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Abstract

We consider the concept of triangulation of an oriented matroid,. We
provide a definition which generalizes the previous ones by Billera-Munson
and by Anderson and which specializes to the usual notion of triangulation
(or simplicial fan) in the realizable case.

Then we study the relation existing between triangulations of an ori-
ented matroid M and extensions of its dual M*, via the so-called lifting
triangulations. We show that this duality behaves particularly well in the
class of Lawrence matroid polytopes. In particular, that the extension space
conjecture for realizable oriented matroids posed by Sturmfels and Ziegler
is equivalent to the restriction to Lawrence polytopes of the Generalized
Baues problem for subdivisions of polytopes.

We finish showing examples and a combinatorial characterization of
lifting triangulations.

Introduction

Matroids (see [22]) and oriented matroids (see [7]) are axiomatic abstract models
for combinatorial geometry over general fields and ordered fields, respectively.
Oriented matroids have some extra structure over usual matroids, one of whose
features is the existence of a notion of convezity (see Chapter 9 of [7]). In
particular, it seems quite natural to consider the concept of a triangulation of
an oriented matroid. This concept is the object of this paper. Triangulations
of oriented matroids were first defined by Billera and Munson [5] for the class
of matroid polytopes and an account of them for the class of acyclic oriented
matroids (which is a more general case) appears in Section 9.6 of [7]. We assume
familiarity with the basics of oriented matroids. For the more advanced topics
we will use [7] as a standard reference.

Our interest in oriented matroid triangulations comes from two sources. In
one hand, it is well-known (see for example [11]) that the collection of trian-
gulations of a convex polytope (more generally, of a point configuration) only
depends on the oriented matroid structure of the configuration and not in other
geometric features. This suggests that an oriented matroid approach to trian-
gulations provides additional insight into their structure and can help to solve
some fundamental questions. The problems we have in mind concern the homo-
topy type of the order poset of subdivisions of a polytope and also the notion
of bistellar flip—a sort of “elementary move”— between triangulations. Both ob-
jects have received attention in recent literature, partially as a result of the
theory of secondary polytopes developed by Gelfand, Kapranov and Zelevinski
(see Chapter 7 of [15], and pages 231-233] for the original definition of bistellar
flip). The following two questions are open: Has the order complex of polytopal
subdivisions of any polytope with n points in dimension d the homotopy type
of a (n — d — 2)-sphere? Is the set of triangulations of a polytope connected by
bistellar flips?

The first question is a particular case of the Generalized Baues problem
posed by Billera et al. [4]. The second is a weak version of it. Both of them
have been answered in very few cases, always in the affirmative. The case of
“few points” (n < d+ 3) is answered by the results of Lee [19] and the theory



of secondary polytopes by Gelfand et al. (see [7, Chapter 7] and [3]). In the
case of “low dimension” (d < 2) the connectivity question is known since some
time ago [18] while the homotopy one has been recently solved by Edelman
and Reiner [12]. A particular case interesting because of the amount of extra
combinatorial structure available is that of ecyclic polytopes, solved by Rambau
[25].

The second source of interest in oriented matroid triangulations is their
connection with the theory of combinatorial differential manifolds introduced by
MacPherson [21]. These manifolds provide a very promising interplay between
differential and combinatorial geometry, whose first striking outcome has been
the combinatorial formula for the Pontrjagin classes of triangulated differential
manifolds obtained by Gelfand and MacPherson in [16].

The connection between differential combinatorial manifolds and triangula-
tions of oriented matroids was exhibited by Anderson in [1]. Roughly speaking,
combinatorial differential manifolds are defined as simplicial topological pseudo-
manifolds whose local differential structure is combinatorially defined by means
of oriented matroids. Anderson has proved that the link of every cell of a com-
binatorial differential manifold is an oriented matroid triangulation. She uses
a different definition of triangulation than Billera and Munson and, in fact,
she works with totally cyclic oriented matroids, which is the “opposite” case
to acyclic ones. However, she proves that a version of her definition for the
polytopal case is equivalent to the definition by Billera and Muunson.

The first problem one encounters when dealing with oriented matroid trian-
gulations is how to define them. We have mentioned the existence of two equiv-
alent definitions, but Billera and Munson [5] consider also another possible, and
apparently stronger, definition. Actually, they recognize this “stronger” defi-
nition to be ‘a more direct translation of the usual definition of triangulation
of a polytope’, but discard it essentially for practical reasons (see our Remarks
2.5 (a) and (b) ). One of our first results is that this “strong” definition was
in fact equivalent to the “weak” one. Actually, we give seven different char-
acterizations of oriented matroid triangulations, which include (more precisely,
generalize) the two definitions by Billera and Munson and the one by Anderson
(see our Theorem 2.4).

Our setting is more general than the ones in [1], [5] and [7] in the sense that
we do not assume the oriented matroids to be neither acyclic nor totally cyclic.
Of course, a condition that any reasonable definition of oriented matroid trian-
gulations has to satisfy is that it agrees with the usual notion of triangulation
if the oriented matroid is realizable. This makes sense since the triangulations
of a point (or vector) configuration depend only on the underlying oriented ma-
troid, as we have mentioned. From the equivalent characterizations in Theorem
2.4 it is easy to conclude that our definition satisfies the following properties:

e If M is a matroid polytope realized as a polytope P, the triangulations
of M are exactly the triangulations of the polytope P which only use the
vertices of P as vertices. There is a recent survey by Lee [20] on this topic.

e If M is acyclic (but perhaps non-polytopal) and realized as a point con-



figuration A in a real affine space, the triangulations of M are exactly
the triangulations of the convex hull conv(A) which only use (perhaps
not all) the points of .4 as vertices. This is a generalization of the
previous case which has often been considered in recent literature (see
(3,4, 9, 10, 11, 12, 24] and Chapter 7 of [15]).

In general, if M is realized as a vector configuration A in a real vector
space, the triangulations of M are exactly the simplicial fans (see [15,
Definition 4.1]) covering the positive span pos(.A) of A and which only
use (perhaps not all) the vectors of 4 as generators of rank-1 cones.

After the definition problem is solved, our task is two-fold: in one hand we
will generalize to the oriented matroid case results which are known for trian-
gulations of point or vector configurations. In particular, most of the results
in [11], in which our Sections 3.1 and 3.2 are based. In the other hand, we use
oriented matroid methods in order to obtain results which are new even in the
realized case. An example of this is that we show that the eztension space con-
Jecture for extensions of a realizable oriented matroid, posed by Sturmfels and
Ziegler in [29], is equivalent to the afore-mentioned Generalized Baues problem
for subdivisions of a polytope, restricted to the case of Lawrence polytopes. See
Section 4.2 and in particular Remark 4.15 for details.

Summarizing, the main results of the paper are as follows:

(a)

(b)

We settle down the problem of defining triangulations of oriented matroids
by providing a definition which suits any oriented matroid and giving
several different characterizations of it (Theorem 2.4).

We generalize to this setting the results in [11] concerning the duality
between triangulations and extensions and on the affine span of the uni-
versal polytope (Sections 3.1 and 3.2). In particular, we prove that all
the triangulations of a uniform oriented matroid are connected by abstract
bistellar flips (this is a rephrasing of part 3 of Corollary 3.7).

We prove that under the mentioned duality, bistellar flips of triangulations
correspond in a good way to mutations of extensions (Theorem 3.14).

We consider the case of Lawrence polytopes and prove that in this case
the duality behaves specially well, because all the triangulations are lifting
triangulations (Theorem 4.14).

In particular, this implies that the extension space conjecture (see [29])
is equivalent to the Generalized Baues problem for Lawrence polytopes
(Corollary 4.17). Also, that there are (non-realizable) oriented matroids
whose triangulations are not connected by bistellar flips (Corollary 4.16)
since there are (non-realizable) oriented matroids whose extensions are
not connected by mutations (an example was provided by Richter-Gebert
in [23]).

We introduce a reoriented version of the Lawrence construction (Section
4.3, Theorem 4.18), which permits to translate results on triangulations



of acyclic non-polytopal oriented matroids to triangulations of matroid
polytopes, and vice-versa. This shows that the “polytopal case” cannot
be considered simpler than the “acyclic case” when dealing with triangu-
lations.

(g) We give necessary conditions (Proposition 5.4) and characterizations (Pro-
position 5.3 and Theorem 5.13) for an oriented matroid triangulation to
be a lifting triangulation. Although the concept of lifting triangulation is
heavily based in oriented matroid theory, the characterizations are purely
combinatorial.

(h) We construct non-lifting triangulations of the 4-cube and of a unimod-
ular polytope (examples 5.11 and 5.8). We also show bad behavior of
triangulations of non-Euclidean oriented matroids, with an example in
the Edmonds-Fukuda-Mandel oriented matroid EFM(8) (Example 5.6).

The following is a more detailed description of some of these points, and of
the structure of the paper:

The technical tools from oriented matroid theory that we will need concern
mainly single-element extensions and, of course, convexity. That is, the first
part of Chapter 7 and Chapter 9 in [7]. In Section 1 we recall these concepts
and prove some results which will be important later on. All of them either are
relatively easy to prove or can be found in [7]. Thus, the reader familiar with
oriented matroids can skip this section and come to it only for reference. Other
readers may find this section clarifying for understanding the convex geometry
of oriented matroids.

In Section 2 we give our definition of oriented matroid triangulation, based
in the “weak” one by Billera and Munson, and provide several equivalent char-
acterizations of it (Theorem 2.4). In particular, we show the equivalence with
the “strong” definition by Billera and Munson and with the recursive defini-
tion proposed by Anderson [1]. In Section 2.3 we prove some properties of
triangulations which will be of use in the rest of the paper.

In Section 3.1 we introduce the duality existing between lifting triangu-
lations of an oriented matroid and extensions of its dual in general position.
Lifting triangulations were defined in [7, Section 9.6] (a particular case was
mentioned in [5]). We will give two definitions of them, dual to one another
(definitions 3.4 and 4.1).

The duality between triangulations of an oriented matroid and extensions
of its dual is a generalization of the duality between regular triangulations of
a point configuration A and chambers of its Gale transform A*, exhibited by
Billera et al. in [3]. De Loera et al. [11] have already given a generalized version
of this duality, still in the realizable case, with the introduction of what they
call virtual chambers. Section 3.2 is the translation into the general oriented
matroid setting of Sections 2 and 5 of [11], and most of the proofs required
little changes. In particular, it is shown that for any triangulations T of M
and 7" of the dual M’ there are unique maximal simplices (i.e., bases) of T and
T" which are complements (Theorem 3.8). Also, that all the triangulations of
a uniform oriented matroid can be joined by a sequence of “abstract” bistellar



flips (this is a rephrasing of part (iii) of Corollary 3.7), a result first proved in
the realizable case in [3]. In Section 3.3 we show the exact relation between the
natural notions of elementary change on triangulations (the notion of bistellar
flip) and on extensions (the notion of mutation) under the duality. Namely, that
whenever two extensions differ by a mutation the corresponding triangulations
either coincide or differ by a bistellar flip (Theorem 3.14).

Going further on this duality, it is easy to establish a relation between the
order complexes of extensions ordered by weak maps and of subdivisions of an
oriented matroid ordered by refinement (subdivisions of an oriented matroid are
already defined in 7, Section 9.6] as a generalization of polytopal subdivisions of
a polytope, and the relation between the order complexes is stated in Exercises
9.30 and 9.31). In Section 4.2 we are going to see that this relation is specially
interesting in the case of Lawrence polytopes, because a Lawrence polytope only
has lifting triangulations and each of them corresponds to a unique extension
of its dual (Theorem 4.14). This provides the mentioned relation between the
extension space conjecture and the homotopy of the order complex of polytopal
subdivisions of Lawrence polytopes (Remark 4.15 and Corollary 4.17). For the
sake of self-completeness we devote Section 4.1 to the introduction of general
subdivisions and to prove some results that we will need. In Section 4.3 we
introduce a reoriented version of the Lawrence construction, which is useful in
order to translate results on triangulations of polytopes to non-polytopal point
configurations and vice-versa.

Since lifting triangulations have played an important role in the results so
far, we have devoted to them the last part of the paper. We will see some good
properties and their relation with regular triangulations of point configurations
in Section 5.1 and we will construct interesting examples of non-lifting trian-
gulations in Section 5.2. In Section 5.3 we prove the following surprising fact:
although the definition of lifting triangulations (even for a realized oriented
matroid) relies strongly in the notion of oriented matroid, there is a purely
combinatorial characterization of them which can be stated with no mention to
oriented matroids (Theorem 5.13). In our opinion this implies that the concept
of lifting triangulation is a natural one even outside oriented matroid theory.

We finish this introduction with some open problems on triangulations of
oriented matroids:

o Of course, we can mention here the General Baues problem in the two
particular cases of zonotopal and arbitrary subdivisions, although this
problem applies to realizable oriented matroids only. See the details in
Remark 4.15.

e The fundamental problem concerning triangulations of oriented matroids
is that of their topology: Is every oriented matroid triangulation homeo-
morphic (or at least homotopic) to a sphere or a ball of the appropriate
dimension? Anderson [1] has shown that this question is equivalent to
whether every combinatorial differential manifold is a topological mani-
fold. She proves the answer to be yes for Fuclidean oriented matroids,



and it is easily seen to be yes also for lifting triangulations. See Remark
2.15 for more information.

e Apart from their topology, there are other properties of triangulations
which can only be proved using some sort of euclideanness condition (see
Example 5.6, in particular the introductory comments). It would be good
to either prove them in general or show counterexamples. In particular,
we consider the following questions:

— Is there an example in which the graph defined in the proofs of
lemmas 2.7 and 4.6 has cycles? This seems to be connected to the
topology problem; see Remark 2.8.

— Is there a triangulation with two simplices containing respectively the
positive and negative parts of a circuit? This question was pointed
out to us by Jérg Rambau. A weaker property than this appears in
characterization (f) of Theorem 2.4.

— Are there two simplices ¢ and 7 of an oriented matroid such that they
are separated by a covector (they lie in different parts of the covector)
but they do not simultaneously belong to any triangulation? In
Example 5.6 we see a case in which two separated simplices do not
belong to any lifting triangulation, which is already impossible in
Euclidean oriented matroids.

e All the non-lifting triangulations which appear in this paper fail to satisfy
the necessary condition stated in Proposition 5.4, which leads us to think
that this necessary condition might also be sufficient. If this is the case,
every triangulation of a realizable rank 3 oriented matroid will be a lifting
triangulation. Even if it is not the case,is there a simpler combinatorial
characterization of lifting triangulations than our Theorem 5.137

I am grateful to Bernd Sturmfels who proposed me the study of oriented
matroid triangulations as a natural continuation of the results in [11]. To Jorg
Rambau with whom I had several interesting discussions specially on the topic
of euclideanness. And to Jesus de Loera who carefully read different versions
of the manuscript and helped with suggestions and comments.

1 Some preliminaries on oriented matroids

In this section we sum up the main oriented-matroid concepts and properties
that we will need. We will follow the book by Bjorner et al. [7] for notation and
reference, unless otherwise indicated. We assume a familiarity with the basics
of oriented matroid theory.

Since we will be very seldom concerned with (non-oriented) matroids, we will
use the terms circuits, cocircuits, vectors and covectors always referring to signed
ones. We will indistinctly note them as being signed subsets C = (C+,C~) of
E and as functions C : £ — {-1,0,+1}, where E is the ground set of an
oriented matroid. Using the second point of view we can say that a circuit



“is positive” or that it “vanishes” at some given points of E, and will write
C(p) = +1 with the same meaning as p € C'T.

1.1 Convexity

Let M be an oriented matroid of rank » on a set E. In order to stress the
geometrical meaning of oriented matroid concepts we will call simplices of M
the independent subsets of E. A k-simplex is a simplex with k-elements. Thus,
r-simplices are the same thing as bases.

Observe that if M is a realizable oriented matroid and ¥V C R” is a vector
realization of M then the geometric counterpart of the k-simplices of M are
simplicial cones of dimension k positively spanned by independent subsets of
M. If M is acyclic and realized by a point configuration A C R"™! then the k-
simplices of M correspond to simplices of A of dimension &k — 1, with vertex set
contained in A (this is the standard situation in the literature on triangulations
of a point configuration).

Following [7, Chapter 9], we call facets of M the complements of supports
of non-negative cocircuits of M and faces the complements of supports of non-
negative covectors. Facets are the maximal faces strictly contained in E. We
are not assuming M to be acyclic. In contrast with [7], we do not assume M
to be acyclic. If M is totally cyclic then it has no proper faces (faces different
from F itself).

For any A C E we denote by M(A) the restriction of M to A. We call
faces (resp. facets) of A the faces (resp. facets) of M(A). In particular, every
subset of a k-simplex o is a face of o, and it is a facet if and only if it has &k — 1
elements. Of course, all the faces of a simplex are simplices.

The convex hull of a subset A C FE' is the union of A and those elements p of
E'\ A for which there is a signed circuit C of M with Ct = {p} and C~ C A.
We denote this set by convag(A). The relative interior of A is the set obtained
removing the convex hulls of facets of A from the convex hull of A. We denote
it by relintap(A).

In the following two lemmas we prove some properties of the convex hull
and relative interior in oriented matroids.

Lemma 1.1 Let M be an oriented matroid of rank r on a set E. Letp € E
and A C E. Then:

(i) p € convat(A) if and only if p € convpgaup)(A), where M(AUp) is the
restriction of M to AU p.

(i1) of rankm(A) =k, then p € conva(A) if and only if there is a k-simplex
T C A with p € convp (7).

(iii) p € conuam(A) if and only if every cocircuit of M which is nonnegative
on A is nonnegative on p.

(iv) if p € conva(A) and A C convp(B) (B C E) then p € conva (B).



(v) tf A is an r-simplez, then p € convpg(A) if and only if for every a € A the
unique cocircuit of M vanishing on A\ a and positive on a is non-negative
on p.

Proof: Part (i) follows from the fact that circuits of M (AUp) correspond exactly
with circuits of M with support contained in AUp. Part (ii), considered on the
oriented matroid M(AUp), is “Carathéodory’s Theorem” [7, Theorem 9.2.1(1)].
Part (iii) is “Weyl’s Theorem” [7, Theorem 9.2.1(2)]. Part (iv) follows from (iii).

The “only-if” part in (v) is a consequence of (iii). For the “if” part consider
a circuit C' with support contained in the spanning but not independent subset
AU {p}. Since A is independent, p is in the support of C' and without loss of
generality we assume C(p) = +1. If C was positive at some point a € A, then
the orthogonality of C' and the cocircuit vanishing on A \ @ would be violated
in the restricted oriented matroid M (AU {p}). o

Lemma 1.2 Let M be an oriented matroid on a set E. Let a € F and A, B C
FE. Then:

(i) p € relintp(A) if and only if p € convpm(A) and for every covector
C = (C*,C™) vanishing on p, either C vanishes on A or has both negative
and positive points in A.

(ii) if p € relintpm(A) and A C convpm(B), but A is not contained in the
convez hull of any facet of B, then p € relintp(B).

(ili) if A is an independent set, then p € relint pm(A) if and only if ({p}, A) is
a circuit of M.

Proof: 1f p € relintp(A), then any cocircuit which is nonnegative on A either
vanishes on A or does not vanish on p; otherwise p will be in the convex hull of
a facet of A, or not in the convex hull of A. Reciprocally, if p € convas(A), but
p € relintpm(A), then there is a cocircuit which is nonnegative on A, vanishes
on p and does not vanish on A. This proves (i).

For (ii), consider a cocircuit C' vanishing on p but not on B. If C' vanishes
on A, as A is not in a facet of B, C takes both signs on B. If C does not vanish
on A, it takes both signs on A and, hence, also on B (because A C convm(B),
and using part (iii) of Lemma 1.1). We conclude that p € relintp(B), by the
characterization in part (i).

In (iii), A being independent implies that there is at most one circuit with
support contained in A U p. By definition of convex hull, p € convs(A) if and
only if the circuit is of the form ({p}, B) for some B C A. If this is the case we
have two possibilities: if B # A, then p is in the convex hull of a proper face
of A, and thus not in relintp(A). If B = A, then the orthogonality between
circuits and covectors implies, with part (i), that p € relintp(A). o



1.2 Extensions. Lexicographic extensions

Let M and M’ be two oriented matroids on sets F and E’. If E C E’, and
every circuit of M is a circuit in M’ we say that M’ is an extension of M.
Equivalently, M’ is an extension of M if M is obtained from M’ by deleting
some elements. We will only consider extensions which do not increase the
rank, i.e., for which rank(M) = rank(M’). If E'\ E = {p} is a single point we
say that M’ is a one-element extension, and normally use the notation M U p
for M’.

Let M U p be a one-element extension of M. For every cocircuit C' =
(C*T,C7) of M, exactly one of (C* U {p},C7), (C*,C~U{p}) and (C*,C")
is a cocircuit of M. In other words, there is a unique way to extend each
cocircuit of M into a cocircuit of M Up. This means that there is no ambiguity
in considering C' as a cocircuit in M U p, and we can write C'(p) = +1, -1
and 0, respectively. The function assigning to each cocircuit of M its value
C(p) € {—1,0,+1} on the new element p is called the signature of the extension
MU p.

Not every map from the set of cocircuits of M to {—1, 0,41} is the signature
function of an extension. Also, not every cocircuit of an extension M Up is the
extension of a cocircuit of M. However, it is true that a valid signature function
on the cocircuits of M uniquely determines the extension. More information
on these points can be found in [7, Section 7.1]. In particular, the conditions
that a signature function has to satisfy to be valid are in Theorem 7.1.8 and
the way to obtain all the cocircuits of M U p from the cocircuits of M and the
signature function of M Up is in Proposition 7.1.4 (both results coming from a
paper by Michel Las Vergnas).

We will be particularly interested in the so-called lezicographic extensions,
which were also introduced by Las Vergnas. We take as a definition the following
characterization of them which appears in [7, Proposition 7.2.4].

Definition 1.3 Let M be an oriented matroid on aset E. Let {ay,...,ax} C E
and choose a sign ¢; € {+,—} foreach ¢ = 1,..., k. The lexicographic extension
M U p of M by the point p := [a{',...,a;*] is defined to be the one whose
cocircuit signature is given by:

C(p) = €C(a;) if ¢ is minimal with C(a;) # 0
PP=3 0 if Cla;) =0, Yi=1,... k

In particular, with p := [a¥] we obtain the extension by a point p parallel to
a, and with p := [a™] the extension by a point antiparallel to a. In the definition,
there is no loss of generality if we assume ay, ..., aj to be independent. In fact,
if 1 is the first index for which ay, ..., a; is dependent, then the point a; can be
removed from the definition without affecting the extension obtained.

Definition 1.4 Let M U p be a one-element extension of an oriented matroid

M ofrank r on aset . Wesay that the extension is interiorif p € convu,(F).
We say that the extension is in general position if C'(p) # 0, for every cocircuit

10



C' of M; equivalently, if the support of every circuit of M U p containing p has
exactly r + 1 elements.

Lemma 1.5 Let M be an oriented matroid of rank r. Let M U p be a lexico-
graphic extension of M by the point p :=[a}',...,a;*]. Then,

(i) the extension is in general position if and only if rank({ay, ..., ax}) =r.

(i) if ¢ = + for all i, then p € relintpmup({a,...,ar}). In particular, it is
an interior extension.

Proof: Let A := {ay,...,ar}. The rank of A in M equals r if and only if no
cocircuit of M vanishes on A; with this (i) follows easily.

In part (ii), suppose first that A is an independent set in M (and thus in
M U p). By definition of lexicographic extension, every cocircuit vanishing on
A vanishes also on p. Thus, there is a circuit of M U p with support contained
in AUp. Since A is independent, there is exactly one such circuit C', and pis in
its support. Without loss of generality we assume that C'(p) = +1 and we will
proof that, in fact, C = ({p}, A). Suppose that the circuit is non-negative in
some point a; of A. Consider a cocircuit D obtained by extension of a cocircuit
vanishing on A\ ¢; but not on a; (such cocircuit exists, since A is independent).
By definition, we have D(p) = D(a;); but then C and D do not satisfy the
orthogonality axiom of circuits and cocircuits. This finishes the proof if A is
independent, by part (iii) of Lemma 1.2,

If A is not independent, then we can remove the points a; which depend on
the previous ones from the lexicographic expression of p without altering the
expression. The arguments above imply that (p, A’) is a circuit, where A’ is the
independent subset of A obtained by the removal. Thus p € convpup(A’) C
convmup(A). Let us prove that p cannot be in a facet of A: if it is in a facet,
then there is a cocircuit non-vanishing and non-negative on A which vanishes
on p. By construction, rank(A’) = rank(A) and, therefore, this cocircuit does
not vanish on A’. This violates orthogonality of this cocircuit with the circuit

(pa A/) (|

Definition 1.6 Let M Up and M U p’ be two single-element extensions of an
oriented matroid M. We say that p’ is a perturbation of p if for every cocircuit

C of M
C(p) #0 = C(p)=C®)

For example, let MUp be any extension of M and consider the lexicographic
extension of M U p by a point p’ := [pt,af',...,a*]. Then, the extension
MUp = (MUp)Up \pis a perturbation of M Up. In case that p itself is
given by a lexicographic extension p := [bfl, e b?’], then p’ is the lexicographic
extension given by p' := [b‘il, ey b?’, al', ..., a]

Lemma 1.7 Let M be an oriented matroid of rank r on a set /. Let A C E
and let MU p and MUY’ be two extensions of M, with p’ being a perturbation
of p. Then:
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{
(ii

) if p” is a perturbation of p', then p” is a perturbation of p as well.
)

(iii) if A has rank r and p € relint pup(A), then p' € relint pmuy (A).
)

if p' € convaquy (A), then p € convamup(A).

if p € convpup(A) and p' == [p*,af,...,af], then p' € convpmyy (AU

{a1,...,ax}).

Proof: Part (i) is obvious from the definition. Part (ii) follows from the char-
acterization of the convex hull by cocircuits (part (iii) of Lemma 1.1). Part
(iii) follows from the characterization of the relative interior by cocircuits (part
(i) of Lemma 1.2) and the fact that every cocircuit of M which vanishes on p’
also vanishes on p. Part (iv) follows from the fact that, in the oriented matroid
MU {p,p'}, p’ is in the convex hull of {p,ay,....ax} (part (ii) of Lemma 1.5)
and p is in the convex hull of A. a

(iv

An important problem concerning extensions is the following: given an ori-
ented matroid M on a set E and a subset A C F, suppose that we have an
extension M(A) U p or (M/A) U p of a restriction or a contraction of M.
Does there exist an extension M U p of M which extends the given one?
By this we mean that (M U p)/A = (M/A) U p in the contraction case and
MUp(AU {p}) = M(A)U p in the restriction case.

This is not true in general; for example, the oriented matroid M of the six
vertices of a convex hexagon does not depend on the hexagon being regular or
not, and has two extensions which are incompatible: the extension M U p; by
a point lying in the intersection of the three main diagonals and an extension
MU p;y by a point lying in the intersection of two of them, but not on the third
one. This means that the extension p; of M can not be extended to M U p;.
However, extensions can be extended in the following cases:

Lemma 1.8 Let M be an oriented matroid on a set E and let A C E. Let
M(A) Up be a lexicographic extension of the restriction M(A). Let M Up' be
the lexicographic extension of M with the same lexicographic expression. Then:

e MUY (AU{p'}) = M(A)Up.
o if p is interior in M(A), then p’ is interior in M.
e if p is in general position and A spans M, then p' is in general position.

Proof: Every cocircuit of M(A) extends to a cocircuit of M. The fact that
p and p’ have the same lexicographic expressions implies that their cocircuit
signatures agree on that cocircuits, which in turn implies that the extension
of MU p' (AU {p'}) of M(A) has the same cocircuit signature as M(A4) U p.
The fact that p’ is interior whenever p is interior is a consequence of parts (i)
and (iv) of Lemma 1.1. The fact that p’ is in general position if p is in general
position and A is spanning follows from part (i) of Lemma 1.5. a
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Lemma 1.9 Let M be an oriented matroid on a set E and let « € E. Let
(M/a)Up be an extension of the contraction M /a. Every cocircuit of M which
vanishes on a is a cocircuit of M/a; thus, the following cocircuit signature is

well defined: C(p') = C(a) if C(a) # 0 and C(p' = C(p) otherwise. Then,

e The cocircuit signature defines an extension M U p’ of M which satisfies

MuUp'/a=(M/a)Up.
e if p is interior in M/a, then p' is interior in M.
e if p is in general position, then p' is in general position.
e if p is lexicographic, then p' is lexicographic.

Proof: If p is the lexicographic extension defined by an expression [af!,...a}"],
then p’ is the lexicographic extension defined by the expression [a™,af!, .. .a}*].
This proves the last statement

Now, to show that C'(p’) defines an extension an arbitrary extension p it
suffices (Theorem 7.1.8 in [7]) to show that it defines an extension on every rank
2 contraction of M. So, let M /A be a rank-2 contraction of M. M/(AU {a})
is a contraction of rank at most 2 and, thus, p induces a lexicographic extension
po on it (every extension of a rank 2 oriented matroid is lexicographic, as is easy
to show). Applying the lexicographic case to this, we obtain that py extends
to a lexicographic extension of M /A by the procedure of the statement. But
it is easy to verify that this procedure defines precisely the same cocircuit
signature as the one induced by C'(p’) on M /A. This proves that C'(p’) defines
an extension of M. The formula M U p'/a = (M/a) U p follows from the
construction.

Finally, part (v) of Lemma 1.1 and part (iii) of Lemma 1.2 show that p €
relint(a/qyup(B) for some simplex B € E '\ {a} of M/a if and only if p €
relint pup,(B U {a}), where B U {a} is a simplex of M. Thus, if p is interior
and/or in general position, p’ is interior and /or in general position. a

2 Triangulations of oriented matroids

2.1 Definition, characterizations and remarks

Remember that we are using the term simplez meaning independent set and
thus r-simplex means the same thing as basis. We will define a triangulation
of an oriented matroid M of rank r as a collection of r-simplices satisfying
some properties. These properties should be the natural translation to ori-
ented matroid terminology of properties characterizing triangulations of point
configurations (for the acyclic case) or simplicial fans of vector configurations
(for the general case). Candidate properties fall mainly in the following three
categories: “covering properties” telling us that the union of the (convex hulls
of) simplices of the triangulation covers the convex hull of the configuration;
“pseudo-manifold properties” telling us that co-dimension 1 simplices which
are not in a facet of M belong either to 0 or 2 full-dimensional simplices of the
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triangulation; and “good intersection properties” of the simplices of a triangu-
lation. Also, “good intersection properties” are related to “circuit properties”
of the simplices, such as “no circuit has its positive and negative parts being
faces of simplices of a triangulation”. The following are translations of these
properties to oriented matroid terminology, in several degrees. All of them are
satisfied for triangulations of point configurations:

Definition 2.1 Let M be an oriented matroid of rank r on a set E. Let T be
a non-empty collection T of r-simplices of M.

o We say that T satisfies the pseudo-manifold property if for every o € T,
each facet 7 of ¢ is either contained in a facet of M or there exists another
simplex o’ # o in T with 7 C o’

If T satisfies the pseudo-manifold property, we say that it satisfies the
oriented pseudo-manifold property if for every (r — 1)-simplex 7 contained
in at least two simplices 7 U a; and 7 U ag of T, the unique cocircuit
vanishing on 7 has opposite signs at a; and az. In particular, this implies
that 7 is not contained in any other simplex of T'.

e We say that T' covers all (resp. some of) the interior extensions of M
if for every (resp. for some) one-element extension M U p of M with
P € convpup(M) there is a ¢ € T with p € convpup(o). We say that T
covers the extension(-s) once if the simplex ¢ is unique in 7.

e We say that the simplices of T intersect properly if for every one-element
extension M U p of M and every 01,00, € T,

P € convpmup(r) Nconvpup(oe) = p € convpmup(or N o).

e We say that two simplices ¢; and o3 overlap on a circuit C = (C*+,C™)
if C* C oy and there is an element a € C* such that C'\ {a} C o3.

We take as a starting definition of oriented matroid triangulations a slightly
modified version of the definition by Billera and Munson in [5].

Definition 2.2 Let M be an oriented matroid of rank r. Let T be a collection
of r-simplices of M. We say that T is a triangulation if it satisfies the pseudo-
manifold property and its simplices intersect properly.

A different approach to triangulations of oriented matroids is taken by An-
derson in [1]. Anderson is interested in studying combinatorial manifolds as
introduced by MacPherson [21] and, thus, the property of being a triangula-
tion is defined “locally”, using the contraction operation. Roughly speaking, a
collection of r-simplices is a triangulation if and only if for every k-simplex 7
contained in some simplex of T the link of 7 in T is a triangulation of M /7.
The link is a standard concept in piecewise linear topology, but our definition
slightly differs from the usual one (compare [26]) because we deal with the
maximal simplices of a simplicial complex, and not with the whole complex:
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Definition 2.3 Let M be an oriented matroid of rank r. Let T" be a collection
of r-simplices of M. Let 7 be a k-simplex, for some 0 < k£ < r. We call link of
7 in T the collection of (r — k)-simplices {o \ 7|7 C 0,0 € T'}. We denote it
linkT(T).

We can now state the main result of this section, which is the equivalence
between the following properties, all characterizing triangulations of oriented
matroids.

Theorem 2.4 Let T' be a non-empty collection of r-simplices of an oriented
matroid M of rank r. Then, the following properties are equivalent:

(a)

The simplices of T intersect properly and T satisfies the pseudo-manifold
property (i.e., T is a triangulation of M ).

The simplices of T intersect properly and T covers every interior extension
of M.

T satisfies the oriented pseudo-manifold property and covers some interior
extension of M in general position ezxactly once.

T satisfies the oriented pseudo-manifold property and covers all interior
extensions of M in general position exactly once.

If rank(M) = 1 then T consists of one simplex if M 1is acyclic and two
simplices with opposite elements if M is totally cyclic. If rank(M) > 1
then there is an element a € F such that

VoeT a €0 <= ac€ convp(o)

and for every element a € E which appears as a vertex in a simplezx of T,
the collection T, := linkr(a) of (r—1)-simplices of M /a is a triangulation
of M/a.

No two simplices of T overlap on a circuit and T satisfies the pseudo-
manifold property.

T satisfies the oriented pseudo-manifold property and for every triangu-
lation T™ of the dual oriented matroid M* there is a unique simplex in T
whose complement is in T™.

Remarks 2.5 (i) Statement (a) of our theorem is essentially the definition

of an oriented matroid triangulation by Billera and Munson [5] (see also
[7, Section 9.6]). The differences are that there the oriented matroid M
was assumed to be acyclic and polytopal, and that the original definition
included the extra condition that every element appears in some simplex
of the triangulation. Our equivalences imply that for acyclic and polytopal
oriented matroids this is redundant. For non-polytopal oriented matroids
we prefer to allow triangulations not to use all the elements (as is already
done in Section 9.6 of [7]), because this gives a richer structure to the
collection of triangulations of M.
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(i)

(iii)

(iv)

In the same paper Billera and Munson mention our statement (b) to
be a “more direct translation of the usual definition of a triangulation”.
They discarded this (apparently stronger) definition because it was not
clear to them whether it was satisfied for every lifting triangulation, while
statement (a) was. We will introduce lifting triangulations in Definition
3.4 and will devote to them Section 5.

Observe that from (e) it follows by induction that for every face 7 of
a simplex of T the link linkp(7) is a triangulation of M/7. This was
essentially Anderson’s definition of a (perhaps partial) triangulation of an
oriented matroid (she calls triangulations “partial” if they do not use all
the vertices). Although she is primarily interested in the totally cyclic
case, she proves that a version of her definition for the acyclic polytopal
case is equivalent to the one by Billera and Munson.

In her definition she poses the pseudo-manifold property, which is redun-
dant because it is equivalent to the recursive condition for rank(r) = r—1.

We also want to mention that one of the least evident steps in our proof
of Theorem 2.4 (namely, Lemma 2.7 which gives the equivalence of (c)
and (d)) is inspired by Proposition 3.5 in [1].

Statements (c) and (d) only differ by the word “some” which changes to
“all”. This makes these conditions particularly easy to check: because
of their equivalence, checking that something is a triangulation reduces
to check the oriented pseudo-manifold property and count the number of
simplices of T' which have a certain interior extension in general position
in their convex hull. If the extension is chosen lexicographic this counting
is rather easy.

In the other hand, checking properties (a), (b) or (g) implies construct-
ing either all the interior extensions of M in general position or all the
triangulations of M*, which is extremely hard.

Conditions (f) and (e) might be considered at the same level as (c) and
(d) for algorithmic purposes, but (f) is specially suitable for a branch-and-
cut algorithm for the construction of all triangulations of a fixed oriented
matroid: one can iteratively construct all the collections of simplices in
which no pair overlaps and, for the maximal ones, check whether they
satisfy the pseudo-manifold property.

In [25, Proposition 2.2] and in [8] a characterization of triangulations
of point configurations very similar to part (f) appears. The property
that no two simplices overlap on a circuit is substituted for the following
(stronger) one: there is no circuit with its positive and negative parts
respectively contained in two simplices of the triangulation. For oriented
matroids satisfying the Generalized Fuclidean intersection property IP,
(cf. Definition 7.5.2 of [7]) this strong property is equivalent to the prop-
erty that the simplices intersect properly, but not in general; a counterex-
ample to this in the oriented matroid R(12) (see [23]) was shown to me
by Jorg Rambau. In Example 5.6 we will show a counterexample in the
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Edmonds-Fukuda-Mandel non-euclidean oriented matroid EMF(8) (see [7,
Example 10.4.1]).

However, the additional properties of a triangulation (e.g., the pseudo-
manifold property) may imply that even in this case no circuit can have
its positive and negative parts respectively contained in simplices of a
triangulation. This is the case in our example (see Proposition 5.7).

2.2 Equivalence of the different characterizations

In this section we prove the equivalence of properties (a) to (f) in Theorem 2.4.
The equivalence of properties (a) and (g) is postponed until Theorem 3.8.

Lemma 2.6 Let T be a collection of simplices which intersect properly in an
ortented matroid M of rank r.

(i) If an (r—1)-simplez v of M is contained in two different r-simplices TUby
and TUby of T, then the unique cocircuit vanishing on T has opposite signs
at by and by. In particular, T is not in a facet of M and no other simplex
of T contains T.

(ii) Let MUp be an extension of M in general position (we recall from Section
2 that by this we mean that p € convpmup(A) only for spanning subsets
A C E). Then there is at most one simplex o € T with p € convamup(0).

(iii) No two simplices of T overlap on a circuit.

Proof: (i) Let 7 = {ay,...,a,_1} be an (r—1)-simplex and suppose that it is con-
tained in two different r-simplices 7Ub;, and 7Ubs. Consider the lexicographic
extensions of M by p; = [af,...,a]_;,07] and py = [af,...,a}_,65]. By

definition, the signatures of the two extensions can only differ in the unique (up
to sign reversal) cocircuit C' which vanishes in 7. Moreover, the two extensions
cannot agree on that cocircuit: if they did, then p; € conv(rUb;) N conv(TUbs)
and hence p; € conv(r), by the proper intersection property. This would imply
that C' is zero at by (also at bp) which contradicts the fact that 7 U b; is an
independent set. Thus, b; and by lie on different sides of the cocircuit C. We
conclude that 7 does not lie in a facet of M and that no other simplex of T
contains 7. This finishes the proof of this part.

(ii) If o # ¢’ are two different simplices of T" having p in their convex hull,
then p € convagupo N o’ violates the general position assumption on p.

(ili) Suppose that two simplices oy and oy overlap on a circuit; that is,
there is a circuit C = (C*,C~) with C* C o, and an element a; € C* such
that C \ {a1} C o3. Observe that this implies that both C* and C'~ are non-
empty (the latter because C*t C o is independent) and in turn that they are
both independent sets (since they are proper subsets of C'). Also, we have that
ay € o4, since otherwise the vertices of o2 would not be independent.

Let C* :={ay,...,ar} and consider the lexicographic extension of M by
the point p := [az, ...,a}]. This point lies on the flat spanned by {a1,...,as},
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but not on the flat spanned by {a,,...,ax}. This implies that it does not lie in
convaup(01 N og), because the intersection of o3 N oy with the flat spanned by
{a1,...,ar} is {ag, ..., a;}. Also, it is obvious that p € convaup(oy). We will
prove that p € convaup(02), which implies that oy and o9 intersect improperly
and finishes the proof.

Since oy is a full-rank simplex, we can use part (v) of Lemma 1.1. That is,
we have to prove that for every a € o, the unique cocircuit D which is zero on
o2 \ {a} and positive on a is non-negative on p. If a is not one of the elements
of C* or C~, then the unique cocircuit vanishing on o3 \ {a} also vanishes on
p. If a € Ct Noy = {ay,...,ar} the property follows from the lexicographic
definition of p. If @ € C'~ we have D(a) = +1 and D(p) = D(a;). Thus,
D(p) = —1 would violate the orthogonality of the circuit C and the cocircuit
D. O

Let T be a collection of maximal simplices of an oriented matroid M. For
any co-rank 1 simplex 7, let C; := (CF,C) be the unique (up to sign reversal)
cocircuit vanishing on 7. Let A, be the collection of elements a of M such
that 7 U {a} € T. With this notation, the oriented pseudo-manifold property
can be restated as follows: for any co-rank 1 simplex 7 which is not contained
in a facet of M, the cardinalities of A, N C} and A, N C: coincide and equal
0 or 1. If we impose the two cardinalities to coincide but admit them to be
greater than 1, we get a property weaker than the oriented pseudo-manifold
and which is expressed in [11] by saying that T “satisfies the interior cocircuit
equations”. The meaning of this will become apparent in Section 3.1. As a
preparation for that section we prove the next lemma with this weak oriented
pseudo-manifold property as hypothesis. Incidentally, from the lemma. it follows
that the oriented pseudo-manifold property in parts (c), (d) and (f) of Theorem
2.4 can be changed to this weaker one.

Lemma 2.7 Let T be a non-empty collection of simplices of an oriented ma-
.troid M of rank r. For any facet T of a simplez of T which is not contained in

a facet of M, let C, denote a cocircuit vanishing on 7. Suppose that for every
such facet T the following two sets have the same cardinality:

{rUaeTlaeC}, {rUaeT|laeC]}.

Let MU py and MU py be two different one-element extensions of M, both
interior and in general position. Let n; (i = 1,2) be the number of simplices o
of T for which p; € convpyuy, (o). Then,

(i) m1=ny > L.

(ii) There is a chain of simplices oy, ..., o inT such that p € relint(oy), p' €
relint(oy) and every two consecutive simplices in the chain share a facet
(that is, T is strongly connected, in the sense of simplicial complezes).

Proof: Let {ay,...,a,-} € T be one of the r-simplices and consider the lexico-
graphic extension by the point p := [a],...,a}]. If we can prove the lemma, for
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p and p; and also for p and p, we will have it for p; and p;. Thus, we consider
without loss of generality that p; = p.

This has the advantage that if we consider the lexicographic extension of
M U py with the same lexicographic expression [af, ..., a}], the restriction of
the resulting oriented matroid M’ := (MUp;)Ups to EUp; and EUp; coincides
with MUp; and MUp,; that is, the two extensions are compatible (which is not
true in general, even for realizable extensions of a realizable oriented matroid).
By part (i) of Lemma 1.1, there will be no difference in considering the convex
hull of simplices in M’ or in the restrictions M U p; and M U p,.

A second advantage of p; being a lexicographic extension is that then we
have the following “joint general position” for p; and ps in M’: that all the
circuits of M’ having either p; or p, (or both) in their support have rank r. This
follows from the fact that p; is an extension of M U p, in general position and
does not follow from the fact that p; and py separately are in general position.
Finally, the choice of p; clearly implies that n; > 1. Thus, in part (i) we only
need to prove ny = ng.

Let us consider the following directed graph G whose nodes are a subset of
the simplices of T':

- a simplex o € T is a node in the graph if and only if ({p1,p2},0) is a
vector of M’

- let 7 be a certain (r — 1)-simplex of M for which ({p1,p2},7) is a vector
(actually a circuit) of M’. In particular, 7 is not in a facet of M. Let C =
(C*,C7) be the cocircuit of M’ vanishing on 7, with sign given so that p; € C~
and pp € CT. Let {o},..., 0/} be the simplices of T containing T and with
o\7 € C*, and let {o],...,07} be the simplices of T containing 7 and with
o\ 7 € C~. The hypothesis of the statement implies that £ = [. Also, all
the simplices o; and of satisfy that (of, {p1,p2}) is a covector of M’. Then,
introduce a directed edge going from o7 to ot for each i =1,...,k.

We claim that the connected components of the graph G obtained are either
isolated points, or linear paths coherently oriented, or oriented cycles (in other
words, that G is an oriented 1-manifold except for the isolated points). We also
claim that the isolated points correspond to r-simplices containing both p; and
p2 in the convex hull and that the starting and end points of the linear paths
correspond, respectively, to r-simplices of T having p; or p2 (but not both) in
the convex hull. These claims imply n; = ny. The claims in turn follow from
the following facts:

(1) if a simplex o has p; € convap (o) and pa & convar (o), then it is a node
of the graph and there is a unique edge incident to it, which is outgoing.

(2) if a simplex o has p; & convap (o) and py € convag (o), then it is a node
of the graph and there is a unique edge incident to it, which is in-going.

(3) if a simplex ¢ has p; € convap (o) and py € convpg(o), then it is an
isolated node of the graph.

(4) if a simplex ¢ has py & convpyg (o) and py & convpg (o), then either it is
not a vertex of the graph, or it is a vertex of the graph with two edges incident
to it, one in-going and one outgoing.

All the four facts can be easily proved considering the restriction of M’ to
o U{p1, p2}, which is realizable and uniform (the latter because of the general
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position and “joint general position” assumptions). Note that in the realized
setting, the signed subset ({pi1,p2}, A) is a vector if and only if the relative
interiors of A and the segment going from p; to py intersect.

Part (ii) of the lemma follows also from the properties of the graph G.
Actually, any of the linear paths or isolated points of the graph G provides a
chain in the required conditions.

O

Remark 2.8 Suppose that M’ := MU{p,, p2} is realized by a point configura-
tion A. If T'is a triangulation of A (in particular, n; = ng = 1 in the statement)
then the graph G is the dual (in the sense of cell complexes) to the refinement
induced by T in the open segment (py, p2). That is, it is homeomorphic to either
a point or a segment. If 7" is a collection of simplices satisfying the oriented
pseudo-manifold property but it is not a triangulation (that is, if »; > 1 in the
lemma), then the graph G can be obtained in a similar way starting with n;
copies of the segment. In particular, the graph has no cycles. This property
is still true for not realizable oriented matroids if they are Fuclidean. Actu-
ally, showing that the graph G of the previous proof is homeomorphic to either
a point or a segment (and a generalization of this fact to simplices of higher
dimension) is the key-step in the proof by Anderson of the fact that a trian-
gulation of any Euclidean totally cyclic oriented matroid is PL-homeomorphic
to a sphere. For non-Euclidean oriented matroids we do not know of neither a
proof that the graph is acyclic nor an example in which it is not.

Lemma 2.9 Let T be a collection of simplices of an oriented matroid M sat-
isfying the oriented pseudo-manifold property. Let T be a subset of one of the
simplices of T and let M U p be an extension with p € convaup(T). Then, for
every perturbation p’ of p interior and in general position, there is an r-simplex
o of T containing T and with p' € convpuy (o).

Proof: Consider the contraction M’ := (M U p')/7 and the collection of sim-
plices T := linkr(r) in M’. T, is easily seen to satisfy the oriented pseudo-
manifold property. Also, the point p/ corresponding to p’ in the contraction
is still interior and in general position. By Lemma 2.7, there is a simplex
o in T containing 7 with p, € convp (o \ 7). We only need to prove that
P’ € convpuy (o).

We prove this using part (v) of Lemma 1.1: let @ be a point in o, and
consider the unique cocircuit C vanishing on o \ @, with the sign given so that
C(a) = +1. Then, if @ € 7 we cannot have C(p') = —1, because p’ is a
perturbation of p and C(p) # —1 (recall that p € convpmu,(7)). If @ € 7, then
C vanishes on 7, which implies that C contracts to a cocircuit C; of M/, with
C(p') = C-(p%). As p. is in the convex hull of o\ 7, this cocircuit is nonnegative
on p’. O

Proof of equivalences (a) to (f) in Theorem 2.4:

(b) =(a): Let 7 := {a1,...,a,_1} be an (r — 1)-simplex not contained in
a facet of M, and contained in a simplex ¢ = 7 Ub of T. Since 7 is not
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in a facet, there is a point a, such that the cocircuit C' vanishing on 7 has
opposite signs at b and a,. Consider the lexicographic extensions of M by
points p = [a],...,a}_,] and p’ := [af,...,a}]. The extension by p’ is in
general position and has p’ € convm(F). As T covers M, there is a simplex ¢’ in
T with p' € convpuy(0’). Since p' is a perturbation of p, also p € convarup(o’)
(part (ii) of Lemma 1.7). Since p € convpup(o) as well, we conclude that
p € convpmup(oNa’). But pis in the relative interior of 7, which implies 7 C o',
This proves the pseudo-manifold property for T'.

(a)=(c): That the oriented pseudo-manifold property is satisfied is part (i)
of Lemma 2.6. For proving that T' covers some extension exactly once consider
the lexicographic extension of M by p = [a],...,a}], where 0 = {ay,...,a,}
is an r-simplex in T. Clearly p € convapup(o) and p is in general position. By
part (ii) of Lemma 2.6, no other convex hull of a simplex of 7" contains p.

(d)=-(b): Since T covers all interior extensions in general position, it also
covers interior extensions not in general position, by part (ii) of Lemma 1.7.

For the good intersection property, consider an extension M U p and two
simplices o1 and o9 of T with p € convpup(1) N convpmup(oz). Let T be the
minimal subset of oy such that p € convau,(7). We will prove that 7 C o2,
which implies that the simplices intersect properly. Consider the lexicographic
perturbation p’ of p using the points of oy with positive signs, so that p’ €
convpmuy (02), by part (iv) of Lemma 1.7 and the fact that p € convaup(o2).
Also, since p' is a perturbation of p into general position, Lemma 2.9 implies
that there is a simplex ¢’ of T containing 7 and with p’ € convpmyy(0’). If
o' # a5 we would have a contradiction with Lemma 2.7, because we know that
there is an extension of M in general position contained in only one simplex of
T.

(¢) = (d): This is straightforward from Lemma 2.7, and finishes the equiv-
alences (a) & (b)& ()& (d).

(a) = (e): Let a be as in the statement. As we already have proved the
equivalence of (a) and (c), we will prove property (c) for T,, instead of (a), and
assume properties (a) and (c) for 7. The oriented pseudo-manifold property
for T, follows from the fact that for any simplex w containing a the simplex
w\ {a} is in a facet of M/a if and only if w is in a facet of M.

Let o, := {az,...,a,} be an (r — 1)-simplex of T, and consider the lexico-
graphic extension by the point p, := [ad,...,aF] of M/a, which is in general
position. By part (ii) of Lemma 2.6, 0 := a U g, is the only simplex of T with
p:=[at,af,... af] € convpy,(0). Thus, o, is the only simplex of T, with
Pa € CONV(A/a)up, (Ta)-

(e)=>(c): The fact that the link of every point is a triangulation, together
with the implication (c)=>(e) implies that the link of every 2-simplex is a tri-
angulation. Recursively, we conclude that the link of every k simplex 7 of the
triangulation is a triangulation of M /7. This property applied to the simplices
T of rank rank(M) — 1 is precisely the oriented pseudo-manifold property.

In order to find an extension which is covered exactly once, let a; be the
element appearing in the statement of part (e). Let ¢ := {ay,...,a,} be
an r-simplex of T'. Consider the lexicographic extension by the point p :=

[at,...,af]. We have that p € convpmuy(o) and will show that o is the only
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simplex of T with this property.

In fact, simplices of T' not containing @; do not have a; in their convex hull
and, thus, do not have p, which is a perturbation of the extension parallel to
ay; if a simplex o’ containing a; has p in its convex hull then, in (M U p)/aq,
the contracted simplex ¢’ \ a; has the contracted point p’ corresponding to p
in its convex hull. But, since this contracted point p’ is an interior extension of
M /a; in general position, only one contracted simplex ¢’ \ a; can have p,, in
its convex hull, namely ¢ \ a;.

(a)=(f) Follows from part (iii) of Lemma 2.6.

(f)=(e) The case of rank 1 is trivial. For the general case, let a be an
arbitrary vertex of a simplex of T'. If a € conva(o) for a simplex o € T with
a ¢ o, then there is a circuit of M of the form ({a}, B) with B C A. That is, o
and any simplex of T having a as a vertex overlap on the circuit ({a}, B). This
proves the first part of (e).

To finish the proof we only need to prove that the link of every vertex of
T satisfies (f). Then, inductively we assume that (f) and (a) are equivalent in
rank lower than rank(M), which implies that the link of every vertex in T is a
triangulation.

Thus, @ € F be a vertex of T. The pseudo-manifold property for linkr(a)
follows from the pseudo-manifold property of T in the same way as we proved
the oriented pseudo-manifold property in (a)=-(e). Now suppose that two sim-
plices 71 and 73 of linkr(a) overlap on a circuit C' = (C+,C~) of M/a. That is,
C* C 7 and there is an element a; in C* such that C\ {a;} C 7. If (C*,C7)
is a circuit of M /a, then one of (C*,C7), (CTu{a},C™) and (Ct,C~ U{a})
is a circuit in M. In the three cases we have that 7y U {a} and 7, U {a} overlap
in that circuit. a

2.3 Some properties of triangulations

Here we prove several properties of triangulations which either are interesting
by themselves or will be used later on. Given two collections A and B of subsets

of two disjoint sets F' and F respectively, the join A - B denotes the following
collection of subsets of E U F":

A-B:={rUgo|r € A o€ B}.
We will use A - b as an abbreviation for A - {{b}}, for b € F.

Proposition 2.10 Let M be an oriented matroid of rank r on a set E and
suppose that a € E is an exterior point; i.e., that a & conup(E\ a). Let T be
a triangulation of the restricted oriented matroid M(E \ a).

Let T, be the collection of facets of simplices of T which “are visible” from a.
More precisely, an (r — 1)-simplez 7 of M is in T, if and only if it is contained
in a simplex of T and there is a cocircuit of M which is zero on T, positive at
a and non-positive at the rest of the points. Then:

(i) TU(T,-a) is a triangulation of MUa. Here, T, a represents the collection
of r-simplices obtained joining a to each (r — 1)-simplex of T,.
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(i) T, is a triangulation of M/a.

Proof: (i) We will prove that 77 := T U (1, - a) satisfies characterization (c)
of Theorem 2.4. We first prove that T’ covers some interior extension exactly
once. Consider an interior extension M U p with p € convpup(E \ @). Since T
is a triangulation of M(E\ a) the simplices of T cover p exactly once. In the
other hand, the simplices of the form 7 U a with 7 € T, do not cover p, since
there is a cocircuit vanishing on 7 and with opposite signs on p and a (compare
Lemma 1.1(v)).

Secondly we prove that 7T’ satisfies the oriented pseudo-manifold property:
for those (r — 1)-simplices which are interior to M(E'\ @) this is clear, from the
oriented pseudo-manifold property of T. For those which are in T}, the property
follows from the addition of T} - . Observe that the (r — 1)-simplices in T, are
precisely those which are interior to M(E\ @) but not to M, and do not use
the point a. We finally have to deal with the (r — 1)-simplices of T’ which are
interior and use the point a. These simplices are of the form p U a, where p is
an (r —2)-simplex in a facet of M(E\ a) and the cocircuit C' vanishing on pUa
has both positive and negative points.

Consider the link L := linkr(p). By characterization (e) of Theorem 2.4, L
is a triangulation of the oriented matroid M(£'\ a)/p, which has rank 2 and
is not totally cyclic. Such a triangulation always has exactly two boundary
1-simplices, that is, p is contained in exactly two boundary (r — 1)-simplices 7y
and 7, of the triangulation 7. The fact that pU a is interior in M implies that
the cocircuit of M vanishing on pUa (which restricts to covectors in M(E'\ a))
and M(FE\ a)/p with the same supports) has both positive and negative points.
This in turn implies that the points 71 \ p and 73 \ p have opposite signs at the
cocircuit; that is, T has the oriented pseudo-manifold property.

(ii) Since T, = linkry(T,q)(a), this follows from characterization (e) in
Theorem 2.4. O

Corollary 2.11 Let T be a triangulation of an oriented matroid M on a set
F and let M U p be an extension of M. Then,

o If p is interior, then T is a triangulation of M U p.

e If p is not interior, then there is a triangulation T’ of MUp which extends
T (that is, with T C T').

Proof: The interior case follows trivially from characterization (c¢) of oriented
matroid triangulations. For the non-interior case consider the triangulation
exhibited in part (i) of the previous proposition. O

We now consider the following notion of restriction of a triangulation to a
face. Let T be a triangulation of an oriented matroid M and let F' be a face
of M of rank k. That is, M(F) is an oriented matroid of rank k. We will call
restriction of T to F the following collection of full-rank-simplices of M (F):

{r | rank(r) =k, 7CF, 3FoeT withr Co}.
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Corollary 2.12 Let T be a triangulation of an oriented matroid M and F' be
a face of M of rank k. Then, the restriction of T to F is a triangulation of
M(F).

Proof: Using recursion we only need to prove the case of F' being a facet, i.e.,
rank(M) = k+1. In this case let {ay,...,ar} be a k-simplex in F and let b ¢ F'
be an element of M. Then the lexicographic extension by p := [a],...,a},b7)
is exterior to M. Moreover, the triangulation T, of (M Up)/p of part (ii) of the
previous proposition is precisely the collection of simplices Tr. Observe that
although (M U p)/p and M(F) are different oriented matroids, the first one
is an extension of the second one by some interior points. This implies that
T, = Tr is a triangulation of M(F) as well (this is clear, for example, from
characterization (c) in Theorem 2.4). ]

Proposition 2.13 Let M be an oriented matroid on a set E with only one
pair of opposite circuits. Let C' = (Ct,C™) be one of them. Then,

e If both parts of C' are non-empty (i.e., if M is acyclic) the only triangu-
lations of M are
T+ :={E\{e}lec C*}

and

T™ :={FE\{e}lec C7}.
o QOtherwise, the only triangulation of M is

T :={E\ {e}|e € C}.

Proof: The oriented matroid M has one more point than its rank. Actually,
its maximal simplices (bases) are the subsets C'\ ¢, for e € C'. In case (ii) this
implies that any triangulation of M is contained in 7. In case (i), the fact that
no two simplices of a triangulation overlap on a circuit (characterization (f) in
Theorem 2.4) implies that every triangulation is contained in either 7% or T™.

Since no two triangulations of an oriented matroid can be contained in
one another, we will have finished if we prove that 7', T* and T~ are in fact
triangulations. This is easy to verify and left to the reader (for example, it can
be proved recursively, using characterization (e) in Theorem 2.4. It will also be
a trivial consequence of Corollary 3.3 in the next section, since the dual M~
has rank 1). O

Proposition 2.14 Let H be a flat of an oriented matroid such that the re-
striction M(H) is totally cyclic. Let Ty be a triangulation of the restriction
M(H) and let Ty be a triangulation of the contraction M/H. Then, the join
T =T, - Ty is a triangulation of M.

Proof: We will use characterization (e) of Theorem 2.4, and also induction
on rank(M). Since we have implicitly assumed that all the triangulations we
consider are in oriented matroids of rank at least 1 (e.g., in characterization (e)
of Theorem 2.4), the first case in our induction is rank(M) = 2, rank(H) =1
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and rank(M/H) = 1. It is easy to verify the lemma in this case. It is important
to observe that at this point we need the assumption of M(H) being totally
cyclic.

Let a be a vertex of T7 and let us verify that for every simplex o € Ty - T3,
if a € convaq(o) then a € 0. Any such simplex o is a union o = 71 U 75, with
71 € T1 and 75 € T5. Suppose that a € 7. Then, a ¢ convM(H)(Tl). Thus,
there is an element b such that the unique cocircuit of M(H) which vanishes
on 71 \ {b} and is positive on b is negative on a. That cocircuit extends to
the unique cocircuit which vanishes on o \ {b} and is positive on b. Thus, that
cocircuit is negative on a, which implies that a € conva(o).

To finish the proof of the lemma we show that for every vertex a in T,
linkr(a) is a triangulation of M/a. Inductively, we assume the lemma to be
true for all oriented matroids of rank rank(M) — 1. If a € H, then H \ {a}
is a totally cyclic flat in M/a of rank rank(H) — 1. Actually, linkr, (a) is a
triangulation of (M/a)(H \ {a}). Then, linkr(a) = linkt,(a) - T is in the
conditions of the statement and thus is a triangulation of M/a.

If a ¢ H, then H spans a flat H' in M/a of rank rank(H). Actually,
(M/a)(H) and M(H) are isomorphic oriented matroids and, in particular, 7} is
a triangulation of (M /a)(H). The fact that (M/a)(H) is totally cyclic implies
that 77 as also a triangulation of (M /a)(H’) (by the first part of Corollary 2.11).
In the other hand (M/a)/H' = (M/a)/H = (M/H)/a and thus, linkt,(a) is
a triangulation of (M/a)/H'. This implies that linkr(a) = T} - linkr,(a) is in
the conditions of the lemma. O

Remark 2.15 (Topology of triangulations)

For any triangulation T of an oriented matroid M we consider the simplicial
complex P(T') induced. This is defined as having T as its collection of maximal
simplices. If M is realizable of rank r, then P(T) is PL-homeomorphic to a
(r — 1)-sphere if M is totally cyclic and to a (r — 1)-ball otherwise. One of the
central open problems in the theory of oriented matroid triangulations is de-
ciding whether this is always the case also for non-realizable oriented matroids.
Here we will give a partial answer, based on the work of Laura Anderson [1].

The oriented pseudo-manifold property implies that the topology of the
simplicial complex P(T) is that of a pseudo-manifold whose boundary is home-
omorphic to the boundary of M. That is, the boundary of P(T') is empty if M
is totally cyclic and a ball of dimension rank(M) — 2 otherwise. It also implies
that the chirotope of M defines an orientation on P(T). Finally, Lemma 2.7 has
as the consequence that P(T") is strongly connected. All this seems to indicate
that the following properties are true, but we are only able to prove that they
are equivalent:

Proposition 2.16 Let r be a natural number. The following statements are
equivalent:

(a) For every triangulation T of every rank r 4+ 1 oriented matroid, P(T) is
an r-manifold (possibly with boundary).

(b) For every triangulation T of every rank r oriented matroid, P(T) is an
(r — 1)-sphere if M is totally cyclic and an (r — 1)-ball otherwise.
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(c) For every triangulation T' of every totally cyclic rank r oriented matroid,
P(T) is an (r — 1)-sphere.

Proof: The equivalence of (a) and (b) is obvious, as well as the implication from
(b) to (c). For the converse implication, observe that any triangulation 7" of
a non-totally cyclic oriented matroid M has always a totally cyclic extension
MU p. A triangulation T of M extends to a triangulation 77 of M U p by
Corollary 2.11. P(T) is the antistar of p in the simplicial complex P(7") and,
thus, is an (r — 1)-sphere. a

Anderson [1] has proved condition (c) for triangulations of Fuclidean ori-
ented matroids, that is, those satisfying the Fuclidean intersection property IP3
of [7, Definition 7.5.2]. Also, any of the conditions in the statement is easy to
verify for the class of lifting triangulations defined in [7, Section 9.6] (we will
define them in definitions 3.4 and 4.1).

3 Duality of triangulations and extensions

3.1 Circuit, cocircuit, extension and triangulation vectors

The goal of this section is that every interior extension in general position
M U p of a certain oriented matroid M has associated a triangulation of the
dual oriented matroid M*. The triangulations which can be obtained in this
way will be called [lifting triangulations and in a certain sense are the analogue
in oriented matroid terms of the regular triangulations of a point configuration.
A different, more geometric, definition of lifting triangulations appears in [7,
Section 9.6]. Our definition has the advantage of making more explicit the
importance of duality in the context of triangulations. In Section 4.1 we will
prove the equivalence of the two definitions.

The use of lifting triangulations will allow us to extend to the oriented
matroid case most of the results in [11]. In particular, the following notations
come from Section 5 in that paper.

Let A(M) denote the collection of all r-simplices of M. Let e, denote the
standard basis vector of RAM) corresponding to an r-simplex ¢ of M. For
any triangulation 7' C A(M) we consider its characteristic vector vy, which
has coordinates (vr), =1if 0 € T and (vr), =0if o ¢ 7.

Let 7 be an (r — 1)-simplex of M. Let C = (C*,C™) be the unique (up
to sign reversal) cocircuit vanishing on 7. We define the cocircuit vector Co, €
{~1,0,1}2M) by

COT = E €rug - § €rug-

i€Ct jeEC—

We say that a cocircuit vector is interior if both +1 and —1 appear among the
coordinates of C'o, (i.e., if 7 is not in a facet of M). Let C'o(M) denote the
collection of all cocircuit vectors Co., where T runs over all (r — 1)-simplices of
M. We denote by C'o;ni (M) the set of interior cocircuit vectors. M is totally
cyclic if and only if Co(M) = Co;p(M).
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Dually, let p be a spanning (r + 1)-subset of M. Then p contains a unique
signed circuit C = (C*,C7) of M. We define the circuit vector Ci, €
{_L 0’ 1}A(M) by

Cip = Z ep\a - Z ep\a.

acC— a€Ct+

We say that Ci, is an acyclic circuit vector if both 41 and —1 appear among
the coordinates of Ci, (i.e., if the restriction M(p) is acyclic). Let Ci(M)
denote the set of all circuit vectors and C'i,.(M) the subset of acyclic circuit
vectors. M is acyclic if and only if Ci(M) = Cige(M).

Finally, let M Up be an extension of M with p in general position. Remem-
ber that the extension is interior if p € convaup(E). We define the extension

vector Fuat, € R2M) of p by

Eat, .= Z €y -

cEA(M)
pEconv p1up(o)
Observe that different extensions can produce the same extension vector. An
extension is interior if and only if its extension vector is non-zero.

We consider circuit and triangulation vectors as proper vectors in RA(M),
while cocircuit and extension vectors are considered linear forms from its dual
vector space. We fix the standard inner product (-, -) on RAM) | If M* de-
notes the dual oriented matroid of M, which has rank (n —r), an r-subset o of
F is a basis of M if and only if its complementary E'\ ¢ is a basis in M*. Thus,
we can identify A(M) and A(M™*) by complementarity, which induces an iden-
tification of (the dual of) R2M) with RA™Y) | From duality between circuits
and cocircuits it follows that, under this identification, Ci(M) = Co(M™) and
Clige(M) = Cojpy (M)

The utility of the above notation becomes clear from the following result:

Proposition 3.1 Let T be a collection of r-simplices of an oriented matroid
M of rank r. Let vr € RAM) pe its characteristic vector. Then, the following
conditions are equivalent:

(a) T is a triangulation of M.

(b) (Cor,vr) = 0 for every interior cocircuit vector Co; and (Exty, vr) = 1
for some interior extension M Up of M in general position.

(c) {Co,,vr) = 0 for every interior cocircuit vector Co, and (Ext,, vr) =1
for every interior extension M U p of M in general position.

Proof: The equivalence between (b) and (c) follows from Lemma 2.7.

If T is a triangulation, the equations (Co,, vr) = 0 follow from the oriented
pseudo-manifold property and the equations (Ezt,, vr) = 1 from the fact that
T covers every interior extension in general position exactly once. This proves

(a)=(c).
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Suppose now that T is in the conditions of (c). By Theorem 2.4(c) we
only need to prove that T satisfies the oriented pseudo-manifold property. Let
T = {ay,...,a-—1} be a codimension-one simplex of M not contained in a
facet and let C' = (C*,C7) be a cocircuit vanishing on 7. From the “interior
cocircuit equations” in (c) it follows that the number of simplices of T of the
form 7 Ua with a € C't equals the number of those with a € C~. The oriented
pseudo-manifold property will be established if we prove that this number is at
most one. For this consider the lexicographic extension by [a;r,. at_,,a*],

ey U1,

foranya € CTUC™. m]

Proposition 3.2 Let M be a rank r oriented matroid on E. Let M™ be the
dual oriented matroid. Let M Up and M* U p* be extensions of M and M*
respectively, both in general position. Then,

(i) There is at most one r-simplex ¢ of M such that p € convap(o) and
p* € convps(E\ o). That is, (Ext,, Extye) < 1, under the identification
of A(M) and A(M™).

(ii) If p is interior, then there exists a p* for which there is at least one such
o (equality holds in the equation).

iii) (C1i,, Ezt,) =0, for every acyclic circuit vector Ct, of M.
p 2 p

Proof: Suppose that there were two r-simplices oy # 09 in M with p €
convpmup(o;) and p* € convaprup(F \ 0;), for i = 1,2. This implies that
there are two circuits (p,7;) in M with 7; C o1 and that (7, 72) is a vector of
M. Similar arguments (in the dual) imply that M has a covector (wq, wz) with
w; C FE\ 0;. This violates the orthogonality of vectors and covectors in M,
which proves (i).

If p is interior then there is an r-simplex ¢ of M for which p € convau,(o).
Let o* := {a1,...,q|g—,} be the complement of o in E. Then, we can take
p* to be the lexicographic extension by the point p* := [af, .. .,ar]'ﬂ_r], which
proves (ii).

For (iii), we can assume that p € convmup(p), since otherwise the inner
product is clearly zero. If this is the case, the restricted oriented matroid
M’ = M Up(pUp) is acyclic. Also, the value of the inner product will be the
same in MUp and in M’, by part (i) of Lemma 1.1. Now, the acyclic realizable
oriented matroid M’ can be realized by a point configuration in R"™*. The
subconfiguration p has exactly two triangulations whose characteristic vectors
are the positive and negative parts of C'%,. Since pis in the interior of the convex
hull of the configuration and in general position, the “extension equations” in
Proposition 3.1 imply the equation (Ext,,Ci,) =0

O

Corollary 3.3 Let M be an oriented matroid and let M™ be its dual oriented
matroid. Let M™ U p™ be an interior extension of M™ in general position and
let Extys be the corresponding extension vector in RAM) Then, Extys s the
characteristic vector of a triangulation of M, under the identification between

A(M*) and A(M).
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Proof: Straightforward from Propositions 3.1 and 3.2, taking into account that
the cocircuit vectors of M correspond to the circuit vectors of AM™ in the iden-

tification of A(M) and A(M¥). o

Definition 3.4 The triangulations of M obtained by interior extensions in
general position of the dual oriented matroid M*, as in Corollary 3.3, are
called lifting triangulations. Those obtained by lexicographic extensions are
called lexicographic triangulations.

Section 5 is devoted to the study of lifting triangulations.

3.2 The affine span of characteristic vectors of triangulations

The following two results are dual to one another and inspired by Theorem 2.2 in
[11]; actually our proof is taken almost word by word from that paper, with the
obvious changes in notation and dualization. The role of regular triangulations
is played here by lexicographic extensions and triangulations.

Theorem 3.5 Let M be an oriented matroid of rank r on a set E. Let v =
Y oeA(M) CoTo (Co € R ) be any vector in RAM)
equivalent:

. The following properties are

(i) v is a linear combination of the acyclic circuit vectors C'i, of M and if v
is integer the combination has integer coefficients.

(ii) (vrs,v) =0 for the characteristic vector vy of every triangulation of the
dual oriented matroid M*.

(iii) (Fzt,,v) = 0 for every extension in general position M Up of M.

(iv) (Eaty,,v) = 0 for every lezicographic extension of M of the form p :=
[67,..., bf] where {b1,...,b.} is an r-simplex of M.

Proof: The implication (i)=(ii) follows from Proposition 3.1. (ii)=>(iii) from
Corollary 3.3 and (iii)=(iv) is obvious, since any extension in the conditions of
(iv) is in general position (Lemma 1.5(i)).

(iv)=>(i): Let v be in the conditions of (iv). We shall prove that v is a linear
combination of the acyclic circuit vectors using a double induction on n = |E|
and r = rank(M). In particular, we assume the statement to be true for the
deletion M \ @; and the contraction M /ay, where a; is an element of E.

We suppose that a; is not a loop, since otherwise the inductive step is
trivial. For any r-simplex o not containing ay, the set p = o U {a;} is clearly
the only spanning (r + 1)-set containing o and ay; also, ¢ is the only r-simplex
contained in p and not containing a;. Subtracting from v appropriate multiples
of C'i,y(q,y for those o for which o U {a1} is acyclic, we get another vector v’
in the conditions of (iv) but in which the variables z, corresponding to these
simplices do not appear. That is,

7
v = E Ty T+ E ChTy.

oia) €0 o:a1€0
ou{ay his acyclic
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Let us call v; and vy the two sums in the above expression, respectively.

We claim that under the natural identification of the simplices of M/a;
with the simplices of M containing @y the second sum vy is in the conditions
of (iv) for the contracted oriented matroid M/a,. Indeed, take a lexicographic

extension by p' := [b],...,b1_,] of M/a; with the b;’s in increasing order, and
consider the lexicographic extension by p := [ai",b1+, . ..,b:‘_l] of M. All the

simplices o with non-zero entry in the extension vector Ext, satisfy that cU{p}
is acyclic. Thus, (Ezty,v;) = 0. Since also (Ext,,v') = 0 we conclude that
(Eat,, v2) = 0. But the simplices of Ezt, containing a; are the same as the
simplices of Fzt,, and thus (Fzt,, ve) = 0.

By inductive hypothesis, vy is a linear combination of the acyclic circuit
vectors of M/a;. Now, every such acyclic circuit vector C't,y extends to an
acyclic circuit vector of M by putting a non-zero entry in the coordinate of p/,
in case p’ is a basis of M. Thus, subtracting from v’ the extended version of the
expression of vy as linear combination of acyclic circuit vectors, we get another

vector
17 _ "

oia1 o

in the conditions of (iv). If we prove that v” is a linear combination of acyclic
circuit vectors we will have finished, because v"” was obtained from v by sub-
tracting linear combinations of acyclic circuit vectors. We can assume that ay
is not a coloop, since otherwise v/ = 0.

Now, v can be considered a vector in RAM\a1), Moreover, every lexico-
graphic extension (M \ a1) Up’ of M\ a; in the conditions of the statement
induces a lexicographic extension M U p of M in the same conditions, by just
picking up the same sequence of defining points for the extension. The restric-
tion of Ext, to the simplices not containing a; coincides with Ezt,. Thus, v”
is in the conditions of (iv), when considered in M\ a;. By inductive hypothesis,
v” is a linear combination of acyclic circuit vectors of M \ a1, which in turn are
acyclic circuit vectors of M. o

Corollary 3.6 Let M be an oriented matroid of rank r on a set E. Let h =
2seA(M) CoTo (¢o € R) be any vector in R2M) . The following properties are
equivalent:

(i) h is a linear combination of the interior cocircuit vectors Co, of M and
if h is integer the combination has integer coefficients.

(i) (h,vr) = 0 for the characteristic vector vy of every triangulation of M*.

(i) (h,vr) = 0 for every lexicographic triangulation T of M produced by a
lexicographic extension of the dual M* in the conditions of part (iv) of
Theorem 3.5.

Proof: Follows from Theorem 3.5, by duality. ]

Corollary 3.7 Let M be an oriented matroid. Then,
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(i) The characteristic vector of any triangulation is an affine combination of
characteristic vectors of lexicographic triangulations Moreover, the lezico-
graphic triangulations can be taken from those in the statement of part
(iv) of Theorem 3.5.

(ii) The affine span of all the characteristic vectors of triangulations of M
is defined by the interior cocircuit equations (Co,, - ) = 0 and any non-
homogeneous affine equation satisfied on every characteristic vector (e.g.,
the equation (Ext,, - ) = 1, for any interior extension M U p of M in
general position).

(iii) The difference vr — vy of the characteristic vectors of two triangulations
of M is an integer combination of acyclic circuit vectors of M.

Proof: Part (i) follows from the equivalence of parts (ii) and (iii) of Corollary
3.6. Part (ii) follows from the equivalence of (i) and (ii) in the same corollary.
Part (iii) follows from the equivalence of (i) and (iii) in Theorem 3.5 and the
“extension equations” in part (iii) of Proposition 3.1. O

This leads to a stronger version of Proposition 3.1.

Theorem 3.8 Let T be a collection of r-simplices of an oriented matroid M
of rank r. Let vp € RAM) be its characteristic vector. Then, the following
conditions are equivalent:

(a) T is a triangulation of M.

(b) (Ciy,vr) =0 for every acyclic circuit form C'i, of the dual oriented ma-
troid M* and (vr«,vr) = 1 for some triangulation vy» of M*.

(c) (Ci,,v7) =0 for every acyclic circuit form Ct, of the dual oriented ma-
troid M™ and (vp«,vr) = 1 for every triangulation vr~ of M™.

Proof: The equivalence of the circuit equations in (b) and (c) and the cocircuit
equations in Proposition 3.1 is trivial from duality. Also, the fact that every
vector extension Ext, of M is the characteristic vector of a triangulation gives
the implications from (a) to (b) and from (c) to (a). We only need to prove the
implication from (b) to (c), but this is a consequence of part (ii) of Corollary
3.7. O

Corollary 3.7 implies the relation D = N — R — 1, between the number
N of r-simplices (bases) of M, the rank R of the linear span of its interior
cocircuit vectors and the dimension D of the affine span of incidence vectors of
triangulations. If the oriented matroid is uniform we clearly have N = (7); we
also can give explicit formulas for the other quantities, as is done in [11].

Lemma 3.9 Let M be a uniform oriented matroid. Then, every interior co-
circuit vector of M 1is the difference of two interior extension vectors and every
non-interior cocircuit vector is (up to sign reversal) an interior extension vec-
tor.
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Proof: Let C' be a cocircuit. Let 7 = {ay,...,ar_1} be the unique (r—1)-simplex
in which the cocircuit vanishes. Let a, be a point not in 7. Consider the two
lexicographic extensions p¢ := [a},...,al_|,a¢], which are in the conditions of
the previous lemma. Thus, we have that Co, = Ezt,+ — Eat,—. If C is an
interior cocircuit then the two extensions are interior, while if C' is non-interior
only one of the two extensions is interior and the other one has zero extension
vector. a

Theorem 3.10 Let M be a uniform oriented matroid of rank r on n elements.
Let Hpq be the affine span of the characteristic vectors of triangulations of M.
Then,

(i) the linear space parallel to H g equals the linear span of the acyclic circuit
vectors of M.

(ii) The linear spans lin(Co(M)) and lin(Ci(M)) of the cocircuit and circuit

vectors of M are orthogonal complements in RAM),

(iii) dim(lin(Co(M))) = ("Z]) and dim(lin(Ci(M))) = (*71).

r—1 r
(iv) Hum has dimension ("7') if M is acyclic and ("1 — 1 if it is not.

Proof: We recall that M is uniform if and only if the dual M* is uniform and
that exactly one of M and M™ is acyclic and the other one is totally cyclic.
Also, that every r-set is a basis and thus dim(R*M)) = M.

Let a; be an arbitrary point of M. The cocircuit vectors Co, such that
a; ¢ 7 are linearly independent, because each r-simplex containing a; ap-
pears in exactly one of them. Thus, dim(lin(Co,;)) > (’::i) In the same
way, the circuit vectors C'i, for the circuits p containing a; are independent,

because each r-simplex not containing a; appears in exactly one of them. Thus,
dim(lin(Ci,)) > ("71).

The dualized version of Lemma 3.9 tells us that every acyclic circuit vector
of M is a difference of two (lifting) triangulations and every non-acyclic circuit
vector is a triangulation vector itself. This proves that circuit vectors and
interior cocircuit vectors are orthogonal. If M is totally cyclic (every cocircuit
vector is interior, because M has no facets), this finishes parts (ii) and (iii). If
M is not totally cyclic, then M* is totally cyclic. We have proved (ii) and (iii)
for M*, which imply the statements for M. Also (i) follows from the above
statements.

Finally, the dimension formulae in (iv) follow from part (ii) of Corollary
3.7: if M is totally cyclic we have to subtract one dimension to the orthogonal
complement of C'o(M), while if M is acyclic we do not need to because there is
some non-interior cocircuit vector Co,, which produces the non-homogeneous
equation (Co,,vr) = 1. a

The previous Theorem implies that the interior cocircuit equations (the first
ones in condition (c) of Proposition 3.1) follow from the extension equations
(the second ones) in the uniform case. This is not true if M is not uniform, as
shown in [11].
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3.3 Mutations versus bistellar flips

For both extensions of an oriented matroid and for triangulations there are
notions of a “local” or “elementary” change between two of them. These are,
respectively, the so-called mutations and geometric bistellar flips. 1t is not
surprising that these two concepts be dual to one another under the duality of
triangulations and extensions depicted in the previous sections. Here we will
explore this duality. We take the following as a definition:

Definition 3.11 Let M be an oriented matroid. Let M U p; and M U ps be
two extensions of M in general position and let 77 and 7, two triangulations

of M.

(i) We say that p; and p, differ by a mutation if their cocircuit signatures
differ only in one pair of opposite cocircuits. We say that the mutation is
supported on those cocircuits.

ii) We say that T} and T3 differ by a bistellar flip if the difference of their
P
characteristic vectors is a sum of acyclic circuit vectors which are sup-
ported on the same circuit C'. We say that the bistellar flip is supported
on C.

If M is uniform, our definition of mutation of the extensions is equivalent to
the one in [7, Definition 7.3.8], except for a slight difference in point of view. We
are interested in mutating between one-element extensions of a fixed oriented
matroid M, while there the main interest is mutating between arbitrary uniform
oriented matroids of the same rank and cardinality. In the non-uniform case our
mutations correspond to moving the general position point p; to an “almost-
general” position (the circuits containing it have at least r points) and then
perturbing it back to general position. Let us see this in more detail:

Proposition 3.12 Let M be an oriented matroid. Let C = (C*,C7) be a
cocircuit of M. Let Cy denote the complement of the support of C and let Mg
denote the restriction of M to Cy. Let M U p be an extension of M whose
cocircuit signature is zero only on the cocircuit C' (and its opposite). Let a be a
point in the support of C'.

(i) Consider the two lexicographic extensions of M U p obtained as p,+ =
[pt,a*] and p,- := [pt,a”]. Then, M Up,+ and M U p,- are the only
extensions of M which are perturbations of M U p. Moreover, for points
a € Ct andb e C~ we have MUp,+ = MUpy-, and vice-versa, and for
points a and b in the same part of C' we have that M U pye = M U ppe,
e€{+,-}.

(ii) Let {m1,..., 7} be the bases of My (i.e., the (r — 1)-simplices contained
in Co) satisfying p € convpmup(s). Let a € CT. Consider the cocircuit
vectors Co,,,...,Co; with signs given so that the coefficient of the simplex
7: U {a} is positive. Then,

l
ZC’oﬂ. = Eactpa+ - Eat, _.

=1
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(iii) M U p,+ and M Up,- differ by a mutation supported on C'. Moreover,
every pair of extensions which differ by a mutation can be obtained in this
way.

Proof: The proof of (i) is straightforward: clearly, p,+ and p,- are well-defined
extensions which are perturbations of p. In the other hand, any perturbation of
p is determined by the value of its cocircuit signature on the cocircuit C'. The
relations between perturbations which use different points are trivial.

For proving (ii), let o be an arbitrary r-simplex of M and let us see that its
coefficient in the right hand side equals the one in the left hand side. Suppose
that the left hand side is non-zero. This implies that ¢ contains one of the
simplices 7;; because of part (i) we can assume that ¢ = 7; U a without loss of
generality, and then it becomes clear that the coefficient of ¢ in both the right
hand side and the left hand side is 1.

Reciprocally, suppose that the coefficient of o in the right hand side is non-
zero. This means that precisely one of the two extension elements p,+ and p,-
is contained in the convex hull of ¢ and, in particular, that p € convamup(o),
because of part (ii) of Lemma 1.7. Also, part (v) of Lemma 1.1 tells us that
the signatures of the two extensions must differ in a cocircuit vanishing in a
facet of o, that is, that o contains an (r — 1)-simplex contained in C°. This two
facts together imply that o contains one of the simplices 7;. But then, we can
assume without loss of generality that o = 7, U @ and, as before, conclude that
the coefficient of ¢ in both sides of the equation equals one.

For (iii), it is clear that MUp,+ and MUp,- differ by a mutation supported
on C. The converse follows from Lemma 7.3.3 of [7]. a

We will now look at bistellar flips. Our Definition 3.11 of them is rather
abstract, while for the case of triangulations of a point configuration a more
geometric definition exists. This is for example what Gelfand et al. [15, pages
231-233] call a modification of a triangulation, and is a concept which appears
quite often in recent literature on triangulations of polytopes (see [3, 8, 10,
11, 25]). For more complete information the reader should consult the recent
survey by Lee [20].

Parts (i) and (ii) of the following statement show what the more geometric
definition of a bistellar flip is, and part (iii) says that this more geometric
definition is equivalent to our abstract one. Examples of bistellar flips appear
in Figure 1. Parts (a), (b) and (c) of the Figure show the three possible types
of flips in dimension 2 (rank 3). The one in part (a) is degenerate in the sense
that it is supported in a non-full-rank circuit. Parts (d) and (e) show the two
possible non-degenerate flips in dimension 3 (rank 4).

Remember that we use the notation A - B for the join of two collections of
simplices, defined as

A-B:={ocUT |0 € A,T€ B}

Proposition 3.13 Let M be an oriented matroid and let C := (C*t,C~) be an
acyclic circuit (that is, a circuit with non-empty positive and negative parts) of

M. LetT be a triangulation of M. Then:
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Figure 1: Some examples of geometric bistellar flips.

(i) The restricted oriented matroid M(C) has ezactly two triangulations,
namely

T& = {C\{e}|e € C*}

and
Te :={C\ {e}ec C}.

(ii) Suppose that T is a subcomplex of T (that is, every simplex of Ty, is
contained in a simplex of T') and that the links of all the simplices of T
in T coincide. In these conditions, let L be the link in T of the simplices
of T . Then, T' contains the join TS - L and

T:=T\(T; -L)UT} L
is a triangulation of A.

(iii) T and T' differ by a bistellar flip supported on the circuit C. Moreover,
every pair of triangulations which differ by a bistellar flip arise in this
way.

Proof: (i) This follows from Proposition 2.13.

(ii) Since L is the link of a face 7 of some simplex of T, L is a triangulation
of M/r. Now, 7 is one of the maximal simplices of T, which implies that r
spans C. Thus, L is also a triangulation of M/C. The fact that T contains
I - L is clear, since L is the link of every simplex of T;,. We will prove that
T' satisfies characterization (c) of Theorem 2.4.

We first reformulate the oriented pseudo-manifold property; if instead of
a collection T of rank-r simplices we consider the simplicial complex whose
maximal simplices are those of T', the oriented pseudo-manifold property is
equivalent to the fact that 7" is a pseudo-manifold whose boundary is contained
in the boundary (proper faces) of M, and that 7" is consistently oriented by the
chirotope of M. Thus, once we know the oriented pseudo-manifold for T, the
oriented pseudo-manifold for 7" will follow if we proof that Tg -Land T; - L
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are pseudo-manifolds with the same boundary. The fact that they are pseudo-
manifolds follows from the fact that L, Tg and T are pseudo-manifolds. The
fact that they have the same boundary follows from the fact that TCT and
T have the same boundary (namely, the simplicial complex whose maximal
simplices are {C \ {a,b}la € CT,be C™}.

We finally have to find a vertex a in T’ such that a € convaq(o) and o € T’
implies that a € o. If there is no element ¢ € C which is a vertex in both T
and T’, then the positive and negative parts of C consist on one element each,
the two being parallel in M. Condition (f) in Theorem 2.4 implies that only
one of them (the one in the positive part of C) is used in 7’; the transformation
from T to T” is just the substitution of this vertex for the other and it is clear
that 7' will be a triangulation. Otherwise let ¢ € C be an element which is a
vertex of both 7" and 7”. This implies that no simplex o € 7"\ (T4 - L) C T
has a € convaq(o) unless a € o).

For the rest of the simplices of T’, i.e., those of the form 71 U 75 with
7 € TF and 72 € L, if a ¢ 71, then @ € conva (C)(r1), because a is a vertex
in the triangulation 74 of M(C). Thus, there is an element b € 71 such that
the unique cocircuit of M(C) which vanishes on 7, \ {b} and is positive on b
is negative on a. This cocircuit extends to the unique cocircuit of M which
vanishes on 71 Uy \ {b} and is positive in b, which thus is negative on a. This
implies a ¢ conva (T U Ta).

(iil) For each simplex 7 € L, CUL is a spanning (r+ 1)-subset whose circuit
vector is precisely the difference of the incidence vectors of T(}‘" -7 and T - 7.
This proves that v} — vy is a sum of acyclic circuit vectors supported on the
circuit C.

For the converse, let T' and T” be two triangulations which differ by a bis-
tellar flip supported on the acyclic circuit C' = (C*,C 7). Let r and k be the
ranks of M and C. Each circuit vector supported on C' is the difference of the
incidence vectors of T} -7 and T - 7, for some (r — k)-simplex. Thus, the fact
that 7' and T’ are triangulations and their incidence vectors differ by a sum of
circuit vectors supported on C implies that Tg is a subcomplex of one of them
and T; a subcomplex of the other. Suppose that T is a subcomplex of 7" and
T} of T'. Characterization (f) of Theorem 2.4 implies that T does not contain
any simplex of Tg as a face and T” does not contain one of T . Thus, the fact
that we pass from T to T’ by a sum of acyclic vectors supported on C' implies
that all the simplices of T have the same link L in 7', which becomes the link
of all the simplices of TCJU in T'. This finishes the proof. O

We finally show the relation between bistellar flips on lifting triangulations
and mutations of the associated extensions of the dual:

Theorem 3.14 Let M be an oriented matroid of rank r in n points, with
dual M*. Let M U p; and M U py be two interior extensions of M in general
position which differ by a mutation and let Ty and T3 be the corresponding lifting
triangulations of M*. Then, either Ty = T, or Ty and Ty differ by a bistellar

Jlip.
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Proof: 1f the two extensions p; and py do not coincide, then Proposition 3.12
implies that the extension vectors Ezt, and Ewt,, differ by a sum of cocircuit
vectors of M supported on the same cocircuit; it is easy to check that if p; and
p2 are both interior, then the cocircuit vectors are interior. Thus, the incidence
vectors of Ty and T, differ by a sum of acyclic circuit vectors supported on the
same circuit of AM*, O

It is natural to ask the converse of this; if 77 and T3 are lifting triangula-
tions which differ by a bistellar flip, is it always true that they have associated
extensions which differ by a mutation? It seems difficult to answer this ques-
tion in general, because the extension associated to a lifting triangulation is
not unique. In Section 4.2 we will see that the answer is positive in the case
of Lawrence polytopes, for which each lifting triangulation is associated to a
unique extension of the dual.

4 Subdivisions of Lawrence polytopes

4.1 Lifting subdivisions. Subdivisions

We have defined lifting triangulations of an oriented matroid M by means of
extensions of the dual oriented matroid M*. In [7, pag. 410] lifting triangu-
lations are defined in a more geometric (but equivalent) way that explains the
name “lifting”. The idea comes from a paper by Billera and Munson [5] al-
though there only a particular (lexicographic) lift is considered. We introduce
now that definition and show its equivalence with Definition 3.4. The following
definition of a lift of an oriented matroid is also taken from [5] and the same
concept appears in [7] under the name one-element lifting. It is the dual concept
to a one-element extension.

Definition 4.1 Let M be an oriented matroid of rank r on a set E. A [iff of
M is an oriented matroid M of rank r + 1 on a set EUp such that Ja/p = M.
We say that the lift is acyclic if M is acyclic.

Given an acyclic lift M of an oriented matroid M, the lifting polytopal
subdivision (or lifting subdivision for short) T' of M associated to the lift is the
following collection of subsets of E, to be called cells of the subdivision:

T:={ACE | Aisa facet of M}
We say that the subdivision is simplicial if all the cells are simplices.

Observe that Definition 4.1 is not really so far from our definition of lifting
triangulations. Indeed, the dual M* of an acyclic lift Mof Misa totally cyclic
extension M* U p of M*. The fact that M* U p is totally cyclic is equivalent to
the reorientation M* U P of p in it being an interior extension of M*.

Proposition 4.2 Simplicial lifting subdivisions and lifting triangulations are
the same thing. More precisely:
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(i) Let T be a simplicial lifting subdivision of M associated with the acyclic
lift M. The dual (/ﬁ)* is an extension of M™ that we denote by M™ U p.
Denote by M* U P the reorientation of the element p in M* U p. Then,
any perturbation of M* U D into general position ts an interior extension
with associated lifting triangulation of M equal to T'.

(i) Let T be a lifting triangulation of M associated with an extension M*UP
of the dual oriented matroid M*. Denote by M* U p the reorientation at
the element  of M*UD. Then, the dual oriented matroid (M>Up)* is a
lift of M whose lifting subdivision is T.

Proof: Let us first give a different characterization of the cells of a lifting sub-
division. A subset A C F is a cell in the lifting subdivision of the lift M if and
only if ((E'\ A)Up,0) is a cocircuit in M. This in particular implies that AUpD
is a spanning subset of M\; thus, A is a spanning subset of M and F'\ A is an
independent subset, of M*.

The dual of an acyclic lift Mof Misa totally cyclic extension M™*Up of the
dual M*. Thus, the reorientation M* U7P is an interior extension of M*. Even
more, P € relint p+up(E). The reciprocal is also true; that is, there is a 1-to-1
correspondence between acyclic lifts of M and relative interior extensions of
M*, by reorientation of the dual. Under this correspondence, ((E'\ A)Up, 0) is
a cocircuit of the lift M if and only if (E\ A4, {p}) is a circuit of the extension
M*Up. This implies (ii), since the lifting triangulation T contains by definition
precisely those independent sets A of M* U P for which (A, {p}) is a circuit of
M*UP.

For proving (i) we have the extra difficulty that M*Up may not be an exten-
sion in general position. However, we have the following property, which follows
from the fact that 7' is simplicial: any subset A € E with p € conva=up(A)
is spanning; in particular we have that p € relinta=us(A4) and thus that
p' € relintpruy(A) for any perturbation M* U p’ of M* U p. That is, all
the simplices of T are in the lifting triangulation corresponding to p’. The
reciprocal follows with the same kind of arguments. a

Example 4.3 (Lifting triangulations via lifts)

An example of the equivalence between the two definitions is shown in Figure
2. Parts (a) and (b) show an oriented matroid M and its dual M*, both of rank
2 and realized as vector configurations. Parts (¢) and (e) show two different
acyclic lifts of M, which have rank 3, realized as point configurations in the
plane. Recall that if an oriented matroid is realized by a point configuration A
and p is a point of A (i.e., an element of M), the contraction M/p is realized
by the vector configuration {a —p | a € A\ {p}}.

The segments drawn in parts (c¢) and (e) are the facets of the oriented
matroid which do not contain p; that is, the maximal simplices of the induced
lifting triangulations of (a). Parts (d) and (f) of the figure show two extensions
of M* (noted p) and their opposites (noted p). It is easily checked that the
simplices of part (d) (resp. part(f)) which contain the extension 7 in their
convex hulls are the complements of the simplices in the lifting subdivision in

part (c) (resp. part (e)).
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Figure 2: Lifting triangulations defined by lifts and by extensions of the dual.

Remark 4.4 (Lexicographic triangulations by “pushings and pullings”)

In the realizable acyclic case, lexicographic triangulations were characterized
by Carl Lee [19] as the ones that can be obtained from the trivial subdivision
of a polytope by a sequence of pushings and pullings of points. This description
is generalized to oriented matroid triangulations in [7, p. 410] (for the acyclic
case; the description also works in the non-acyclic case, except that the starting
“trivial subdivision” has no geometric meaning). Although we will not give the
details, Figure 3 will help to understand the process.

Figure 3: A lexicographic triangulation and the associated lift.

Part (a) shows a certain triangulation of a planar point configuration and
part (b) shows how to obtain it by a “lexicographic lift” with the expression
[17,27,3%]. Recall that this corresponds to the triangulation associated to
the opposite lexicographic extension of the dual, that is, to [11,2%,37]. The
lexicographic lift is constructed by adding a coloop p to M (the apex of the
pyramid in part (b) of the figure) and then perturbing the points in the order
they appear in the lexicographic expression, pulling them towards the apex if
they have negative sign and pushing them away from the apex if they have
positive sign. At the end of the process we obtain a lift of M such that the
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anti-star of p in the boundary of this lift is the lexicographic triangulation of

M.

The definition of lifting subdivisions suggests the concept of a general subdi-
vision of an oriented matroid, which has to agree with the concept of polytopal
subdivision of a polytope if the oriented matroid is polytopal, and with the
concept of triangulation in the simplicial case. The following definition is taken
from [7, page 408]. As it happened with triangulations, we will not assume our
oriented matroids to be acyclic.

Definition 4.5 Let M be an oriented matroid of rank r on a set £. A non-
empty collection A of subsets of E (called cells) is a subdivision of M if it
satisfies:

(a) For every cell o € A the restriction M (o) is acyclic and has rank r.

(b) for every one-element extension M U p of M and every 01,09 € A,

P € convaup(o1) N convimup(o2) = P € convaup(or N o3)

(c) If 01,02 € A, then o3 N0y is a common face of the two restrictions M (o)

and M(a3).

(d) If o € A, then each facet of M(o) is either contained in a facet of M or
contained in precisely two cells of A.

If all the cells are full-rank simplices, Definition 4.5 specializes to Definition
2.2 of an oriented matroid triangulation. Indeed, conditions (i) and (iii) are
then redundant and the other two are respectively our pseudo-manifold and
proper intersection properties. The following results are proved in [7] for the
acyclic case, and generalize to the perhaps-non-acyclic case with exactly the
same proofs.

e Lifting subdivisions are a particular case of a subdivision.

e If M is acyclic and realized by a point configuration X = {z,...,2,}
in R, then a collection of cells in M is a subdivision of M if and
only if A’ := {conv{z; | i € 7} | 7 € A} is a subdivision of the polytope
P = conv(X).

e If M is realized by a vector configuration X = {zy,...,z,} in R", then
a collection of cells in M is a subdivision of M if and only if A’ :=
{pos{z; | i € 7} | 7 € A} is a polyhedral fan with support P = pos(X).

It is reasonable to think that suitable translations of the characterizations
of triangulations in Theorem 2.4 yield characterizations of oriented matroid
subdivisions. Since our main interest is only in triangulations we will not get
into showing this. However, the following result is probably a key step in doing
it, and will be of use to us. It is a version of Lemma 2.7.
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Lemma 4.6 Let A be a subdivision of an oriented matroid M. Let M U p,
and MU py be two different one-element extensions of M, both interior and in
general position. Then,

(i) There is exactly one cell o, in A with py € relint mup, (04,) and another
Tp, with py € relint pmup, (0p,).

(ii) There is a chain of cells o, = 0, ...,0p = 0y, in A such that every two
consecutive cells in the chain share a facet (in particular, A is a strongly
connected cell complez).

Proof: Let r be the rank of M.

Let {ai,...,ax} € A be one of the cells of the subdivision and consider
the lexicographic extension by the point p := [afL, ey a}:]. If we can prove the
lemma for p and p; and also for p and p; we will have it for p; and py. Thus, we
consider without loss of generality that p; = p. In these conditions, Lemma 1.8
tells us that there is a two-element extension M’ = M U{py, p2} which restricts
to MUp; and M Up;, by deletion of one of the two elements. It is easy to check
that A is also a subdivision of M’: properties (a) and (c) are trivial; property
(b) follows from the fact that any extension of M’ restricts to an extension of
M and property (d) follows from the fact that p; and py are interior and in
general position and thus the proper faces of M and of M U {p;, p2} are the
same.

A second advantage of p; being a lexicographic extension, already mentioned
in the proof of Lemma 2.7, is that then we have the following “joint general
position” for p; and py in M’: that all the circuits of M’ having either p; or
p2 (or both) in their support have rank r. Also, property (b) of Definition 4.5
for the subdivision A implies that o,, = [a,...,ak] is the only cell of A with
p1 € convap(op,).

As we did in the proof of Lemma 2.7, we consider the following directed
graph G whose nodes are some of the cells of A:

-acell 0 € Ais a node in the graph if and only if ({p1, p2},0) is a vector
of M.

- let 7 be a certain (r — 1)-face of a simplex of A for which ({p1,p2},7) is a
vector of M’. In particular, 7 is not in a facet of M and there are exactly two
cells ot and 0~ in A having 7 as a facet. Let C' = (C*,C~) be the cocircuit of
M vanishing on 7, and assume without loss of generality that pyU(cT\7) C C*
and p, U (0~ \ 1) C C~. Then, introduce a directed edge going from ¢¥ to o~

We claim that the connected components of the graph G obtained in this
way are either isolated points, or linear paths coherently oriented, or oriented
cycles (in other words, that G is an oriented 1-manifold except for the isolated
points). We also claim that the isolated points correspond to cells containing
both p; and py in the convex hull and that the starting and end points of the
linear paths correspond, respectively, to cells of A having p; and p, (but not
both) in the convex hull. These claims, together with the fact that only one cell
contains p; in the convex hull, imply the statement. The claims in turn follow
from the following facts:
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(1) if a cell o has p; € conupp (o) and py & convape (o), then it is a node of
the graph and there is a unique edge incident to it, which is out-going.

(2) if a cell o has p; € convap (o) and py € convag (o), then it is a node of
the graph and there is a unique edge incident to it, which is in-going.

(3) any other cell o which is a node in the graph G is either an isolated
node or has two edges incident to it, one in-going and one-outgoing.

In Lemma 2.7 we proved these facts using realizability of every co-rank 2
oriented matroid. Here we need to use a different proof. Observe that since the
two extensions are in general position, they being in the convex hull of a cell is
the same as being in the relative interior.

Let us prove part (1). Thus, we assume p to be in the relative interior of &
and py not to be. Consider the acyclic oriented matroid Mo = M'(a U {p},
which is a lift of Mg := M'(c U {p1})/p1. Let Ay be the lifting subdivision of
Mg induced. By inductive hypothesis, the interior extension in general position
MoUpq := M'(cU{p1, p2})/p1 has the extension point p; contained in precisely
one cell of Ag, which means that there is exactly one facet 7 of o such that
(7, {p2}) is a vector of Mg U py. The fact that p; is in the convex hull of o
and p; is outside implies that this vector extends to the vector (7, {p1, p2}), and
that the corresponding edge of G is the unique edge incident to the node of o
and is oriented as desired. Part (2) is completely analogue.

We finally deal with part (3). We assume o to be a cell of A which gives
a node in the graph with at least one edge, but not in the conditions of (1)
or (2). Thus, (o,{p1,p2}) is a vector. Also, there is a facet 7 of ¢ such that
(1,{p1,p2}) is a vector. The latter implies that one of p; and p; is not in the
convex hull of ¢. In order not to be in cases (1) or (2), the other one is also not
in the convex hull of o.

As before, consider the lift Mg := M'(c U py) of Mg := M'(cU{p1})/p1,
and the extension MoU py = M'(cU{p1,p2})/p1. Mo is acyclic. If it was not,
the reorientation p; of p; in My would be an interior extension of M(c). Case
(1) applied to p; and ps would imply the existence of a facet 7 of o with p;
and p, lying in one side of 7 and ¢ \ 7 lying in the other. Then, the cocircuit
vanishing on 7 would not be orthogonal with the vector (o, {p1,p2})-

Thus, let Ag be the lifting triangulation of My associated to the lift ./(/l\o.
The inductive argument shows the existence of a unique facet 7y of o such
that the cocircuit C; = (C;',Cy) vanishing on 7, has p; € Ct, py € Cy and
ocNCy = 0. With the same arguments applied to contracting p, instead of pi,
we obtain a unique facet 7o such that the cocircuit C'y = (C;',C{) vanishing
on it has py € C, py € C5 and o NCY = . These two facets cannot coincide,
(otherwise they would span ¢) and thus provide the unique two edges incident
to the vertex of GG corresponding to o. The edge corresponding to 7 is out-going
and the one corresponding to 7, is in-going. a

The question of how to recover the lift/extension associated to a lifting
subdivision of an oriented matroid is partially answered in the following lemma.

Lemma 4.7 Let AAbe a lifting subdivision of an oriented matroid M, defined
by the acyclic lift M. Let M* U p be the (relative interior) extension of M*
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obtained by reorientation of P in the totally cyclic extension M*UP dual to M.
Then, the following properties hold for every cocircuit C' = (CT,C™) of M*:

o If some cell of A contains the support Ct UC™ of C then the cocircuit
signature of the extension M* U p at the cocircuit C' of M* is C(p) = 0.

o Otherwise, if some cell of A contains Ct (resp. C™), then C(p) = —1
(resp. C(p) = +1).

Proof: Observe that for any circuit C = (C*,C~) of M exactly one of (CT U
{p},C7) (Ct,C~uU{p}) and (C*,C7) is a circuit of the lift M, where p denotes
the extra element in the lift. If a cell of A contains CtUC™, then CTUC™ isin
a facet of M not containing p. This implies that rank(C U {p}) = rank(C)+1
and the the only possible circuit of the three above is (C'+,C7) itself. Thus,
C = (Ct,C7) is a cocircuit of M* U p; that is, C(p) = 0. If no cell contains
Ct U C~, assume that a cell of A contains C* but not C~ (the other case
is analogue). Then there is a positive cocircuit D of M which has empty
intersection with C* but non-empty with C~. Orthogonality of circuits and
cocircuits implies that the only possible extension of the circuit C' to M is
(C* U p,C~), which is as required in order that the cocircuit signature of
M*Up at C be C(p) = —1. O

Corollary 4.8 (i) Let A be a subdivision of an oriented matroid M and let
M U p be an interior eztension of M. Then, there is at least one cell
o € A with p € convpup(0).

(i) Let A and A’ be two subdivisions of an oriented matroid M. If one is
contained in the other, then they coincide.

Proof: If p is in general position, (i) is weaker than the statement of Lemma
4.6. If p is not in general position, then apply the same thing and part (i) of
Lemma 1.7 to any perturbation p’ of p interior and in general position (which
always exist; e.g., a lexicographic perturbation can do the job).

For (ii), suppose that A’ C A and that thereis a cell o € A\A’. We consider
any extension M Up of M in general position and in the convex hull of ¢ (such
as a lexicographic extension by the elements in o with positive super-index).
By Lemma 4.6 there is a cell ¢/ € A’ with p in the convex hull of ¢’, but this
is a contradiction with the same lemma, since both o and o’ are cells in A. O

4.2 Lawrence polytopes only have lifting subdivisions

We recall that an oriented matroid M is polytopal (or a matroid polytope) if
every one-element subset is a face. In particular, it has to be acyclic. An
oriented matroid M of rank r on n points has an associated oriented matroid
A(M) of rank n + r on 2n points which is (essentially) polytopal and has
the property that the whole oriented matroid structure of M is contained in
the face lattice of A(M). This construction was invented by Jim Lawrence
(unpublished). References for the construction are [7, Section 9.3], [6], [2] and
[30, p. 180]; the latter two deal mainly with the realizable case.
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In this section we will see that every subdivision of the Lawrence polytope
A(M) is a lifting subdivision and that, in fact, there is a 1-to-1 correspon-
dence between the subdivisions of A(M) and the extensions (interior or not) of
the dual oriented matroid M* of M. Under this correspondence bistellar flips
correspond exactly to mutations, and the correspondence will have the ionter-
esting consequence of relating the exztension space conjecture [29] to a conjecture
regarding subdivisions of polytopes.

Let us fix some notation. Let M be an oriented matroid of rank r on a
set E of n points and let M* be its dual. We construct an oriented matroid
A(M)" on the set £/ x {1, -1}, which can be geometrically interpreted (e.g., in
a realized setting) as the union of M* and its image by the central inversion.
More precisely, we identify £ with E'x {1} and will write A to denote 4 x {—1},
for every subset A of E. Then, A(M)* is the extension of M by n points € € E
antiparallel to the corresponding e € E. In other words, A(M)* is the only
oriented matroid which satisfies:

- A(M)™ is an oriented matroid of rank n — r on EUE whose restriction to
Eis M*.

- For any e € E, the element € € F is a loop in A(M)* if and only if e € E
is a loop and, if it is not a loop, then ({e, €}, ) is a positive circuit of A(M)*.

Let A(M) be the dual of A(M)*. From the construction it follows that
({e,€},0) is a covector of A(M) for every e € E and, in particular, that {e, &}
is a face (and the complement of a face as well). If {e, 2} has rank 2, then both
e and € are vertices. If the rank is 1, then e and € are parallel elements and
they form a “double” vertex of A(M). This happens if and only if e is a loop
in M, in which case ({e},0) is a cocircuit in M* and ({e}, {€}) is a cocircuit
in A(M)™.

Therefore, A(M) is polytopal if M is loop-less, and is “almost” polytopal
otherwise. If M is a realizable oriented matroid, then A(M) is realizable and
admits a direct geometrical construction from A by means of a sequence of
Lawrence extensions (see [30, Theorem and Definition 6.26]).

Definition 4.9 In the above conditions we say that A(M) is the Lawrence
matroid polytope (or Lawrence polytope, for short) associated to M.

A basic property relating M* and A(M)* is that their extensions are in 1-
to-1 correspondence and that every extension of M* is interior when regarded
in A(M)* (the latter follows from the fact that A(M)* is totally cyclic). This
implies that a triangulation of A(M) is lifting if it is defined by an extension
of M™ in general position, interior or not.

Let us now characterize the circuits, cocircuits and bases of a Lawrence
polytope. We introduce the following notation.

Definition 4.10 Let B be a subset of E, and A C B. We denote by
AB:=(B\ A)Uu(BnA),

and call it the reorientation of B by A.
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Let C'= (C*,C~) be a signed subset of E and let A C CtUC~. We denote
by

AC=((CT\AUC-NA) , (CT\AU(CtnA) ),
and call it the reorientation of C by A.

Lemma 4.11 Let A(M) be the Lawrence polytope associated with an oriented
matroid M. Let Ci, Co and B denote respectively the sets of circuits, cocircuits

and bases of M. Then,
(i) The set of circuits of A(M) is
Cipmy = {(CYUC—,CTUCH) | (CF,C7) e i}
(ii) The set of cocircuits of A(M) is
Copmy :={aC|C €Co,ACC} U
{({e,€},0), (0, {e,€}) | e € E is not a coloop of M}.
(iii) The set of bases of A(M) is

Bam) = {a(E\B)UBUB|B¢€B,AC E\B}.

Proof: The proof is easy via the duals M* and A(M)* of M and A(M). See
also Lemma 9.3.1 and Proposition 9.3.3 in {7]. O

The following is a first interesting consequence of this lemma:

Proposition 4.12 Let T be a triangulation of a Lawrence polytope A(M).
Then, for every basis B of M there is a unique subset A C (£ \ B) such
that 4(E\ BYUBUB € T. In particular, all the triangulations of A(M) have
the same number of simplices, equal to the number of bases of M.

Proof: Let B be a basis of M. Then, E'\ B is a basis of M* and the collection
of reorientations 4(F \ B) of F'\ B is a triangulation of A(M)*. From part
(c) of Theorem 3.8 we conclude that T has exactly one simplex which is the
complement of a reorientation of '\ B. |

Now we prove that Lawrence polytopes only have lifting subdivisions. The
following statement actually gives much more information.

Lemma 4.13 Let A(M) be the Lawrence polytope associated to an oriented
matroid M. Let A be a subdivision of A(M). Then:

(i) The support of every circuit C of A(M) is a face of A(M).
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(i) Let F be a face of A(M) which is the support of a circuit C'. Let k be the
rank of F. Consider the “restriction” of A to F defined as:

Ap:={oNF|o€A, rank(cnNF)=k}.

Then, A 1is either the trivial subdivision {F'} of the restricted oriented
matroid A(M)(F) or one of the triangulations TY or T; of a circuit
introduced in Proposition 2.13.

(iii) The cocircuit signature of A(M)* defined by C(p) = 0 if Ag = {C} and
C(p) = +1 (resp. C(p) = —1) if Ac = TE (resp. Ag = T7) is the
cocircuit signature of an extension A(M)* Up of A(M)*.

(iv) A is the lifting subdivision corresponding to the acyclic lift M which is
dual to the reorientation at p of the extension defined in (iii).

Proof: (1) By part (i) of Lemma 4.11, every circuit of A(M) is of the form
(Ct*UuC-,C~uUCT), where (C*,C7) is a circuit of M. In the other hand, by
part (ii) of the same lemma, every set of the form AU A is a face of A(M).

(ii) Let C' = (CtuC—,C~UCH) be the circuit whose support equals F. Let
ay € CYUC—, ag € C~UCH. We first prove that at most one of F, F\ {a;} or
F\{a2} lies in Ap. Let F\{ay,a2} = {b1,...,bk_1}. Consider the lexicographic
extension A(M)Upp of A(M) defined by the expression pp := [b],..., b}, ad].
It lies both in the relative interiors of F'\ {a1} and F'\ {az} (the first thing
is trivial, the second follows from the fact that a; and a, lie in opposite parts
of the circuit). Then, condition (b) in Definition 4.5 applied to A implies that
only one of F'\ {a1} or F'\ {a2} can be the intersection with F' of a cell of A. If
one of them is, then condition (c) in the same definition implies that F cannot
be contained in a cell of A.

Thus, for any pair of elements a; € Ct UC— and a; € C~ UCT at most
one of F'; F\ {a;} or F\ {ag} is in Ap. Since any spanning subset of F
is either F or of the form F'\ {a}, this implies that Ap is contained in one
of the three subdivisions {F}, T# or T5 of F. If Ap C {F} then clearly
{F} = AF. Otherwise, suppose without loss of generality that A is contained
in T. We have to prove that then Ap = T~ . If this is not the case, suppose
that F'\ {as} € T is one of the missing simplices. This is impossible, because
then the lexicographic extension pr defined above would not lie in the convex
hull of any cell of Ag and, thus, would not lie in the convex hull of any cell of
A, which contradicts part (i) of Corollary 4.8.

(iii) To prove that the cocircuit signature defines an extension it suffices to
show that it defines an extension on every rank 2 contraction of A(M)*. This
is a general fact on extensions of oriented matroids, proved by Las Vergnas [17]
(see also, [7, Theorem 7.1.8]).

If e is a non-loop of such a contraction, then € is also a non-loop, and vice
versa. Thus, we can assume the contraction to be A(M)*/(AUA). The dual of
the contraction is the restriction of A(M) to a corank 2 face (E\ A) U (E\ 4)
of A(M).

Observe that the cocircuit signature restricted to A(M)*/(A U A) can be
obtained from the subdivision A restricted to A(M)\ (AU A) in the same way
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as we obtained the cocircuit signature for p from A. Since a corank 2 oriented
matroid is always realizable and every subdivision of an acyclic realized oriented
matroid of corank 2 is regular (in particular, lifting) by [19] (see also Proposition
5.8 in [11]), we conclude that the restriction of the cocircuit signature to every
rank 2 contraction is the cocircuit signature of a lifting triangulation. Thus,
the cocircuit signature for p in A(M)* defines an extension A(M)* U p.

(iv) Let A’ be the subdivision of A(M) defined by that extension. We have
to prove that A = A’; by part (ii) of Corollary 4.8 it is enough to prove that
any cell of A is a cell of A" as well.

Let o be a cell of A and let ¢ denote its complement in the set of elements
of A(M). We check the following two properties, the first of which is trivial:

(a) If a cocircuit C' of A(M)* has support contained in o, then C(p) = 0.

(b) For any element a € ¢, there is a cocircuit C, = (CF,C;) of A(M)*
with C,(p) = +1, CF No°® = {a} and C,; No° = . Indeed, since o is spanning
in A(M), there is a circuit C' of A(M) with support containing a and contained
in o U {a}, which we assume to be positive at a. Let C be the support of C.
Since 0 NC = C\ {a}, part (ii) of the Lemma implies that T}} is a subcomplex
of A, that is, C'(p) = +1.

We consider the restriction of A(M)* Up to o U {p}. Statement (b) has
as a consequence that ¢¢ is independent. Indeed, for any a € o° there is a
cocircuit vanishing on o€\ {a} and not vanishing on a. Statement (a) implies
that p is in the flat spanned by ¢°; that is, that ¢¢ is full-dimensional in the
restriction. Then, part (v) of Lemma 1.1 implies that p is in the convex hull
of ¢° and part (ii) of Lemma 1.2, applied with A = {p} and B = {¢°}, implies
that p € relinty(ag)-(0°).

Finally, part (iii) of Lemma 1.2 implies that ({p}, c°) is a circuit of A(M)*;
that is, that (§,0¢U {p}) is a cocircuit of the lift Am) defining the lifting
subdivision A’. This implies that o is a cell of A’ a

Theorem 4.14 Let A(M) be the Lawrence polytope associated to an oriented
matroid M. Then:

(i) There is a natural bijection between the extensions of M™ and the subdi-

visions of A(M).

(ii) Under this bijection, two triangulations differ by a bistellar flip if and only
if the corresponding extensions differ by a mutation.

Proof: (i) Definition 4.1 provides a natural surjective map from the collection
of interior extensions of A(M)* to the lifting subdivisions of A(M). Since
A(M)* is totally cyclic, all its extensions are interior and by construction of
A(M)* they correspond bijectively to the extensions (interior or not) of M*.
In the other hand, all the subdivisions of A(M) are lifting subdivisions, by part
(iv) of the previous lemma. Thus, we have a natural surjective map from the
extensions of M™ to the subdivisions of A(M)*. The fact that the complete
cocircuit signature of an extension can be recovered from the corresponding
lifting subdivision (parts (iii) and (iv) of the previous lemma), implies that the
map is injective.
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(ii) If two extensions of M* in general position differ by a mutation, Proposi-
tion 3.13 implies that the associated triangulations of A(M) differ by a bistellar
flip (since they cannot be equal).

Reciprocally, suppose that 77 and T, are two triangulations of A(M) dif-
fering by a bistellar flip. Let C' be the circuit of A(M) in which the flip is
supported, which is a cocircuit of A(M)*. Let A(M)*U p; and A(M)*U p; be
the extensions of A(M)* corresponding to the triangulations 7; and T,. We
have that Fzt, — Ext,, is a sum of cocircuit vectors supported on C, and
want to derive from this that the two extensions differ by a mutation, that is,
that the cocircuit signatures of p; and p; differ only on the cocircuit C' (and its
opposite).

Thus, let C’ be a cocircuit not equal to C or its opposite. In particular, the
hyperplanes H¢ and Her in which C' and C” respectively vanish do not coincide.
Let a be an element with C’(a) = C’'(p1) € {+1,—1}. Since the restriction of
A(M)* to the hyperplane H¢r in which C” vanishes is totally cyclic, there is an
(r — 1)-simplex 7 in Hgr such that p; € CONUA(A)=up, (T U @), that is, 7U {a} is
in the support of the extension vector of p;y.

If 7 U {a} is also in the support of the extension vector of p;, we conclude
that C'(p;) = C’'(pz), as we wished. If 7 U {a} is not in the support of the
extension vector of p; and since the difference of the two extension vectors is a
sum of cocircuit vectors supported on C, the only way for the simplex to be in
the difference of the extension vectors is that it has a facet in the hyperplane
Hc in which C vanishes. In particular, « € He and there is an element b € 7
with p := 7\ {b} € Hc N Hes. Also, the subtraction of the cocircuit vector of
pU {a} from the extension vector of p; implies that p U {a,b} is a simplex in
the support of the extension vector of p,. But p U {b} C Hgr, which implies
that C'(py) = C'(a) = C'(p1) o

Remark 4.15 (The Extension space conjecture and the Baues problem)

The above theorem strongly relates two important open problems: the con-
jecture that all the extensions of a realizable oriented matroid are connected
by mutations and the conjecture that all the triangulations of a point config-
uration are connected by bistellar flips. Actually, the first conjecture becomes
equivalent to the restriction of the second to Lawrence polytopes. Equally, the
negative answer to the first conjecture in the non-realizable case produces:

Corollary 4.16 There is a (non-realizable) rank 23 Lawrence polytope A(M)
with 38 elements and a triangulation of it which admits no bistellar flip. In
particular, the triangulations of A(M) are not connected by bistellar flips.

Proof: With the previous theorem, using the fact that there is a uniform ori-
ented matroid of rank 4 on 19 elements and an extension of it which cannot be
mutated (Theorem 2.3 of Richter-Gebert [23]). |

Even more, it is obvious from our results that the poset of extensions of M*

ordered by weak maps (or by “perturbation” in our nomenclature) is isomorphic
to the poset of subdivisions of A(M) ordered by refinement. In the realizable
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case, these two posets appear in particular cases of the so-called “generalized
Baues problem”: given two polytopes P C R* and @ C R? and a projection
map 7 : R? — R? with n(P) = @, Billera et al. have defined the concept
of a subdivision of ) induced by 7 from P and asked whether the order poset
of these induced subdivisions ordered by refinement has always the homotopy
type of a sphere of dimension dim(P) — dim(Q) — 1 [4]. The Baues problem
has been answered with a counterexample by Rambau and Ziegler (see [24]),
but the following particular cases are specially interesting and still open:

(i) If Pis a simplex,v then the m-coherent subdivisions of () are all the poly-
topal subdivisions of ¢} which use (perhaps not all of) the image points by
7 of the vertices of P. The Baues problem asks whether the order poset
of all proper subdivisions has the homotopy type of a sphere.

(i) If P is a cube (which implies that @) is a zonotope) then, the m-coherent
subdivisions of () are the so-called zonotopal subdivisions (see [7, page 60])
or zonotopal tilings (see [30, Section 7.5]) of the zonotope ). The Bohne-
Dress Theorem on zonotopes (see [7, Theorem 2.2.13] or [30, Theorem
7.32]) implies that the zonotopal subdivisions of () are in bijective corre-
spondence with the extensions of the associated oriented matroid, with
refinement of subdivisions corresponding to perturbation of extensions.
That is, the zonotopal case of the Generalized Baues problem is equiv-
alent to the extension space conjecture posed by Sturmfels and Ziegler
[29], which conjectures that the extension space of a realizable oriented
matroid M of rank r has the homotopy type of a (» — 1)-sphere.

Thus, Theorem 4.14 has the following important consequence in the Baues
context:

Corollary 4.17 The extension space conjecture is equivalent to the following
one: for any realized Lawrence polytope A of dimension d with n vertices, the
order poset of proper polytopal subdivisions of A ordered by refinement has the
homotopy type of a (n — d — 2)-sphere. O

4.3 A “reoriented” Lawrence construction

Here we introduce a reoriented version of the Lawrence construction. The
construction is interesting because, applied to an acyclic non-polytopal oriented
matroid M produces a matroid polytope ¥(M) with exactly the same collection
of triangulations as M. In other words, the “polytopal case” cannot not be
considered simpler than the “acyclic case” when dealing with triangulations
(unless we are interested in a fixed rank).

Let M be an oriented matroid of rank r on n elements which we identify
with £ := {1,...,n}. Assign a positive integer k; to each element ¢ of n.
Let k be the sum of these integers. We consider the oriented matroid X(M)*
constructed from the dual M* of M by substituting each element i for k;
parallel copies of it. The dual 3(M) of this oriented matroid has rank k+r —n
and k elements. If k&; = 2 for every 7, then £(M) is a reorientation of the
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Lawrence polytope A(M). It will be good for us to allow the full generality of
arbitrary k;’s in connection to weighted unimodular configurations which will
appear in Example 5.8.

The elements of (M) lie in n equivalence classes X(1),...,%X(n) with
ki, ..., k, elements respectively, each class corresponding to an element of M.
Two elements e and f of £(M) are co-parallel (i.e., ({e},{f}) is a covector) if
and only if they lie in the same class or in classes corresponding to co-parallel
elements of M. The interesting point of this construction is that it induces a
bijection between the triangulations of M and those of ¥(M):

Theorem 4.18 Let M be an oriented matroid of rank r on n elements which
we identify with E := {1,...,n}. Let ky,...,k, be positive integers. The ori-
ented matroid 2(M) of rank k+r—n on k elements just defined has the following
properties.

(1) (M) is acyclic if and only if M is acyclic. If this is the case, then an
element of (M) is a vertex (face of rank 1) if and only if the corre-
sponding element i of M was a vertex of M, or ifk; is greater than 1. In
particular, (M) is polytopal if and only if M is acyclic and k; > 1 for
every non-vertex element of M.

(ii) There is a natural bijective correspondence between the triangulations of
M and the triangulations of (M) which preserves the features of being
lifting or lexicographic.

Before going into the proof, the following simple example may help to clar-
ify the construction. Suppose that A is the point configuration in the plane
consisting of the vertices of a convex polygon P plus an interior point p. We
are going to show the construction ¥(.A) applied to A with all the parameters
k; equal to 1 except the one of the interior point p which will be equal to 2.
The resulting configuration $(A) in R? consists of the vertices of a bipyramid,
with the equator of the bipyramid being the polygon P and in such a way that
the intersection of the axis with the equatorial plane of the bipyramid coincides
with the point p. The reader should try to visualize in this example the corre-
spondence between triangulations of A and of 3(.A) exhibited in the following
proof.

Proof: (i) ¥ (M)* is clearly totally cyclic if and only if M* is totally cyclic,
which proves the first part of (i). For the second part, assume that ¥(M)* and
M™ are totally cyclic. An element of an acyclic oriented matroid is a vertex
if and only if the contraction at this element is acyclic. Thus, an element of
T(M) is a vertex if and only if its deletion in Z(M)* is totally cyclic. This
happens if and only if its equivalence class has at least another element or the
deletion of the corresponding element of M* is totally cyclic.

(ii) It is obvious how to relate lifting and lexicographic triangulations of
M and X (M), since the extensions of M* and X(M)* are “the same” and an
extension is interior (resp. in general position) in M™* if and only if it is as well
in ¥(M)*. Studying what this correspondence between extensions of M* and
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¥ (M)* looks like in terms of the extension vectors we conclude the following
heuristic rule for obtaining a triangulation X(7) of 3(M) from a triangulation
T of M. Let ¥(i) denote the equivalence class in the set of elements of 3(M)
of the element 7 € E. For each subset ¢ € F define the following collection of
subsets of the elements of 3(M):

(o) ={S | #(SNZ(Q)) =k — 1+ #(cn{i})}.

In other words, the subsets S appearing in ¥(o) are those which contain
the equivalence classes associated to the elements of o and miss exactly one
element from the other equivalence classes. It follows that the complements of
the so-defined sets S are independent (resp. spanning) in 3(M)* if and only if
o is independent (resp. spanning) in M*. Thus, the following is a collection of
maximal simplices of X(M):

E(T) = UaeTE(O').

It follows from the definition of X(7) that a triangulation T of M is the
lifting triangulation corresponding to an extension M* U p if and only if X(T)
is the lifting triangulation corresponding to “the same” extension 3(M)*Up of
S(M)*. This proves that the correspondence T' — X(T’) restricts to a bijection
between lifting (resp. lexicographic) triangulations of M and X(M).

We will show that the correspondence is bijective on the set of all trian-
gulations of M and X(M) using the characterization of triangulations which
appears in Theorem 3.8. If e and f are elements of 3(M)* in the equivalence
class of a non-loop element of M, then the signed set ({f}, {e}) is a circuit of
E(M)*. A collection of maximal simplices of ¥(M) satisfies the circuit equa-
tions of Theorem 3.8 for all the circuits of this type if and only if it is a union
of collections of simplices of the form (o) for different maximal simplices o of
M. Thus we can restrict our attention to collections of maximal simplices of
2 (M)* which are of this type.

Also, it is obvious that the triangulations of 3(M)* are all obtained from
the triangulations of M* by choosing a representative of each equivalence class
of elements. This implies that a collection 3(1") of simplices of (M) obtained
as the union of the ¥(o) corresponding to a collection T of simplices of M
satisfies the duality equations (vE(T),v) = 1 for all the incidence vectors v of
triangulations of 3(M)* if and only if T itself satisfies the equations for the
incidence vectors of triangulations of M*.

Finally, all the circuits of 2(AM)* are either of the form ({e}, {f}) for equiv-
alent elements e and f or obtained from circuits of M™* by choosing a represen-
tative in X (M)* for each element of M. Thus, a collection T of simplices of
M satisfies the circuit equations of Theorem 3.8 if and only 3(7T') satisfies the
circuit equations as well. This finishes the proof of part (ii). O

Remark 4.19 (A(M) and (M) for graphic oriented matroids).

An oriented matroid M is called graphic (see [22]) if it is isomorphic to the
cycle oriented matroid of a directed graph G. In other words, if the elements
of M correspond to the edges of G and the signed circuits of M correspond to
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the cycles of GG, with the signing given by the orientation of the edges (see [7,
Section 1.1]).

Graphic oriented matroids form a very restricted class, strictly contained in
the so-called binary or regular oriented matroids; for example, uniform oriented
matroids are graphic only if they have rank or corank at most one. For this
reason, directed graphs are not normally considered a good model for oriented
matroids. (The situation is quite different in matroid theory, in which many re-
sults and constructions can be interpreted in terms of graphs; see, for example,
[22]). However, the Lawrence construction (both in its original and reoriented
versions) has the following very simple interpretation for graphic oriented ma-
troids:

e Let M be a graphic oriented matroid corresponding to the graph G. Then,
the oriented matroid A(M) is the graphic oriented matroid corresponding
to the graph A(G) obtained from G by subdividing each edge into two
parts by the addition of a vertex and giving opposite directions to the two
parts.

e Let M be as above, let 1,...,n denote the edges of the graph (i.e., the
elements of the oriented matroid) and let ky, ..., k, be positive integers.
Then the oriented matroid ¥(M) corresponding to this choice of k;’s is
the graphic oriented matroid corresponding to the graph X(G) obtained
from G by subdividing each edge ¢ into k; new edges and giving to all of
them the same direction as the old edge had.

Observe that the constructions above are consistent with the fact that A(M)
is acyclic and invariant under reorientation of M, while ¥(M) is not invariant
and is acyclic only if M is acyclic. The graph ¥(G) is uniquely defined by G
(and the parameters k;), but in the graph A(G) we have the choice of which
of the two parts of each edge of G gets each of the two directions. However,
since every cycle of A(G) will contain either both or none of the two sub-edges,
the graphic oriented matroid obtained is the same independently of this choice.
Actually, we can choose all orientations of the sub-edges to go from the old
vertex of the sub-edge to the new one. With this choice the graph A(G) is
bipartite, which has the following interesting consequence:

Proposition 4.20 Let M be an oriented matroid of rank r on n elements.
Then, the following properties are equivalent:

(i) M s graphic.

(i) A(M) is a full-rank restriction of the affine dependences oriented matroid
of the product A,_; X A, of two simplices of dimensionsn —2 and r — 1.

Proof: We recall the following elementary facts from matroids theory: the
graphic oriented matroid corresponding to a connected graph G = (V, F) has
|E'| elements and rank |V| — 1. Also, that every graphic (oriented) matroid can
be represented by a connected (directed) graph.
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It is known that the cycle oriented matroid of the complete bipartite graph
K, 41 directed from one part to the other equals the affine dependences ori-
ented matroid of the product A,_; x A, of two simplices. This follows, for
example, from the description of A,_; x A, which appears in [15, pages 246—
251].

The remarks before the statement imply that whenever M is graphic, A(M)
is the cycle oriented matroid corresponding to a connected restriction of the
graph K, .41 which uses all the vertices of the graph. That is, A(M) is a full-
rank restriction of the cycle oriented matroid of K, ;4. This proves (i)=(ii).

The other implication is trivial, since every minor of a graphic oriented
matroid is graphic and M is a contraction of A(M). O

5 Lifting triangulations

5.1 Some properties. Lifting versus regular triangulations.

We start by showing the relation between reguler triangulations of a point
configuration and lifting triangulations of the underlying oriented matroid.

Examples 5.1 (Regular and lifting triangulations)

Let M be an oriented matroid realized as a point (or vector) configuration
A. We think of A as being a matrix with n columns and r rows, where n is
the number of elements of M and r its rank. A Gale transform A* of A is an
n X (n — r) matrix whose row space is the orthogonal complement of the row
space of A. It is well-known that A* realizes the dual oriented matroid M*.
Any point lying in the convex hull (more generally, in the positive span) of the
columns of A* defines an interior (and realizable) extension of M*. If the point
is not in the convex hull of any non-full-dimensional geometric simplex with
vertices in A, then the extension defines a lifting triangulation of M. The
triangulations obtained in this way are called regular triangulations of A [19,
Definition 1] (some authors use the word coherent [15, Chapter 7] or convez).
Observe that they can be alternatively defined as those which agree with the
projection of the lower envelope of a certain orthogonal lift of A; the equivalence
between the two definitions is the “realized-case” analogue of Proposition 4.2.
Thus, regular triangulations of a realized oriented matroid are a class in-between
lifting and lexicographic triangulations. Their main draw-back in the context
of this paper is that regularity depends on the specific realization of M and not
only on the oriented matroid.

Two points in the convex hull of .A* define the same regular triangulation of
A if and only if they are contained in the same collection of convex hulls of geo-
metric simplices of A*; that is, if the two points are in the same full-dimensional
cell of the common refinement of all the triangulations of .A*. This common
refinement is sometimes called the chamber complex of .A*. The bijective cor-
respondence between regular triangulations of a configuration A and maximal
chambers of of its Gale transform 4* was explored in [3] and generalized in
[11] to include a correspondence between non-regular triangulations of A and
“virtual” chambers of .4*, by means of the realized version of Theorem 3.8.
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The relation between regular and lifting triangulations divides the trian-
gulations of a realizable oriented matroid M in four categories, with different
degrees of “realizability”. First, there are the triangulations which are regular
for any realization of M; this includes lexicographic triangulations but also
some non-lexicographic ones, as the example shown in part (c) of Figure 4.
Second, there are triangulations which are regular or non-regular depending on
the realization of M, as the ones in parts (a) and (b), in which the oriented
matroid is the same but only the triangulation in part (a) is regular. These
triangulations correspond to extensions of the dual oriented matroid M™* which
are realizable but not as an extension of an arbitrary realization of M*.

>

>
-

(a)

(c) (d)

/

() ®

14
>

Figure 4: Some lifting triangulations.

Finally, the triangulations which are not regular for any realization of M,
as the ones in parts (d), (e) and (f) of Figure 4, can still be lifting triangulations
(corresponding to non-realizable lifts/extensions) or not. The three in the figure
are lifting triangulations, as follows from the following consequence of Lemma
7.3.2 of [7]: if the hyperplanes (flats of corank 1) of an oriented matroid M
which are dependent are all circuits then an arbitrary perturbation of them
into bases is an oriented matroid. Applying the lemma to the lift of (d) into
a triangular prism with an interior point we get lifts for the triangulations (d)
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and (f). For (e) we do the same with the lift into a cube. In Examples 5.5 we
will construct two very simple non-lifting triangulations and in Section 5.2 we
will show some more complicated ones.

We address now the following problem: suppose that we are given an ori-
ented matroid M of rank r, an element a of M and a triangulation of either
M/a or M\ a; we want to extend it to M. More precisely, for a triangulation
T’ of M\ @ we want to find a triangulation T' of M with 7" C T'. For a triangu-
lation T of M /a we want to find a triangulation T of M with T" = linkr(a).
We also want to know if good lifting properties of 77 and T can be inherited
by T.

Corollary 2.11 was a first result in this direction: a triangulation of M \
a can always be extended to M. However, the property fails in general for
triangulations of M /a as the following example of an oriented matroid of rank
4 in 7 elements shows: Consider the point configuration in part (f) of Figure
4, and “lift it” to a point configuration in R3 by giving three different heights
to the seven points; put the three vertices of the outer triangle on the bottom,
the interior point on top, and the three vertices of the inner triangle in the
middle, very close to the bottom. Let a be the point on top and consider
the seven tetrahedra obtained by coning @ to the seven triangles which appear
in the figure. This collection of tetrahedra is known not to be completable
to a triangulation of the point configuration. Observe that the link of the top
point in the non-completable collection of simplices is a lifting (but non-regular)
triangulation of the vertex figure. In fact, it is the same triangulation of parts
(a) and (b) of Figure 4, in a different realization of the oriented matroid.

This same example has appeared in Lemma 2.1 in [11], and different ver-
sions of it have appeared in other places, going back to Schonhardt [27]. The
mentioned Lemma 2.1 of [11] also says that regular triangulations of both the
deletion and the contraction of M can be extended to regular triangulations of
M. Since lifting triangulations are in some sense the oriented matroid analogue
of regular triangulations (see Examples 5.1), one could expect that the same
holds for lifting triangulations. The example above shows that this is not the
case and the following proposition tells us what is true.

Proposition 5.2 Let M be an oriented matroid of rank r on a set I and let
a € E be one of its elements.

(i) Let T'" be a lifting triangulation of the contraction M /a. Suppose that
either T' is a lexzicographic triangulation or M* is a lexicographic exten-
sion of M*\ a. Then, there is a lifting triangulation T of M such that
for every simplex 7 in T’ the simplex {a} U is in T. Moreover, if T' is
lexicographic, then T can also be taken lezicographic.

(ii) Let T” be a lifting triangulation of the deletion M\ a = M(E\ a). Then,
there is a lifting triangulation T of M with T' C T. Moreover, if T' is
lexicographic, then T can also be taken lexicographic.
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Proof: (i) The lifting triangulation 7" of M/a corresponds to an extension
(M™\a)Upof M*/a. Thus, we have two extensions of M*\ a (by the elements
p and a). It suffices to show that they are “compatible”; that is, that there is
a two-element extension (M”*\ a) U {p, a} whose deletions by p and a coincide
respectively with M* and (M*\ a) U p. This is true if one of the extensions is
lexicographic, which is our hypothesis, by Lemma 1.8.

(ii) Let M* be the dual oriented matroid to M. Then M*/a is the dual of
the deletion M\ a. Let (M*/a)Up be the interior extension in general position
which defines the triangulation 77. We need to find an interior extension M*Up’
in general position of M™* such that whenever 7 is a maximal simplex of M*/a
having p in its convex hull, 7U{a} is a maximal simplex of M* having p’ in its
convex hull. Such an extension was constructed in Lemma 1.9. O

We will work now towards obtaining a combinatorial characterization of
lifting triangulations. Recall that a lift of an oriented matroid M is an oriented
matroid M U p such that (M Up)/p = M. For an element a in M let us
consider the lift (M* U @)* by a “co-antiparallel” element @, meaning by this
that the dual M*U@ is the extension of M* by an element antiparallel to a. The
Lawrence polytope A(M) associated to M is obtained by performing a sequence
of these type of lifts, one for each element of M. These lifts are sometimes called
Lawrence lifts and their duals Lawrence extensions. In the following statement
we exploit this iterative construction of the Lawrence polytope:

Proposition 5.3 Let T be a triangulation of an oriented matroid M on a set
E. Let A(M) be the Lawrence polytope associated with M. Recall that A(M)
has element set E U E. The following conditions are equivalent:

(a) T is a lifting triangulation.

(b) There is a triangulation A(T) of A(M) which satisfies linky(ry(E) =T.

Proof:

(b)=>(a) Since A(T) is a lifting triangulation (Theorem 4.14) we only have
to prove that a link in a lifting triangulation is a lifting triangulation as well.
Using recursion, we only have to prove this for the link of a single vertex of the
triangulation. Let a be a vertex of a triangulation T" of M, and suppose that
T is the lifting triangulation corresponding to the interior extension in general
position M™ U p of M*. Then, there is a maximal simplex in M* which has a
in its complement and p in its relative interior. This implies that (M*Up)\ais
an interior extension of M* \ @ in general position. The reader can verify that
the lifting triangulation corresponding to this extension is precisely the link of
ain T.

(a)=>(b) Here we have to prove the reciprocal of the previous assertion.
Namely, that a triangulation 7" of an oriented matroid M extends to a triangu-
lation 1" of every Lawrence lift (M*U@)* of M. In the dual, this is equivalent
to the fact that every interior extension M™* U p in general position of M* ex-
tends to an interior extension in general position of the extension M*U@. In
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other words, that the two extensions M* U p and M*U@ of M* are “compati-
ble”. This follows from Lemma 1.8 since the extension M* U7 is lexicographic.
(Observe that this is a particular case of part (i) of Proposition 5.2). O

We want to translate this result into a more combinatorial characterization
of lifting triangulations. This will be done in Theorem 5.13 in Section 5.3, but
here we will prove a weak version of it in order to show examples of non-lifting
triangulations. It will be convenient to consider a triangulation as being a
simplicial complex; that is, to take account of the non-full-rank simplices. We
use the following notations, where T is a collection of subsets of a set E and
ACE:

P(T)={rCFE |7 CoforsomeoeT}

Tla:={reT|7CA}

We say that a collection S of simplices with vertices in F extends to a trian-
gulation of an oriented matroid M on the ground set E if there is a triangulation
T of M with S C P(T).

Proposition 5.4 If T is a lifting triangulation of an oriented matroid M on
a set E, then P(T)|a (in particular, T|a) can be extended to a triangulation of
M(A), for every A C E. o

Proof: If T is a lifting triangulation, let M be an acyclic lift of M on the set
E U {p} which defines_the lifting trlangulatlon T of M. Then, P(T) is the
collection of faces of M which do not contain D.

We can assume the lift to be “in general position”, meaning by this that its
dual is an extension in general position of M™; that is, that any hyperplane of
M not containing p is a simplex. For every A C E the restriction .M( ) is an
acyclic simplicial lift of M(A) and defines a triangulation T'(A4) of M(A). Tt is
clear that the triangulation T'(A) extends the simplicial complex P(T)|4. O

From this result it is easy to conclude the existence of non-lifting triangu-
lations, as will be done in Examples 5.5. It is an interesting question whether
every non-lifting triangulation can be proved to be non-lifting using Proposi-
tion 5.4 or not. That is, whether the condition in the corollary is already a
characterization of non-lifting triangulations.

Examples 5.5 (Two non-lifting triangulations)

We have seen in Examples 5.1 that all the triangulations in Figure 4 are
lifting triangulations. However, we are going to use Proposition 5.4 to construct
non-lifting triangulations of point configurations in R®.

Let A be the point configuration in R® obtained by giving three different
heights to the seven points of Figure 4(d): the inner triangle at the bottom,
the outer triangle in the middle and the middle point on top. Call M the rank
4 oriented matroid with 7 elements obtained. Let T be the triangulation of A
(and of M) obtained coning each triangle of the planar triangulation to the
top point. Proposition 5.4 implies that T is not lifting, since removing the top
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point we get a triangulation of a part of the boundary of a triangular prism
which cannot be extended to the whole prism.

Another proof of the fact that T is non-lifting is as follows: in any realization
of M, the geometric link in T of the top point is precisely the triangulation
of part (b) of Figure 4, with the three dashed lines converging in one point
thanks to Desargues theorem. Thus, this link is non-regular. A triangulation
with a non-regular link is itself non-regular, by Lemma 2.1 of [11]. Thus, T
is non-regular in every realization of M. Since M has rank 4 and 7 points,
every extension of its dual is realizable. Thus, every lifting triangulation of
M is regular for some realization of M, which proves that T is not a lifting
triangulation.

The same construction of a non-lifting triangulation applies to part (f) of
the figure, except that now three additional simplices have to be added in or-
der to fill completely the convex hull of the lifted point configuration. The
non-lifting triangulation obtained in this case has the strong property that it is
non-lifting for any oriented matroid of which it is a triangulation (the other one
does not, as follows from the same construction applied to the regular triangu-
lation (c), which produces a combinatorially equivalent regular triangulation).
A triangulation with this same property appears in page 410 of [7].

5.2 Three interesting non-lifting triangulations

Example 5.6 (The Edmonds-Fukuda-Mandel oriented matroid.)

We consider here the oriented matroid EFM(8) which appeared in [13, 14].
A detailed study of it can be found also in pages 461-468 of [7]. With this
oriented matroid we will show counterexamples to the following two situations:

e Suppose that two full-rank disjoint simplices o; and o3 of an oriented
matroid M are “strongly separated”; by this we mean that there is a
covector which is positive in one and negative in the other. Then, there is
a vector in the dual oriented matroid M™ which is positive and negative
respectively in their complements o} and o3. If M* is realizable (more
generally, if it has an adjoint, see Sections 5.3 and 7.5 of [7]) then there is
an extension of M* which lies in the relative interior of both o7 and o3
and, thus, there is a lifting triangulation of M containing the simplices
o1 and o3. We will show that this does not happen in EFM(8) (part (i) of
Proposition 5.7).

e We have mentioned in Remark 2.5(v) that the good-intersection property
for two simplices oy and o3 of an oriented matroid satisfying the “Gener-
alized Euclidean intersection property” (IP;), (see Definition 7.5.2 in [7])
is equivalent to a strong “no-overlapping-circuit” property, namely that
there is no circuit with its positive part contained in o; and its nega-
tive part contained in ;. We show the necessity of the property (IP;)
by a counterexample to this equivalence in the dual EFM(8)* (part (ii) of
Proposition 5.7).
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EFM(8) is a rank 4 non-realizable oriented matroid on eight elements {1, 2,
3,4,5,6, f,g}. As a way of definition, we show in Figure 5 the contractions of
EFM(8) at the six first points; these contractions are acyclic oriented matroids
of rank 3 on seven elements, realizable as point configurations in the plane.
The cocircuits of EFM(8) can be read from the figure: the contraction EFM(8)/a
permits to read the cocircuits which do not have @ on the support, and no
cocircuit can have all the six points 1, 2, 3, 4, 5, and 6 on its support. The
interested reader can check that the cocircuits read from the figure coincide with
the ones listed in page 464 of [7]. The figure shows that EFM(8) has symmetry
group isomorphic to S3, generated by the permutations (16)(24)(35)(fg) and
(123)(456).

»

\\

link(1) lmk(2) link(3)
3 1
1 2
6 4
4 5
link (4) link (5) link (6)

Figure 5: Links of a triangulation of EMF(8).

Actually, in the figure we have drawn a certain triangulation of each contrac-
tion. The six triangulations are the links of the following collection of simplices
of EFM(8):

T := {{1624}, {2435}, {3516},

{2351}, {245}, {356}, {456 f},
{1469}, {1369}, {124¢}, {123¢},
{24fg},{46f9},{63fg},{32fg}}.

Claim 1: T is a triangulation of EFM(8).

Proof: Any interior rank-3 simplex 7 (recall that this means dimension 2) con-
tains at least one point @ € {1,2,3,4,5,6}. The oriented pseudo-manifold
property for 7\ {a} in linkr(a) implies the property for 7 in 7. Thus, T has
the oriented pseudo-manifold property. Also, since 1 is a vertex of EFM(8), any
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simplex of T' which covers a lexicographic interior extension in general position
starting by [1%,...] must contain 1. The fact that link7(1) is a triangulation
implies that all such extensions are covered exactly once. O

Claim 2: T is a non-lifting triangulation of EFM(8).

Proof: We look at the restriction of EFM(8) to the points {1,2,3,4,5,6}. The
restriction of 7" contains the simplices {1624}, {2435} and {3516}. Suppose that
there is a triangulation 7" of the restriction containing these three simplices.
For the link of 77 at 1 to be a triangulation it is necessary that {1346} and
{1234} be in T’. But in the contraction at point 3 we see that {1234} intersects
{2345} improperly.

That is, the restriction of 7" to the six points cannot be extended to a
triangulation without using additional points. Proposition 5.4 implies that T
is not a lifting triangulation. O

Claim 3: T is the only triangulation of EFM(8) containing the simplices {146¢}
and {235f}.

Proof: We will show that the only way to complete {146g} and {235f} to a
triangulation of EFM(8) is using precisely the simplices of 7T

- the presence of {146¢} implies (see the contraction at point 1) the presence
of the simplex {1246} and the absence of any simplex containing {1f}. With
similar arguments at 5 we conclude the presence of {2345} and the absence of
{59}

- then, the fact that 5 and ¢ do not lie on the same simplex in the contraction
at point 1 implies the presence of the simplices {136¢} and {1356}. A similar
argument at 5 shows the presence of {356f}.

- with this, the only way to complete the links at 3 and 6 to subdivisions is
the inclusion of the simplices {36 fg}, {23f¢}, {123g}, {46fg} and {456f}.

- the simplex {124¢} completes the link at 1, the simplex {245} completes
the link at 5 and then {24 fg} completes the links at 2 and 4. O

The three claims together imply that no lifting triangulation of EFM(8) con-
tains the two simplices {146¢} and {235f}. Part (ii) of the following statement
has the following stronger implication: no lifting subdivision of EFM(8) has
{146¢} and {235f} contained in two different cells.

Proposition 5.7 (i) No lifting triangulation of EFM(8) contains the two sim-
plices {146g} and {235f}, although ({146g},{235f}) is a covector.

(ii) The dual oriented matroid EFM(8)* has no eztension EFM(8)* U p with
p € convgems)«up({1469}) N convgews)«({235f}). In particular, the two
simplices {146g} and {235 f} intersect properly, although ({16g}, {35}) is
a circuit. No triangulation of EFM(8)* contains both simplices.

Proof: (i) The covector ({16¢},{235f}) can be read from the contraction at
point 4 in Figure 5. Its composition with any covector positive at 4 shows that
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({1469}, {235f}) is a covector. The rest of the statement follows from claims 2
and 3.

(i) That ({16¢}, {35}) is a cocircuit of EFM(8) can be read from the con-
traction at either 2 or 4.

There is no triangulation of EFM(8)* containing {146¢} and {235f} because
such a triangulation would contain the complements of two simplices of the
triangulation T of EFM(8), which is impossible by part (g) of Theorem 2.4. We
now prove that the two simplices intersect properly; even more, that there is
no extension EFM(8)* U p with p € conv({146g}) N conv({235f}).

If there was one such extension EFM(8)* U p, then there would be two cir-
cuits (11, {p}) and (72, {p}) in EFM(8)* U p with 7y C {146g} and 7 C {235f}.
Elimination of the element p would imply that (71, 72) is a vector of EFM(8)*U p.

If one of 7 and 7 (say 71) has four elements, then p is in the relative
interior of {146g}. The perturbation p’ := [p*,2%+, 3%, 5%, f+] will produce an
extension of EFM(8)* interior, in general position and in the relative interior of
both {146¢g} and {235f}. This is impossible since then the associated lifting
triangulation of EFM(8) contains both simplices, in contradiction with claims
(1) and (2).

If both 71 and 75 have at most three elements, then one of them (say 71) has
three elements. Since (7, 72) is a vector of EFM(8)*, 7, is a positive vector in the
rank-1 contraction EFM(8)*/my. In particular, there is an element a € 7 such
that the cocircuit vanishing on 7 has the same sign on @ and in the element
{146g} \ 71. Then, the perturbation p’ := [p*, a*] is still in the convex hull of
72 and in the relative interior of {146¢}. This is the previous case. O

Another interesting feature of the example EFM(8) is the following. Its dele-
tion at point f is realizable by the columns of the following matrix, as shown
in page 461 of [7]:

-1 € —-¢ 1 0 0 O
- -1 ¢ 0 1 0 O
e —€ —-1 0 0 1 0
1 1 1 00 0 1
A Gale transform of this configuration, rescaled at the point g (in particular,

reoriented) is given by:

100 1 € —e 1/3
0 1 0 —e ¢ 1 1/3],
0 01 ¢ 1 —e 1/3

which can be viewed as a point configuration A in the plane 2 + y+ 2 =1 of
R>. A consists of the six vertices of a (non-regular) hexagon and an interior
point in it. Using the pushing-pulling characterization of lexicographic triangu-
lations (see Remark 4.4) it is easy to conclude that all the triangulations of A
are lexicographic (and thus regular). However, the dual oriented matroid has
non-realizable extensions (such as the reorientation at g of EFM(8)). The appar-
ent contradiction between the fact that A has only lexicographic triangulations
while its dual has non-realizable interior extensions in general position is not
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so, because different extensions of the dual can correspond to the same trian-
gulation of A. In particular, the triangulation of A produced by the extension
EFM(8) can coincide with the one produced by some lexicographic extension.

Example 5.8 (A non-lifting triangulation of a unimodular polytope)

A real matrix is called unimodular if all its maximal minors lie in {0,1, —1}.
It is a classical result of matroid theory that a matroid can be represented over
the rationals by a unimodular matrix if and only if it can be represented over
any field [22]; if the matroid is orientable this is equivalent to the absence of
any rank 2 uniform minor on 4 elements and to the matroid being representable
over the field with two elements. Such orientable matroids are called binary.

Unimodular vector or point configurations play an important role in differ-
ent branches of discrete mathematics. In connection with triangulations, it was
somewhat unexpected that unimodular configurations can have non-regular tri-
angulations. This was shown by de Loera [9] who constructed a non-regular
triangulation of the product Az X Aj of two 3-dimensional simplices. Later
on Sturmfels [28, Theorem 10.15] constructed a non-regular triangulation of
Ay X Ajs. It seems not to be a coincidence the fact that A,_; x A,_,_; has
non-regular triangulations if and only if there are non-realizable oriented ma-
troids on n elements of rank r. Actually, Sturmfels has shown that the two
cited examples of non-regular triangulations can be “derived” from the Vamos
and Pappus matroids. We consider an interesting problem to decide whether a
product of two simplices (or a minor of it) can have non-lifting triangulations.

Before going into detail let us make another consideration. A point configu-
ration A in R% is called unimodular if all the d-simplices with vertices in A have
the same volume. This occurs if and only if the configuration can be represented
by a homogeneous unimodular matrix, where “homogeneous” means that all the
column vectors of the matrix lie in an affine hyperplane. However, any acyclic
unimodular matrix can be considered to represent a weighted unimodular point
configuration as follows.

Let vq,...,v, € R" be the columns of a rank r acyclic unimodular matrix.
Choose a linear functional f on R" positive in all the columns of the matrix
(which exists since the configuration is acyclic). Dividing each vector v; by
the value f(v;) we get a homogeneous matrix and thus a point configuration
in R"™'. We say that this configuration is weighted unimodular with weights
f(v1),..., f(vn) because the volume of any maximal simplex of the configura-
tion multiplied by the product of weights of its vertices equals one. If all the
weights are rational (which can be achieved by a rational choice of f if the ma-
trix A itself has rational entries), the lifting procedure exhibited in Section 4.3
allows to construct a unimodular configuration with “the same” triangulations
as A. This follows from the following result:

Proposition 5.9 Let {P,..., P,} be a weighted unimodular point configura-
tion in R™™' with positive integer weights wy,...,w,. Let M be the oriented
matroid of affine dependences of the point configuration and consider the ori-
ented matroid (M) of Section 4.3 taking each k; to be precisely the weight
w;. Then, ¥(M) is the oriented matroid of affine dependences of a certain
unimodular point configuration with 3 w; points in dimension > w; —n+r—1.
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Proof: We will explicitly construct the matrix of a certain point configuration
of the stated rank and number of columns, and then show that it is unimodular,
homogeneous and that it realizes ¥(M). Let vy, ..., v, be a non-homogeneous
unimodular vector configuration in R” which homogenizes to P,..., FP,. Let
{v},...,v%} € R"" be a Gale transform of it. That is, assume that the
matrices A and A’ having as columns the vectors v; and v} respectively have
orthogonally complementary row spaces.

For each ¢ = 1,...,n we consider the following three matrices, of sizes
w; X (w; — 1), w; X 7 and w; X (n —r) respectively. I,,_; represents the identity
matrix of size w; — 1 and 1,,_; the column vector (1,1,...,1) of length w; — 1:

Sii=(—loi—1 | Lui—1)  Vie=(wi/wy -0 vif/wy) V7= (o] 0 v)).

Consider then the following two matrices:

0 Sy --- 0

SA) =] 1 A=y o V7).
0 0 --- S,
i Vo -V,

It is obvious that X(A)* realizes the oriented matroid X(M)*. It is also
easy to check that 3(A) and £(A)* are Gale transforms of one another: the
lower rows of X(A) are orthogonal to the rows of ¥(A)* because A and A* are
Gale transforms of one another, while the upper rows of 3(A) are orthogonal
to the rows of 3(A)* because the sum of the entries in each row of each S; is
zero while the rows of each V;* are constant. Thus, ¥(A) realizes the oriented
matroid X (M).

Let f = (f1,.--, fr) be a linear functional on R" which gives the weights
w; = f(v;). Then, the linear functional (0,...,0, f1,..., f,) with a string of
S w; — n zeroes shows that the columns of £(A) are homogeneous.

Unimodularity of ¥(A) can be checked directly, or deduced from the fact
that a Gale transform of a unimodular matrix is unimodular as well. This
implies that A* is unimodular, which clearly shows unimodularity for 3(A)*
and in turn for X(A). a

We now construct the desired non-lifting triangulation of a homogeneous
polytope. As a first step we construct a non-lifting triangulation of a weighted
unimodular point configuration A with 9 points in R®. The configuration in
question is given by the columns of the following homogeneous rank 4 matrix:

1000 1/2 0 0 1/2 1/4
0100 1/2 1/2 0 0 1/4
0010 0 1/2 1/2 0 1/4
0001 0 0 1/2 1/2 1/4

A=

Geometrically, the configuration A consists of the four vertices of a tetrahe-
dron A, four mid-poins of the edges of A and the barycenter of A. It is weighted
unimodular with weights (1,1,1,1,2,2,2,2,4), as can be easily checked. The
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fact that the oriented matroid admits a unimodular representation also follows
from the fact that its dual is graphic, and hence binary. Indeed, the dual is the
graphic oriented matroid associated to the complete bipartite graph K33 with
the orientation shown in Figure 6. The labels on the edges refer to the indices
of the columns of A.

Figure 6: A graph whose cycle matroid is dual to the configuration A.

Let us consider the following triangulation 0T of the boundary of the tetra-
hedron:

T:={{3,6,7},{2,6,7},{2,4,7},{2,5,6},{1,5,6},{1, 3,6},

{1,5,8},{4,5,8},{2,4,5},{4,7,8},{3,7,8},{1,3,8} }.

Figure 7: A triangulation of the boundary of a tetrahedron.

This triangulation is displayed in Figure 7, where the boundary of the tetra-
hedron appears “unfolded”. 0T cannot be completed to a triangulation T of
A without using the interior point 9: if it could, the triangle o = {1,3,6} € T
should be joined in T to one of the three points 4, 7 or 8 which do not lie on the
facet of . It cannot be joined to neither 4 nor 7 because the edges {1,4} and
{1, 7} are not edges of 97". Thus, we conclude that it should be joined to 8 and,
in particular, that {6,8} should be an edge of T. With the same arguments
we conclude that {7,5} should also be an edge, but this is impossible because
these two edges intersect improperly at the barycenter of the tetrahedron.
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By Proposition 5.4, this implies that the triangulation T of A obtained
coning 8T to the central point 9 is not a lifting triangulation of A. As a
consequence:

Proposition 5.10 A is a weighted unimodular configuration with 9 points in
R? which has a non-lifting triangulation. There ezists a unimodular polytope
with 16 points in R which has a non-lifting triangulation.

Proof: The first part has already been shown. For the second part we apply
Proposition 5.9 to A to get a unimodular point configuration with 16 points in
R'°. The configuration is polytopal by Theorem 4.18, since all the non-vertices
of A have weight at least 2. g

Incidentally, T is a triangulation with only 4 bistellar flips, supported on
the 4 quadrilaterals that appear in the facets of the tetrahedron; that is, the
number of flips is less than the dimension n — d — 1 = 5 of the associated
secondary polytope (see definition in [3] or [15]. A combinatorially equivalent
triangulation was constructed by de Loera et al. [10] and is the smallest known
example of a triangulation with less bistellar flips than the dimension of the
secondary polytope.

Example 5.11 (A non-lifting triangulation of the 4-cube)

Jesus de Loera [9] has shown that the 4-dimensional cube has non-regular
triangulations. We go further and construct a non-lifting triangulation of the
4-cube.

We consider the 4-cube as realized by the point configuration Cy in R*
whose 16 points are all the 0-1 vectors on 4 coordinates. The contraction of Cy
at any of its points is realized by the point configuration in R? consisting of the
barycenters of the fifteen faces of a tetrahedron, including the vertices and the
tetrahedron itself as faces but excluding the empty face. We observe that the
nine-point configuration .A of the previous example is a subconfiguration of this.
Figure 8 shows the boundary of the triangulation T' of the previous example
but with the points labeled as coming from the contraction of the 4-cube at the
vertex (0000).

This provides a non-lifting triangulation with 12 simplices of the contraction
('4/(0000). We denote this triangulation here by T'(C4/(0000)). Since it is a
non-lifting triangulation, no triangulation of C4 can have it as a link (we saw in
the proof of Proposition 5.3 that any link in a lifting triangulation is a lifting
triangulation as well). Thus, we only need to show how to complete the join
T(C4/(0000)) - (0000) to a triangulation of Cj.

For doing this, observe that all the simplices in T(C4/(0000)) - (0000) use
the point (1111) (this point is the barycenter of the tetrahedron in the link
at (0000). Thus, we can look at T(C4/(0000)) - (0000) in the link at point
(1111). This link is again the barycenters of the faces of a tetrahedron, and the
triangulation obtained as the link at (1111) of T'(C4/(0000)) - (0000) is depicted
in Figure 9. Tt is the triangulation of a polytope P whose vertices are the four
barycenters of the facets of the tetrahedron (the four points labeled (1000),
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(0001)

(1001) (1000)  (1001)

Figure 8: A triangulation of a link of the 4-cube.

(0100), (0010) and (0001)) and four of the six mid-points of the edges of the
tetrahedron (the points labeled (1100), (0110), (0011) and (1001)). P has four
triangular facets and four square ones and is triangulated with 12 tetrahedra.

(0111)

(0011)

(1100) - (1011)

(1001)

(1101)

Figure 9: A triangulation of a polytope P contained in the tetrahedron.

We will complete the triangulation of P to a triangulation of the whole
tetrahedron as follows. The mid-point (1010) of the segment [(1011), (1110)]
sees four boundary triangles of the triangulation of the polytope P. We add
the four tetrahedra obtained joining them to (1010). In the same way, we add
the joins of (0101) to the four boundary triangles of the triangulation of P seen
from it. More precisely, we are adding the following eight tetrahedra to the
triangulation of P:

{{(1100), (1000), (0110)}, {(1000), (0110}, (0010)},
{(0011), (0010), (1001)}, {(0010), (1001), (1000)}, } - (1010)

and
{{(0110), (0100), (0011)}, {(0100), (0011}, (0001)},

{(1001), (0001), (1100)}, {(0001), (1100), (0100)}, } - (0101).
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This produces a triangulation with 20 tetrahedra of the octahedron whose
vertices are the six mid-points of the edges of the tetrahedron Cy4/(1111). It
is now easy to complete this to a triangulation of the tetrahedron Cy/(1111)
with 24 tetrahedra, by adding four tetrahedra. Namely, for each of the vertices
(1110), (1101), (1011) and (0111) of the tetrahedron Cy/(1111) we add its cone
to the only boundary triangle visible from it.

Thus, we have triangulated Cy/(1111) with 24 tetrahedra. Let us denote
by T'(C4/(1111)) this triangulation. In Cy, we consider the collection of 24 full-
dimensional simplices T(C4/(1111)) - (1111). It is clear that these 24 simplices
intersect properly (in the usual geometric sense) since all them have (1111) as
a vertex and their links at (1111) intersect properly. In the other hand, any
triangulation of the 4-cube has at most 4! = 24 simplices; thus, the 24 simplices
in question must cover the 4-cube (again in a geometric sense). We conclude
that the 24 simplices provide a triangulation of the 4-cube.

5.3 A characterization of lifting triangulations.

In Section 5.1 we have characterized lifting triangulations of an oriented matroid
M as those which can be “lifted” to triangulations of the Lawrence polytope
A(M) (Proposition 5.3) and we have shown a combinatorial condition which
is necessary for a triangulation to be lifting (Proposition 5.4). Here we use
the first fact to convert the second in a necessary and sufficient condition for a
triangulation to be lifting.

We will use the notation P(T’) and T'|4 introduced before Proposition 5.4,
and also the following one introduced before Proposition 2.10: if B is a collection
of subsets of a set F and b € E, we denote

B-b:={cU{b}o € B}.

Given a lifting triangulation T of an oriented matroid M, in the proof
of Corollary 3.3 we constructed a lifting triangulation T(A) of any restric-
tion M(A) of M, with the property that T'(A4) extends P(T)|4 (in particular,
T(F) = T). The construction is based in the simple fact that a lift M of
an oriented matroid M induces a lift of every restriction of M. It is easy to
verify (and we will do it in the proof of Theorem 5.13) that the collection of
triangulations T'(A) obtained in this way satisfies the following “compatibility”
properties. For every A C £ and b,c € A:

o P(T(A))|a\py CP(T(A\{b})), and

o T(A\{6})NT(A\A{c}) C T(A)|a\ip,e}-

It is the goal of this section to prove that a triangulation T of an oriented
matroid M is a lifting triangulation if and only if for every restriction M(A)
of M there is a triangulation T(A) in such a way that the triangulations of the
restrictions satisfy these compatibility properties. One direction of the proof
is just checking that the triangulations obtained in the proof of Proposition
5.4 satisfy the properties. The other direction will be an iterative use of the
following technical (and difficult) lemma:
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Lemma 5.12 Let M be an oriented matroid on a set E. Suppose that for
each subset A C E we are given a triangulation T(A) of the restricted oriented
matroid M(A) and that the following properties are satisfied, for every A C E
and b,c € A:

P(T(A))]a\gey C P(T(ANA{B}))

T(A\{o}) NT(A\{c}) C T(A)

Let a € F be one of the elements of M and consider the Lawrence lift
M= (M*U@)* of M on the element a, where M*Ua denotes the lezicographic
extension of M* by the element @ := [a™| antiparallel to a. For every A C E'\a
consider the following four collections of subsets of EU a:

T(A):=T(A), TAU{a})=T(A)-a, T(AU{T)}):=T(A) a,
T(AU{a,a}) :=T(AU{a})-T U (T(A)\T(AUq))-a.
In these conditions,
(i) For any B C EU{a}, T(B) is a triangulation of the restriction M(B).
(i) For any B C EU{a} and any b € B
P(T(B))|5\s) C PT(B\ {8)).
(iti) For any B C EU{a} and any b,c € B
T(B\{}) NT(B\ {c}) C T(B).

Figure 10 shows an example of the triangulation T(AU {a,@}) where A4 is a
point configuration with 4 points in a line and e is an extra point on the line.

*—eo—————0 & a a
T(A)
.'——.—.a—.—.
T(Av a)
a
A. A
TAv {a}) T(Av {a}) FAv {27 ))

Figure 10: The lifting procedure of Lemma 5.12.

Proof: We first prove the following

Claim: For any A C E'\ q, linkf(Au{a E})(E) and lmkf(Au{a a})(a) are triangu-

lations of //\/\I(A U {a,a})/a and M(A U {a, @})/a, respectively.
The oriented matroid M(AU{a,@})/@ is precisely M(AU{a}), and from the
definition of T(A U {a,@}) it follows that linkT(Au{a a})(E) is the triangulation
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T(AUa). In the same way, the oriented matroid /(/l\(A U {a,a})/a equals the
reorientation M’ := M(AU {a}) U@\ a of M(AU {a}) at the element a. The
link linkz can be rewritten as

(Au{a,a})(“)

T = link?(AU{a’E})(a) = linkr(augy(a) @ U (T(A)\T(AUa)).
We will prove that 7” satisfies the oriented pseudo-manifold property and covers
some interior extension exactly once.

Let 7 be an interior (r — 1)-simplex of M’. Since the link of @in T is a
triangulation (it equals the link of a in lmkf(Au{a a})(E)) we only need to prove

the oriented pseudo-manifold property of 7”7 in the case @ ¢ 7. In this case
T € P(T(A)), since it lies either in a simplex of T(A) or in one of T(AU a) (or
both). That is, there is at least one r-simplex 7 U {b,} containing 7 in T(A).

Suppose first that 7 is interior in M(A). Then, there are exactly two r-
simplices 7Uby and 7Uby in T'(A) containing 7, with b; and b in opposite sides
of the cocircuit vanishing on 7. If both 7U{b;} and 7U{b} were in T(AU{a}),
then 7 could not be in 7”, according to the formula for 7’ above. If none of
TUby and 7Uby is in T(AU {a}), then they are both in 7. Moreover, in this
case 7 U {a} cannot be a simplex of T'(4 U {a}) because then there would be a
second simplex in T(AU {a}) containing 7, which could only be either 7U {b;}
or TU{bs}. Thus, 7U{b;} and 7U{by} are the only r-simplices in T" containing
7 and the oriented pseudo-manifold property is satisfied. If one of them, say
7 Uby, is in T(A U {a}) and the other is not, then there has to be another
r-simplex in T(A U {a}) containing 7 and it can only be 7 U {a} (otherwise it
would be in T(A U{a})|a C T(A)). This implies that 7 U {@} and 7U {by} are
the only r-simplices in T’ containing 7. The oriented pseudo-manifold property
is satisfied since b; and « lie on opposite sides of the cocircuit vanishing on 7.

Now suppose that 7 is not interior in M(A). Then there is a unique simplex
7U{b1} containing 7 in T'(A). Since 7 is interior in M’, @ and by lie in opposite
sides of 7. That is, @ and b, lie on the same side of 7 in M. This implies that 7
is not interior in M(AU{a}). Let FF C AU {a} denote the facet of M(AU {a}
which contains 7, which is also a facet of M(A). Recall from Corollary 2.12 that
the restriction of a triangulation to a facet is a triangulation of the restricted
oriented matroid.

Let 7 := {a1,...,a,—1} and consider the lexicographic extension by the
point p := [af,...,a}_,], which is interior and in general position in M(F).

This lexicographic extension is covered by 7 in T'(A) and by some (r—1)-simplex
" in T(AU{a}). Since a &€ F, we have 7’ € P(T'(AU{a}))|a C P(T'(A)). That
is, tau’ is a facet of a simplex of T'(A) and, thus, 7 = 7'. In other words,
T is a facet of a (unique, because 7 is not interior) simplex of T(A U {a}).
We cannot have 7 U {b;}inT(A U {a}, because then 7 ¢ T7’. The containment
P(T(AU{a}))|a C P(T(A)) implies that the only other possibility is U {a} €
T(AU{a}). Then, the simplices of 7" containing 7 will be 7U{b;} and TU {@},
which agrees with the oriented pseudo-manifold property.

We finally have to check that T’ covers some interior extension in general
position exactly once. For this consider any simplex ¢ = {@, ay,...,a,—1} in T’

containing @ and the lexicographic extension by [@*, af,...,a' ;]. It is covered

o Mr—1
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by ¢ and by no other simplex of T’ containing @: this is so because links (@)
is a triangulation (it is a link of link’f(Au{a,a})(a))' If a simplex o’ € T’ not
containing @ covers the extension, then o’ € T(A) \ T(A U {a}). Then the
extension is interior in M (A) and thus in M(AU{a}), and it has to be covered
by a simplex ¢” € T(AU{a}). But this is impossible: if A € ¢ then ¢” cannot
cover a lexicographic extension of the type [@",..]. If a € " then o” € T(A)
and the extension is covered twice in T'(A). This finishes the proof of the claim.

(i) Let A € E\a. The collections T(A), T(AU{a}) and T(AU{a}) are clearly
triangulations; the first one is the triangulation T'(A) of M(A) and the other
two are cones over it. For the case of T(AU {a,a}), observe that A is a facet of
M(AU{a,@}). Thus, all the interior (r — 1)-simplices of M (AU {a,@}) contain
either a or @ (or both) the fact that the two links in part (i) are triangulations
implies that T(A U {a,@}) has the oriented pseudo-manifold property.

If a is not used in the triangulation 7'(AU{a}), then T'(A) = T'(AU{a}) and
T(AU{a,a}) = T(AU {a}). Otherwise, let 0 = {a,a1,...,a,-1} be a simplex
of T(AU{a}) which uses a. The lexicographic extension of M(A U {a,a} given

by the expression [a*,a@",a},...,a}_ ;] is covered by ¢ and cannot be covered

by any other r-simplex of f(A U {a,a} containing either a or @, because then

the contracted extension would be covered twice either in lznk,:,:( AU {a’a})(ﬁ) or

in linkf(AU{a’a})(a). Since any triangulation of T(A U {a,a@} contains either a
or @, we have finished.

(ii) If B does not contain either a or @ then the checking is fairly easy.
Thus, suppose that a,@ € B. We distinguish the three cases b = a, b = @ and
b ¢ {a,@}. We denote by A = B\ {a,a}. That is, P(T(B)) = P(T'(AU {a}) -
TUP(T(A)\T(AU {a)) -a). _ )

If b = a, then both parts of P(T(B))| au(ay arein P(T'(A)-a) = P(T(B\{a}).

If b = @, then the second part of ’P(f’(B))|AU{E} is clearly in P(T'(A) - a) =
P(T(B\ {@})). For the first part we have to verify that P(T(A U {a})) C
P(T'(A)-a. Let 7 € P(T'(AU{a})). Then, eithera g rand T € T(A)ora € 7
and 7\ {a} € T(A). In both cases 7 € P(T(A) - a.

If b ¢ {a,a} then
P(T(B\{b})) = P(T(AU{a}\{6})- @ U PT(A\PH\T(AU{a}\{b}))-0)

~

Let p be a maximal set in P(T(B))|p\(53- If p € P(T(AU {a}) - @)|p\(s}

then clearly R
p e P(T(AU{a}\{b})-a@) C P(T(B\{b})).

Otherwise p € P((T(A)\T(AU{a})) a)|p\(p}- By our maximality assump-
tion, either p = o U {a} where 0 € T(A)\ T(AU{a}) or p = 7 U {a} where
TU{b} € T(A)\T(AU{a}).

In the first case we have 0 € T(A) and 0 € T(AU{a}). Since b € o we have
o € T(A\ {b}). Also, since T(A)NT(AU{a}\ {b}) C T(AU {a}), we must
have 0 € T(AU {a} \ {b}). Thus, 0 € T(A\ {d}) \T (AU {a}\ {b}).

In the second case, we will prove that either 7 U {a} € P(T(AU {a}\ {b}))
or 7T € P(T(AU{a}\ {b})). This finishes the proof since the two things imply
that 7 U {a} is respectively in the first or the second parts of P(T(B\ {b})).
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If rank(AU{a}) > rank(A), then T(AU{a}) is the cone of the triangulation
T(A) with apex a, which implies 7 U {a} € P(T(AU {a})). Otherwise, the
assumption that there is a unique simplex TU{b} in T'(A)\T (AU{a}) containing
7 implies that either 7 U {a} € T(A(U{a})|aufap\{s} C T(AU{a}\ {b}) or the
hyperplane containing 7 is a facet F of M(A). We assume the second and
will consider the three possible situations of a respect to the hyperplane of
AU {a} passing through 7: on the same side as b, on the opposite side, or on
the hyperplane.

e If ¢ and b lie on the same side, then F is also a facet of AU {a} and
T(A U {a}) restricted to F is a triangulation of M(F) (by Corollary
2.12) which has to coincide with the restriction of T'(4) to F. Thus,
7 € P(T(AU {a}) which in turn implies 7 U {a} € T(A U {a}) and
rU{a} € T(AU {a}\ {b}).

e If a lies on the hyperplane, then FU{a}) is a facet of M(AU{a}) and a face
of M(AU {a}\ {b}). The restrictions of T(AU {a}) and T(AU {a}\ {b})
to F'U {a} coincide and, thus, either 7 ¢ P(T(AU {a} \ {b})) or 7 €
P(T(AU {a})). The second possibility is impossible, because it would
imply that TU{c} € T(AU{a}) for some ¢ ¢ {a, b} and thus TU{c} € T(A)
and 7 U {b} € T(A) with b and c on the same side of the hyperplane
containing 7.

e If @ and b lie on opposite sides of the hyperplane and 7 € P(T(AU {a} \
{b}), then clearly 7U {a} € T(AU{a}\ {b}), because a is the only point
of AU {a} \ {b} in that side.

(iii) Again, if B does not contain either a or @, then the property is easy
to check. If a,@ € B we have four possibilities, according to whether {b, c}
contains a, @, none of them or both of them. We denote by A = B\ {a,a}.

o If {b,c} = {a,@}, then we have to prove that
T(Au{a})NT(AU{a}) c T(AU {a,a}).
This is trivial since the intersection on the left hand side is empty.
e If ¢ = a and b # @, then we have to prove that
T(Au{a))NT(AU{a,a}\ {b}) Cc T(AU {a,a}).

The left-hand side equals (T'(A) NT(AU{a}\{b})) -@, which is contained
in T(AU{a})-@ and thus in T(A U {a,a}).

e If c=a and b # a, then we have to prove that
T(AU{a)NT(AU {a,a@} \ {b}) C T(AU {a,a}).

The left-hand side equals (T'(A) N (T(A\ {6}) \T(AU {a} \ {b}))) - a.
This is clearly contained in (T'(A)\ T(A U {a} \ {6}))|4\{s) - @ None of
its simplices ¢ U {a} can be contained in T'(A U {a}) : a, because then
o€ T(AU{a})|avfapgpy C T(AU{a} \ {b}). This finishes this case.
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o If a,a ¢ {b,c}, we have to prove that
T(AU{a, @} \ {)NT(AU{a,a}\ {b}) C T(AU{a,a}).
The left hand side equals
(T(Au{ap\{ch) nT(AU{a}\{b}))-@
(T(ANAHNT(AU{a}\ {c})) N (T(A\ BN\ T(AU {a}\ {b}))) - a

The first part is contained in T'(AU{a})-@. The second part is contained in
(T(A)\T(AU{a}))-a. That is, both parts are contained in T(AU{a,@}).
O

Theorem 5.13 Let T be a triangulation of an oriented matroid M on a set

E. Then, T is a lifting triangulation if and only if there is a collection of
triangulations {T(A)|A C E} for A C E with:

o T(E)=T and T(A) is a triangulation of the restriction M(A),

o For every AC E and b,c € A:
P(T(A)|avpy C P(T(AN{b}))
TANA{B) NT(AN{c}) C T(A)la\(p,ep-

Proof: If T' is a lifting triangulation, let M be an acyclic lift of M on the set
E U {p} which defines the lifting triangulation T of M. Then, P(T) is the
collection of faces of M which do not contain p.

We can assume the lift to be “in general position”, meaning by this that
its dual is an extension in general position of M*; that is, that any hyperplane
of M not containing p is a simplex. For every A C E the restriction M( ) is
an acyclic simplicial lift of M(A) and defines a triangulation 7'(A) of M(A).
If A C B all the faces of M(B) contained in A are faces of M(A) and, thus,
P(T(B))|a C P(T(A)).

Also, if ¢ € T(A\ {b}) N T(A\ {c}), then ¢ is a simplicial facet of both
M(A \ {b}) and M(A \ {c¢}). This implies that the two oriented matroids have
the same rank, equal to the rank of M( ), and that o is a facet of M(A)
Thus, T(A\ {b}) NT(A\ {c}) C T(A).

Reciprocally, suppose that T is a triangulation in the conditions of the
statement. We will use Proposition 5.3 to prove that 7 is a lifting triangulation.
Remember that A(M) is obtained from M by a sequence of lifts of the type
M= (M*u{a})*, where M*U{a} denotes the extension of M* by an element
antiparallel to a. In Lemma 5.12 we have seen that a collection of triangulations
in the conditions of the statement can be lifted to a collection of triangulations
of M in the same conditions and with lmkf(Eua)(E) = T. Recursively, we
obtain a triangulation A(T) of A(M) with link,y(E) =T. O
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