
Scheduling Expressions on a Pipelined
Processor with a Maximal Delay of
One Cycle

DAVID BERNSTEIN
IBM T. J. Watson Research Center
and
IZIDOR GERTNER
Technion-Israel Institute of Technology

Consider a pipelined machine that can issue instructions every machine cycle. Sometimes, an
instruction that uses the result of the instruction preceding it in a pipe must he delayed to ensure
that a program computes a right value. We assume that issuing of such instructions is delayed by at
most one machine cycle. For such a machine model, given an unbounded number of machine registers
and memory locations, an algorithm to find a shortest schedule of the given expression is presented
and analyzed. The proposed algorithm is a modification of Coffman-Graham’s algorithm [7], which
provides an optimal solution to the problem of scheduling tasks on two parallel processors.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors-code genera-
tion; F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and
Problems-sequencing and scheduling

General Terms: Algorithms, Design, Languages

Additional Key Words and Phrases: Pipelined processors

1. INTRODUCTION
In the past few years more and more attention has been paid to pipelined
computer architectures, many of which were designed and implemented [13, 161.
We consider the constraints imposed by a pipelined processor on the computation
of a straight-line program.

Computing two successive instructions on a pipelined processor may result in
a situation such that the second instruction must be delayed until the value of
its operand computed by the first instruction is ready. Some of the existing
pipelined processors identify this situation in hardware; on the others a NOP

This work was done while D. Bernstein was a graduate student at the Technion-Israel Institute of
Technology.
Authors’ current addresses: D. Bernstein, IBM T. J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY 10598; I. Gertner, Center for Large-Scale Computation, The Graduate School, CUNY,
25 W. 43 St., Suite 400, NYC, NY 10036
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1989 ACM 0164-0925/89/0100-0057 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989, Pages 57-66.

58 ’ D. Bernstein and I. Get-her

(NOP stands for No Operation) must be explicitly coded between two such
instructions. In both cases the execution time of a program may increase. The
problem is: Find an order of evaluation of the expression that results in a minimal
completion time program under pipelined constraints.

A set of expressions included in a straight-line program can be conveniently
represented by a directed acyclic graph (dag) [l, 21. We assume that such dags
are built in the compiler after the instruction selection phase was completed. The
problem of scheduling dags with pipelined constraints was previously considered
in several papers [4,11,12]. Let us discuss the differences among the approaches
undertaken in these works and our paper.

Our main assumption on the nature of a pipelined architecture at hand is, as
it was in [4] and [12], that interlocks (delays) exist only among instructions that
are connected with an edge in a dag. In [12] it was shown that, if the maximal
delay d of the instructions due to pipelined constraints is unbounded, the problem
of finding an optimal order of evaluation is NP-complete. In [ll] an even harder
problem was considered, namely, the case where interlocks may exist among
data-unrelated instructions. The algorithm proposed in [ll] takes care of such
constraints in a heuristic way.

The second issue of interest is whether there exist additional constraints on
the machine resources. Assuming a finite number of machine registers in a
machine makes the problem of finding an optimal order of evaluation intractable
even on sequential (nonpipelined) machines ([2, 51). Due to recent advances in
microelectronics technology, our assumption that there is a large number of
machine registers is quite reasonable. Our view of the problem is that scheduling
algorithms must be incorporated in compilers for pipelined machines before
register allocation is done. Subsequently, global register allocation can be per-
formed using graph-coloring algorithms [17]. We understand that in this scheme
the scheduler will likely lengthen the lifetimes of variables, producing a sequence
of machine instructions that requires more registers to be allocated. This, in
turn, might require more spill code to be produced during the register allocation
stage. However, since the future computers will have many machine registers, we
believe that these limitations are not serious.

As opposed to this view, the scheduling problem was treated in [ll] and [12]
after the register allocation was done, in a post-pass code optimization phase.
(We are aware that in [121 it was necessary since their machine had no hardware
interlocks.) In this case, new constraints which arise as a result of the unrelated
usage of the same register in different portions of the code limit the possible
reordering of instructions. To take care of these additional register constraints,
a specialized dag representation was used in a heuristic algorithm of [ll], while
in [12] a standard dag representation was used, resulting in an algorithm of
higher time complexity compared to that of [111.

Finally, our last assumption is that instructions are delayed by at most one
machine cycle. This assumption makes our model suitable to the recently devel-
oped RISC-architecture processors [19]. As appears in [141, this assumption
holds for RISC I, RISC II ([Xi]), and for 801 ([20]). Also, it is true for the HP
Precision Architecture [ll]. However, in the MIPS machine, as reported in [12],
sometimes instructions are delayed by two machine cycles.
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Scheduling Expressions on a Pipelined Processor 59

For a machine model in hand, we present an algorithm to find an optimal
order of evaluation of the given expression. The proposed algorithm is a modifi-
cation of Coffman-Graham’s algorithm, which finds a shortest schedule for a set
of equal execution time tasks on two-processor systems ([7]). In [4], the original
algorithm of Coffman and Graham was used to schedule optimally expressions
under the assumption that all the delays are exactly one time cycle (i.e., an
interlock exists between any two instructions adjacent in the dag). In a comple-
mentary effort [3], we analyze the behavior of Coffman-Graham’s algorithm in
the case of delays greater than one. We show that the ratio of the length of the
schedule produced by the algorithm over the length of an optimal schedule is at
most 2 - 2/(d + l), where d is the maximal allowed delay.

The complexity of our algorithm is identical to that of Coffman-Graham’s
algorithm, which was initially proved to be O(n’) [7]. Then, Sethi [21] showed
that this algorithm (and therefore our algorithm) can be implemented in O(ncu(n)
+ e) where e is the number of edges in a dag, and a(n) is a slowly growing
function (a functional inverse of the Ackermann function). Recently, the com-
plexity of Coffman-Graham’s algorithm was reduced by Gabow to O(n + e) using
the algorithm from [8] and the data structure from [9]. The advantage of Gabow’s
implementation is that it does not require the dags to be free of transitive edges,
as previous works (and our algorithm) assume. Unfortunately, Gabow’s algorithm
is not suitable for pipelined machines since it produces directly a schedule for a
two-processor system rather than a priority list of tasks that can be converted
into a schedule for different types of machines.

To this end, our result supports the observation in [12] that the problem of
finding an optimal order of evaluation for a pipelined processor is similar to that
of finding an optimal schedule for a number of parallel processors. As a conse-
quence of this, allowing d L 2 is a hard problem since the problem of optimal
scheduling for three (or more) parallel processors has been open for quite a long
time [lo]. As mentioned above, approximation algorithms for this case can be
found in [3].

The rest of the paper is organized as follows. In the next section we start with
some preliminary definitions. Then in Section 3 the algorithm is presented,
followed by the optimality proof (Section 4). We conclude with a discussion of
directions for further research.

2. PRELIMINARIES

2.1 The Machine Model
Our machine has an unbounded number of general purpose registers rl, r2, . . .

and memory cells meml , mem2, It supports the following operations:

(1) Load operation: (meni) - (I~)

(2) StOlX? OperatiOn: (Fi)+(memj)

(3) Arithmetic operations: A((Fi,), . . . , (FL,)) + (Fj), where k 2 1.

The execution times of all three types of operations are equal to one time unit.
The major feature of the machine is its pipelined structure. Usually, the machine

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

60 l D. Bernstein and I. Gertner

Fig. 1. An example of a dag.

issues instructions every time unit. Due to data dependencies among the instruc-
tions in a program, the issue of some of the instructions may need to be delayed
by an integral number of time units. Given two instructions I1 and Iz, where I,
uses the result of I,, we denote by D(I,, Iz) the number of time units by which
I2 must be delayed when it follows after 1,. Also, let d = max(D(I1, I*)) for all
II and I2 over the instruction set of the machine. In the sequel, we assume that
d = 1 (for a discussion on the case d 2 2, see [3]).

2.2 Expression Dags and Their Evaluation
Following [l] and [2], computations are represented by directed acyclic graphs
(dags). Each vertex of a dag corresponds to a machine instruction whose operands
are computed at the children of this vertex in a dag. An example of a dag is given
in Figure 1.

On sequential machines, a dag G = (V, E) defines a partial order of the
computation of the vertices of V. For every two vertices, v and u, of G such that
(v, u) E E, u can be initiated only after v has been completed. However, for
pipelined machines, the schedules of G must obey additional restrictions. In the
sequel, for every (v, u) E E, we denote the delay times by D((v, u)), which is
equal to D(Il, Iz), where I1 and Iz are the machine instructions that compute v
and u, respectively. Notice that the appropriate values of D((v, u)) may vary
from architecture to architecture. In the dag of Figure 1, the integers near the
edges denote the corresponding delay times.

A legal schedule S of a dag G is a one-to-one mapping of V into the set N
of the positive integers, such that for every two vertices, v and u, (v, u) E E,
S(u) - S(v) > D((v, u)). The range of S is interpreted as time dots (of unit
length each) at which instructions are performed. A time slot of S, at which no
instruction can be executed due to pipe limitations, is called a NOP. Since d =
1, in the rest of the paper we can assume that G has no transitive (redundant)
edges.

Two legal schedules for the dag of Figure 1 appear in Figure 2, where i in
column j means that vi is executed at time slot j. Notice that time slot 6 of S’ is
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Scheduling Expressions on a Pipelined Processor l 61

1234567
12345 6

sz 215436

Fig. 2. Two legal schedules for the dag of Figure 1.

a NOP since D(u5, ug) = 1. The completion time c(S) of a schedule S is defined
by maxUEvS(v). For example, in Figure 2, c(S’) = 7 and c(S’) = 6. Throughout
this work we will be interested in minimizing the completion time, which is
equivalent to minimizing the number of NOPs. An optimal schedule S of G is a
legal schedule for which c(S) is the smallest. S2 of Figure 2 is an optimal schedule
of the dag of Figure 1 since it has no NOPs.

2.3 List Schedules

Let G = (V, E) be a computation dag. If (u, U) E E we say that u is an immediate
successor of v, and v is an immediate predecessor of u. Also, if there exists a
directed path in G from v to u, we say that u is a successor of u, and v is
a predecessor of u. In the sequel, we denote by index@, v) the time slot of a
schedule S at which a vertex v is executed, and by Si a vertex which is scheduled
in S at time slot i. Given a schedule S of G, u is ready at time slot k, if for each
of its immediate predecessors U, index(S, u) 5 k - 1 - D(u, u).

Now we consider an important class of schedules, called list schedules [6].
Informally, given a priority list L of the vertices of G, the list schedule S which
corresponds to L can be constructed by the following procedure:

(1) Iteratively schedule the elements of S starting at time slot 1 such that during
the ith step, L is scanned from left to right, and the first ready vertex not
yet scheduled is chosen to be executed at time slot i.

(2) If no such job is found, a NOP is inserted into S at time slot i.

Consider a class of optimal schedules for G. Since all the machine instructions
have unitary execution time, there is no reason in optimal schedules to leave the
machine idle if a ready vertex exists. Therefore, for our problem, an optimal
schedule can always be found among the class of list schedules. In the sequel we
consider list schedules only. The obvious question is how to obtain the right
priority list L.

3. THE LABELING ALGORITHM

Let G = (V, E) be a dag and let IJ be a vertex of G. We denote by P(u) the set of
immediate successors of u in G, that is, u E P(v) if and only if (IJ, u) E E. Also,
let R(u) be the subset of P(u) such that u E R(u) if and only if D((u, u)) = 1.

First, we present the original algorithm of Coffman and Graham [7], then we
show how to modify it to produce an optimal priority list for the pipelined
machine at hand. The algorithm uses the lexicographic order among decreasing
sequences of positive integers. For example, by the lexicographic order, (7, 3, 2)
< 17, 4) and (7, 3, 2) <]7, 3, 2, 1). Conveniently, we denote an empty sequence
by {), and every nonempty sequence is greater than an empty sequence.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

62 l D. Bernstein and I. Gertner

Let 1 VI = n. The algorithm assigns to each vertex u of G a label Z(u) E (1, 2,
. . . , n). The label Z(u) is defined as follows:

(a) An arbitrary vertex u with P(u) empty is chosen, and Z(u) = 1.
(b) Suppose the labels 1,2, . . . , i - 1 have already been assigned by the algorithm.

For each vertex u, for which the map Z has been computed for all elements
of P(u), let M(u) denote the decreasing sequence of positive integers formed
by ordering (Z(U) 1 u E P(u)). Choose a vertex u’ for which M(u’) is minimal
(break tie at will) and set Z(u ‘) = i.

(c) Repeat the assignment in (b) until all the vertices are labeled.

The modified labeling algorithm proceeds in the same way as above except
that in Step (b), M(u) is formed by ordering the set (Z(U) 1 u E R(u)]. Finally the
optimal priority list L is determined by ordering vertices with the higher labels
first. An optimal schedule S, which corresponds to L, can be determined by
applying the list-scheduling process described in Section 2 to L. Notice that L
only defines the relative priority of the vertices of G, and there might be a
situation in which Z(u) > Z(U) and index(S, U) < index(S, u).

Consider how the algorithm labels the vertices of the dag of Figure 1. First,
since P(ug) is empty, it assigns Z(ug) = 1. Then, it computes M(uB) = () and
M(u4) = M(u5) = (1). Since M(u3) is minimal, Z(ug) = 2. Then, the algorithm
assigns label 3 to either u4 or u5. Assume that Z(ug) = 3, then 1 (u4) = 4. Now we
can construct M(Q) = (4, 2) and M(uz) = (4, 3). Since M(ul) < M(uz), Z(ul) = 5
and Z(uz) = 6. Thus, L = (2, 1, 4, 5, 3, 6). The optimal schedule S, which
corresponds to L, is S2 of Figure 2. Notice that in S2, u5 was scheduled before u4
even though Z(u4) > Z(U~). This happened since, when u5 was scheduled, u4 was
not ready yet. This demonstrates further, as was mentioned before, that L defines
only the relative priority of the vertices in a dag, and the final order of the
vertices is determined only in the list-scheduling process.

Notice that if we had applied the original algorithm of Coffman and Graham
to the dag of Figure 1, we could have Z(ug) = 4, Z(u4) = 3 and Z(u5) = 2. In this
case, M(ul) = (4, 31, while M(u2) = (3, 2). Thus, Z(u2) = 5 and Z(ul) = 6, which
results in L’ = (1, 2, 3, 4, 5, 6). The schedule S, which corresponds to L’, is S1
of Figure 2, which is suboptimal.

4. THE OPTIMALITY PROOF

In this section we prove that the labeling algorithm of Section 3 is optimal.
Before we proceed with the main theorem we need the following result.

LEMMA 1. Let u and u be vertices of G such that neither of them is a successor
of the other and Z(u) > Z(U). If there exists a vertex x in R(u) - R(u), then there
exists a vertex y in P(u) - R(u) such that Z(y) > Z(x).

PROOF. Consider the moment t at which u is labeled by the algorithm.

Case 1. At time t there exists y E P(u) which has not yet been labeled by the
algorithm.
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Scheduling Expressions on a Pipelined Processor 63

Since u is labeled at time t, y 4 P(U), and therefore, y 4 R(u). Thus, y E
P(V) -R(u). Since y is labeled after U, Z(y) > Z(U). Notice that for every successor
w of u, Z(u) > Z(w). Therefore, since x E R(u), Z(y) > Z(U) > Z(x), and we are
done.

Case 2. At time t all y E P(u) have already been labeled by the algorithm.

Since the algorithm decided to label u before u, M(u) 5 M(v). Notice that
since x E R(u) - R(u), Z(x) appears in M(u) and does not appear in M(u). In
this case, M(u) # M(u), and therefore, M(u) > M(u). Therefore, there must
exist y such that Z(y) appears in M(u) and does not appear in M(u) with Z(y) >
Z(r). Since Z(y) appears in M(u), y E R(u), and therefore y E P(u). Also, since
Z(y) does not appear in M(u), y B R(u). Therefore, y E P(u) - R(u), and the
lemma is proved. 0

To demonstrate how Lemma 1 can be applied, consider the dag of Figure 1.
Recall that Z(u,) = 5 and Z(uz) = 6. Also, R(ul) = lug, u4) and P(uz) = R(u2) =
(u4, u5). Notice that u3 E R(ul) - R(Q). Now apply Lemma 1 substituting u2, ul,
and u3 instead of u, u, and X, respectively. Thus, by Lemma 1, there exists a
vertex y in P(u2) - R(ul) whose label is greater than Z(u3). Indeed, u5 E P(u2) -
R(ul) and Z(ug) > Z(u3).

In the sequel, we are going to prove the optimality of the algorithm of Section
3 by induction on the size of G. Let L be the priority list computed by the labeling
algorithm for G. To set up an induction proof, we will show a somewhat stronger
statement: given G and a set NR (for Not Ready) of the leaves (vertices with no
immediate predecessors) of G which are not ready at time slot 1 and become
ready only at time slot 2, the schedule S which corresponds to L is optimal. We
denote this modified scheduling problem by a pair (G, NR). Notice that, since the
list-scheduling process is applied on L, the vertex with a highest label among all
the vertices which do not belong to NR will be scheduled first at S. By convention,
if NR includes all the leaves of G, we assume that the first time slot of S is a
NOP.

The relationship between the original and the modified scheduling problems
is straightforward. Initially, we are given a dag G and NR is empty. After vertices
Ul, e-e, u, have been scheduled, we are left with G’ = G - (ul, . . . , us) and
NR’ = (X 1 x E R(u,)}. Notice that the addition of the set NR to the scheduling
problem did not change its nature. Indeed, after us has been scheduled in S, none
of the vertices which belong to R(u,) can be scheduled immediately after u,, and
they are released only one time unit later. Thus, the schedules that result when
the algorithm of Section 3 is applied to the original and to the modified scheduling
problems are identical (assuming that initially NR is empty).

Let us demonstrate the concept of the modified scheduling problem on the dag
of Figure 1. Initially, NR is empty, and u2 is scheduled first since it has the
highest label. Then, we are left with G’ = G - (u2 1, and NR ’ = (u4, u5). Since
u1 has the highest label in G’ and is ready, it is scheduled second. Now, G” =
G - (ul, u2), and NR” = (us, u4j. At this moment, u4 has the highest label in G”,
but since it is not ready (it appears in NR”), u5 is scheduled next. This process
is continued until we get the same schedule as before.

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

64 l D. Bernstein and I. Get-her

THEOREM 2. Let a modified scheduling problem be defined by (G, NR) and L
be the priority list produced by the labeling algorithm for G. The schedule S which
corresponds to L is optimal.

PROOF. By induction on the number of vertices n of G.

Basis. If n = 1 or n = 2, the theorem trivially holds.
Induction assumption. Assume that for all dags with at most n - 1 vertices

the theorem holds.
Induction step. Let 1 V 1 = n. Assume, by contradiction, that there exists a

schedule SOPT of G such that c(SOPT) < c(S). Let S1 = v.

Claim 1. SOPT, # v.
Proof of Claim 1. Assume, by contradiction, that SOPT, = v. Let G’ = G -

(v),andNR’=R(v).S ince G ’ has only n - 1 vertices, we can apply the induction
hypothesis to (G’, NR’) to get a schedule S’ such that ~(5”) 5 c(SOPT) - 1.
Notice that S’i @ R(v). Therefore, c(S) = c(S’) + 1 5 c(SOPT), a contradic-
tion. 0

By Claim 1, we assume that SOPTI # v, and let SOPT, = u. Notice that both
v and u are leaves of G. Also, since v has been chosen by the algorithm to be
scheduled while u was ready, we conclude that l(v) > l(u). Let index(SOPT, v)
= k (k 2 2), and assume that SOPT is an optimal schedule such that k is minimal.

Claim 2. If k > 2 then there exists an optimal schedule SOPT of G such that
for all 2 I i 5 k - 1, l(SOPT,) > l(v).

Proof of Claim 2. Assume, by contradiction, that there exists 2 5 i 5 k - 1 -
such that l(SOPTi) < l(v). Let e = G - (SOPTI, . . . , SOPTi-1) and NR =
R(SOPTi-,). Let w be the vertex of G which is ready at time slot 1 and has a
maximal label. Since v is ready at this slot, l(w) L l(v) (notice that w may be v
itself). Since G has at most n - 1 vertices, we can apply the induction hypothesis
to d to get that w can be scheduled at time slot i of SOPT. If w = v, it contradicts
the minimality of k. Thus, w # v and l(w) > l(v). Cl

Thus, by Claim 2, if k > 2 we can assume that for all 2 5 i 5 k - 1, l(SOPTi)
> l(v) > l(u). Therefore, by way of computing the labels in the algorithm, none
ofSOPTi,2Ii=k- 1 is a successor of u. Also, since v is a leaf of G, either in
case of k = 2 or in case of k > 2 nothing prevents the algorithm from setting
SOPT, = v and SOPTk = u, except that SOPTk,I would probably have to
be delayed. (We address this issue subsequently.) Let the resultant schedule be
denoted by SOPT’. In the sequel, we will prove that there exists a reordering on
the part of SOPT’ that appears after time slot k such that the resultant schedule
SOPT’ is legal and c(SOPT’) 5 c(SOPT), contradicting Claim 1.

Case 1. Either SOPTk,l = NOP or SOPTk,, 4 R(u).
Since there is no delay between u and SOPTk+I, SOPT’ is a legal schedule,

c(SOPT’) = c(SOPT), and we are done.
Case 2. SOPTk,, E R(u).
LetG=G-(SOPT,,.. . , SOPTk] and I% = R(v) n R(u). Notice that G has /

less than n vertices. Also notice that SOPT k+l is a leaf of G, and since
ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

Scheduling Expressions on a Pipelined Processor l 65

v = SOPT,, SOPT,,, 4 R(v), which leads to SOPTk+I 4 i???. Let x be a vertex
in G with a maximal label that is ready at time slot 1 of (6, fi). Notice that
there is at least one such vertex since SOPTk+l is ready at slot 1 of (G, I%).

Claim 3. x 4 R(u).
Proof of ClaimA3.Assume, bXcontradiction, that x E R(u). Since x is ready at

time slot 1 of (G, NR), x 4 NR. Thus, x 4 R(v) fl R(u). Since x E R(u), this
means that x B R(v), that is, x E R(u) - R(v). Notice that neither v nor u is a
successor of the other (since v = S1 and u = SOPTI). Thus, since Z(v) > Z(u),
we can apply Lemma 1 to get that there ex%ts y E P(v) - R(u) such that
Z(y) > Z(x). Notice that, since y 4 R(u), y 4 NR. Thus, if y is ready at time slot
1 of (G, a), this will be the contradiction to the assumption that x is such a
vertex with a maximal label. The only reason that y is not ready at time slot 1
of (G:, Z’%) is that y is not a leaf of 6’. Let z be a predecessor of y in G with
a maximal label. Thus, Z(z) > Z(y) > Z(x). Notice that z is a leaf of 6. Since
y E-P(V), z is not a successor of v; otherwise an edge (v, y) will be transitive
in G, and recall that we have assumed that dags havcno transitive edges (see
Section 2). Thus,A z 2 R(v), which leads to z 4 NR. Therefore z is ready
at time slot 1 of (G, NR), and this is the contradiction to the assumption that x
is such a vertex with a maximal label. 0

Now let us apply the induction hypothesis to (6, i%). We are going to
substitute in SOPT’ the part of the schedule that computes 6 by the schedule
produced by the algorithm for (6, &%). Notice that in SOPT, none of the vertices
which belong to R(vlcan be scheduled at time slot k + 1 since SOPTk = v.
Thus, by setting NR = R(v) rl R(u), we do not restrict the class of
optimal schedules for G as compared to those that can come out in
SOPT. By the induction hypothesis, there exists a schedule fi of (6, *)
such that 9, = x and c(s) 5 c(SOPT) - k. Consider again the schedule
SOPT’, which is defined as follows:

(1) SOPT; = v.
(2) For 2 I i I k - 1, SOPT: = SOPTie

(3) SOPT; = u.
(4) Fork+l~i~k+I~I,SOPTr=~i-k.

Notice that SOPTL,, = x. Since by Claim 3, x 4 R(u), SOPT’ is a legal schedule.
Thus c(SOPT’) = k + c(,!?) 5 c(SOPT). By Claim 1, this contradicts the
assumption that c(SOPT) < c(S). Cl

5. CONCLUSIONS

In this paper we presented an optimal scheduling algorithm for the case in which
the maximal delay d of instructions due to pipelined constraints is one time unit.
As discussed in the introduction, the existence of a polynomial time optimal
algorithm for d 2 2 is an open question, but the problem seems to be intractable.
One of the possible directions for future research is to develop efficient approxi-
mation algorithms (for example, see [3]). The other is to develop algorithms for
restricted cases of the general problem. One of the classical restrictions in the
area of code generation is the assumption that the given expression has no
common subexpressions, i.e. it can be represented by a tree rather than by a dag

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

66 l D. Bernstein and I. Gertner

(consider, for example [l]). For this case, only when all the delays are identical,
a simple optimal algorithm was proposed in [181. Another assumption, that may
be suitable to certain RISC architectures, is that only instructions that use the
result of a preceding load instruction must be delayed. In both cases the existence
of polynomial time optimal algorithms is an open problem.

ACKNOWLEDGMENT

We would like to thank the referees whose remarks improved the presentation
of the paper.

REFERENCES

1. AHO, A. V., AND JOHNSON, S. C. Optimal code generation for expression trees. J. ACM 23, 3
(July 1976), 488-501.

2. AHO, A. V., JOHNSON, S. C., AND ULLMAN, J. D. Code generation for expressions with common
subexpressions. J. ACM 24, 1 (Jan. 1977), 146-160.

3. BERNSTEIN, D., RODEH, M., AND GERTNER, I. Approximation algorithms for scheduling arith-
metic expressions on pipelined machines. To be published in the J. AZg. (Mar. 1989).

4. BRUNO, J., JONES, J. W., AND So, K. Deterministic scheduling with pipelined processors. IEEE
Trans. Comput. C-29,4 (Apr. 1980), 308-316.

5. BRUNO, J. L., AND SETHI, R. Code generation for a one-register machine. J. ACM 23, 3 (July
1976), 502-510.

6. COFFMAN, E. G. Computer and Job-Shop Scheduling Theory. John Wiley and Sons, New York,
1976.

7. COFFMAN, E. G., JR., AND GRAHAM, R. L. Optimal scheduling for two-processor systems. Actu
Znf. 1 (1972), 200-213.

8. GABOW, H. N. An almost-linear algorithm for two-processor scheduling. J. ACM 29, 3 (July
1982), 766-780.

9. GABOW, H. N., AND TARJAN, R. E. A linear time algorithm for a special case of disjoint set
union. In Proceedings of the 15th ACM Symposium on Theory of Computing (Apr. 1983), ACM,
New York, 1983, 246-251.

10. GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability, A Guide to the Theory of NP-
completeness. W. H. Freeman, San Francisco, 1979.

11. GIBBONS, P. B., AND MUCHNICK, S. S. Efficient instruction scheduling for a pipelined archi-
tecture. In Proceedings of the ACM Symposium on Compiler Construction (Palo Alto, Calif., June
1986). ACM, New York, 1986,11-16.

12. HENNESSY, J., AND GROSS, T. Postpass code optimization of pipeline constraints. ACM Trans.
Program. Lang. Syst. 5, 3 (July 1983), 422-448.

13. HWANG, K., AND BRIGGS, F. A. Computer Architecture and Parallel Processing. McGraw-Hill,
New York, 1984.

14. KATEVENIS, M. G. H. Reduced Instruction Set Computer Architectures for VLSI. MIT Press,
Cambridge, 1985.

15. KATEVENIS, M. G. H., et al. The RISC II Micro-architecture. J. VLSI Comput. Syst. 1, 2 (Jan.
1985), 138-152.

16. KOGGE, P. M. The Architecture of Pipelined Computers. McGraw-Hill, New York, 1981.
17. LARUS, J. R., AND HILFINGER, P. N. Register allocation in the SPUR Lisp Compiler. In

Proceedings of the ACM Symposium on Compiler Construction (Palo Alto, Calif., June 1986),
ACM, New York, 1986,255-263.

18. LI, H. F. Scheduling trees in parallel/pipelined processing environments. IEEE Trans. Comput.
C-26,11 (Nov. 1977), 1101-1112.

19. PATTERSON, D. A. Reduced instruction set computers. Commun. ACM 28,1 (Jan. 1985), 8-21.
20. RADIN, G. The 801 minicomputer. IBM J. Res. Deu. 27,3 (May 1983), 237-246.
21. SETHI, R. Scheduling graphs on two processors. SIAM J. Comput. 5, 1 (Mar. 1976), 73-82.

Received June 1986; revised June 1987 and September 1988; accepted September 1988

ACM Transactions on Programming Languages and Systems, Vol. 11, No. 1, January 1989.

