PR 1

]
| , | . .
. “ Representation of Curves in the Real Plane,

_ and Construction of Curves with Given Topology.
\ . 5
’ ) ‘ i ‘ ! L A. Gonzdles-Corbaldn T+ F.Santos 14
- ,‘ - : : . \ | , |

y N N, k3 - ’ ? g 4 ; R
K \J J L y . . ro T / S s 22 - ) Abstract.- We are interested in the following problem: if we are given a topological model for

an algebraic curve in the real plane (i.e. something which is isotopic to a certain algebraic curve),
what is the minimum degree of a polynomial which ‘realizes’ it?

In the particular case of the model being compact and with only double points, a superior
bound for the needed degree is 4N + 2K, where N and ' represent the numbers of double points
and connected components respectively ([Sa2]), and in the other hand for any N and K we show
ezamples not realizable with degree lower than 2N + 21

Here we claim that this later is actually the worst-case optimnal superior bound, and we show

a method to construct the polynomial with this degree-from the topological model, although the
proof is not complete.
‘ " We introduce the notion of ‘prime factors’ of a curve (which are the essential components
i . in which the curve can be decomposed) and show that these prime factors have good geometrical
properties, which we enclose under the name of ‘quasiconvezity’. We also study the problem of
combinatorially characterizing the topology of a plane curve, and show a data structure appropiate
for this characterization, based on the so-called ‘Gauss codes’

, 1. Introduction.

W. If we have two subsets A and B in a topological space X, and a global homeomorphism whic!
) - sends A to B, we say that (A, X) and (B, X) are topologically equivalent or that A and B have
the same topological shape in X. In the context of real algebraic geometry an interesting questior
is knowing which are the possible pairs (V,R"™), or (V,IRIP") up to topological equivalence, wit}
V an algebraic set.

The answer to this question is far from trivial in the general case (see for example [BCR], o1
[AK]), but simple if we restrict ourselves to the real (affine or projective) plane: any imbeddec
graph in RIP? or R? with even order (possibly zero) in every vertex has the shape of an algebrai
set, and conversely any algebraic set V& RP* has the same shape that an imbedded graph witl
even order. For R? the characterization is the same except that there can be a certain number
(finite and even) of branches going to infinity, and thus the algebraic set can be noncompact.

Nevertheless, the classical proofs of this characterization normally use polynomial approxima
tion of C* functions ([AXK]), and thus say nothing about the degree needed to ‘realize’ a giver

topological shape by an algebraic curve.
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In [Sa2] we show a construction which works well (both in the projective and the affine plane)
i the topological model we want to realize is compact and has only double singular points, and in
this case the bound obtained is that every topological model can be realized with degree

d< 4N + 2K,

where N is the number of singular points and K the number of connected components in the
topological model. For nonsingular curves this bound gives d < 2/, which is trivial (for we can
construct any non singular model as a product of circles, plus may be a line), but also optimal (if
the model consists on K nested ovals it can not be ‘realized’ by an algebraic curve of degree lower
than 2K, because any line crossing the most inner oval intersects the model 2K times).

In the other hand, for any N and L' there exist examples of singular curves with N double
points which cannot be realized with lower degree then 2N + 2K, due to topological obstructions:

et us see first the case of a connected curve, and let NV be an arbitrary number of double
points. If we construct N + 1 circles one inside the next one, two consecutive ones being tangent,
the resulting topological model has N double points, and cannot be realized with degree lower
than 2N + 2, because in any realization of it a line passing by the most inner region necessarily
cuts the curve in at least 2N + 2 points. The example generalizes to non connected curves with
N double points and K connected components just considering &' ~ 1 additional circles inside
the inner region and one inside another. We could say even more: for any sequence of numbers
Ny,Ns,...,Ng, with 3 N; = N, a curve can be constructed with ' components each having N;
double points, and not realizable with degree lower than 2N + 2K (see figure 1 for an example
with 2 connected components and 2 + 3 double points).

Figure 1

The question is whether these examples are the worst case for each pair of numbers N, I
or not. The method discribed in this paper makes us think that they are, i.e. that any compact
topological model in the plane with N double points and & connected components can be realized
with degree at most 2¥ + 2K (this will be onr corollary 7.8); the construction we show would give
such a realization, except for some detail that we will remark in section 7 (see conjecture 7.5).

Moreover our results indicate why the examples we have mentioned as worst-cases are indeed
worse than others. Proposition 7.7 says that the only connected topological models that possibly
need degree 2N + 2 to be realized are those in which every vertex disconnects the model if we
delete it (as it happens in the examples). The rest of connected, double points models can always
be realized with degree at most 2V, {The converse is not true, some models in which every vertex
disconnect them can be also realized with low degrees).
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In the first part of the work (sections 2 and 3) we abord, as a previous question, the probl
of how we can combinatorially characterize the topological shape of a diagrain by means of a fin
data structure. Such a characterization is necessary if we want to have an algorithm of constructi
of algebraic curves with given topology, because the data characterizing the shape would actua
be the input for the algorithm.

What we show there is a brief summary of some parts of the coauthors respective works [G
and [Sa}:

Section 2 is devoted to introduce our topological representations of algebralc curves, (w}
we call a diagram is in fact the topological model we will use to make the constructions), a
section 3 introduces the data structure we propose to represent their topological shape, based
the so-called Gauss-codes.

Other authors have given different solutions to this question: [Roy], [AM], [GT]. work i
context closely related to ours: they are given a polynomial (or more) and they give algorith
which compute the topological shape of its real zero set, by means of a Cylindrical Algebr
Decomposition (the two formers), and seminumerical root finding methods (the later). Nev
theless they do not have a good representation of topological shapes, Both Gianni-Traverso a
Arnon-McCallum represent non singular curves by some data containing the number and mut:
disposition of the connected components of the curve (which are in this case either ovals or line
but say few or nothing for the singular case, while M. F. Roy gives for the singular case a d:
structure which permits to recover the topological shape of the curves, but which is not an inva
ant of the shape (in fact it depends even on the cartesian coordinates chosen). This makes vi
difficult to know if two such structures correspond to the same topological shape or not.

Guibas and Stolfi ([G-S]) propose, in the context of Voronoi diagrams, a representation
means of what they call an algebra of edges, representation which could be applied to algebr
curves but seems less appropiate than ours.

The data structure we propose here has the following three good features:

i) it characterizes the topological shape of a diagram (two diagrams with the same code hz
the same topological shape).

ii) it is a topological shape invariant, up to certain basic operations roughly consisting
permutations of the symbols that compose the code. We can easily compute whether.two su
codes come from the same topological shape.

iii} it has a good relation with the topology of the curve, in the sense that topological man
ulations are well translated to codes. )

Sections 4 and 5 deal with the topological manipulations we will need in the algebraic constr
tions, and give a self-interesting topological result (proposition 5.4) which is that every connect
diagram with only double poiuts that cannot be disconnected by cutting only two (different) eds
can be put in quasiconvex form (quasiconvexity is defined in 5.1).

¥

Section 6 shows the algebraic realization of diagrams in the general case {in whick we de
I

points.

2. Curves and diagrams.

In this section we use the word ‘curve’ in its topological meaning, a (closed) curve being th
a continuous map from the standard circle into the real plane.



Definition 2.1 A diagram is a finite set of topological curves, i.e., a continuous map f from
a topological space X into R?, where X is a finite, disjoint union of circles. We call vertices of
the diagram the points of R ? which have more than one inverse image in X, and order of a vertex
its number of inverse images. We pose to diagrams thz following finiteness conditions: they must
have a finite number of vertices, each having finite order.

‘oS
-

Sometimes we are going to call diagram not the continuous map but only its image in the
plane. With this language flexibility a diagram is always a compact subset of the plane and is
homeomorphic to a graph with even order in all its vertices. Thus every diagram is isotopic to an
algebraic curve, and we can consider diagrams as being the topological models of compact algebraic
curves: any compact algebraic curve will consist on a (topologically) 1-dimensional part, which is
represented by a diagram, and a finite number of isolated points. Isolated points are not important
for us, because any isolated point can be algebraically realized by a degree-2 polynomial, and glued
into the rest of the curve without affecting the bound 2N + 2K each isolated point increases by
2 the degree of the curve, but it also increases by 1 the number & of connected components.

Figure 2: A diagram in the plane.

For diagrams we could give a stronger definition of shape than we gave for subsets of the plane,

because the 2i edges that reach toa given vertex of order ¢ are associated in pairs by the map which

defines the diagram, forming what we may call the ¢ (local) branches of the diagram at the vertex
(note the analogy with the local branches of an algebraic curve at a singular point). This branches
make possible to distinguish between, for example, tangencial and transversal double points, and
s0 we can consider two diagrams whose images are isotopic, not having the same shape as diagrams
if their branches do not coincide. A strong definition of shape for diagrams is:

Definition 2.2 Let f{X) and g(Y') be two diagrams in the real plane, f and ¢ being their
defining maps. Then we say that f and g have the same strong topological shape if there exists an
homeomorphism % from the plane into itself such that A(f(X)) = g(}") and a new homeomorphism
t from X into Y such that he f=got.

The condition h(f(X)) = g{Y) is superfluous in the definition, but we include it to make

explicit that this new definition of shape is stronger than the old one. Another concept related
with the local branches just mentioned is that of transversality:

Definition 2.3 Let f{X) be a diagram in the plane and V be one of its vertices, of order
i. We will say that the diagram is fransversal at ¥ if all the branches of the diagram at V' have

equal number of edges at each side {this number being necessarily ¢ — 1). We say that a diagram
is transversal if it is transversal in all its vertices.

If we consider diagrams jnst rraphs. ting that some edges prolong each
other, we can not distinguish between transversal and non transversal diagrams, neither between

weak and strong topological shape. In fact:
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i) Every diagram has the same (weak) shape than one transversal diagram.

ii) Two transversal diagrams have the same weak shape if and only if they have the sar
strong one.

Coming back to the relation between diagrams and algebraic curves, the above consideratio
give us two canonical ways to associate a ‘diagram structure’ to a given compact planc algebr:
curve without isolated points: in the first one we follow the algebraic branclies of the curve
build the map f, giving a diagram which can be non transversal. and in the second one we cross .
the vertices transversally, in the sense of our definition. The second procedure gives a transver:
diagram which contains only the topological information of the algebraic curve as a subset of t
plane (its weak shape), while the first one contains a part of the algebraic information of the cur
it says which pairs of topological half-branches form the analytical branches of the curve at ea
singular point (its strong topological shape).

Although the first procedure seems more natural to deal with algebraic curves in this wo
we are going to adopt the transversal method which has two advantages for our purposes: first
it is simpler to deal only with transversal diagrams, and secondly il the algebraic constructio
we are going to make we obtain always nondegenerate singular points (which are topologica
transversal).

3.Gauss Codes.

In this section we are going to describe the announced characterization of plane curves al
diagrams, and see its properties.

The starting point is a coding method for curves described by Gauss ([Ga}): Gauss associat
to any normal curve in the plane (normal means here having only double transversal vertice
the list of the double points of the curve, given in their cyclic order {and thus each double poi
appearing twice). If we name vertices with the numbers from I to N. where N is the number
vertices of the curve. the so obtained Gauss code of the curve is a list containing twice each of .t
symbols 1,..., N. Nevertheless it is easily seen that not every list having twice cach number frc
1 to N is the Gauss code of a curve in the plane {for example tie list {1,2,1,2) is not), so Gar
asked what were the necessary and sufficient conditions for such a list being a Gauss code. (He ga
the necessary condition of every symbol from 1 to N having exactly an even number of symb
between its two appearances, but this condition proved not to be sufficient. Recent authors ha
given the complete solutions [RT}, {Ros], [LM], {Go]. Sce also [KMPS] for a recent survey
Gauss codes).

We can casily generalize Gauss codes to our diagr insiead of one list. as ma

lists as curves form the diagram, a list consisting on the vertices one crosses when moving aio
a curve (sce figure 3). The set of these lists is the Gauss code of the diagram. Note that one
several of the lists in the diagram can be the empty list, if the associated curve is an oval with
vertices.



Figure 8: A diagram in the plane with Gauss code (1,2,3,4,5,6,2,1,1,8,7,5,8) (8,4,7,6).

If we want Gauss codes to be an invariant of the shape of a diagram, we must introduce some
equivalence relations between codes, because of the arbitrary choices made in the construction
process. We say that two codes are equivalent if we can obtain one of them from the other by a
finite sequence of operations of the following types: .

-Renumbering of the vertices (which corresponds with the choice of the ‘names’ for the double
points). .

-Cyclic permutation of the symbols in one of the lists {which corresponds to the choice of an
initial point to start the list in each curve).

-Inversion of one of the lists {which corresponds to changing the direction to move along the
curve), and

-Reordering of the lists in the code.

Note that if two codes are equivalent, then the maximum number of operations required to
obtain one from the other is one of the first and forth types and one of the second and third for
each list forming the code, because of the conmutativity of operations of different kinds. This is
important because ensures that we can algorithmically construct all the codes which are equivalent
to a given one, for example to test whether two diagrams. given by their codes, have the same
shape or not.

Gauss codes are now a shape invariant of the diagram up to this equivalence relation. (A strong
shape invariant, properly speaking, because diagrams with the same weak shape can have different
codes depending on the transversality relations between the branches.) Nevertheless, they do not,
in general, characterize the topological shape of a diagram, i.e. the same code has different-shape
realizations as a diagram. We need to add some extra information to obtain a shape characterizing
code.

We do it as follows: firstly, we choose one of the two possible global orientations of the real
plane, and for each vertex of the diagram we number cyclically its 2i edges (where 7 is the order of
the vertex), starting by an arbitrary one and following the chosen orientation. Then, we construct
the Gauss code of the diagram as we did before, but we include in the code not only the vertex
number, but also the edges by which we come in and out of the vertex when moving along the
curve. We write the numbers corresponding to these two edges as a subscript and a superscript in
the number which represents the vertex (see figure 4).

We call the so coustructed code the ertended Gauss code of the diagram. Again the extended
Gauss code is a strong shape invariant up to equivalence of codes if we define two new equivalence
operations with codes:
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- A cyclic renumbering of the edges in ore given vertex, and

- A global orientation change, i.e. an inversion on the cvclic ordering of the edges of all t]
vertices.

In figure 4 we have chosen clockwise orientation of the plane and we start numbering the edg
from the horizontal-right position (as showed],

Figure 4. Ertended Gauss code: (21° 321 432 347 35" 16% 427 61° 41" 331 571 457 18%) (381 4% , 74

Obviously, the extended Gauss code contains much more topological information of the di
gram than the non extended one, for it includes the local disposition of the edges of a vertex. L
us see that it permits for example to recover the cycles that form the boundary of the faces (whi
is not true for the usual Gauss codes). We see this in our example: firstly, we can obtain the edg
of the diagram by simply breaking the code into pieces in the following way:

[1°52) (21 43} (3 o) (4 58] 5" 46 16° 421 2 1)

(1° (1] [17 53] 3" a7} [7! 48] [57 18] [8° 21

(8 2] [4* 27) [7* 26] [6" 28]

Now we can recover the cycle of the edges in the boundary of a face (in the anticlockwi
sense) starting by an arbitrary edge. say [1° 32] and looking for the edge which has its seco:
vertex (2) with the sub- or superscript which inmediately follows in the clockwise sense. In o
example, we must look for a 2¢ or a 42, and that gives us the edge [63 42]. We revert this edge
[2% 36], and glue it to the first one to give {1° 32][2* 36]. We look then for a 64, and we find [6* 5
The cycle follows with {83 ;1] and ends with [1? ;1] (because the next edge to this one would |
the original [1° 32]. The obtained cycle is then (1% 32][2% 36][67 »8][8% 21}{1° 41], which is the cyc
of the exterior face. We can obtain all the cycles in the same way, the process finishing when eve
edge has been taken twice. The complete face cycles obtained for our example are listed below:

[32 g4l w7713 [
2% sl]{1' 533 42)

[1° 32][2" 56)[6" 28][8% 21][13 41

[2' 3)(3! 57}[7* 26](6° 42

z)

Yet the extended Gauss code of a diagram does not characterize completely its shape, and t}
is for two reasons: firstly. from the extended Gauss code we can recover which are the connect:




components of a diagram (because that is a-part of its graph structure), but not how they are
mutually disposed in the plane; secondly, even for connected diagrams, the extended Gauss code
does not say which are the exterior and interior parts of the diagram.

We can see this second fact more clearly if we consider the one point compactified of the real
plane, which is a sphere. Every plane diagram can then be viewed at as a diagram in the sphere,
the sphere having one special point which represents the infinity. The Gauss code of the diagram
in the sphere can be obtained in the same way as we did in the plane, but the code does not tell us
in which region of the diagram is the infinity point placed. The topological shape of the diagram
in the plane depends on this isposition of the infinity point respect to it, so the extended Gauss
code cannot characterize its shape. Nevertheless, we can say the following {proof can be found in

[sa)i]

Proposition 3.1 The extended Gauss code of a connected diagram characterizes its strong
topological shape as a diagram in the sphere, i.e. two given connected diagrams have the same
strong topological shape in the sphere if and only if they have the same extended Gauss code (up to
the equivalence relation for codes). -

What we do then to make codes characterize the strong shape for plane diagrams? First of
all, we build the codes asociated to the connected components of the diagram, including in the
code something which tells us which is the exterior face of each component (for example the cycle
of edges of the exterior face). Then we can build a rooted tree to represent the disposition of the
different components, in the same way as [GT] do for non singular curves (with each component
represented by a node in the tree, and the components which are included in others represented
below them), and add to the tree some information saying in which face of the inmediately upper
component we must place a given one. This finishes the problem of characterizing the shape of
diagrams in the plane .

We are going to mention finally the solution to the original Gauss problem applied to our
extended Gauss codes, i.e. the decision of whether a given code is realizable as a diagram in the
plane. The solution is very simple and generalizes easily to other surfaces.

Definition 3.2 We call an (extended) gauss-like code a sequence of lists globally containing
all the symbols 1,.... N at least twice, each of the symbols having a subscript and a superscript,
and with the sub/superscripts of each symbol £ = ,..., N going from 1 to 2ij, where i is the

number of appearences of k (its order).

First of all a gauss-like code is realizable in the plane if and only if each of its connected
components is, so we can restrict ourselves to the connected case. Secondly we recall that we know
how to get from an ~xtended Gauss code the edges that form the cycle of a face in the corresponding
diagram. In particular, we can find the number of faces, because each face of a connected diagram
in the plane has only one cycle of edges. We claim that:

Proposition 3.3 A connected gauss-like code is realizablc in the plane if and only if it satisfies

the Euler formuia F — E 4V = 2, where F is the number of faces (cycles of edges) that result from

the code, V is the number of vertices, and E is the number of edges, which coincides with the total
number of vertez symbols composing in the code (the “code length’). n

The proof can again be found in [Sal; necessity of the condition is trivial once we know that
mply connected with the exception of the exterior

the faces of a connected plane diagram a
ne which is a ring, while the sufficiercy is due to a more general result saying that every gauss-
like code can be realized in some compact orientable surface. and the Euler characteristic of the

8
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minimal one that realizes a code is given by the stated Euler formula. Thus a code that satisf
the formula can be realized in a sphere, and deleting a point to the sphere, in the plane. Note tl
the formula is satisfied by our example: 11 — 174 8 = 2.

For more detailed descriptions and proofs, and for a generalization of everything concerni
extended Gauss codes to compact surfaces, even in the non-empty boundary and in the n
orientable cases see [Sa].

4 Flips and Flops. Prime Diagrams.

We are going to begin now the study of the geometrical manipulations on diagrams that v
led to the algebraic constructions (and to some interesting topological results also). From now
we are going to work only with transversal diagrams, and in some places we will demand th
to be connected or to have only double vertices. Being transversal means that we can think
diagrams as being just drawings in the plane, and forget the continuous map from which they :
the image (because of the equivalence between shape and strong shape for these diagrams).

Our aim is to give a method to construct any diagram from a collection of simpler diagra
and a sequence of well defined topological operations that transform this simpler diagrams into-
one we had. The two basic operations we need are one to delete singular points from a diagr
and other to add them. We call this operations flips and flops respectively:

Definition 4.1 To make a flip in a vertex of the diagram we take the 2i edges of the ver
and join them two by two in consecutive pairs, thus making the singular point dissappear. T
can be made in two possible ways up to isotopy, shown in figure 5.a. Flips can be easily trea
with extended Gauss codes: if we have the code for the original diagram, a flip is characterized
the name of the vertex in which we make the flip and some additional information distinguish
the two possible flips.

\
/o
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Figure 5
Definition 4.2 Flops arc the inverse operation of flips. To make a flop we must choose ¢
of the faces of the diagram and a list of some (at least two) of the adees wiich hound this {

ore than once in the list. and the total number 7 of edges in the list wi
called the order of the flop. The geometrical flop is made inserting in the chosen face an i-pet
flower (as shown in figure 5.b), and then joining each petal to one of the edges.

If the face is simply connected this can be made in only one way up to shape equality; in ot
case we will need some extra information about the *paths” along which we must piace the ‘pet

An edge may appear
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of the flower. Nevertheless we are only going to be concerned with simply connected faces; note
that in a connected diagram in the plane all the faces are simply connected except for the infinity

one.

Both flips and flops can be easily made in the Gauss code that represents the diagram. We
show with an example the way to find the code of the resulting diagram of a flop from the old
one'’s code. Consider the diagram of section 3, whose extended Gauss code was

(315 521 (3% 54! 357 16° 427 6% 411 33" 571 457 18%) (8% 247 26%)

and suppose that we want to make a flop in the face (7t 45](5 16](6% 47, joining the edges {7t 45),
[5! 16], and again [5' 16] (the geometrical flop is showed in figure 6).

Figure 6

We give the name ‘9’ to the new vertex, and add as many symbols 9 in each edge of the cycle
as its number of appearings in the list; this gives the cycle {7' 9 45)[5! 9 9 16][6% 47).
We then add the to the new ‘9’ symbols the subscripts I,....6 in decreasing order:

[7* 693 45)(5" 49° 287 161[6° 47],
and put these new ‘edges’ instead of the old ones in the original code:
(217 321 432 5% 35! 49°% 291 16% 427 1% 417 33! 57" 69
(8% 54 571 26%)

this is the extended Gauss code for a diagram having the required (weak) shape, but which is not
transversal. To make it transversal we just break the code in all the appearings of the symbaol '9’
and reglue the pieces in such a way that each symbol '9" has as subscripts two opposite edges (i.e.
two numbers whose difference is 3):
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and regluing:

(284 247 571 46"y

(21° 32" 437 347 35" 497 (67 ;2% 617 411 337 577 60° ,0° 457 187), (o8 24 ,T* 46

which is the code for the new diagram.

The way in which flips and flops are used to buid up diagrams is the following: we m
flips to a given diagram Dy until we arrive to a simpler one Dy, and in each stepi=1,...,k
compute the code of the new diagram obtained by the ith fiip D;, as well as the :Ro:dwauo:
recover the code of D;_; from D; (i.e. the information concerning the inverse flop of the flip). '
shape of the final diagram Dy joint to the inverted sequence of flops determines the shape of .
The choice of the ‘simpler’ diagram Dy to stop the process depends on our purposes, but clee
it is always possible to arrive to a diagram without any vertices (i.c. a collection of ovals), if
want to.

For connected diagrams with only double points this flip/flop decomposition of diagram
specially useful, because of the following result:

Proposition 4.3 Let D be a connected diagram in the plane and let V' be one of its verti
of order 2. Then one of the two possible flips in vertex V leaves the diagram connected.

Proof: Let ¢1°, ‘2°, ‘3’ and ‘4" represent the four edges in vertex V' in a cyclic order, and 1
what happens to D when we delete the point V.

If D\ {V} is connected, then both flips on V are connected. If it is not, each of the four ed
at ¥V must be connected in D\ {V} to another one, because the arc beginning in an ‘open edge
D\ {V} must end in an open edge.

Now suppose that one of the flips in V' gives a diagram which is not connected, for exan
the flip which joins ‘1" to ‘2> and ‘3’ to *4’. Then ‘I’ can only be connected in D \ {V} to
(for otherwise the four edges would be connected to each other in the “flipped’ diagram), and t
the other flip gives a connected diagram (because it connects ‘1" to 4" and "2’ to ‘3’). A cow
mwﬂw::zn for higher order pointsis an ‘eight figure’ with an oval crossing its double point (see fig
7).

s
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Figure 7
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The proposition implies that the final diagram in the fiip decomposition of a connected, double
points diagram can be always chosen to be connected andnonsingular, and thus a single oval. This
fact is used in the construction of algebraic curves with given topology shown in {Sa2] (in fact, there
the final diagram can be either an oval or a pseudo-line, because the context in which diagrams
are defined is more general).

Nevertheless, here we will prefer to use other diagrams instead of ovals to start the construc-
tion, and for that we need to introduce a type of connected, double points, diagrams with good
decomposition properties, which we call prime diagrams. (Prime diagrams can be defined with
vertices of higher order, but the good properties we mention are obtained only for double points).

Definition 4.4 Let D be a connected diagram with only double points. We say that D is
prime if it cannot be disconnected by ‘cutting’ only two edges, or equivalently if there do not exist
two adjacent faces in the diagram which have two different common edges on their boundaries.

The three main features about prime diagrams are:

Proposition 4.5 Let Z be a (connected, transversal, double points) diagram. Then:

i) The non-extended Glauss code of Z characterizes ils shape in the sphere (compactified plane).
Therefore the information added in the extended codes is irrelevant for this diagrams and their plane
shape is determined by the Gauss code and the ‘infinity face’ additional information.

ii) Let V be an arbitrary vertez of Z. Then at least one of the two flips at V gives a new
prime diagram. .

ii) If a flop gives as final diagram Z, then the flop is made joining two different edges of the
initial diagram.

In (ii) and (i) the initial diagrams of both the flip and the flop are assumed to have at least
one vertez.

Proof: i) The proof of this can be found in [Go]. It is too long to put it here, and in fact this
property of prime diagrams, although it may be the main one to express the meaning of being
prime, is not relevant to our purposes. We indicate just that the reason why non prime diagrams
with the same non extended code can have different shapes (in the sphere) is that one of the
parts of the diagram can be turned ‘inside-out’ as in figure 8, and that does not happen for prime
diagrams (a prime diagram can be turned inside out as a whole, but that does not change its shape
in the sphere).

ii) Consider the following sketch of the two possible flips at V' (figure 9). Suppose that (a) is
prime and both (b) and (¢) are not prime, and we are going to arrive to a contradiction.
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Figure 9 >
~ v

Diagram (b) being not prime, one of the two faces that share two edges must be the midc
face (A U C), for in other case (a) would not be prime. For the same reason the other face cann
be B nor D, so we call it E, E being then a face of the initial diagram which is adjacent to bo
A and C. With the same considerations for the horizontal flip we obtain another face F’ adjace
to both D and B. and the following sketch:

N4
A / .
¥ P C N

Figurc 10

Now the contradiction arrives if we study whether E and F are the same face or differe
ones: they can not be the same, for in figure 10 we can find a line that goes from E to F crossi
the diagram in exactly three points, and if they are different we can find two lines going from
to E and from F to F respectively, and crossing each other in exactly one point. Both thin
are impossible because transversaly crossing curves in the plane must have an even number
intersections (we recall that our diagram is a finite nnion of curves).

i) It is easy to prove in its reciprocal form: an order 2 fiop in the same edge of a diagra
which has at least one vertex gives a diagram which is not prime. The following picture sho

this. The final faces A4 and B share the two edges ¢ and b. and the existence of at least one init
vertex ensures that # and b are not the same cdge, so the final diagram is not prime.
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Figure 11

When we have a diagram which is not prime we can “factorize’ it by cutting the two edges that
disconnect it and then regluing the pairs of open edges that lay in the same connected component.
(This process can be described as a flop in the two edges followed by a flip in the new vertex
obtained, as shown in figure 12, and gives as a result two connected diagrams each having at least

one of the initial vertices.)

Figure 12: Dccomposition of a diagram

The process can be continued with thesc two new diagrams if they are not prime until we
have a finite collection of prime diagrams in the plane which we call the prime factors of the initial

diagram.

The factorization of a diagram is not unique. because when we ‘reglue’ the open edges in pairs
we can do it in two different ways {or. equivalently, if we make a flop in the two disconnecting edges
followed by a flip on the new vertex, there are two ways to make the flop, one in each of the two
faces which share the edges). Nevertheless, these different ways give diagrams which are equivalent
as independent diagrams in the sphere. i.c. diagrams with the same extended Gauss codes, but
possibly with different dispossition respect to one another and to the infinity point. It can be also
shown that the factorization does not depend on the order we choose to make the decompositions.

The important point concerning this prime-factors decomposition is that if we know how to

realize by an algebraic curve each of the prime factors of the decomposition it is easy to ‘reglue’
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the algebraic prime factors to have a realization of the whole diagram. We will come back to th
point in section 7. :

In the case of only double points we can refine a little the construction, and section 5 is devote
to prepare this refinement.

5. Quasiconvexity of Prime Diagrams.

Um.miﬁos 5.1 Let D be a (connected, double points) diagram in the plane. We will say th:
D is quasiconver if we can choose a point P, in everv edge e of the diagram in such a way that t!
two following conditions are satisfied:

. i) for every face F of D different from the infinity one, the polygon whose vertices are tl
wo:;m. P., with e the edges in the boundary of F'isa strictly convex polygon contained in F an
touching its boundary only in {P.}.

i} if an edge e is in the boundary of the infinity face, then a straight line exists passing by I
and not touching the diagram in any other point {a_'tangency line’ on F).

In figure 13 we show an example of a quasiconvex diagram. This section is devoted to pro
that every prime diagram has the same shape of a ‘quasiconvex one; for non-prime diagrams tt
result is not true in general, but nevertheless the diagram in figure 13 is not prime.

Figure 13: Quasiconvezity.

H.\mgam 5.2 Let D be a quasiconvex diagram. Then every flop on D joining two different 2&.,
in a face different from the infinity one, can be made in such « way that the resulting dingram
quasiconvez.

Proof: . rma. a and b the edges to make the flop, and F the face. We We make the following sma
peturbations in @ (and b):

- if @ is an edge not touching the infinity face (au interior edge), we make it to be a straight lin
segment in a sufficiently small neighbourhood of P,. without altering the
The quasiconvexity condition remains then true i
Qa or R, in a (figure 14-a).

- if @ is one of the edges of the infinity face, we make it to be an "angle’ in P,, without alterin
the quasiconvexity conditions. There exist then @, and R, such that the line passing by them |

. N f=} W

parallel to the tangency linein 7, and does not cross the diagram in any other point (fig 14- b)

quasiconvexity condition:
the point P, 1

ciiai

clently near one
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Figure 14

" Now, we make the flop joining Q. to Ry and @y to Ra by straight lines, and deletintg the
parts of edges a and b between these points (figure 15). The diagram so ogm.m:.ma is n:wmmmozgx”
the quasiconvexity condition is automatically verified in the interior faces, and in the exterior one
it suffices to modify a little the line passing by Qo and 2, (or (y and Rp) to two lines each passing
by one of them and not crossing the diagram in any other point (as in figure 15).

Figure 15

Lemma 5.3 Every (connected, double poinis) prime diagram with no interior vertices have
one of the following shapes (by an interior verlex we mean a vertez not adjacent to the infinity

face):
16
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Figure 16
Proposition 5.4 Lvery (connected, double points) prime diagram in the plane has the sas
topological shape than a quasiconvex one.
Proof: Let D be our diagram, and let us prove the result by induction on the number of interi

vertices. By lemma 5.3 all diagrams with no interior vertices have the shape of a quasiconvex or

If D has N + 1 interior vertices we choose one of them and make a prime flip on it (rec
that one of the two flips in a vertex of a prime diagram gives a prime diagram). By inducti
hypothesis this new diagram has the shape of a quasiconvex one, and by lemma 1 the flop th
recovers D from it can be made to give a quasiconvex diagram. We have used here the fact that
flop which produces a prime diagram must be made joining two different edges.

The lemmas and proposition 5.4 prove that if D is a prime diagram with only double poin
a sequence of flops on it can lead to one of the prime diagrams in lemma 5.3 and that the flo
that recover the shape of D from this final diagram can be made preserving quasiconvexity. Tl
is going to be the procedure we will use to construct an algebraic curve with the topological sha
of a given prime diagram. and moreover let us see that making flops in the interior vertices we a
never going to arrive to diagrams Py and Py of lemma 5.3: -

Lemma 5.5 Let D be a prime diagram (connected, with only double points) with at least o
interior vertex. Then. D has al least 2 exterior verlex, Le. a sequence of flops in ite inters
vertices cannot lead to the diagrams Py nor P|.

Proof: The lemma reduces to proof that there are no prime diagrams with only one exteri
vertex and at least one interior vertex.

This is true, becaunse if there is only one exterior vertex, say V. then the cvele of edges of t
erior face has either one only edge [V.V] or two edges, VOV
diagram can only be 7. and in the first case it is either Py or not prime (the other two edges
V" apart from {V.17] are different and disconnect the diag

[ah

am).




6. Algebraic Construction of Curves with Given Shape.
The General Case.

In this final section we are going to show how we can use the flip-flop’ techniques on diagrams
to construct an algebraic curve with a given in advance topological shape, and how we can profit
of the quasiconvexity properties of prime diagrams to obtain the optimal degree 2N + 2 for the
realization of any compact curve in the plane with only double points. We introduce first some
well known concepts in algebrain geometry:

Definitions 6.1

-By an algebraic plane curve in R* we mean a polynomial f € R[X,Y}], and also its zero set
V,={f(X,Y)=0} C R? when there is no ambiguity in the polynomial we consider to define V.
It is necessary to remark this because different curves {polynomials). can have the same zero set.
We say that a curve f realizes a diagram D if the zero set of f is isotopic to D.

-A point P = (a,b) € R.2 is called a singular point of the curve f(X,Y)if f(a,b) = fx(a,b)=
fr(a,b) = 0 (where fy and fy are the derivatives of f). We consider only curves with a finite
number of singular points. (If a plane curve has an infinite number of singular points it means
that it has a repeated factor).

-The order of a singular point is the least order of a derivative which is not zero in (a,b). If
P = (0,0), then the multiplicity of P is the least degre of the monomials of f. For P arbitrary the
same thing holds if we develop f around the point P. :

An important class of singular points are nondegenerate singular points. The general definition
for complex curves is well known {see, for example, [Wa]), but we give here a slightly different one
for the case of real curves:

Definitions 6.2 Let f(X,Y) be a real curve of degree n, and let P = (e,b) be a singular point
of f of order m. We can then write f(X.,Y) = folX =@, Y =0) 4 fms{X =0, Y =0 +...+
fn(X - a,Y = b), where f; are homogeneous polynomials of degree k. We will say that P is
real-nondegenerate (or real-ordinary) if f,, decomposes in m real different linear factors. (Remark:
a bivariate homogeneous polynomial always decomposes totally in complex linear factors, here we
demand this factors to be different and real. The usual definition of ordinary points demands them
only to be different).

We are going to be specially interested in singular points of order 2. The local structre of a
real algebraic curve in a neighborhood of such an order 2 point is either that of one order 2 analytic
branch (this is the case of a ‘cusp’) or that of two nonsingular branches crossing at the point, and
in this later case these branches can be either both complex or both real. We are going to call
singularities of type A~ those order 2 singularities which consist on two real analytic branches (the
name comes from the terminology used in {AGV] to clasify singularities). An example of these
A~ singularities (in fact the only one we are going to be concerned with in the constructions) is
the product of two curves both passing by a point P wl ich is regular for both of them.

Finally we say that a curve f of degree n has no points at infinity if the monomial of highest
degree [y, of [ has no real zeroes different from the origin (i.e. if the projective curve associated to
f has no points on the infinity line of the projective plane RIP?). Note that if two curves f and g
have no points at infinity. then neither the product fg has.

Our construction of algebraic curves is based on perturbation techniques: a perturbation on
a polynomial is a small. continuous change in its coefflicients. A particular case of a perturbation
of a polynomial f is the family of polynomials f + cg, where ¢ is supposed to be a small parameter
which varies contintousiv and g is supposed to be of degree lower or equal to g (due to technical
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reasons). We call it a perturbation of f by g and say that a property is true for sufficiently sme
perturbations of f by ¢ if it is true for every curve f + ¢y witli |¢] smaller than a certain €.

The following result says how a small perturbation of this type affects the topological shape
the polynomial f, in a particular case that will suffice to our purposes. We give it without proc
for it is the affine version of theorem 2.7 in [Sa2]. and it can also be deduced from two lemmas
[Gu] (the ‘lemma on the class of a point’ and ‘the lemma on isotopy’).

Proposition 6.3 Let f be a real curve with no points at infinity and of degree n, and suppo
that the singular points of f are Py, Pa,... P, and Q1,Q2,...,Q, from which the P; are rec
nondegenerate and the Q; are of A~ (ype. Let g be a curve of the degree deg(y) < deg(f) whi
has a singular point of at least the same order in the points P;, and which does not pass by i
points Q.

Then, any sufficiently small perturbation of f by g of the form f + ¢y

- has a real-nondegenerate singular point of the same order in each of the P;,

-has no other singular point, and no points at infinity, and

-its topological shape in R 2 can be obtained modifying each A= singularity of f in that of t
two ways in figure 17 which is compatible with the signs of [, g and ¢.

Figure 17

Proposition 6.3 is enough to describe the construction of algebraic ‘flops’, as we do in ti
proof of the following lemma:

Theorem 6.4 Let D be a dingram which is realized by an algebraic curve f{X,Y), f havi
only real-nondegenerate points and no poinis at infinity. Let D' be a dingram obtained by o fl
on D. Then D' can also be realized by an algebraic curve f' with only real-nondegenerate singul
points and no point at infinity.

Nu.gc\.‘ Let Py, Py, ..., Py be the singular points of f, which are all real-nondegenerate a
with orders my,ma..... my—1. We can identify D with the zero set of f.

The flop of order m in D is given by one of its faces £, an m-petals flower in
paths joining the petals with points in the boundary of F.

‘ >w_ m-petals flower can he mﬁ:m?.:n?; algebraic by the formula: B = cos{mt) if m is od
and f2- cos{mt) Il mis even (it is easy to check that equations de ebhraic cury
of .ammﬂdom. m + 1 and m + 2 respectively, and that thev have the shape of an m-petals flower,
points at infinity, and their only singular point is real-nondegenerate of order m).

Now we can place the m-petals flower in the face F by translations and homoteties, and cz
[+ the product of f with the polvnomial defining the flower.

the face, and
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To make the flop we have to join each petal of the flower to the corresponding .mo:;mAEH .\“
along some given paths. To do this algebraically, we first cover each path with a ‘chain of circles
satisfying: o,

_The first circle is tangent to the point in the petal, the last one to the point in f, and each
circle is tangent to the next one. . o .

_The circles in the chains do not intersect each other nor f+ in other points than the mentioned

ies (sce figure 18). .
dwzmﬂzﬁw_wﬂwmwasnm the nrvwm:m we first put a tangent circle in each of the two extremal points of M”m
path, sufficiently small not to touch f+ in other points than the tangency one, and then n~o.<a~ e
1 not covered by these two circles with a finite number of circles not touching f+.
les and reduce the remaining ones to be each tangent to the next

) - //
o
-
. )

part of the patl
If we delete the superfiuous circ
one the circles will satisfy the conditions).

Figure 18

i call f+ The product of f* with all the circles in the chains. . o

wam mmh%wmmm %m _Jﬁ%ﬁrmmmm in proposition 6.3, if we .np: w».H P (the singular point in the
flower), and Q1,Qa..--, Qi the tangency points in the chains of o:imm.. <<w can E/ﬂwmoﬁn m:.wwoMm
that f+ has positive sign outside the circles and the :9.,..2; and negative inside. We m.am going to
perturb the curve f to have the same shape than the diagram obtained D.o:_. the flop: ~ "

For each nondegenerate point P; = (ai,bi),i = 1,...,k of f we consider the po ynomial
gi = (X - ﬂ:vw + (Y = b;)%)™#;, where m#; is an exponent to Ewrm P; be of o_.mma. mﬁ jeast SM wz
g;. (It suffices m#; > m;/2), and call g the product of the m:_m.. g is me.md..érmﬂm vwm::m%oxw% :M
the vo:;m P; which are its zeroes), and we can suppose ar.m: its degree is m_:w.:m/_&ﬁrmwwu he S@umvam
of [+ (if it is not we multiply f* by a factor not affecting its zero mmf.m:n: as (X + ; u. .

In these conditions, proposition 6.3 ensures that for a small v.om:;d € the curve fl=fx* .im.q
realizes the wanted diagram D' of the flop: At each »,m.:mg&..,vo:: the n._mﬁoﬁ.gw:w:‘ n.o.:Gmuﬁ_v e
with the signs of f, ¢ and ¢ is that which joins the petals of the flower with the original curve f

i n
along the chains of circles.

Corollary 6.5 FEvery diagram in the plane can be realized algebraically, with only real-nondege-
nerate paints and no points at infinity. . .
Proof: By induction on the number of singular points. A diagram with no singular vo_:.am is
a finite collection of ovals which can always be realized by some E,oa:.no of circles. Ho. realize My
diagram Dy with N singular points, we make a flip .3 it, or?..::ﬁ a a_u.m_..ﬁd:baz‘lw with \%l

singular points. and by induction suppose this new diagram realized algebraically by a curve fy-1
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with only real-nondegenerate points and no points at infinity, and apply the theorem to the inve
flop to the flip made. That gives a realization of Dy

7. The Case of only Double Points.

Corollary 6.5 gives a constructive proof of the characterization of the possible shapes of co
pact algebraic sets in the plane: every diagram is realizable as an algebraic set implies thal
sufficient condition for something to have the shape of an algebraic set is to be an imbedded gra
with even order in all the vertices, and as we mentioned in the introduction this is also an casy
proof necessary condition for an algebraic compact set in the plane. But more interesting that t
is that this kind of construction permits us to think in controlling the degree of the curves we
to realize a diagram. In theorem 6.4 and corollary 6.5 this is not possible because we do not kn
a priori how to bound the number of circles needed in the chains of circles for the flop. Nevert!
less if we restrict ourselves to diagrams having only double points we can refine the constructi
thanks the ‘prime factors decomposition’ of diagrams and the ‘quasiconvexity’ properties of pri
diagrams. :

For algebraic curves we need a slightly different definition of quasiconvexity than for diagras

Definition 7.1 We say that an algebraic curve f (connected, with only double points)
quasiconvez if its zero set is quasiconvex (in the sense of definition 5.1 for diagrams), and moreo
the points P, in the esterior edges of the curve are not flexes.

Note that the exterior condition of quasiconvexity. in the case of algebraic curves, implies tl
the tangent line to the curve at points P, in the exterior edges does not have any other intersectic
with the curve. The additional assumption of the points P. not being flexes (i.e. having fin
curvature) implies that a sufficiently big circle tangent to the curve at P, has the same proper
it does not intersect the curve in any other point. This will be used in the next proposition
‘glue’ the quasiconvex algebraic realizations of the prime factors of a diagram. The proposition

o)
true for any number of prime factors, but we proof it for 2 factors, for the sake of simplicity.

Proposition 7.2 Let D be a connected diagram with only double points which decompo.
in two factors Dy and Dy such that Dy and Dy ave one outside another, or Dy inside Dy, (
not the converse). Suppose that Dy and Dy are realized by two algebraic curves fi and f, w
only real-nondegenerate singular points (of order 2), and no points at infinity. Suppose also U
d = deg(fi) + deg(fo) > 2N, where N is ihe number of double points in D, and that f»
quasiconver. Then D can be realized by an algcbraic curve § of degree d.

Proof: In any of the two dispossitions of Dy and D, (D, inside D; or one outside another),
recover [ from [y and )2 we need only to place a copy of D5 in the appropiate face of Dy (whi
would be the exterior face if Dy and Dy lie ane outside another), and join them by the appropie
edges.

Let us then do that with the algebraic curves f; and f» which realize D; and D,;. We ¢
put the curve fy in the appropiate face of fy by translations and homotecies, which do not afft
its degree. Let ¢p and ¢y be the edges by which we must join [y to fy. and let Py and P3 be t
points of the quasiconvexity conditions in these edges. €, is an exterior edge, and thus we ¢
construct a big circle tangent to the curve f, at P, and containing the whole curve f,. We can al
construct a small circle tangent to f; at Py and contained in the appropiate face of f; (because
is regular), and by some rotations. translations and howmotecies in [, make the two circles coinci
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and identify the points Py and Ps, which become a tangency point between f; and f» (see figure
19).

Figure 19

Consider the product fo of f and f2 under these conditions. It has degree d > 2N, and
N order 2, real-nondegenerate singular points. which correspond to the double points of D, plus
another singular point which is also of order 2 and type A~: the tangency point. Moreover, it has
the same shape of the diagram D except for the tangency point. Thus, we want to perturb it to
make the tangency disappear, and it is easy to do this thanks to proposition 6.3:

fo satisfies the conditions of the proposition, and we can take as perturbing curve the product
g of the factors g; = (X — a;)? + (Y = a}), (where (a;, b;), with i = 1,..., N are the coordinates of
the singular points). g has degree 28 < d = deg(fo) and has a singular point of order 2 at each
of the real-nondegenerate singular points of fo {(which are also of order 2). Then, the perturbed
curve f = fo + eg, with ¢ sufficiently small has the same shape of fp except for the tangency which
disappears and thus. with the adequate sign for ¢, the shape of D. n

Proposition 7.2 {generalized to any nn mber of prime factors) will permit to realize any con-
nected diagram in the plane by an algebraic curve of controlled degree if we know how to realize its
prime factors by a quasiconvex curve. To realize the prime factors we are going to make use of their
quasiconvexity properties, but we must make note that in the induction process we describe, we
have not a proof that quasiconvexity can be preserved by the perturbations made (see conjecture
7.5). Thus the induction hypothesis is not ensured, and thus 7.6, 7.7 and 7.8 are true only if the
conjecture is.

We start realizing the -basic’ prime diagrams. which are prime diagrams with no interior
points:

Lemma 7.3 Every prime diagram with only double points and no interior verlices can be
realized by a quasiconvex algebraic curve of degree 2N (where N is the number of exterior vertices),
with no points at infinity and only real-nondegencrate singular points, except for Py and P, which
can be realized with degree 4 (and the same properties).

Proof: . We recall lemma 5.3 which said that the only possible prime diagrams without interior
vertices where the Py, Nuu and the P;, for ¢ = .- we will show the algebraic construction for

each of them:
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Py is realized by the lemuniscata {X?+V?)? = X - Y2 and P; can be constructed perturb
the product of two circles which intersect transversally (we censider one of the interseciion pof
as real-nondegencrate and the other one as of type A~ to apply proposition 6.3), as shown in fi .
20, and that gives degree 4. The quasiconvexity properties needed are easily ,ﬁulmom. ‘

Figure 20

To realize the rest of the P; we use the following procedure, which we describe only for Ps:
consider 5 different ratit of the unit circle from the origin, and find the 5 circles which are ﬁm:m
to two consecutive ones in the points where the ratii touch the circle (two consecutive such cir
are tangent to one another, as in figure 21.a). We call f the product of the 5 circles, with posif
sign at the origin and at infinity. f has clearly degree 10 and no poiuts at ::,::mf and we
going to perturb it by the curve g = (X2 4+ ¥Y? - 1)%, which is positive e,.mq,,.rﬁo,mzomvﬁ in
unit circle. This perturbation is not included in proposition 6.3, hecause g passes by the sing:
points of f which are degencarte, but it is easy to describe its effect on the curve: )

Figure 21 R

First. the perturbed curve f + eg. for sufficiently small. pos

. : : et ve ¢. must be included in
interior of the 5 circles (b

[reror : mse these are the regions in which f and g have opposite sign), an

o , : ot [ H . R . . , o .

n.wﬂ.« _wowoc: :w f ;w:w non singular points. It rests only to see what happens at the tange
oints of the circles. If we trans is poi rigi

p ¢ translate one of this points to be the origin, and rotate the figure u

the tangency is horizontal. then the terms of lower degree of f and g are f = —Y° + ‘
g=X"4 and thus f4eg = =7 ? re ches
X+ ... s f+eg =YY"+ X"+ ..., which corresponds ta two real branches w

23



tangents Y = ,\ml. ", i.e. to a real-nondegencrate order 2 point, which gives the shape of figure
21.b. The quasiconvexity properties are automatically satisfied, as shown in the figure. n

Now let us sec how two add the interior double points to the realized diagrams:

Lemma 7.4 Let D be a prime diagram with N vertices, which are of order 2, and with at
least one interior vertex V. Let D' be a prime diagram obtained by a flip on D at V, and suppose
that D' is realized by a quasiconver algebraic curve f' with only real-nondegenerate double points
and no points at infinity. Then, D can be realized by an algebraic curve of degree 2N with only
real-nondegenerate singular points and no points at infinity.

Proof: All we have to do is an algebraic flop on f' to recover the initial D, and we are going to
do this by a similar process as made in proposition 6.4. The difference now is that we can profite
the quasiconvexity properties of f.

Let a and b be the edges of f' in which we must make a flop to recover the shape of D, and let
P, and P, be the points of the quasiconvexity definition in the edges « and b. Then, the face for
the flop (the only face which has ¢ and b in its boundary, for f' is prime) must be an interior face
of f', because the vertex of D in which we made the flip was interior. Then, by quasiconvexity,
there exists a convex polygon with vertex at P, and P, inscribed in the face, and in particular the
segment P, P, is contained in the face. Moreover P, and P, are regular points in f’ (they are not
vertices), and this implies that an ellipse can be constructed being tangent to f" at P, and P, and
sufficiently close to the segment P, P, to be contained in the face (see figure 22.2). What we want
to do is to perturb the product of f* with this ellipse in the way shown in figure 22.b.

Figure 22

Call fo this product, Pi...., Px_1 the singular points of f', and suppose that P, is placed at
the origin, with horizontal tagent, and with the signs dispossition for fo shown in figure 22.a.

For a perturbation of type fo + cg (with € small and positive) to have the shape of figure
22.b {(and not to change anything clsewlhere), we need a polynomial g with degree at most 2N
(the degree of fo), with a singular point at each of the Pyi,..., Pn_; (this ensures that the real-
nondegenarate singular points of f' are preserved by the perturbation). with positive sign at P,
{to break this tangency in the appropiate way) and with a singular point at P,, such that the
singularity of f + ¢y at P, be real-nondegenerate.

The last condition is achieved if ¢ has no terms of degree lower than 2 and its degree 2
term is —X2, and this is achieved, for example, if ¢ = g,g2, with g; positive at P, and g, =
(X2 4+ Y 42X X2+ Y2 - rX), i the product of two circles vertically tangent at P,, where the
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radius 7 is chosen sufficiently small to not interfere with the rest of the figure (i.e. such that ,_
positive at P, and at every P;).

Now the conditions for g, are only to be positive at P, and Py, to have a singulat poir
each P,i=1,...,N — 1,and to be of degree at most 2N ~ 4 (because g, is of degree 4.

f' has at least two vertices (in fact, at least two exterior vertices), and we can suppose wit]
loss of generality that P, and P, are not in the line passing by P; and P3. because the quasiconve
properties are also satisfied if we move a little P, and P, along the edges « and b of f'. Thus, we
take as g, the square of this line, times a factor (X ~z;)* +(Y ~y;)? foreach i = 3,..., N —~ 1, w
{zi,y;) are the coordinates of the points P;. This g; has degree exactly 2N — 4, and is everyw
positive except in the points P; and in the line passing by P; and Ps.

That ends the construction of the algebraic flop. By a perturbation theorem similar to pr
sition 6.3, the curve f = fy + €g has the same shape than the diagram D, has no points at infi
and its N singular points which correspond to the N double points of D are real-nondegeneraf

We would like to use lemma 7.4 inductively to construct every prime diagram, but we do
know how to preserve the qusiconvexity conditions in the flop. Thus we state @ conjecture,
give only a partial proof:

Conjecture 7.5 In the conditions of lemma 7.4 the final curve f can be constructed qu
convez , ’
Proof: In fact, the only quasiconvexity conditions that we cannot ensure to be true are tl

concerning only the four new edges that appear from @ and b by the flop. The rest are preser
because the quasiconvexity conditions are ‘open’ in the sense that they remain true if we
perturb a little the points in the edges or the edges themselves, and this perturbation is m
‘smoothly’ (i.e. varying continuously not only the points but alsa the slopes).

In the special case that the edges  and b have their curvature towards the outside at point:
and P, the quasiconvexity conditions of the new four edges are also preserved, if the ellipse joir
P, and P, is chosen sufficiently narrow: this is so because, in this case, there exists a rectangle
vertices in the edges a and b, close to P, and Py (as in figure 22.a), and this rectangle construc!
is preserved by the perturbaton, if the ellipse is contained in the rectangle and the perturbatio
small (see figure 22.b).

Frgure 23

If the curvatures at P, and P, are towards the inside this construction is not possible,
possibly with a sufficiently narrow ellipse quasiconvexity is still preserved.
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Corollary 7.6 If conjecture 7.5 is true, then every prime diagrem with only double points can

be realized by a quasiconvez algebraic curve of degree 2N (where N is the number of vertices), with-

no points at infinity and only real-nondegenerate singulur points, except for Py and P{, which can
be realized with degree 4 {and the same properties).
Proof: The proof is made by induction on the number of interior vertices. Lemma 7.3 gives the
proof for 0 interior vertices, and for a diagram D with at least one interior vertex V, we make to
D a flip at V, obtaining a new diagram D', which can be supposed prime, by proposition 4.5(ii).
Besides, lemma 5.5 ensures that D' is not Py nor P{, so by induction hypothesis we can suppose
D' realized by a quasiconvex algebraic curve f' of degree 2N — 2, with no points at infinity and
N — 1 real-nondegenerate order-2 singular points.

Lemma 7.4 enables us to construct the curve f with degree 2N, only real-nondegenerate points
and no point at infinity, and by conjecture 7.5 we can suppose that f is also quasiconvex. ]

Finally we state the general theorem about the construction of real algebraic compact curves
in the real plane:

Theorem 7.7 We suppose that conjecture 7.5 is true. Let D be a connected diagram with N
vertices, all of order two. If at least one of the prime factors of D is not Py nor P| then D can
be realized by an algebraic curve of degree 2N, with only real-nondegenerate singular points and no

points at infinity. If not, D can be realized in the same conditions vith degree 2N + 2. -

Proof: For prime diagrams the theorem is already proved (corollary 7.6), and for non prime

diagrams we use the same techniques of proposition 7.2: we decompose D in its prime factors D;,

and realize each by a quasiconvex algebraic curve of degree 2N;, where N; is the number of double
points in D;; this can be done by proposition 7.6, except if the factor is a Py or a P (we will treat
this case separately).

Now, proposition 7.2 gives a procedure to reglue all the prime factors one by one and gives as
final degree the sum of the degrees needed to realize the factors, that is 2N, where N is the total
number of double points in D, the only thing to take care of is that to use proposition 7.2 we must
first realize the most exterior prime factor of D (or one of the most exterior ones, if there are more
than one), and then glue the others from the exterior to the interior.

When there is some Py or P| factor this procedure would not give degree 2NV, because these’

prime factors can only be realized with degree 4, and they add just one singular point. Nevertheless
we can ‘glue’ them in another, equivalent way: insert a tangent circle in the appropiate face
of the curve, and then perturb the tangency (which is a singular degenerate point) to be real-
nondegenerate (this can be done in the same way we did in the proof of lemma 7.4). With this
procedure each P; or P| factor increases the degree only by 2, and than the final degree 2N is
mantained.

The only case in which this cannot be done is if all the prime factors of D are Py or P/, for
in these case we need degree 4 to realize the first prime factor, and thus the final degree becomes
2N + 2 instead of 2N, =

Coroilary 7.8 (If conjecture 7.5 is true) every diagram in the plane with only double points
can be realized with degree lower or equal to 2N + 2K, where N and K are the numbers of double
points and connected components, respectively.

Proof: Let Dy,.., Dy be the connectec components of D. Theorem 7.7 permits to realize each
D; with degree at most 2N; + 2, where N; is the number of double points in D;. Realizing ail of
them and then placing them in the appropiate place from one another we will have the desired
curve realizing DD (the product of the curves realizing the connected components), whose degree
will be at most 3 (2N, 4+ 2) = 2N + 2K -
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