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Abstract

A longstanding conjecture by Ragsdale ([5]) said that a real algebraic plane

curve of degree d could not have more than %d2 + O(d) positive ovals. The

conjecture was disproved by Itenberg ([3]), who constructed curves with %dz +

O(d) posilive vvals. B. Haas has receully improved the result to %dg + O(d)
and an upper bound of %dz + O(d) can be derived from Rokhlin’s theorem. In
this note we improve their construction to obtain i—g—dz + O(d).

KEYWORDS :

1 Introduction

Throughout this work we will use the words algebraic curve as an abbreviation
for real non-singular algebraic plane curve 1.e. for a real homogeneous polyno-
mial in three variables with no critical points and considered up to a constant
factor. It is well-known that the topology of such a curve is that of a certain
number of topological circles embedded in the projective plane. Moreover, if the
degree d of the curve is even, all the circles are embedded two-sidedly (they are
called ovals) and if d is odd there is exactly one which is embedded one-sidedly.
The first part of Hilbert’s 16" problem, regarded in a wide sense, asks to study
the possible arrangements of the ovals of real algebraic plane curves, for each
degree.

The first general result on this subject is Harnack’s Theorem [2]: for any

degree d, an algebraic curve with %ﬂ + 1 ovals exists and no algebraic
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curve can have more than @%ﬂ + 1 ovals. Also interesting for us will be
the Petrovski inequalities [4] (later improved by Arnol’d). Let F be an algebraic
curve of even degree d = 2k. Assume that the sign of the curve is chosen so
that it is negative in the non-orientable connected component of RP?\ F and
call positive (resp. negative) ovals of F those which bound a positive (resp.
negative) connected component of RP?\ F (so that the most exterior ones are
positive). Denote by p and n the numbers of positive and negative ovals of F,
respectively. Then

3k% — 3k + 2) 3k% — 3k
2 2

Joining together Harnack’s and Petrovski’s inequalities one obtains the fol-
lowing inequalities for the numbers of positive and negative ovals:

p—n< n—p<

2 _ 2 _

p<7k 9k+6’ n<7k 9k+4.
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On the other hand, a longstanding conjecture by Ragsdale [5], recently disproved
by Itenberg [3], proposed the inequalities

pS3k2_2k+2) n§3k22—3k.

In this paper we will be interested in the gap between Ragsdale conjecture
(and the counterexamples to it given by Itenberg [3] and Haas [1]) and the
Petrovski-Harnack inequality, for the number of positive ovals (similar things
can be said for negative ovals, as done in [3], but we will skip this). Clearly, the
most interesting part in the inequalities is the term in k2. Thus, we can more
compactly write Petrovski-Harnack inequality as p < 72—2 + O(k) and Ragsdale
conjecture as p < # + O(k). In this setting, Itenberg counterexamples to the
Ragsdale conjucture give curves with p = —1—%—2— + O(k) and the improvement by
Haas produces curves with p = % + O(k). In this paper we construct curves
with p = 1—;—’8-2- + O(k).

Theorem 1.1 For any integer k, there exists a non-singular real projective
plane algebraic curve with ........... positive ovals.

2 Viro’s Theorem and previous counterexam-
ples to Ragsdale

The most important step forward in the construction of algebraic curves with
controlled topology was done by Viro in the eighties. Viro’s theorem is much
more general than we are going to state it, but our statement is sufficient for
our purposes.



Regular triangulations will play an important role. Given a convex polygon
P in the plane, a triangulation of it with set of vertices S is said to be regular
(sometimes called convex or coherent), if there exists a lifting S’ of the vertices
into 3-space such that the triangles in the triangulation of P coincide with the
projections of the faces of the lower envelope of S’.

Let T' be the square with vertices (0,d), (d,0), (0,—d) and (—d,0) and let
ty,...,t, be a triangulation of T, obtained from a regular triangulation of the
triangle TN (R20)2 by symmetries respect to the X and the Y axis. Give signs
to the vertices of the triangulation in a way compatible with the reflections,
meaning by this that if (a,b) is one of the vertices and € the sign given to
it, then the sign of (—a,b) is (—1)% and the sign of (a,—b) is (—=1)%. For
each triangle ¢; with its three vertices not having the same sign consider a line
segment [; joining the midpoints of the two sides of the triangle in which the
sign changes. Call L the union of these line segments.

Theorem 2.1 In the conditions above, if we identify opposite points in the
boundary of T' to obtain a topological space T™ homeomorphic to the real projec-
tive plane, the image L* of the union of segments L is a curve embedded in T™
and 1t s isotopic to some real, nonsingular, algebraic plane curve of degree d.

From the statement it is clear that if we want to construct a curve using
the Theorem, it will be sufficient to triangulate and choose signs for vertices
in the first quadrant, and then extend the triangulation and signs to the other
quadrants following the rules. We will normally suppose that the triangulation
of T is primitive in the terminology of Itenberg, meaning by this that every
integer point in 7' is a vertex of the triangulation or, equivalently, that all the
triangles are of area 1/2.

In 1993, Itenberg [3] used this same version of Viro’s Theorem to find coun-
terexamples to the Ragsdale conjecture. Itenberg first defines a certain distri-
bution of signs on the integer points of the square 7" that produces the maximal
number (d —1)(d —2)/2+1 of ovals permitted and 3k% — 3k + 2/2 positive ovals
for a curve of degree d = 2k, independently of the primitive triangulation of 7'
chosen. In the first quadrant this distribution of signs (that he calls Harnack
distribution of signs) consists on giving minus sign to a point (4, j) if both ¢ and
j are even, and plus sign elsewhere.

After that he considers the hexagon in figure 1, which placed with its center
having both coordinates odd makes the number of positive ovals increase by one.
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He proves that Lgk;asmj such hexagons can be placed in the Newton triangle
of a curve of degree 2k and that the triangulation obtained is regular, which
finishes its proof. So, its proof is based in the hexagon in figure 1, which has the
property that produces a “density of positive ovals” higher than permitted by
Ragsdale conjecture (namely, Ragsdale conjacture allows to have 3/4 of positive
oval per area unit in the average, while Itenberg’s hexagon produces 13 positive
ovals in an area of 16 units).



Very recently, B.Haas has found a way to increase the “density of positive
ovals” produced by Itenberg’s hexagon. His idea consists in completing the
hexagon into a square and then repeating the configuration in the square peri-
odically towards the right and the left to obtain what he calls a “multicarne”.
This multicarnes have the property of producing 16 positive ovals in an area of
18. Nevertheless, due to the constraint that the center point of the initial square
must be placed in an odd-odd oval it is impossible to fill the Newton triangle
completely with these multicarnes.

Incidentally, note that a density of 16 positive ovals per 18 area units would
violate not only Ragsdale’s conjecture but also Harnack-Petrovski inequality.
In Haas “packing” of multicarnes only 3/4 of the area can be covered with
multicarnes and in the rest he uses Harnack’s rule for signs. The combined
effect of this two things gives 10 positive ovals per each 12 area units.

Our main new idea here is placing Haas’ multicarnes in a way that they
fill in 9/10 of the area of the Newton triangle. In the rest of the area we will
use Harnack’s distribution of signs, which will give us 1 positive oval per each
2 area units, in the average. Joining this two things together we will obtain
9/10 x 8/9+1/10 x 1/2 = 17/20, i.e., 17 positive ovals per each 20 area units.
Of course we need to prove that our “packing” is a reguar triangulation of the
Newton triangle.
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