢,z.Y) has at least one root between each two consecutive of the I;
lines. Again by Lemma 2.2, I'(¢,z.Y) cannot have more than r roots in [—yo. 710].
so it has exactly one root between each two [; lines. So, for sufficiently small € the
shape of the curve f + ¢g in the rectangle I/ is again that of r lines crossing the
rectangle, each between two consecutive /; lines, and thus f + £g is isotopic to f
inl/.0

Proposition 2.5 Let G be a reqular domain and let f be an algebraic curve
reqularly disposed in G and nonsingular in . Let g be any other curve of the
same deqree d than f. Then, a small perturbation of f by g is non singular in G,
reqularly disposed in G and isotopic to f in (5.

Proof. f being regularly disposed in G implies that it has no singular points
in its boundary. so f is non singular in the closure G of (¢ and transversal to its
boundary. By continuity, for small ¢ f +¢g is still nonsingular in G and transversal
to its boundary. and thus regularly disposed in G.

Now, for the isotopy. Lemima 2.3 ensures that for small ¢ the perturbed curves
stay close to the original f. Let P be any point of f in G, and let us suppose that
it is the origin and has horizontal tangent. If 4(P) = 0. then also f(P) = 0. and
we apply Proposition 2.4 to P (with r = 1). to find a (local) isotopy from f to
f +¢€g in a neighbourhood of P. If g(P) # 0. then f + £4 is, in a neeighbourhood
UV of P, a level set of the rational function f/g. which has no critical points in
/. The implicit function theorem says then that for small ¢ the level set f + ¢g
is a graph of a function Y = funct(X) in a neighbourhood of P, the function
varying continuously with ¢ and that gives the (local) isotopy. G being compact,
we can cover f in (G by a finite number of such local isotopies, and they glue to
one another to give the global isotopy on G. O

Proposition 2.6 Let f be a curve with an A~ singularity at P, and let g be
another curve of the same degree not passing by P . Then, there exists a small
rectangle U7 around P such that any small perturbation of f by g has no singular
pownt in U, and has locally one of the two shapes shown in fiqure 1.

U
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2 N
e —

Figuve !

Moreover, the decision of which of the two perturbations occurs depends only
on the sign of g at P, the sign of f at the regions adjacent to P and the sign of
the parameter £ of the perturbation.

Proof. DBecause g is not zero at P, for any small rectangle I around P. g does
not vanish in I/ . Then, the polynomial f +¢¢ € R|X.Y. Z,.£] is non singular
in I x R, for its derivative with respect to ¢ is g. We can apply to it Bertini’s
Theorem [BCR 9.5.4] to conclude that the level sets (i.e. the perturbed curves in
{7 for each €) are non singular except for a finite set of ¢'s. in particular they are
non singular for small € # 0. Besides, f + £g does not pass through P. for ¢ # 0.

Tor the isotopy, we again suppose that P is the origin and that the Y axis is not
a tangent line of f at P, and work with affine coordinates. Under these conditions
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Y =0 is a root of multiplicity 2 of f(0.Y). and the two nonsingular branches of
f at the origin can be solved for Y in the way Y = f;(X) and Y = f2(X). where
the f; are two different analytic functions with f;(0) = 0 (cf. [Wal)).

Take 1o such that f(0.Y) has no root different from 0 in {—yo. o). Now, for
z # 0 sufficiently small we have fi(z) # fa(z). fi(z) € [~y0.50) for i = 1,2, and,
by Lemma 2.2, the only two roots of f(z.Y) in [—yo.y0] are fi(z) and fa(z).

Our rectangle IV will be [~z¢.2¢] X [—0.0] such that the above is true for
z € [~20.%0).2 # 0 and. in I/, f has then the shape of two lines going from left
to right, intersecting at the origin.

Now, for £ small the perturbed curve is non singular and has still two different
roots in the left and right sides of I/ (by Lemma 2.2), and there must be then at
least two branches joining these four points in two pairs (here and in the rest of
the proof the word ‘branch’ has the imprecise meaning of nonsingular connected
parts of the curve, and not that of ‘analytic branch’). These two branches can be
disposed only in the two ways of figure 1, and must approach P as ¢ tends to 0,
because of Proposition 2.5: outside any small circle around P the perturbed curves
are isotopic to f for small ¢.

What we must see is that the perturbation makes not appear more branches
in I/ (for example. new ovals) appart from these two.

If it did appear new branches. in any case for sufficiently small ¢ they would
contain no singularities. they would not touch the boundary of I/ and they would
collapse in P as ¢ tends to zero (again by Proposition 2.5) . The first two conditions
imply that they must be ovals (homeomorphic to circles) and we are going to see
that the third one gives a contradiction.

Tirst note that the perturbed curves f + <7 can not intersect each other for
different &’s, because of g having no zeros in /. Now suppose that the perturbed
curves have an oval for arbitrarily small ¢’s. For a given £¢ let us call ¢ one of the
ovals. cg cannot contain P, because f+£o¢g does not intersect f in I/, and thus has
P in its interior or in its exterior. Moreover, as ¢ tends to 0, P cannot pass from
the interior to the exterior of the oval nor viceversa. Now, if P is exterior to ¢y, it
is impossible for the oval to collapse in P as ¢ tends to 0 without intersecting cg
for some ¢ < ¢g. If P is interior. it is Impossible for the two exterior branches of
the curve to approach P without intersecting cg. and that gives the contradiction
in any of the cases.

The assertion relating the perturbation to the signs of f. g and ¢ is trivial, for
the perturbed curve f + ¢g lies in the part of IRIP? in which f has opposite sign
toegg. O

theorem 2.7 Let f be a real curve whose singular points divide in two groups D
and A, D consisting only on real-nondegenerate points and A on A™ type poinis.
Let g be a curve of the same degree which has a singular point of at least the same
order than f in the points in D, and not passing by the points in A.

Then, any sufficiently small perturbation f+£q has a real-nondegenerate singu-
lar point of the same order than f at each point in D, has no other singular point

and its topological shape in RIP2 can be obtained modifying each A~ singularity
of f in that of the two ways in figure 1 compatible with the signs of f, g and €.

Proof. the proof is straightforward from Propositions 2.4-2.6. It suffices to take a
sufficiently small rectangle around each singular point of f to apply 2.4 or 2.6 and
consider the regular domain consisting on the whole IRIP 2 without these rectangles
to apply 2.5. 0

3. Topological models. Flips.

The problem we want to solve can be stated as “given a topological model T in
IRPP? (or IR ?), construct an algebraic curve which realizes it”. according with the
following definitions:

Definition 3.1 Let T be any subset of IRIP2, We say that T is a topological
modelfor an algebraic curve if it is homeomorphic to a graph with an even (possibly
zero) number of edges reaching to each vertex. A subset 7 of R? is a topological
model if it is the intersection with IR* of a topological model in RIP? which cuts
the infinity line in only a finitenumber of points.

We call order of a point in T half the number of edges reaching to it if it is
a non-isolated vertex of the graph. 2 if it is an isolated vertex and 1 otherwise.
We call singqular points of T the points of order greater than 1. which are finite in
number.

Definition 3.2 Let X =RP>or R, and let A, B C X. We say that 4 and
DB have the same (topological) shape if there exists a global isotopy in X' which
sends A to B. We say that an algebraic curve f realizes T if the zero set V; of f
has the same shape than 7'.

Remarks 3.3

(1) We recall that the even order in each vertex of a connected graph is the Euler
condition for the graph being the image of a closed curve with a finite number
of self-intersections: even order connected graphs are the graphs which can be
continuously ‘drawn’ without passing twice by any edge. and finishing in the
starting point.

(i1) Normally we will consider topological models up to shape equality. For example,
the drawings in figure 2 represent the same topological model in R1P2.

Figure 2
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(ili) We will treat only topological models with order 2 in all their singular points.
In section 6.3 we will refer to multiple points (points of order bigger than 2).

(iv) In §4 we will find one combinatorial characterization of the shape of a topologi-
cal model. This is important if we want to our construction to be an algorithm,
for the data characterizing the shape of the model will actually be the input of
it. A more natural characterization (based on the so-called Gauss-codes) can
be found in [Sa], [Go] and [GS]. By now, topological models can be thought
as simple drawings in a sheet of paper.

Definition 3.4 Let ! be a connected and non singular topological model in
IRIP2. Then ! is either isotopic to a line or to a circle, and is called a pseudo-
line or an oval, respectively. An imbedded graph in IRIP? is called orientable if it
does not contain any pseudo-line or. equivalently, if there exists a pseudo-line not
intersecting it.

Definition 3.5 Let T be a topological model in RIPZ and let { be a pseudo-
line transversal to 7. We will say that T is even (resp. odd) if T and ! have an
even (resp. odd) number of intersections. The definition does not depend on the
choice of | and is a shape invariant of 7.

An algebraic curve is even if and only if it has even degree, and orientable
models are even.

The next lemmas enable us to consider only connected models:

Lemma 3.6 Let T be a topological model in RIPZ. Then all the connected com-
ponents of T are orientable except for may be one of them.

Proof. This comes from the fact that two pseudo-lines in IRIP* do necessarilly
intersect. so T cannot have two different non-orientable connected components. O

Lemma 3.7 Let T be a topological model in RIP? and suppose that each of its
connected components Ty..... Ty is realizable by an algebraic curve f; of degree
d;, and such that if the component T; is orientable then its realization f; does not
touch the infinity line.

Then the whole model T can be realized algebraically with degree 3 d;.

Proof. the condition that the realization of the orientable components is made
without touching the infinity line implies that we can make these realizations
as small as we want, just contracting homotetically the affine part of RIP2. We
can afterwards translate this contracted curves anywhere in RIPZ by a projective
translation. and none of these two operations will change the degree of the curve.

To realize the whole model 7" we realize firstly the non orientable component (if
there is one) and then place the realization of each of the orientable components,
sufficiently reduced. in the appropiate place to have a curve with the same shape
of the topological model. This curve —the product of the curves realizing each
component— will have degree _ d;. O

Trom now on we will suppose that our topological model T € RIP? is con-
nected, and that it is not a single point (for a single point is trivially realized by
a degree 2 curve). We will suppose also that it has only double singularities.

Definition 3.8 Let P be a singular order-2 point of a topological model
T. A flipof T at P is a topological model obtained topologically dissipating the
singularity of T at P. i.e. replacing a little disc around the crossing point P by a
disc with two disjoint arcs. There are two possible flips at P, up to shape equality,
as in figure 3 below.

1 4 1 4 1 4
VaA AN
— opP
2 3 2 3 2 \/m
T T T2

Figurc 8

Lemma 3.9
1) If T is connected, at least one of the two flips at a given vertez P is connected.
1} If T is even {odd)} then any flip of T is even {odd).

Proof.

i) Let us call ‘1’, *2°, ‘3’ and ‘4’ the four edges reaching to P. numbered in a
circular order. and let 77 and 7> be the two possible flips at P, as shown in figure
3.

If 71 1s not connected, the component of T; which contains '1" and '2" is Eu-
lerian and thus starting by '’ we can arrive to 2" by a path outside the small
neighbourhood in which the flip is made. Thus, '’ and *2’ are connected in T by
a path not passing by P. and 7% is connected.

i) Tt is straightforward because the line in the definition of the parity of T can
be chosen not intersecting the small disc in which the flip is made. O

Proposition 3.10 DBy a suitable sequence of flips in the singular points of T we
can transform it to a non sinqular topological model Ty which is a pseudoline of T
was odd and an oval if T was even.

Proof. Tt suffices to make a flip in each singular point of 7" until we have a non
singular topological model 7p. Lemma 3.9 ensures that these flips can be chosen
such that the final model is connected and has the same parity than 7. Now. a
nonsingular connected topological model is either a pseudoline (which is odd) or
an oval (which is even) so the result is proved. O

With this we can sketch the complete construction of algebraic curves with
only double points, as follows:
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We begin with a topological model T that we may suppose connected by Lemma
3.7. If T is non singular, or a single point. then we can trivially realize it by a
degree 1 or 2 algebraic curve. If it is not, by a sequence of flips we can get from it
a nonsingular connected model Ty (by Lemma 3.9) which will be either an oval or
a pseudoline (depending on the parity of the original model T'). In each flip made
we join with a line (that we shall call a ‘flip line’, and draw in grey in the figures)
the two nonsingular branches that appear. as in figure 4. We will call T, together
with these flip lines, the skeleton of the topological model T and will notate it T™.
Up to shape equality we can suppose that T is the X-axis if T was odd, or the
unit circle if 7 was even, and the only thing we know about the flip lines in the
skeleton is that they are simple arcs joining two different points of 7. and that
these arcs do not intersect each other nor 7p (see figure 4 for an example with 7
even).

Figure 4

The line or circle Ty can be algebraically realized with degree 1 or 2. and to
recover the shape of the original model 7" from T~ it suffices to make the inverse
operation of a flip along each flip line. To miake this. algebraically, we will insert
along each flip line an algebraic curve with the shape of an ‘eight’ (as in figure
5.a) and then perturb the product of 75 and these ‘eights’ (as in figure 5.b). To
use Theorem 2.7 for the perturbation we need that:

- each ‘eight’ will be tangent to Tp at the ends of the flip line. Apart from these
tangencies (which will be A~ type singulariries in the product) the ‘eights’ will
not intersect Ty nor the other ‘eights’.

- the only singular point in each ‘eight’ will be a 2-fold nondegenerate point. and
the tangency points of the ‘eights’ with Ty will be of type A™.

N Y —
B\

Figure 5

To ensure that the product of T, with the ‘eights’ has degree lower or equal than
4n + 2 (with n the number of double points in T'), we must construct each ‘eight’
with degree 4 and then make the perturbation without increasing the degree. In

§4 we are going to study the construction of the ‘eights’, and in §5 how to make
the perturbation.

4. Construction of the ‘eight’ curves.

Throughout this section 7" will be a connected topological mode] with only order 2
singular points, 7™ a skeleton obtained from it by a sequence of flips, and To C T™
the X-axis if 7" is odd and the unit circle if even.

Lemma 4.1 Let T~ be the skeleton of a topological model. Then the flip lines that
represent the flips made in T can be put, by an isotopy, in such a way that they
cross the infinity line transversally and no more than once each.

Proof. Tirstly, by a small isotopy of the flip lines we can make them transversal
to the infinity line. Now suppose that 7™ has minimal number of crossings with
the infinity line among the skeletons that can be obtained from 7" by an isotopy.
We will show that under this assumption each flip line of 7™ crosses the infinity
line at most once.

If there is one flip line that crosses the infinity line more than once. let P and
@ be two such crossing points. consecutive along the flip line. The arc from P to
Q in the flip line divides the affine part of RIP* in two open regions, one of them
containing Tp (the X-axis or the unit circle) and the other one {we denote it by
[7) not intersecting it. By an isotopy in IRIP* we can make I/ and the arc of flip
line PQ traverse the infinity line. thus decreasing the number of crossings of the
skeleton with the infinity line. That contradicts the hypothesis. O

Lemma 4.2 Suppose that the skeleton T has only one flip line and let P and Q
be the points of Ty joined by it. Then, an isolopy on the skeleton can put it in one
of the four different dispositions shown in figure 6(1) and fiqure 6(iij for the cven
and odd cases, respectively.

(@)

Figurc 6(i1)
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Proof. In the odd case, RIP?\ Ty is simply connected, so the isotopy class of the
flip line depends only in the fact that it goes upwards or downwards at P and
Q. and that gives the four possibilities (a). (b). (c) and (d). In the even case, the
flip line must be either interior or exterior to the circle. If it is interior the only
possibility is (b), for the disc is simply connected; if it is exterior and does not cross
the infinity line the two possibilities are that it goes ’clockwise’ or ’anticlockwise’
from P to Q. and that gives (c) and (d). Finally if it crosses the infinity line we
can suppose that it does only once (because of Lemma 4.1), and it is of type (a).
[n}

This fact can be generalized to any number of flip lines. in the following result:

Proposition 4.3 the shape of the skeleton T is characterized by the following
data: the parity of T; the (ordered) pairs of points in the X-azis or the unit circle
joined by flip lines; and a letter ‘a’, ‘b°, ‘c’ or ‘d’ for each pair of points to say
which is the disposition of the corresponding flip line respect to the X-azxes in the
odd case or the unit circle in the even case.

Proof. As in Lemma 4.2, once we know whether the skeleton is odd or even (that
is, whether Ty is the X-axis or the unit circle). for each pair of points joined by a
flip line we will have the four choices in figure 6 . Note that ‘the pair of points’

means actually ‘the ordered pair’, because otherwise possibilities ‘¢’ and ‘d’ of the
even case would be the same one. O

Corvollary 4.4 the shape of a skeleton T with n flip lines can be combinatorially
characterized by the following data:

- its parily;

- a list which contains twice each number from 1 1o n, and

- aletter ‘a’, ‘b’ ‘c’ or ‘d’ associated to each number from 1 to n.

Proof. Let us number the flip lines in 7™ with the numbers from 1 to n. Then.
walk along Ty (from left to right if it is the X-axis, and in counterclockwise sense
with an arbitrary starting point if it is the unit circle}. and make the list of the
2n extremal points of the flip lines as they appear along Ty, denoting each point
with the number of its flip line. That produces a list which contains each number
from 1 to n twice. The letter associated to each number indicates the type of the
flip line, as in Proposition 4.3, choosing as order for the pair of points joined the
order in which they appear in the list. This characterizes the shape of the skeleton,
because in Proposition 4.3. what is important is not which are the actual points of
Tp joined by flip lines, but its order along the X-axis (or their circular order along
the circle), and this information is contained in our list. O

Remarks 4.5:
(i) The shape of the original topological model T can be recovered from the skele-
ton 7™, and so the data described characterizes its shape too. As mentioned

(

in Remark 3.3.(iv) we can consider these data as the input for an algorithm of
construction of algebraic curves (connected and with only double points).

(i1) Not all the data structures of the form described in Corollary 4.4 are the data
associated to a suitable skeleton. There are some extra conditions that we will
not specify and that are imposed by the fact that the flip lines can not intersect
one another.

i) the data characterazing the shape is not unique, because there are some arbi-
trary choosings (the numbering of the flip lines and the starting point to make
the list) and, what is more important, we can have the same shape with ap-
parently different disposition of the flip lines in the skeleton. In fact the four
drawings for the odd case in figure 6 have the same shape, as well as ’¢’ and
’d’ in the even case.

We can use the combinatorial characterization of the shape of 7™ shown in
Corollary 4.4 to construct a new skeleton with the same shape (we still notate this
new skeleton 7). and in which all the flip lines are going to be line segments or
arcs of conics. and that will enable to insert the ‘eights’ we need along them. In
fact only very special arcs of conics are going to be needed:

the even case:

We consider first only the ‘a’ flip lines (the ones that cross the infinity line).
Because these flip lines do not cross each other, the two points joined by each of
them must be opposite in the circular ordering of all of them, so we can place these
points to be actually opposite in the unit circle, and the flip lines joining them to
be segments of straight lines, crossing the infinity and normal to the unit circle
(figure 7.a).

(123415423656)

(1,b)(2,a)(3,2)(4,d)(5,bX6,d)

Figure 7

Then we can place the rest of the points In the circle compatibly with their
ordering in the list. and take as flip lines joining each pair the (unique) arc of circle
normal to the unit circle which joins them in the corresponding region (inside the
circle for ‘b’ lines and outside for ‘c’ and ‘d’). The flip lines so constructed do not
touch each other (figure 7.b).

Just one remark: if there is no ‘a’ type flip line we must be aware of the
distinction between ‘¢’ and ‘d’ lines, and place the points in the circle such that
the arc of normal circle joining them is the right ‘c’ or ‘d’ type: for example the
two skeletons in figure 8 do not produce the same topological shape.
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(1234 4321) 12344321
(1,eX2,dX3,d)4,d) (1,e)(2,c)(3,9)(4,0)
Figure 8

The odd case:

We place the points along the X-axis in the order they appear in the list. and
take as flip lines of types ‘¢’ and ‘d’ semicircles in the appropriate side of the X-
axis (up or down), and for those of tipe ‘a’ and ‘b’. arcs of hyperbolae with axis
{Y = 0} (see figure 9). If their assymptotic lines are chosen sufficiently sloped
the hyperbolae will not intersect the half-circles. and if they are chosen with the
exterior ones more sloped than the inerior ones they will not intersect each other.

(1231435254 (L,a)(2,b)3,d)(4,2)(5,2)

Figure 5

Now we can construct an ‘eight’ along each flip line with the conditions stated
at the end of §3:

Proposition 4.6 [For each of the ‘flip lines’ described above it is possible to
construct an algebraic curve of degree 4 with the shape of an ‘eight’ tangent to Ty,
with a 2-fold nondegenerate singular point, and so close to the flip line as we want.

Proof. We will consider each case separately:

‘¢’ and ‘d’ flip lines, in the odd case.

Ty is the X-axis and, without loss of generality, we suppose that the flip line is
the upper half unit circle (for case ‘c’, case ‘d’ is analogue).

Let a be a real positive constant. and consider the curve

Fo(X.Y,2) = (X +Y?-2aXZ - Z*)(X? +Y? +2aXZ - Z7),

which consists on two circles with centers at (a.0) and (—a.0). both passing
through the points (0.—1) and (0.1) (figure 10.a. Remark that we use affine co-

ordinates for the points not in the infinity line. The third projective coordinate
is supposed to be always 1. In the polynomials we maintain the variable Z. to
preserve their degree). If we perturb the curve in the form

F(X.Y, Z) = fo X.Y. Z)+e(Y=Z)2 22 = (X2+Y 2= 222 —4a® X 222 +e(Y - 2)2 22,

with ¢ > 0. the resulting curves have the following properties. all easy to check:
i) they have a nondegenerate 2-fold singular point at (0.1),
1) they do not have any other singular point,
#11) they lie in the region where fo(X.Y. Z) is negative, i.e. the two small regions
between the circles that compose fj.

® L (c) e=(a’d )4

Figure 10

Moreover. they have in fact the shape of an ‘eight’, as we want:

Call f = fy and g = &(Y — Z)*Z>. Point (0, 1) is a nondegenerate 2-fold point
of f which is also a 2-fold point of g and (0. —1) is an A~ singularity of f which is
not a zero of g. so Theorem 2.7 describes the perturbation for small ¢. which must
be as in figure 10.b according to property (iii}). Now. if for some ¢ > 0 the shape
of f. changes. call zo the infimum of them: thus there exist £; < ¢g < £2 as close
to €9 as we want, and such that f., and f., < have different shapes. Applying
Theorem 2.7 to f.,. which has only (0. 1) as singularity by properties (7} and (31),
we obtain that for any ¢ sufficiently close to £y the shape of f. is the same than
that of f.,. and that gives the contradiction.

Moreover. if the parameter a was chosen sufficiently small the curves f. are as
close to the unit circle as we want. again because of property (7ii): thus, all that
we need to do is to find some f. which is tangent at both sides to the X-axis and
not intersecting it. except in the two tangencies (figure 1(1.c), and this is obtained
by posing that f.(.X.0. 1) has two double roots, which happens for

£ = (a® +a%)/4.

‘a* and ‘b’ type lines, in the odd case.

Without loss of generality we suppose that the hyperbola is the standard X2 -
Y? — Z2, and by a projective change of variables X «— Z the arc of hyperbola
becames a half unit circle and we reduce this case to the last one.

‘b, ‘¢’ and ‘d’' type lines, in the even case.

Now we have the flip line being an arc of circle normal to the unit circle. By
affine transformations we can inverse the situation, and suppose that the flip line
is an arc of the unit circle, which joins two points of another circle ' normal to it.
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and assume moreover that this latter circle has its center on the Y-axis. and that
the flip line is the upper arc of the unit circle. (figure 11.a and 11.b).

@ ¢>1 ®) c<-1
Figurc 11

The general equation of such a circle is C{(X.Y) = X?+Y?—2Y Zc+ Z?, where
(0. ¢) is its center, and v/cZ — 1 its radius. Now the situation is similar to the first
case and we can use the f. ‘eights’ that we defined there, except that now we must
find an f. tangent to the circle ' instead of the X-axis. Note that again parameter
a in the equation of f, is fixed in advance and as small as we need it, and we want
to find ¢ for a and ¢ given. This can be done making X?> = —Y>+2YZc—Z% in
the equation of f.. which gives a degree two equation on Y. f. and ' are tangent
when this equation has only one, double, solution, and this is so for

e=(a®+aH)c-Df{c+2+a>+1).

‘a’ type lines, in the even case.

Now. without loss of generality, we suppose that the flip line is the part of the
X-axis outside the unit circle, and by a change of coordinates X — Z the flip
line becomes the segment [—1. 1] of the X-axis, and the unit circle the standard
hyperbola. We can take then our ‘eight’ to be (X>+Y*/a?)* - X2+ 72 +Y*xZ%/a>.
which is an ‘eight’ along the segment of height 2a¢. O

5. Perturbing the curve.

We have T' a topological model connected and with n double points. T the X-axis
if T is odd and the unit circle if T is even, and 7™ the skeleton of T', that is Tp, with
n flip lines joining points of 7p. in such a way that 7™ is isotopic to the result of
making a flip in each double point of T. By the previous results (Proposition 4.6)
we suppose that we have constructed n algebraic curves of degree 4 €1.¢€2.....¢€n
with the shape of ‘eights’ along the flip lines, disjoint and tangent to 7y, and with
a real nondegenerate 2-fold singularity in each. Call f the product of Ty with the
¢;, which is an algebraic curve of degree 4n + 1 or 4n + 2 in the odd and even
cases respectively. OQur task now is to perturb f (as we did in figure 5 to recover
the shape of T

Proposition 5.1 In these conditions, there exists a curve g of the same degree
than f, and such that:

(i)q has a singular point at the nondegenerate sinqular point of each ‘eight’.

(ii)g does not pass by the tangency points between the ‘cights’ and Ty.

(iii}In a neighbourhood of each tangency point, the sign of g coincides with the
sign that f takes in the region inside the ‘cight’.

Proof. We do it separately for the even and odd cases.

the odd case:

Let us consider first the sign conditions for g: Let P;,..., Pa, be the 2n tan-
gency points of the n ‘eights’ with the X-axis, numbered in the order they appear
along the axis. We will call sign of P; the sign that f takes in the interior region
of the ’eight’ at F;. i.e. the sign that we want ¢ to take at P;. We will say that
there is a sign change between F; and P,y if F; and Pi4; have opposite sign.

Let s < 2n—1 be the number of sign changes along the X-axis. We can construct
a curve g1 of degree s which has the appropiate sign in each F; as the product of
s vertical lines, each crossing the X-axis in one of the sign changing intervals. Let
us complete g; with 2n +1 — s vertical lines at the right of Pa, (or the left of P;)
to get a curve g; of degree 2n + 1 with the appropiate sign at each P; and not
passing by the tangency points.

The condition of g having a singular point in the n nondegenerate double points
of the ’eights’ is easy to achieve multiplying g1 by the 2n degree factor

g2 = [JUeiX = aiZ)* + (X = aiV)? +(b:Z - ¢;Y))%.
1

where {a;. ;. ¢;) are the coordinates of the n nondegenerate points of the ‘eights’.
The factor g is strictly positive everywhere except in the nondegenerate points,
50 it does not altere the sign of g1 outside these points. nor makes the product
g = g192 pass by the tangency points.

the even case:

Now f has degree 4n + 2.

We can use the same notation that in the odd case except for the fact that the
points Py, .... Pa, are now in circular order along the unit circle. and that we must
consider an eventual sign change between Py, and P;. The number of sign changes
along the circle will be 5 < 2n, and even. Let us consider g; be the product of 5/2
lines. each crossing the circle in two of the sign changing arcs. Again, these lines
do not pass by the tangency points. and g; has in each F; the sign that ¢ must
have. We complete g, to have degree 2n + 2 nuultiplying it by 2n + 2 — 5/2 lines
not intersecting the circle, and take g» in the same way than in the odd case, to
obtain g = g142, of degree 4n + 2. O

Proposition 5.2 In the conditions of Proposition 5.1 the perturbed curve f+eg of
f by g with e sufficiently small and positive has the same topological shape than the
topological model T'. Moreover, if T was ortentable, then f + eg does not inlersect
the infinity line.
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Proof. The singular points of f are only the real-nondegenerate singular points
of each of the ’eights’ and the tangency points of the ‘eights’ with Tp, which are
of type A™. Besides, g satisfies all the conditions needed to apply Theorem 2.7,
so the perturbed curve for ¢ small has the same shape of f but with the tangency
points dissipated. € being positive. the dissipation of the tangency points is made
towards the regions in which f and g have opposite signs, i.e. joining the ’eights’
to Tp. That produces along each flip line the topological effect of reversing the
‘flip” made to obtain the skeleton 7" from 7', so the perturbed curve f + ¢4 has
the same shape than the original topological model T'.

If the topological model was orientable, then its skeleton is also orientable,
because flips do not affect orientability. It must then be even and have no ‘a’ type
flip lines. In this case the ‘eights’ are all constructed along arcs of circle, so they
do not touch the infinity line. For £ small the perturbed curve will still not touch
it. O

This directly implies our main theorem:

theorem 5.3 Any topological model T in RIP2, connected and with only double
points, can be realized by an algebraic curve of degree 4n+ 2 of it is even or dn+1
if it is odd, where n is the number of (topologically) singular points of T. Moreover
if T is orientable its realization can be made without touching the infinity line. O

Corollary 5.4 Any topological model T in RIP? with only double points can be
realized by an algebraic curve of deqree

K

SN +2) = 4N + 2K,

i=1

if it is even, or

K

DN +2) - 1 =4N +2K — 1.

i=1
if it is odd, where the N; are the singular points in each component of T, K the
number of components and N the total number of singular points.

Proof. If T is even then all its connected components are even and can be realized
with degree 4N; + 2 each. If T is odd then one. and only one, of its components is
odd and can be realized with degree 4N; + 1. Lemima 3.7 directly gives the result.
[m}

For the affine plane we can say:
Corollary 5.5 Any compact topological model T in R* with only double points

can be realized by an algebraic curve of deqree d = 4N +2K where N is the number
of singular points in the model and K its number of connected components.

Proof. the compactness of 7" in IR ? implies that the corresponding projective model
does not touch the infinity line and thus is orientable. Its projective realization
with degree 4N + 2K can be made without touching the infinity line, and that
gives in fact an affine realization of 7.0

6. Some final questions.

6.1 Algorithmic remarks.

All along the construction we have not worried about asserting things like ... for
a sufficiently small € ...” or “..by a certain isotopy ... which make the con-
struction seem not so constructive. Ilere we are going to analyze in a bit detail
each step made to see the difficulties that arise, for example, to implement it in a
machine:

a)llow can we obtain the skeleton 7™ in its final form (i.e. with the flip lines
being straight line segments and arcs of conic) from the topological model 77

To answer this question we would need to know exactly how the topological
model is given to us as an input. Nevertheless. any combinatorial characterization
of the shape of T" will be easily translatable to the data given in §4 (cf. Corollary
4.4 and Remark 4.5.(1)). and from these data we can obtain the arcs of conic and
segments which form the skeleton. as we did there: for the odd case we can just
take the coordinates of the touching points for the flip lines along the X-axis to be
the first 2n integers, and then find the suitable half-circles and half-hyperbolae to

join them. The even case requires a bit more care with the choosing of the points.

b)Can we effectively find the eights along the ‘Rip lines’. and the perturbing
curve g7

The proof of 4.6 gives a method to find ‘eights’ “as close to the flip line as
we want, if parameter a is chosen sufficiently small”: the problem is how small
needs a to be. a 1s, basiely. the maximal separation of the ‘eight’ from the flip line.
and the maximal separation permitted can be taken as half the minimum distance
from one flip line to another; this minimum distance is not difficult to find from
the construction of the ‘flip lines’.

To obtain the perturbing curve g is easy: in Proposition 5.1 g is the product of
g1 and ga; to find g2 we just need to know the coordinates of the nondegenerate
singular point of each eight, and to find ¢;, a point in each of the ‘sign changing’
intervals of f in the X-axis or the unit circle. Both things are easily found either
by construction of the ‘eights’ or by standard methods.

¢/Tinally, how small does the ¢ in the perturbation f + £g need to be?

There are two possible ways to find a bound for ¢: either one makes a deeper
theoretical study of the perturbation f + €¢ in the particular case of the curves
f and g obtained in our construction, which seems rather difficult. or proceeds as
follows:
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We know that any ¢ sufficiently small and positive will work. Let €5 be the
infimum of the £’s that will not. Then f +£¢g has different topological shape from
f +eg for any 0 < £ < € and this would not be possible (because of Theorem
2.7 on perturbations) if f + £og has only the n nondegenerate 2 fold points of the
‘eights’. Thus, we must look for an £, such that either some new singular points
appear in f + £04. or some of the nondegenerate 2-fold points become degenerate,
or of higher order.

The second thing is easy to check: it suffices to develop f + g as a Taylor
polynomial around each nondegenerate singular point. and study the degree two
term. The first one is more difficult, but can be made as follows: a singular point
of f +¢g is a common zero of it and of fx +¢gx and fy +¢gy. i.e. a point where

fla=Ffxlax =fr/oy =¢.

Such points are exactly the common zeroes of fgx — gfx and fgy — gfy
(exception made of the singular points in the ‘eights’ where f =g = fx = gx =
fr =9y =0). and can be found by standard methods in real algebraic geometry.
It suffices then to evaluate f/g in all these points and take for £¢ the lowest positive
one. Note that in fact we require only a lower estimate of the value of ¢o and thus
numerical methods can be used to find the points. if we control the errors.

6.2 How good the bound obtained for the degree is?

We would like to know if the construction that we have presented here gives optimal
degrees for the realization of an algebraic curve with a given topological shape.
The only thing we can do is to compare it with two lower bounds, one coming
from Bezout’s Theorem, and the other from a particular example:

Suppose that a curve f with only 2-fold singulariries has no vertical tangent at
any of its singular points. Applying Bezout’s Theorem to it and to its derivative fy-
we obtain d(d— 1) > 2n. where d and n are the degree and the number of singular
points of f. If f is irreducible the bound can be lowered to (d — 1)(d - 2) > 2n.
Moreover, both bounds are reachable: for example. for any number n such that n =
d(d—1)/2 for some d. the product of d different lines has n double nondegenerate
points. We can conclude:

Proposition 6.1

(i) Any topological shape with only double points needs at least degree sqri2n
to be realized by an algebraic curve.

(ii) Ior any given number d there exists a connected topological shape with
n = d{d — 1)/2 double points that can be realized with degree d ~ /2n. O

This seems not to be very good for us, because in these formulae the needed
degree d increases with the root of n, and in ours linearly with n. Nevertheless,
the possible shapes that make Bezout’s inequality to be an equality are probably
very few among all the possible shapes with n double points.

In fact, figure 12 shows a curve with 3 double points that can not be realized
algebraically with degree lower than 8§, and the example can be generalized to any
given number of singular points and to non connected curves:

Figurc {2

Proposition 6.2

(i} For any given number n there exists a connected topological shape with n
double points that can not be realized by an algebraic curve f deqree lower than
2n + 2.

(i1} For any given sequence of numbers ny,....nx there exists a topological

model with K connected components having nq. . ... ng double points respectively

that can not be algebraically realized with degree lower than d = UMM, n; + 2K.

Proof. (1)Consider a chain of n + 1 tangent circles, one inside the next one. This
cannot be realized with degree lower than 2n + 2 because any line passing by the
interior of the inner circle has 2n + 2 intersections with the curve (in figure 12,
n=3).

(ii)Consider for each ng the topological model of (i} and then nest them one
inside another.O

This later bound is reasonably closer to the bound found in the construction.
and in fact shows that the actual bound for the minimal degree realization of
every topological shape with n double points is linear in n (for a fixed number
of connected components). although we do not know if the factor is 2 or 4. As a
conjecture we would say that the factor is 2 and that the actual reachable bound is
that of Proposition 6.2. The reason for this conjecture can be found in GS . There,
another method for costructing algebraic curves with given shape is shown (in the
real plane instead of the projective one). that gives exactly that reachable bound.
Roughly speaking the reason for which this construction decreases the factor 4 to
2 is that it makes a deeper topological pre-processing of the model, which permits
to use degree 2 ellipses instead of ‘eights’ to rejoin the points separated by a ‘flip’.
Nevertheless tat construction is not proved to work in all cases.

6.3 What about multiple points?

We have said that our construction would not work so well with singularities of ur-
der bigger than 2. Ilere we are going to see how we could make such a construction.
and where are the bigger problems to make it work.
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Suppose that we have a topological model T' with multiple points. We can
suppose it connected because Lemma 3.7 also works with multiple points. We can
define flips for multiple points in the same way that we did for double points, but
the first problem that arises is that now we are not sure that we can make flips
conserve connectivity (see figure 13, and compare with Lemma 3.9).

b-b ¢

Figure 13

So, even if 7' is connected. the nonsingular model 7Ty obtained by flips on T'
may have to be non connected.

This may not be a big trouble because we know how to construct any non
singular model, even if it is not connected, as a product of circles (and eventually
a line, in the odd case). and have the degree of this realization bounded by twice
the sum of the indices of the singular points (a flip in a index ¢ vertex produces at
most i connected components).

The problem comes when we want to rejoin the curve along the flip lines ob-
tained. which will be in fact ‘stars’ with as many rays as the index of the singular
point was. An algebraic way to make it would consist in inserting at the vertex
of each flip star a curve with the shape of an “i-petals flower™ as shown in figure
14.a. Such curves can be obtained with degree ¢ + 1 (for odd 7}. or i + 2 (for even
i), but we do not know whether we can place the skeleton in an adecuate form to
make then: be tangent to Ty in the ¢ appropriate branches.

=N

Figurc 14

One solution exists, but we must forget our pretension of having the degree of
the final curve somehow bounded: we can draw each ‘flower’ sufficiently small to
not touch 7 and then join each petal to the corresponding branch of Ty by a chain
of tangent circles, as shown in figure 14.b. It is possible to prove the existence of
such a chain of circles. but we do not know how to bound the number of circles
needed.
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