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0. Introduction

Let R be a real closed field, for example the field of real numbers. For an
sffine R-variety V (the use of the word “variety” does not imply irreducibility)
ind polynomial functions fi, ..., fL,eR[V]=I(V, Oy) we put

S(f1s s =8y (f1, -0, f)={xeV(R): fi(x)>0, ..., f,(x)>0} (*)
S(fi s =8y (f1, ... )={xeV(R): i(0) 20, ..., f(x)20}.  (+#)

The semi-algebraic sets of the form () constitute a natural basis for the strong
topology on V(R) and are therefore called basic open. It is a fact that also
sach closed semi-algebraic subset of V(R) is a finite union of sets of the form
tes) (Finiteness Theorem, see e.g. [BCR, Théoréme 2.7.1]), so the latter are
called the basic closed sets. Given a fixed basic open S<V/(R), one denotes
the minimal number r of inequalities necessary to describe S as in (*) by s(S)
tor by sy (S), if the surrounding variety is to be emphasized); similarly, for basic
closed F< V(R) the minimal number of inequalities required for F as in ()
15 denoted by 5(F)= 35y (F).

It had been well known for some time that for fixed V the supremum of
all the numbers s, (S), S running over the non-empty basic open subsets of
V(R), is finite. It is denoted by s(V) and is called the (geometric ) stability index
of the varicty V' (concerning this terminology compare the remarks in §1). Also
the supremum of the numbers 3,(F) with @=F < V(R) basic closed is finite
and is denoted by 5(V). (The only purpose of excluding the empty set in these
definitions is to get 5(V)=0 in case that V(R) contains exactly one point. To
make the definition formally complete let us put s(V)= —1 if V(R)=0.)

- But much more than finiteness of the numbers s(¥V) and 5(V) was known,
unce L. Brécker proved that there are upper bounds for them depending only
o the dimension of V. Assuming that V is real (i.e. that V(R) is Zariski dense
@ ¥) he showed that s(V)=dim V=nif 1 <n<3, and that in general

and
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holds for every n=1 ([B4], compare also [B2]}, [B3], [Mah2]). On the basic
closed side, he proved in [B5] that 5(V)=4n{n+1) for n=1, 2 and that

n+25WV)<inn+1) for n=3.

To the best of my knowledge, it seems that up to now no one had computed
the exact value of s(V) for any particular (real) R-variety V of dimension at
least four. Also there was no example of an R-variety of dimension larger than
two whose §-invariant was known. However it had already been conjectured
for some time that s(V)=dim V should hold for real V of arbitrary (positive)
dimension. The main result of this paper (Theorem 2) confirms this conjecture.
In fact its statement is much more precise, and it applies to far more general
sitnations. The other main result (Theorem 1) deals with the basic closed case.
Also this question is solved completely: The invariant 5(V) of an n-dimensional
real affine R-variety V (n>0) is given by §(V)=4n(n+1).

Our proofs make permanent use of the real spectrum of a ring, as developed
by M. Coste and M.-F. Roy. The other main ingredient is reduced quadratic
form theory over fields and, more generally, over semilocal rings, together with
its abstract generalization, Marshall’s theory of spaces of orderings. Here we
rely heavily on work of E. Becker, L. Brocker, M. Knebusch, M. Marshall and
many others. Both of our main results are just natural applications of these
theories, they do not require any new tools. This seems to indicate the power
of these concepts — they lead to results of a completely basic and elementary
nature for which no other proofs are known.

The first section a more detailed introduction to the problem of the stability
index together with a sketch of the essential idea of our proof of Theorem 2
In §2 we recall that part of the theory of spaces of orderings which is relevant
for our purposes, and add some (well-known) facts about real places between
fields. Section 3 is concerned with basic closed sets. After recalling Brocker's

proof of the upper estimation WASMN (n+ 1) we only have to show that there

are in fact basic closed sets which require this number of inequalities. This
is done rather explicitly, and we illustrate the construction by an example in
affine n-space. Finally, the last section contains the main theorem on basi
open sets; for more details see the outline in §1.

After the author had informed L. Brocker about the proof of s(V)=nin
the smooth case together with a rough sketch of this proof, Brocker also found
a proof for s(V)=n in the general case. It will be contained in a forthcoming
article by Brocker.

I wish to express my sincere gratitude to Prof. Knebusch for his encouragement and support
during the preparation of this paper, and to Jan van Geel for lots of stimulating discussions arousd

the stability index that we had in summer 1987. I also want to thank the referee for his valuable
suggestions which helped me to improve the presentation of these results.

1. Some basic notions and an outline of the proof of the main result

First recall the notion of the real spectrum Sper A of a ring A, due to M. Coste
and M.-F. Roy ([CR1T; see also [Be], [BCR] and [KS]). It consists of all pairs

Stability index of real varieties 469

x=(p, «) with peSpec A and « an ordering of its residue field k(p). Denoting
the real closure of k(p) with respect to o by k{x), one has natural homomorphisms
p:: A— k(x) for xeSper A. Usually one writes f(x) instead of px(f) (feA). The
topology on Sper 4 is defined by the open basis consisting of the sets

Salfy, -, f)={xeSper 4: f1(x)>0, ..., f.(x)>0}

r21, fie A); it makes Sper A a spectral topological space (in the sense of [Ho]).
By obvious reasons, subsets of the form S=S (i, ..., ,) are called basic open
(constructible) subsets of Sper 4, and similarly to the “geometric” case before
ene writes 5 4(S) for the least possible r= 0. (In an analogous manner one defines
basic closed constructibles and integers 54(+) in the abstract setting, but we
will not be concerned with them here.) The invariant

st(4):==sup{s,(S): @+ S < Sper 4 is basic open constructible}

tst{A):=—1 if Sper A=) of the ring A had already been introduced in [Mah2]
{there denoted by s(4)) and was investigated in [ABR]. In the latter paper
the name “stability index of 4” was used for it. However, L. Mahé pointed
out to me that it might be more appropriate to reserve this name for another
mvariant, namely for the least integer s (or o) such that 2° annihilates the
cokernel of the global signature map (cf. [Mahl})

W(A)— C(Sper A, Z)

(according to [Mah 1, Théoréme 3.2] this cokernel is always 2-primary torsion).
He also proposed to call the above st(A4) the geometric stability index of A,
2 W:E:o_omw which seems very reasonable. We shall only be concerned with
this geometric stability index st(A4) in this paper. If A=k happens to be a field,
Sperk is just the boolean space of all orderings of k, and both stability indices
from above coincide (see §2). In this particular case this number is also known
as the “reduced stability index of k ", compare [L1, §13].

Returning to an affine variety V over the real closed base field R, it is
easy to see that the set V(R) of R-rational points, equipped with the “strong
topology” (coming from the ordering of R) is contained in SperR{V] as a
topological subspace. The assignment Zi— V(R)nZ defines a bijection from the
mo_...m::o:c_a subsets Z of Sper R[V] to the semi-algebraic subsets M of V(R);
#s inverse is commonly denoted by MM (see e.g. [BCR], [KS]). So we may
also write _\\Nw\v for Sper R{V]. It is obvious that the basic open semi-algebraic
subsets S V(R) and the basic open constructibles of Sper R[V] correspond
to each other under this bijection, and that wl.wvuw»:\:@ holds, hence also
stV)=st(R[V]). This justifies one to call s(V) the (geometric) stability index
.1. the variety V. The advantage of this translation of the original problem
mlo the real spectrum language is that in this way it becomes more algebraic
and hence more tractable.

For simplicity,‘let us henceforth assume that V is irreducible; denote its
fonction field by R(V) and put n:=dim V. It is a fundamental fact that for
any n-dimensional formally real function field K over R one has st(K)=n. This
bas first been shown by Brocker [B1, Satz 4.8]; later Mahé gave in [Mah?2,
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p. 62] a particularly elegant proof which shows that even the “non-reduced
stability index” of K (cf. [EL]) is equal to n. From st(K)=n one draws the
following geometric consequence: Given any basic open S< V(R), there is some
basic open §'=S(f}, ..., f;) (with n=dim V) such that the symmetric difference
(SUSIN(S N S) is not Zariski dense in V. If V is non-singular, this may also
be expressed by saying that the symmetric difference has empty interior in V(RL
Let us write S~ S’ for this situation and refer to such an §’ or to (f;,....fJ
as a generic presentation of S (by n inequalities). It is easy to see that such
an S’ does also exist with $'cS.

Having presented a given S generically by n inequalities in this way, one
may form the Zariski closure W of S\S" in V. Reasoning as before, one can
generically present SAW'(R) in W’ by n—1 inequalities for every irreducible
component W’ of W, and this procedure can be continued. In order to obtain
a true presentation of S from these approximations one needs some pastling
techniques to glue together these presentations on subvarieties. Such techniques
have been developed by Brocker {B4], [ABR] and are essentially consequences
of the Lojasiewicz inequality. If S is presented on a closed subvariety by r
and on its open complement by s inequalities, they show that S can be presented
by rs and also by r+s inequalities. Applying these pasting lemmas together
with a refined method of finding generic presentations (which approximates
a given basic open set up to codimension two), Brocker arrived at the upper
bounds for s(V) and §(V) mentioned in the introduction. Of course the lower
bound s(V)=n comes from st(R(V))=n.

It was obvious that, in order to establish the conjecture s(V)=n, a new
idea had to be found since the bounds obtained by using pasting lemmas are
too weak in principle. Instead it turned out to be more fruitful to improve
the generic presentations. Here reduced quadratic form theory comes inevitably
into play, and more generally its abstract generalization, the theory of spaces
of ordering which is due to M. Marshall. It seems that this theory is in fad
needed in its generality here since one has to apply it to rather general semilocal
rings, and even to arbitrary (constructible) subspaces of their spaces of orderings.

In order to sketch the main lines of the proof for s(V)=n, let us in additios
suppose that V is non-singular. Assume we are given some basic open Sc V(R).
Among all the generic presentations S& S’ =S(f;, ..., f,) with fieR[V] it suffices
to find one with Sc§' (ie. with f;}S>0 for i=1,...,n). As a first step, how
can we show that there is one with at least f,]S>0? To do so we transiase
the question into quadratic form theory. Fix an arbitrary generic presentatios
Sx~S(g,, ..., g) and put ¢:={g,, ..., g.)=:¢'L{1), a quadratic form over R(V}
Then the n-tuples (f;, ..., f;) of functions f,eR(V)* with S=S(f}, N AY
just those n-tuples for which ¢={;, ..., f,) modulo torsion in the Witt ring
W(R(V)). In particular, the functions f; occuring in such an n-tuple are those
functions which are represented by some multiple N x ¢, N> 1, and hence they
are closed under addition. So a simple argument shows that for the first siep
it is enough to prove that all the fe R[V] occuring in a generic length n prescats-
tion of S do not have a common zero in S.

This leads one to consider spaces of orderings of local rings. Given pe§,
one has to show that s, (SN Sper Oy, o) <n holds, that is, that there is a genesic
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length n presentation S’ &~ S for which p is not contained in the Zariski closure
of the symmetric difference of S and §’. The Representation Theorem for spaces
of orderings, due to Becker und Brocker [BB] (in the case of fields) and Marshall
{Mar] (for general spaces of orderings) is a kind of local global principle for
the existence of forms with a given distribution of signatures on a space of
orderings, the “local” objects being certain finite subspaces called fans. Applying
this theorem and crucially using regularity of the local ring @, , one arrives
a the desired conclusion. Altogether this has given us the existence of
h.....,eR[V] with Sx~S(/f}, ..., f,)and f;|S>0.

Now this step can, in principle, be iterated. For example, one has next to
Jook at generic presentations of length n—1 of S on the subspace Sgyy(f1) of
m_xq R(V). Although at a first glance this seems to be a different kind of problem,
fl does in fact make no difference if one uses the language of spaces of orderings.
In this way one arrives after n steps at some S'=S(f,, ..., [,)=S with S §,
as desired.

Actually the proof just sketched shows much more than s(V)=n. Whenever
a basic open S V(R) admits just a generic presentation by m>=1 inequalities
- which it always does for some m <n -, it already has the form S=S(f,, ..., f,,)!
Returning now to arbitrary (possibly singular) affine R-varieties it turns out
that the proof and also the assertion just made carry over to them. However
the situation becomes slightly more complicated since it may not be sufficient
o consider generic presentations in the real spectrum of the function field (or
nng of rational functions). Instead R(V) has to be replaced by an appropriate
semilocalization of R[V] which takes care of the (real) singularities of V. If
ooe calls two basic open sets generically equal if they agree on the real spectrum
of this semilocalization, then it remains true that s, (S) is just the smallest length
ol a generic presentation of S.

) But the proof applies even to a considerably larger class of situations. It
yelds in fact a similar result for the basic open constructibles in the real spectrum
of every noetherian ring A whose real singularities do not behave too bad.
For instance, it is enough that, for every real prime ideal p of A, the real singular
ra_m of A/p should be contained in a proper closed subscheme of Spec A/p.
This condition is so weak that it seems to be difficult to find a neotherian
ning which does not satisfy it. In this general form the theorem has also other
x!oanio applications, €.g. to the problems studied in [ABR]. Moreover several
wteresting corollaries can be deduced from it, for example it reduces the determi-
mtion of the stability index of a ring to the stability indices of its residue
§dds. Therefore the theorem and its proof are presented in this more general
wtup, the more so since the proof does hardly become more complicated than
i the geometric situation.

1 Spaces of orderings and real places

Let A be a ring (always commutative with unit). By A* we denote its group

of units. The residue field A,/pA, of peSpecA is denoted by wx(p). The real

spectrum Sper 4 has already been defined. If x=(p, &) is a point of Sper A, we
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shall denote its support by ox, so ox:=peSpecA. If x, yeSper A and ye{x].
then v is called a specialization of x and x a generalization of y, as usual
A remarkable feature of the real spectrum is that the closure of each point
becomes totally ordered by the specialization relation. If X = A is a multiplicative
subset, then the natural homomorphism i A—-X " '4 induces a map
i*: Sper £~' A—Sper A which is a homeomorphism onto its image. Moreover
the field embedding k(i*z)— k(z) is an isomorphism for every zeSperZ™'4
Hence Sper X' A will frequently be identified with a subspace of SperA. te
get rid of overburded notation. In the same way, Sper A4/ is identified with
a closed subspace of Sper A for every ideal I<A. In particular, Sper k(p) »il
be regarded as the subspace {xeSper A: o x=p} of Sper A for every peSpecA.

We'll have to apply Marshall's theory of spaces of orderings. It may be
regarded as a formalization of reduced quadratic form theory over fields whick
however applies to a much larger variety of cases, in particular to semilocal
rings (sce below). All the general facts we require can be found in [Mark for
the case of preorderings of fields see also Lam’s lectures [L 1]. Let us just briefly
recall the most important definitions and facts.

A space of orderings is a pair (X, G) consisting of a discrete group G of
exponent <2 and a closed subset X of its character group G=Hom(G, {+1}
which (topologically) generates G. In G there has to be a (necessarily uniquel
distinguished element — 1 such that x(— 1)= —1 for every xeX. (Hence X=0
iff G is the trivial group.) In order to formulate the last and most importast
axiom one has to introduce some more terminology: An n-dimensional form
(n=1) over (X, G) is an n-tuple ¢€G”, written @={f, ..., fo. It is convenicat
to introduce also a unique form of dimension zero (the “empty form”) satisfying
obvious rules. Out of two forms ¢ and ¥ one can build their direct sum g 1@
and their tensor product ¢®y, formaily in the same way as one does with
ordinary diagonalized quadratic forms. The signature of ¢ at a point xeX'is
the integer x(@):=x(f;)+ ... +x(f); the continuous map ¢: X —Z defined by
$(x):=x(p) is called the total signature of . The subring {¢: ¢ a form over
X} of C(X,Z) is called the Witt ring W(X) of (X, G). One commonly speaks
of the elements of W(X) as of those functions in C(X, 7Z) which can be represenied
over X. Two forms ¢ and y are said to be isomorphic if dim p=dim y and
¢=1. The form ¢ is said to represent an element feG iff p={f) Ly for some
form y; the set of elements represented by ¢ is written D(¢p) or Dy(¢p). Now
the last axiom for (X, G) to be a space of orderings runs as follows:

{(0,) Given non-empty forms ¢ and ¢ and an element heD(p L), there e
elements feD(¢) and ge D) such that heD({f, g))-

A form ¢ is said to be isotropic if there is a form ¢ with e=(l, -1k %

otherwise anisotropic. ¢ is isotropic iff it is universal, i.e. iffl D(p)=G. Evey
form ¢ has a Witt decomposition 9 =@oin-H, unique up to isomorphism, wih

¢, anisotropic, =0 and H=(1, —1). Two forms ¢ and ¢ have the same :

image in W(X) (i.e. their global signatures coincide) iff their anisotropic kernels
¢, and y, are isomorphic.

If (X, G) is a space of orderings, a subset Y X will be called a subspae +
of X if Y=XnYL! holds; in this case the pair (¥, G/Y*) becomes a spage
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o—. orderings by itself. 5. :5. context of spaces of orderings the word “subspace”
will be Bm.nzoa for this situation. The constructible (= clopen) subspaces of
X are precisely the subsets of X of the form
Y=Xo{fi, ...} ={xeX:x(f)=...=x(f)=1}
M«.__ fi€G, r=20. Note that Y is just the set of xe X in which the n-fold Pfister
,ai Cfrs s D=1, [1>®...®<1, f,> has positive signature (equal to 2%). By
u use of _mswcmmo {however suggestive!) let us say in this case that Y can be
FQQ.S.& by r inequalities in X. The least such r=0 is denoted by syx(Y) (by
definition, sx(X)=0). The stability index st(X) of the space of oaoa:mxm (X, G)
ean be defined as the supremum of all the s,(Y) with Y running over the =,o:-
empty constructible subspaces of X ; put st(@):=—1
The first class of examples is i : i
: provided by fields. If k is a field, char k=2
then (Sper k, k*/X k* NM is a space of orderings (where Zk*? is the group of BHM:.,
10 sums of squares in k). Axiom (0,) is a consequence of Pfister’s local global
“_Nn_v_o. .,::w\ (non-empty) mc_um.vmoom correspond bijectively to the preorderings
¥ . To .Ea_omﬁ that Sper k is viewed as a space of orderings we will use
o notation X, for Sper k. The Witt ring of X, is isomorphic to the reduced
itt ring of the field F. by means of the global signature map. Note that st(X,)
na%»v, ie. EM two notions of stability index coincide for fields ‘
space of orderings (X, G) is called a fan if X ={xeG: x. i
) gs (X, = :x(—1)=—1}. Th
kind of spaces of orderings is of particular importance voomcmvom zv_m w °

"u%qo.dm.znzo: theorem [BB], [Mar, Theorem 5.5]. Let (X, G) be a space of
ﬁhaiw.m and f: k —~Z a continuous map. Then f can be represented over X
is, fe W(X)) if and only if f|Y can be represented over Y for every finite

;hhuhﬁﬁ M\ .v.\‘ sxq Sy\:ﬁ\a s a ,\.QZ. NN 1S QNMAV NQa:CQNQs: to sa _\usﬁ or eac \s U N~
y \ suc

Y. f()=0mod ||

yeY

i ralid.

Using this theorem one deduces that (for X ility i
s e (for X +0) the stability index st(X)=:s

2*=exponent of the group C(X, Z)/W(X)

# fact this is the original definiti i
tion). Another important characterizati
s=31(X) deduced from this theorem is P clerization of

2°=maximal size of a fan in X

flf course, 2 := o0).

We will have to apply the following easy consequence of the Representation

3 T we Tm.en n it ce t co
y na I t
—E-GH—H no_” 5—:0 ot _CE Q a PP OU—mN € HO*O—QE A_U—h Ci E@&.HO

. Lemma 2.1. Let (X, G) be a space of orderings and Y < X a constructible (= clopen)
. sbspace of the space of orderings X. Let m=1. Then Y can be described by
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m inequalities in X if and only if for every finite fan F<X with |F|=2>2"
one has
|[FAY}=0mod 2¢™™

Proof. We may assume Y=#@. Since Y is a clopen subspace, there are p21
and a,, ..., a,eG such that ¢ ={a,, ..., a,) has signature $=27-1,. To prove
the non-trivial direction assume that the above congruences are satisfied. By
the Representation Theorem this implies 2™ 1ye W(X). We may assume p>m.
Then also 27~ '-1,e W(X), hence there is an anisotropic form ¢ with $=21,
and even ¢ =27 since both forms are anisotropic. Since 1eD{(¢)=D(27)=Df1)
we can write t=<{1> L1, hence ¢ =<1, 1> L 27" This gives a (p— 1)-fold Pfister
form y with ¢ =2y [Mar, Lemma 6.3]. Iterating this procedure one arrives
at an m-fold Pfister form y with ¢=27""-y, ie. y=2"-1;, whence the asser-
tion. [

It will be important to know how a semilocal ring A gives rise to a space
of orderings (compare [K 2] for the following). We put X ,:=(Sper 4)™* (:=the
set of closed points of Sper A) and G, :=A*/{ucA*: u|Sper A>0}. Then X,
may be identified with a (closed) subset of G4, and (X 4, G ) is a space of order-
ings. The topologies on X , inherited from Sper A on the one hand and from
G, on the other coincide, and we will always regard X ,asa topological subspace
of Sper A as well. Knebusch showed that for every non-trivial fan F= X, (ie
|F|=4) there is a prime ideal p with o x=p for every xeF [K2, Theorem 74).
As a consequence one deduces that

st X ,Zsup({1} v {st(x(p)): peSpec 4})

holds [K 2, Theorem 9.5]. For example, if V' is an n-dimensional affine variety
over a real closed field and A4 is any semilocalization of its coordinate ring.
then st(X ,)<n by the theorem of Brécker mentioned in §1. Observe however
that, contrary to the case of fields, one only has st X ,<st A for semilocal rings.
and in general equality will fail to hold.

We now collect together some facts concerning the interplay between fields,
their spaces of orderings and places between them.

Let B be a valuation ring with field of fractions K and residue field k
and let 1: K=k, oo be the associated place. Let Y < Sper k be a subspace of
the space of orderings X,=Sper k. The pullback of Y with respect to 2 (see
[L1, p. 22]) is a subspace of X x=Sper K which may be described as

{xeSper K: x and A are compatible,
and the ordering on k induced by x liesin Y}

or, equivalently, as
{xeSper K: {x} n Y +0},

where Sper K and Sper k are regarded as topological subspaces of Sper B and
the closure is formed in Sper B. Let us denote this subspace by A* Y. It is easy
to see, but of some importance, that if Y is a fan then also A*Y is a fan. The
Baer-Krull theorem (see e.g. [L1, Theorem 3.10], [BCR, Théoréme 10.1.10}

[KS, 11, § 7]) tells us that the unique map s: A* Y— Y satisfying s(x)e{x} (xei*¥)
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is surjective, more precisely that there is a natural free and transitive action
of the character group of I'®(Z/2Z) on each of the fibres of s (here I' denotes
the value group of 2). If Y is a fan there is a subfan F of A*Y such that the
restriction 5| F: F — Y is bijective.

Let A be a ring and g=A a prime ideal. Later we’ll have to “lift back”
a given fan from X, to X,.,, for some prime ideal p properly contained
in g. That js the point where some control over the (real) singularities of A
is required. The following simple and well-known fact (see e.g. [K 1, p. 285])
stands behind this:

Lemma 2.2. If A is a regular noetherian local domain with field of fractions
K and residue field k, there is a valuation ring B of K which dominates A such
that k — B/my is an isomorphism. Moreover, if d is the dimension of A, one can
achieve that B has value group Z°, ordered lexicographically.

Proof. For the reader’s convenience we’ll include the proof. Assume d>1. There
is a prime ideal p< A4 of height one such that A/p is again regular (for example,
p=(f1) if fy, ..., f; is a regular system of parameters in A, see [Mat, Theo-
rem 36]). By induction on d we may assume the lemma holds for A/p, i.e. we
find a place A: k(p) >k, o which is finite on the image of A such that the

composition A iiEqu« is the residue map 4 — k, and such that 1 has value

group Z¢~! with lexicographic order. Since A4 » is a rank one discrete valuation
ring of K, we may compose the associated place K — k(p), oo with 1 to get
the desired result. []

Corollary 2.3. Let A be a noetherian domain with field of fractions K, let peSpec 4
such that A, is regular of dimension d, and let G be a fan in Xy =Sper x(p).
Then there is a fan F in Xy=Sper K together with a map s: F— G such that
s(x)e{x} holds (in Sper A) for every xeF, and such that s~'(y) has cardinality
Y for every yeG. There is also a subfan F' of F such that s restricted to F'
is bijective.

Proof. Take a place 4: K—x(p), co which is finite on A, such that 1|4, is
the residue homomorphism, and put F:=1*G. [}

Corollary 2.4 [ABR, Lemma 7.5]. st(K) = d + st{k).

Proof. Use the characterization of the stability index by means of the maximal
sizeof afan. [J

Another direct consequence of Corollary 2.3 is

Corollary 2.5. If A is a noetherian domain and if yeSper A4 is such that the local
ring A,, is regular, then y has a generalization x in Sper 4 with cx=(0). []

X Basic closed sets

Let R be a fixed real closed field; all varicties considered here are assumed
to be reduced affine R-varieties. Given one, say V, we write R[V]:=I'(V, ©,).
By R(V) we denote the total ring of fractions of R[V] (i.e. its semilocalization
@ the set of minimal prime ideals). The R-rational points V(R) are Zariski
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dense in V iff R(V) is a direct product of formally real fields, m.= which case
V is called real. For feR[V] put NA:"HAxm—\E“\C&HE. Given a closed
subvariety T <V, there is always some teR[V] with T(R)=Z(t), and any such
¢ will be called an equation for T(R). . .

We start by recalling the upper bound for 5§ which rmm nSSosz been
obtained by Brocker [B5]. We also include the proof since it turns out to
be useful later.

Proposition 3.1 (Brocker). Let V be an n-dimensional affine variety, n=1. Then
s(Vygin(n+1)

Proof (see [B5]). Induction on n. Since the case n=1 is easy and the arguments
are not used in the sequel we suppress it. So let n=>2, and let Fc EE be
basic closed. Then FnSper R(V) is a subspace of kESHm.w.on NAS. m:.m»
st(X gy 1, there are fis .- J.€R[V] which are not zero divisors n R[V)
such that

FSper RV)=S(fi, - f) " 0 Sper RV)=8(fy, ... f) " 0 Sper R(V).

S iski in V) of the sym-
Put F,=S(fy,.--» /)= V(R), and let T be the Zariski o_om.:ao (in
Bnﬁm &nﬂmson (FOUF)\(FnF,) of F and F,. Then dim HA:., and F\T(R
=F\T(R). Moreover there are  g4,..-, 8m€R[V] with  FnT(R

=5(gy, .. 8N T{R) and EMwAjMWQI 1), by the induction hypothesis. We
n .
now get w<A3M~_+WA=I CHMA=+ 1) by applying

Lemma 3.2. Let T<V be a closed subvariety and let F=V(R), G T(R) be 281
seni-algebraic subsets such that FnT(R)cG r&mm and such that there exist
Ayyoes @ by bieR[V] with h/‘:wvn,ﬁnw, o, a)\T(R) and G
=3(by,.... b)nT(R). Then FUG is basic closed, and 5, (F L G)Sk+1.

Proof. Let te R[V] be an equation for :3.. mﬁ:.ul. 1, ..., put kﬁuﬁDw.lvv
An application of the inequality of Lojasiewicz ((B4, Lemma 6.1] or [BCR.
Lemme 7.7.107) gives ¢;, pjeR[V] with =0, p;>0 on V(R), such that the
functions bj:=p;t*+¢;b; satisfy

sgn b;=sgnt* on X, and Z(g)=X;n T(RY,

hence NAQHWNﬁw\erﬁlguﬂQDE!F.VNDN.AF.V (j=1, ...;.c. (Here we

have written M? for the set of R-rational points in En Zariski nwom—:c ola

subset M cV(R)) One clearly has bj|F 20, and since m_wc NmG;DH.B

=8N T(R) holds (j=1,...,0), this impliess FuG=S(t"a;,.... &
w LEERRRY TU D ) )

We now show that the bound given in Proposition 3.1 s w_nwm&\ @m& possible.
that is, 5(V)=4n(n+1) for every real affine <mla$.~ V of a_Bonm_ma :V..r
is immediate to check that for any open affine subvariety W one has .A.«SMA—?
Hence it is enough to prove sVyzinmn+1) @n every non-singular irreducible
real V with dim V' =n. This will be done by induction on n, the start of the
induction being clear. . . )

So let V be an n-dimensional non-singular irreducible _,om.: affine 552«.
n=2, and choose a real prime divisor H < V (i.e. a closed irreducible real subvan-
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ety of codimension one). By induction hypothesis there is a basic closed subset
Gc H(R) with §4(G)=14n(n—1). We need that G Sper R(H)+9 (Sper R(H)
being identified with the set of points in w\.a with support H). This can be
achieved for n=2 by taking G==Sy(h) for some he R[H] such that neither h
por —h is a sum of squares in R(H), and is automatically satisfied for n>2:
Indeed, otherwise we would have G< W(R) for a proper subvariety W of H,
and hence §4(G) <5y (G)+1=i(m—1) (n—2)+1 AWA:I 1)=354(G), a contradic-
tion.

Let H,, denote the regular locus of H. Since G~ Sper R(H) is open in
Sper R(H) and non-empty, the interior of G N H,(R) in H(R) is non-empty.
Pick any point p in this set and choose a place A: R(H) - R, oo over R which
dominates the local ring @y , and which has value group Z" ! (this is possible
by Lemma 2.2). The pullback of the ordering of R with respect to A is a fan
Zin X g y,=Sper R(H) with | Z| =2""1 and Z = G. Using the discrete rank one
valuation of R(V) associated to H we pull back Z even further to get a fan
Yin w;:\.umvmn R(V) of size 2". There is a basic closed subset C of V(R)
with|Cn Y|=1and C n H(R)c G. Indeed, fixing some ye Y and its specialization
2in Z, we have

HR~ () SO=HR~pj={z<C
SeR[VY:f(n>0

fhere the fact was used that {y} forms a chain in ﬂ\ﬁg. Since the constructible

topology on \a is compact, there are finitely many f,, ..., f,eR[V] with
SU, ... ) nY={y} and §(f,....[)nH{R)=G, so we may take C
=8(f,, ..., f). By Lemma 3.2, the subset F:==GuU C of V(R) is also basic closed.

We claim that §, (F) HW (n+1).

To see this, let F=8(g,, .--, gn) im: g;€R[V]. If g; doesn’t vanish identically
on H, we have g;|Z>0 (since ZcF), hence also g;| Y >0. Since I(FraY|=1,
at least n of the g; must vanish identically on H. Since FAH(R)=G there

must be at least wmavHW?l: further gs which do not vanish identically

on H. Altogether we get N= =+WA=1 1)=1%n(n+1), and we have proved

Theorem 1. For an affine real variety V of dimension n>0 one has
§(V)=%n(n+1). O

In order to give an idea how basic closed sets look like which require the
maximal number of inequalities, here is an

Example. Consider affine n-space A" with coordinates x,, ..., X, (12 1) and the
following semi-algebraic subsets of R":

Fi={xeR": x, 20, x,=...=x,=0},

F,={xeR":x,=1,x,20, x3=...=x,=0},

Fy={xeR" x,22,x,21,x320, x,=...=x,=0},

F,={xeR":x,2n—1,x,2n-2, ..., x,20}.
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Put F=F,u...uF,. Since the construction of F follows exactly the device of
. . n

the proof above, we conclude that F is basic closed and that at least 3 (n+1)

simultaneous inequalities are needed to describe F. An explicit system of such

inequalities in provided by the presentation

F=S((x;+i—j)xj; 1Sigj=<n).

4. Basic open sets

Let A be a ring. The following are equivalent:

() ai+...+a2=0impliesa,=...=a,=0, for a;€4;

(i) A is reduced, and every minimal prime ideal of A has a (formally) real
residue field;

(i) A=0, or A admits an injective homomorphism into a direct product of

a family of (formally) real fields.

If they are satisfied, the ring A is called real (see [L2, §1], [KS, 111, §2]). An
ideal I of a ring A is said to be real if the ring A/I is real. The set of all
real prime ideals of A (i.e. the set of peSpec A for which x(p) is formally real)
is denoted by (Spec A),.. More generally, for an arbitrary subset X of Spec A
we'll write X,.:=X N (Spec A),., and we equip X, with the topology it inherits
from the Zariski topology on Spec A.

Now let A be a noetherian ring. Note that X, is a noetherian topological
space for every subset X of Spec A. Write Reg A:={peSpec 4: 4, is regular}
for the regular locus of Spec 4 and put Sing 4:=(Spec A)\(Reg A).

Let us consider the following property of a noetherian ring A:

(R) (Reg A/p),. is open in (Spec A/p),. for every prime ideal p of A.

Condition (R) is in fact equivalent to the apparently weaker condition that
(Reg A/p),. contains a non-empty open subset of (Spec A/p),. for every real prime
ideal p of A. In fact, (Reg A/p),.=9 if peSpec A is not real (Corollary 2.5), and
for real p one can argue as in [EGA 1V, 6.12.2]. However what we are really
going to use in the proof of Theorem 2 is

(R} There is a finite subset D of (Spec A),. containing the minimal elements
of (Spec A), such that, for every qe(Spec A),. and every peD which is maximal
in D under p < q, the local ring A, /pA, is regular.

Lemma 4.1. (R) implies (R') for every noetherian ring A.

Proof. We first construct a sequence {D,};», of finite subsets of (Spec A);.. Let
D, be the (finite) set of minimal elements of (Spec A),.. Assuming that D, ..., D,
have already been constructed we define D, , as follows. For every peD,; there
is a real ideal J(p) of A with pcJ(p), p%J(p), such that 4,/pA, is regular
for each ge(Spec A),. with pcq and J(p)dq. Let D, (p)=(Spec A),. be the
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set of minimal prime ideals of A4 lyi .
and put D, = ) D, ,(p). ying over J{(p) (thus D, ,(p)=0 iff J(p)=A)
peD;
Since one has

NesNIo= ) »p

peD; peD; peD;yy

if D+,

”“Mwsmwzmwm Hm:% o~.. Ean D; can be non-empty, since A is noetherian. Their
€ required property-indeed, if ¢ and i ’ .

, : I / N p are as in (R'), sa ;

\M_mz .:.Eﬁa since otherwise p& p' g for some p'eD,; AEnb.A V w nmb;
JPA, is regular. [ o o ARG henee

Smoﬂwm %Mw%o».m MWWSM that b:ﬁS m.m a canonical choice for the finite set D in
1s above: D can be taken to be the smallest sub
containing the minimal real prime ideal ing with s s o
nis s of A and containi i
the minimal elements of (Sin Sl A
e 1 g A/p).. One should bear i i
R 5 very weap s /P T in mind that property
{ all noetherian rings one usually encounters should satisfy
Now let 4 be a noetherian ring satisfying (R’), and fix some finite subset

D of (Spec A),. with this ;
not empty. property. We suppose in the sequel that Sper A is

H_Mo““mw. bh\mlu W\H S hy, o hy) be a basic open subset of Sper A. Then there
D=1 (S) of D with h¢p Jor every peD’ and i=1 N h
Jor the semilocalization B of AinD oo ek that
(@) 5,4(8)=55,(SN X ) or

(b) Sper BcS, i 1 -
holds. per B<5, in which case S=S,(f?) for some fed (and hence s5,(S)<1)

uaw-wﬂ.mw_ﬂg W.MWN%Lm a M:U&@moo of the space of orderings X, since the h
- I'he subset D" of D is readily described: It i i _.
$+0) of those pe D which are maximal under “pc= g x for mo?n Mmmmw,ﬁm fin case

Corollary 1. Let A be a noetherian ring satisfying (R’). Then
st(A)=sup {st(x(p)): peSpec A} =max {st(x(p)): peD}

except when each «(p), peSpec A, has
X , at most ] j
at least two elements, in which case st(A)=1. one ordering and Sper 4 contains

”ah&hkaww vM a moB:oOm:,Nm:o: of 4. Then st Xz <sup {st(x(g)): g(Spec B) }
ot mmmml , by W:oc.:worm results (see §2). But for q€(Spec B),. = (Spec kw
ome peD with pcgq for which A,/pA, is regular, m:an hence E:._‘”

fx(@) <st(x(p)) (Corollary 2.4). T ite 1 :
peSpec A is trivial, Ly The opposite inequality st(x(p)<st(4) for

In particular, this answers a question of E. Becker in the positive (see [ABR

Remark 7.97):

Corollary 2, Let A be a noetherian ri isfyi
( \ : ing satisfying (R'). Then st(4)=m :
Bamaximal ideal of A}, unless st(A)=1 and the right hand mw&mva Nwww.?ﬁm i
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Corollary 3. Let A be a regular noetherian domain with field of fractions K.
If S is a proper basic open subset of Sper A, then s4(S)=sx{S N Sper K) unless
Sper K < §, in which case 5 (S)=1. In particular, one has st(A)=st(K).

In the geometric situation (R a real closed field) this means

Corollary 3. Let V be an affine R-variety without R-rational singular points and
let S be a basic open semi-algebraic subset of V(R). If S admits a generic presenta-
tion by m= 1 inequalities, then already sy (S)<m.

(Here generic may be read as “up to a subset with empty interior”) [J

Corollary 4. Let n>0. Then s(V)=n for every real n-dimensional affine R-variety

V. O

Proof of the theorem. We may assume S+0. Let D°={peD: pcox for some
xeS} and D’ the set of maximal elements of D°, moreover B the semilocalization
of A in D'. Note that D'=%0 since S+0. Let I denote the intersection of all
peD\D?; thus I ¢ox for every xeS. Remember that we identify Sper B with
{xeSper A:6xcp for some peD’}, and similarly for the Zariski spectrum. We
observe

(1) Every yeSper A with I¢aoy has a generalization contained in Sper B.
In particular, this applies to every yes.
(2) For each peD’ there is xS with p=0x.

(For (1) choose pe D maximal under pcoy. By Corollary 2.5, y has a generaliza-
tion x with ox=p since 4,,/pA,, is regular by (R'). Moreover peDP since I¢p.
and so peSpec B. In (2) we have pcoy for some yeS by definition. Since
A,,/pA,, is regular by (R"), there is a generalization x of y with support p.)

The natural homomorphism 4 — B is denoted by ¢5. Note that any aeA
which does not vanish anywhere on S becomes a unit in B, by (2). In particular,
for any basic open U < Sper 4 which contains S, the subset U n Sper B is open
and closed in Sper B, and U n X is a subspace of the space of orderings X .

Main Lemma 4.2. Let U be a basic open subset of Sper A containing S La
m21 and assume

SAXg=S8guy, .., un ) UnXpg (#)
for some w,e B*. Then there are fisoor Jm€A such that f;|S>0 and such that
(#) holds with uj=qg(f), i=1, ..., m.

Before we prove the lemma we show how to deduce Theorem 2 from it
Let m:=sy,{S " X p), a non-negative integer. Applying the Main Lemma we find
fis ooonfm€A such that the basic open set S':=S,4(f1, .., f) contains S apd
S Xz=5"n Xy holds. (Note that simply S'=Sper A if m=0.) Since SnSper B
and S’ Sper B are basic open subsets of Sper B defined by units of B, they
are both clopen in Sper B. Moreover their intersections with (Sper B)™* =X,
coincide, so we must have S Sper B=5n Sper B. 1 claim S’ =§u{xeSper A:
Icox}). To see this, pick yeS\S. If 4oy, there is a generalization x ol y
in §'n Sper B=Sn Sper B, by (1). Hence ye{x}<§.

A
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Let ay, ..., a), be generators of I and |
) R et S=S,(h,, ..., hy) be any pre -
tion of S. Putting a:=af+ ... +aZ, and h:=h, .}, &n mm<o zv Y presenta

rw.”rﬁkAQ#N.\.:\,Nw ...u.\,iv

=5v9. and §=S84(a h?) in case m=0, since h vanishes on S\ S.
Mo it remains to prove rnBBm 4.2 1t suffices to find f,ed with f,]S>0
such that there is a presentation (#) with u, =p(f)), since then this mn.m:Bo.:

may again be applied with U replaced by U S i
ottt (1) bl p y UnS,(f1) and m by m—1, etc. First

(3) SnSper B=Sg(u,,...,u,)n U,

by the same argument as before (both sides are defined by units of B, hence
are clopen in Sper B, and their intersections with (Sper B)™*=Xp oom:omm&

Denote the subspace U n X, of X, b i !
. B y Y. Given v, ..., u, e B*
with the u; replaced by the u} if and oh_w if _ e ed. () holds

Quys s ump s,
Writing ¢ =={uy, ..., u, H=:{1> L ¢, it is well-known that (completely analogous

to ordinary quadratic form theor * i
to o y) for ue B*, one has ¢, {u, ...) if
il uis represented by ¢’ over Y [Mar, Lemma 6.3]. Thus if ,”\MA@E ) i and only

..., U,y asformsover Y.

L={feA: pp(f)eB* and p5(/)eDy(¢)}
={f€A: @p(f)eB*, and there is a presentation (4 ) with u; =@g(f)},

we have to find some fe L with f}$>0 in
: order to prove the |
First observe that P emma

(4) Every feLis non-negative on S.

__“— f(x)<0 for some x.m.m.., then we also find such an x contained in Sper B
¥ (1). The closed specialization % of x in Sper B lies in SN X, and \A&AQ

;_m IS a contr NQ_.O:C_— SInce ever % unit C_ B _0—: Gmﬂ:_OA— _v< Amw over Y O Ve
v 18 U s1t?

The following fact is elementary:

If B is a semilocal ring, Y is a subspace of Xy, ¢ is a Yform and b, b'c B*

are represented b "
e presente y @ over Y, then also b+b' is represented by ¢ over Y provided

.in%u: ,S.:n\s x>, (b + Y=y <b'> Ly, and since Dy(2 @)= Dy (g) it is enough
10s low b+b'eDy(<b, b'>). But this follows from the obvious isomorphism
GO =b+b,bb'(b+b)).) ’

This leads to the following important observation:
() L+LcL.

{Let f,geL; by the above we only have to show ©p(f+g)eB*. Thus let peD’

and choose xeS with ox=p, using (2). B
oo 7 g p g (2). By (4) we have f(x)>0 and g(x)>0,
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To prove the lemma it suffices to find for each x&S some fe Lwith f(x)%0.
For if this can be done one argues as follows: Start with an arbitrary fieL
and let x,e8 be a zero of f; (if there is none, we're ready by (4)). Pick g,€L
with g,(x;)#0 and put fo=f,+g1€L. By (4), f, has strictly less zeros on N
than f,. Iterating this step one arrives after finitely many steps at some f.eL
vanishing nowhere on S, since A is noetherian.

So let xeS. If xeSper B, then f(x)>0 for each feL, so we may assume
to the contrary that gxd:p for every peD’. Let C be the semilocalization of
4 in ox and in each pe D’ whith pdox. Using the canonical homomorphisms
y:C—Band ¢ct A~ C (satisfying Y - @c = ¢@p) W€ identify Sper B (and in partic-
ular X g) witha topological subspace of Sper C. Again SnSper C and U n Sper C
are clopen in Sper C,and X, U X are subspaces of the space of orderings
Xec.

It is enough to show SyaxcSNX)=m. For, if SnXc
=Sc(Uy, s V)N UNXc with v;eC*, then also S Sper C=S8c(vy,s -, )0 U
by the same argument as in (3). Multiplying by squares of denominators we
may assume v;= oclf) with fied; since Y (v)=qg(f)eB* and SNX,
=Sglop(f1), ---> os(fNNUNnXg, we have fi€L, and clearly fi(x)>0.
i=1,..,m

So it remains to show that the subspace S X, of the space of orderings
U ~ X can be described by m inequalities. This can be checked by inspecting
finite non-trivial fans of U n X¢, according to Lemma 2.1 which was a corollary
to the Representation Theorem. Hence let G Un X be a (non-trivial) fan
with |G|=2*>2"; we have to show |SnG|=0mod 2%~m There is ge(Spec A
such that gy=gq for every yeG (where G is considered also to be contained
in Sper 4), and G is also a fan in the space of orderings X w(qy= Sper k(g) [KZ
Theorem 7.4]. Of course Idq, hence we find peSpec B with p=q such that
A pA,is regular (1). By Corollary 2.3 there is a fan Fc X, with _m_lH_Q_HN.
together with a bijective specialization map s: F =G satisfying s(x)e{x} for xeF.
Regarding F as a subset of UnSper B we can describe S ~ F by m inequalities
inside F because of (3). This means 1S~ F{=0mod 2k=m But for xeF one has
xeS<>s(x)eS, since SnSper C is clopen in Sper C, and thus 1ISNG|=|SNF|

This completes the proof of the lemma and of the theorem. [
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