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1. INTRODUCTION

For convex bodies K,, ..., K, in n-dimensional Euclidean space. the
Aleksandrov--Fenchel inequality says '

VK, Kyy Ky oo K)E2 VK Koy Ky oo KOVIK, Koy Ky, K (L)

where V denotes the mixed volume. Aleksandrov's [1, 2] proofs are reproduced in
the books of Busemann [6] and Leichtweiss [15]. This inequality, special cases of
which go back to Minkowski, has numerous applications (o extremal and other
problems in the geometry of convex bodies. In recent years rew interest in this
incquality has arisen from different sides. Surprising connzctions with algebraic
geometry have been discovered, which have led to new proofs of (1.1} by Teissier
{211 and Hovanski [11] (the proof of Fedotov [8], reproduced by Buragzo and
Zalgaller in [5], seems to be incomplete). Also, some unusual applications of tL.lyor
the closely related inequality for mixed discriminants were found, of which we
mention Egorychev's and Falikman’s prools of te van der Waerden conjecture on
permanents (see Lagarias [13] for references and further discussion) and Sianley’s
[20] results of a combinatorial nature. .

Despite fresh interest in the Aleksandrov-Fenchel inequality and the new
approaches to it, there is one major problem connected with it which has remained
open for decades, namely, the characterization of the equality case. Without very
restrictive assumptions on the bodies, it is not known when equality occurs in (1.1).
None of the known proofs yields general information in this respect, since (1.1} is
first proved for special convex bodies (very smooth bodies in Aleksandrov's second
proof, and special polytopes in the other cases) and then generally by approx-
imation, which blurs the cases of equality. Not even a plausible conjecture concern-
ing equality in (1.1) has been reported in the literature. It is the purpose of the
present paper to recall the known results in that direction, to formulate a conjecture
on the general case of equality, in part due to Loritz, and to collect some partial
results in favor of it. Maybe a published conjecture will stimulate further study of
this question.

2. PRELIMINARIES

By R" we denote n-dimensional Euclidean vector space with scalar product
¢+, ->, by B its unit ball with center at the origin 0, and by Q = ¢B its unit sphere
(¢ stands for the boundary). The volume of B is denoted by x,, and the usual
Lebesgue measure on Q by w. #" is the space of convex bodies (nonempty. compact,
convex subsets) in R". For mixed volumes and for some of the results used in the
following, one may consult Bonnesen and Fenchel [4] and Leichtweiss [15]. SIK,,
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... K, ;i +) is the mixed area function of Ky, ..., K,_,; this is a positive Borel
measure on § and it satisfies

nV(K, Ky, ... K) = J‘h(K, W) dS(Ky s ey Ky 1) Q.1
Q

for all K € 2", where h(K, ) is the support function of K.

For K € 2" and u e Q, let K* be the image of K under orthogonal projection
onto the hyperplane through 0 orthogonal to u. The (n — 1)-dimensionatl mixed
volume of n — 1 bodies K%, ..., K4_, in such a hyperplane is denoted by (K3, ...,
K*_,). Since v(Kj, ..., Kj-4) = nV(K,, ..., Ko, U), where U is a segment of
length one parallel to u (Bonnesen and Fenchel [4, p. 45]), (2.1) gives

1

oKy, ..., Kh-y =5J | Cuy 0] dS(Ky, oo Kyog5 1) (2.2)
Q

Integration of (2.2) ‘over all u together with an application of Fubini’s theorem
results in the generalized Kubota formula

JU(K";, LK) dow) = nik,_ V(K ... K,y B (2.3)
103

%6 =(K,+ ..., Kj)is an (n — r)-tuple of convex bodies, we will often use the
abbreviation

VK, .o Ky, €)=VKy, . K Ky K

and similarly for mixed area functions and in lower dimensions. We will also write
€ =(Klyy, ..., K) .

Now let @ be a fixed (n — 2)-tuple of convex bodies. We are interested in the
convex bodies K, L for which equality holds in the ingquality

V(K, L, €)?® = V(K, K, §)V(L, L, 6). 24)

We may exclude the case where one of the mixed volumes vanishes, since in that
case the equality is easily discussed by means of a well-known criterion (Bonnesen
and Fenchel [4, p. 41]). The following lemma collects useful information on the
equality case in (2.4).

LEMMA 2.5. Suppose that the (n — 2)-tuple € and the convex bodies K, L, M satisfy
dim M = nand

V(K, K, ¥) >0, V(L, L, ) > 0. (2.6)
Then

V(K, K, €) V(K, L, %) V(L, L, %) <

- ~ > — < 0. (2.7)
VK, M, ) V(K. M, €)V(L, M, ) V(L. M, %)

The following assumptions are equivalent :
(a) equality in (2.4),
(b) equality in (2.7),
(© VIK, K, 6)/V(L, L. %) = V(K, M, 6/V(L, M, 6)",
(d) the measures S(K, 6’; *) and S(L, € -) are proportional.
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Parts of this lemma go back to Favard [7] and Fenchel [9]; for the general case
see Fenchel and Jessen [10, p. 257; see also Leichtweiss [14; 15, Section 24]. A
different proof of the implication (a) = (d) is due to Aleksandrov [1].

3. CONJECTURES

Suppose now that equality holds in (2.4), where (2.6) is satisfied. Then Lenmya 2.5
shows that, after a suitable dilatation of K or L,

S(K,¥%; -y=S(L, 6, ) (3.1)

Therefore, one has to find out what this equality implies for the convex bodies
K and L. The first conjecture below, as well as the lemma following it (for the
special case L = B), is due to Loritz [16]. Here supp u denotes the support of the
measure p.

Conjecture 3.2. Equality (3.1) holds if, and under the assumption (2.6) only if,
after a suitable translation of K or L,

WK, u)y = h(L, u) for each u € supp S(B, €; *). (3.3)

According to Aleksandrov [2], Conjecture 3.2 is true if % consists only of bodies
with analytic support functions and positive radii of curvature.

A convex body is called regular if at each of its boundary points it has only one
supporting hyperplane. ’

LemMMA 3.4.If L € #" is regular and strictly convex, then
supp S(K, €; -} = supp S(L, ¥; )
for all K € #".

Proof. Suppose there exists u, € supp S(K, 4; -\supp S(L, €; -). Then there is
an open neighborhood « of u, in Q such that S(L, €; «) = 0. Let

Li={xe L: {x, uy) < kL, ug) — &},

where ¢ > 0 is so small that every exterior unit normal vector to L at a point of
cl(@L\L) belongs to . Such an & exists since L is regular. For u € Q\a, the unique
boundary point of L at which u is attained as an exterior normal vector, is also a
boundary point of L. We deduce that S(L, ¥; f) = S(L, ¢; B) for every Borel set
B = Q\a. This yields

0<V(B, L % —V(@B L %
= fh(B, u) dS(L, €; u) — Jh(B, w) dS(L, 6; v
Q 9]
=S(L,%;2) — S(L, €; 2)

and hence S(L, ;2 =0. Thus we have S(L,%; ‘)= S(L, %; ) and therefore
V(L, K, €)= V(L, K, ¥) for any K by (2.1). On the other hand, we can choose

)
!
;
/

i g < e e
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an open neighborhood B of u, such that h(L, u) > ML, w) for u g f. Since up € SUPP
S(K, % -), we have S(K. ¢ p) > 0, which implies

<

aV(L, K, %) = J WL, u) dS(K, € u)
2

> Jh(i, u) dS(K, €; u) = nV(L, K. %)
Q

a contradiction. This proves LEmMa 3.4. §

LEMMA 3.4 shows, in particular, that in (3.3) the unit ball B can be replaced by
any other regular and strictly convex body, without changing the condition. It also
shows that one direction of Conjecture 3.2 is true, namely, that (331 implies (3.1):
Suppose  that (3.3) holds. Then for any convex body M we have
supp S(M, ¥, -) < supp S(B, €; -} and thus

Jh(,\l, w) d{S(K, €; u) — S(L, € u)]}
fo}

I

nV(M, K, €) — nV(M, L. %)

il

J[’I(Ks u) - h(L9 H)] ds(i\’I; (6s u) = 0.
Q

Since M was arbitrary, (3.1) follows.

In order to interpret (3.3) geometrically, one would next require a geometric
description of the support of the measure S(B, €; -). For the formulation of a
corresponding conjecture we need some more notation.

For K € #" and u e Q, we consider a boundary point x € (K where u occurs as
an exterior unit normal vector. Let N be the cone (with apex 0) of normal vectors to
K at x. The vector u is contained in a unique relatively open face of the convex cone
N (see, e.g., Theorem 18.2 of Rockafellar [17]). This maximal relatively open convex
cone of normal vectors does not depend upon the choice of the point x (if this point
is not unique); call it N(K, u). For K ..., Kooy € #A", we now say that the vector u
is (K,, ..., K,-)-extreme if there exist (n — 1)-dimensional linear subspaces Hy, ..,
H,., c R" with N(K;, ) = H fori=1,...,n—1and dimH,~r...0nH,, =1
This notion generalizes that of a p-extreme normal vector: The vector u € Q1is called
a p-extreme normal vector of the convex body K if dim N(K, u) < p ~ 1. Thus,uisa
p-extreme normal vector of K if and only if u is

(u, BV,.L,‘B)—extreme.
n—-1-p P
Conjecture 3.5. supp S(Ky, ..., K,_y; -) is the closure of the set of (Ky, ...,
K, _)-extreme unit vectors.

This is true at least in the following cases:
(a) if K, ..., K, are polytopes,
(b) il K; ==K, and the bodies K.y, -.-, K -1 are regular and strictly
convex, for some p € {0, ..., n— 1}.
Suppose first that K, ..., K, are polytopes. Writing

F(K, u)={xe R {x,uy= KK, u)}
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for the face of K with exterior unit normal vector u, we have
S(Kiv oo, Ko {u) = dlF(K, w), ..., F(K, -, w),

and S(K,, ..., K,_,; -} is concentrated on the finite set of those u for which this is
positive. Hence, u € supp S(K,, ..., K,_,; ) if and only if segments §; < F(K;, u),
i=1,...,n—1, can be found with linearly independent directions (Bonnesen and
Fenchel [4, p. 41]). Now F(K;, u) contains a (nondegenerate) segment S, if and only
if N(K;, ) is contained in the (n — 1)-dimensional linear subspace orthogonal to ;.
The truth of Conjecture 3.5 for polytopes is now easy to see.

Now let K e #"and p € {0, ..., n — 1} be given. Then

supp S(L(;..., Kii, -}

—

4 n—-1-p

is the closure of the set of (n — p — 1)-extreme normal vectors of K, as shown by
Schueider [18]. By the remark made above, this is also the closure of the set of

(K, ..., X, B, ..., By-extreme

4 n-1-p

vectors. If here the last n — 1 — p arguments are replaced by any regular and strictly
convex bodies, neither the set of (K, ..., K, -, ..., *)-extreme vectors nor, by LEMMA
3.4, the support of S(X, ..., K, -, ..., -; ) changes. Hence, Conjecture 3.5 is also
true in case (b). .

Putting LEmMA 2.5 and Conjectures 3.2 and 3.5 together, we now end up with
the following conjecture. Here a supporting hyperplane of a convex body is called
(B, 6)-extreme if its exterior unit normal vector is (B, €)-extreme.

Conjecture 3.6. If V(K, K, %) > 0 and V(L, L, 6) > 0, then equality in {2.4) holds
if and only if suitable homothets of K and L have the same (B, ¥)-extrems support-
ing hyperplanes.

Under each of the following assumptions, it is known that equality in (2.4) [(2.6)
being satisfied] implies that K and L are homothetic:

(a) ¥ consists of balls,

(b) % consists of strongly combinatorially isomorphic simple polytopes, and K,
L are polytopes having the same system of normal vectors to the facets as the
polytopes of €,

(c) € consists of convex bodies with twice continuously differentiable support
functions and positive radii of curvature, and K and L have twice continuously
differentiable support functions.

For (a), sec Bonnesen and Fenchel [4, p. 93]; (b) and (c) are due to Aleksandrov
[1, 2] (compare Busemann [6]). In cases (a) and (c), the set of (B, ¥)-extreme vectors
coincides with Q, while in case (b) it is the set of exterior unit normal vectors to the
facets of the polytopes in €. Thus, Conjecture 3.6 is in agreement with these classical
cases. ,
For the case € = (K, ..., K), Bol [3] (see also Knothe [12] for a special case
with a different proof) proved that equality in (2.4) implies that K is homothetic to a
(n — 2)-tangential body of L, which means that for a suitable homothet L of L, each
1-extreme supporting hyperplane of K supports L. Since the 1-extreme vectors of K
are precisely the (B, ¥)-extreme vectors, Conjecture 3.6 holds also in this case.
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4. SpECIAL RESULTS

We shall now prove a few new results which confirm Conjecture 3.6 in additional
special cases. Our first theorem implies a generalization of cases (a) and (c) above.
The convex body M is called a summand of the convex body M if M = M + M’ for
a suitable convex body M’.

THEOREM 41. Let € = (Ks, ..., K,) and suppose that K; has an n-dimensional
summand K; (i =3, ..., n). If (2.6) is satisfied and equality holds in (2.4), then also

V(K, L, €)* = V(K, K, §)V(L, L, )
with@ = (K5, ..., K,)
Proof. If the assumptions are satisfied, then by LeMMA 2.5 we may assume, after
some dilatation of K or L, that
S(K, €; ) = S(L, € ). (4.2)
Write €' = (K4, ..., K,) (for n =2 there is nothing to prove, and for n =3 we
modify the proof by just omitting ¢'). Let QO be a convex body of dimension n. By
(2.7) (replace K5 by Q and M by K,), we have
V(K, K, Q, %) VK, L, Q, %) V(L, L, Q, %) <0 43)
V(K, Q. 4) VK, Q. OV(L 0.6 VL Q6 ~ )

Since
VK, Q,6)=V(L, Q. %) i ‘(4.4)
by (2.1) and (4.2), we get
VK, K,Q,€)—2V(K, L, Q. 6)+ V(L L, 0, %)< 0. 4.5)
By approximation, this inequality holds also if Q is a lower-dimensional convex

body.
Now suppose that Ky = Ky + K’ with convex bodies K,, K. Writing down

(4.5) for Q = R, and for Q = Kj and adding the two inequalities, we get

V(K, K, K3, €)~2V(K, L, K3, €) + V(L, L, K;, €1<0.
By (4.2) the equality sign must hold here; hence, in particular,

V(K, K, Ry, €)= 2V(K, L, K3, €) + V(L, L, K,,¢)=0.
Together with (4.4) for @ = K, this shows that (2.7), with K, replaced by K5 and M
by K, holds with equality; hence,

VK, L, By, € = V(K, K, Ry, €V(L L, K5, €)

by LemMa 2.5, provided that dim R, = n. Thus we have replaced K by an n-

dimensional summand and still have equality in (2.4). Repeating the argument with
K,,..., K,, wearrive at the conclusion of THEOREM 4.1. §

COROLLARY 4.6. Suppose that € consists only of outer parallel bodies (i.e., K; has
some ball as a summand, i =3, ..., n). If (2.6) is satisfied and equality holds in (2.4),
then K and L are homothetic.
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This follows from THeEorREM 4.1 and result (a) mentioned after Conjecture 3.6.
Thus, the corollary is a common generalization of the classical cases (a) and (c) after
Conjecture 3.6, since it is well known that every convex body with a twice contin-
uously differentiable support function and with positive radii of curvature has some
ball as a summand. Since under the assumption of COROLLARY 4.6 every unit vector
is (B, K3, ..., K,)-extreme, COROLLARY 4.6 is in agreement with Conjecture 3.6.

Another specialization of Conjecture 3.6 which should be tested is the case where
each component of € is equal to either K or L. It was conjectured that equality in

VIK,...K L, ..., L=V, .. ,K L ..., LWK,...,K L ... L 47

~ e
n-i i n—it+1 i-1

(i=1,...,n— 1) holds only if K is homothetic to an (n — i — 1)-tangential body of
L or L is homothetic to an (i — 1)-tangential body of K (see Bonnesen and Fenchel
[4, p. 92]). Recall that, for i€ {0, ..., n — 1}, a convex body K € #" is called an
(n — i — )-tangential body of the convex body L if every i-extreme supporting
hyperplane of K also supports L (for equivalent definitions, see Schneider [19]). For
i=1landi=n~1 this was settled by Bol {3}, but he conjectured {3, p. 56] that for
i # 1, n— 1 these are not the only cases of equality. With the further specialization
L = B, (4.7) is the inequality

W(K) = W,_ ((K)W,1(K) (4.8)

(i=1,...,n—1) for the quermassintegrals of K. For these we have the following
result.

THeOREM 4.9. If K € " is centrally symmetric and i € {1, ..., n— 1}, then equal-
ity in (4.8) holds if and only if either dim K < n —i or K is an (n — i — 1)-tangential
body of a ball.

It is very probable that the assumption of central symmetry, which is made for a
technical reason, can be omitted. In that case our result would show that Conjecture
3.6 is true in the special case

€=(K,...,K B,..., B).

n—i—1 i-1

The proof generalizes a method of Favard [7] (compare also Leichtweiss [14,
157). The first part is stated as a separate lemma since it extends to a more general
situation.

LemMa 4.10. Let € be an {n — 3)-tuple of convex bodies in R" (n = 3); let K,
L € &#" satisfy

V(K,K,B.%)>0, V(L,L, B %>0 (4.11)
and
S(K, B,¥; -)=S(L, B, €; ). (4.12)
Then
o(K*, 1%, 6% = o(K*, K*, €"(I¥, I¥, €¥) 4.13)

foreachu e Q.

i

S—
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Proof. In the following, E, denotes the (n — 1)-dimensional linear subspace
orthogonal tou € Q. Letue Q. Inequality (2.7), applied in E,, shows that
o(K*, K¥, €") v(K", IV, 6" oI, L, 6Y)
K", B, 6% oK, B, €*n(L, B*, €*) WL, B @y
provided that p(K", K", ") > 0 and oL, I, €} > 0. By (2.3) and (4.11), this holds
for m-almost all u. From (2.2) and (4.12) we get
u(K*, B*, €*) = oL, B*, €); (4.14)

hence.
K", K", %) — 20(K*, L, ¢+ (I8, L, 6 <0 (4.15)

for almost all u and then by continuity for all u e Q. In view of (2.3), integration
yields

V(K, K. B, ¥)—2V(K, L, B, %) + V(L, L, B, %) <0.

By (2.1) and (4.12), here the equality sign is valid; hence, equality holds in (4.15) for
all u € Q. Together with (4.14) this implies (4.13) by LEMMA 2.5 ]

Proof of THEOREM 4.9. Since W{K) > 0 if and only if dim K > n— i, we may
assume that dim K = n—i+ 1. That equality in (4.8) holds for n—i—1)-
tangential bodies of balls, is known (Schneider {19, Theorem (3.8)]). We prove by
induction with respect to n that equality in (4.8) and the assumption
dimK>n—i+1 imply that K is an (n—i— 1)-tangential body of a ball
(ie{l,...,n—1}). Forn=2 this is well known. Assume that n > 3; the assertion
has been proven in dimensions less than n, and equality holds in (4.8) for some
ief{l,...,n—1}, where dim K >n— i+ 1. For i=1, K is an (n — 2)-tangential
body of a ball by the result of Bol mentioned above; hence, we may assume that
i > 2. According to LEMMA 2.5, after a suitable dilatation of K we may assume that

SK,...,K, B,...,B; ) =S, ..., K, B,..., B; ). (4.16)
n—i i-1 n-i-1 i

By Lemwma 4.10 this implies
vn—x(Ku)z = Ui+ WKW, ;-1 (KY)
for u € Q, where we have written
v (K" = (K", ..., K% li"_ BY).

B

k n—k-1

By the induction hypothesis, K* is an (n — i — 1)-tangential body of a homothet of
B“ If this homothet has radius r,, then r; 'K* isan (n —i — 1)-tangential body of a
unit ball; hence (Schneider [19, Theorem 3.8,

v, {7 1KY = v,y (ra TKY)
Since (2.2) and (4.16) imply
vn*i(K“) = un—i—l(Ku)’

we deduce that r, = 1.
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Let B, be the maximal ball (r its radius) in K with center at the symmetry center
of K. K and B, have at least one common supporting hyperplane H, and by
symmetry a second one parallel to H, say H'. Choose a unit vector u parallel to H.
The intersection of H with E, is a common supporting hyperplane (in E,) of B} and
K* and hence an extreme supporting hyperplane of K*. The same holds true for the
intersection of H' and E, . Since both hyperplanes must support some ball (in E)) of
radius 1, it follows that r = 1. Hence, we may assume that B, = B.

Now let 1 € Q be arbitrary. The projection K* is an (n — i — 1)-tangential body
of a unit ball, but since B* — K, this is necessarily the ball B* (observe that a convex
body is the intersection of its supporting half spaces bounded by extreme supporting
hyperplanes).

Finally, let H be an i-extreme supporting hyperplane of K and u its exterior unit
normal vector. Choose a vector v orthogonal to u and, if dim N(K, u) = 2, in the
linear hull of N(K, u). The intersection of H with E, is then an (i — 1)-extreme
supporting hyperplane of K" (relative to E,). Since K” is an (n — i -- 1)-tangential
body of B, that hyperplane supports B’; hence, H supports B. Thus, K is an
(n — i — 1)-tangential body of B. |
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