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Measures in Convex (Geometry
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SUMMARY. - By conver geometry we understand here the geome-
try of convexr bodies in Fuclidean space. In this field, measure
theory enters naturally and is useful under several different as-
pects. First, like in many other fields, measures are employed to
quantify the smallness of certain exceptional sets. In our first
chapter, we give examples showing how Hausdorff measures of
different dimensions are appropriate tools for describing sets of
singular points or directions related to the boundary structure of
convez bodies. In the second chapter we treat measures that are
designed to reflect the local behaviour of conver bodies in a simi-
lar way as curvatures are used in differential geometry. The third
connection between conver geometry and measure theory that we
want to explain is of an entirely different nature. Here we treat
a special class of convex bodies, the zonoids, which can be defined
in terms of measures, and we show by an example from stochastic
geometry how they are related to other fields. The second of these
topics will be treated in greater detail than the other two.

Naturally, some facts from the geometry of convexr bodies will
have to be used without proof. The fundamental notions will be
explained and are easy to understand, due to their intuitive char-
acter. As a reference where proofs can be found, we mention the
book [42].
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1. Hausdorff measures of singular sets

We work in n-dimensional Euclidean vector space E™ (n > 2) with
scalar product (-,-) and norm || - ||. By B" := {z € E" : |z|| < 1}
we denote its unit ball and by $*! := {z € E" : |jz|| = 1} its
unit sphere. Lebesgue measure in E” is denoted by Ay, and &, is the
volume of B™. For p > 0, HP? is the p-dimensional Hausdorff measure.
A convez body in E™ is a non-empty compact convex subset. The
set of these convex bodies is denoted by K™ and the subset of bodies
with interior points by Kg. For K € K" and a vector u € E" one
defines
h(K,u) := max{(z,u) : z € K}

and, for u # 0,
H(K,u):={z € E" : (z,u) = h(K,u)}.

The function h(K,-) is known as the support function of K, and
H(K,u) is the supporting hyperplane, or briefly the support plane, of
K with outer normal vector u.

Each point z in 8K, the boundary of K, lies in at least one
support plane H(K,u) with suitable u, und we say that H(K,u) is
a support plane at x. If there are different support planes at z, then
z is called a singular point of K. The example of a polytope shows
that the set of singular points can be of positive (n — 2)-dimensional
Hausdorff measure.

EXERCISE 1.0.1: Construct an example in E? showing that the set
of singular points of a convex body K can be dense in the boundary
oK.

The following useful theorem restricts the possible size of the set
of singular points.

THEOREM 1.0.2 (REIDEMEISTER). The set of singular points of a
conver body K € K™ is of (n — 1)-dimensional Hausdorff measure
Zero.

A considerably sharper result can be proved without much ef-
fort. We classify the singular points in the following way. The point
z € 0K is called r-singular if it lies in n — r support planes with
linearly independent normal vectors. It is also convenient to define
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the normal cone N(K,z) of K at z as the set of all vectors u € E"
such that either v = 0 or H(K,u) is a support plane of K at z with
outer normal vector u. Then N(K, z) is a closed convex cone, and
the point z is r-singular if and only if dim N(K,z) >n —r.
THEOREM 1.0.3. Let K € K" and r € {0,...,n — 1}. The set of
r-singular points of K can be covered by countably many compact sets
of finite r-dimensional Hausdorff measure.

This implies, in particular, that the set of r-singular points of K
has o-finite H"-measure and, hence, HP-measure zero for any p > r.

The proof of Theorem 1.0.3 is surprisingly simple. It makes use
of the nearest-point map (or metric projection) of K,

p(Ka) :E" — K,

which is defined by letting p(K, ) be the unique point in K nearest
to x.

EXERCISE 1.0.4: Show the existence of the map p(K,-) and show
that it is contractive, that is, ||p(K,z) — p(K,y)| < |lz — y|| for all
z,y € E™

Let z € K. It is not difficult to see that
p(K,y) =z y—ze NK,z) for y €e E"\ K.

To prove Theorem 1.0.3, we choose a closed ball B containing
K in its interior. By an r-flat we understand an r-dimensional
affine subspace of E™, and we call it rational if it can be spanned
by points with rational coordinates (with respeet to a given basis of
E™). Now let z be an r-singular boundary point of XK. The nor-
mal cone N (K, z) is of dimension at least n—r, hence the translated
cone N(K,z)+x must meet some rational r-flat F inside B. A point
y € FN(N(K,z) + z) satisfies p(K,y) = z; thus z € p(K,F N B).
The compact set F'N B has finite r-dimensional Hausdorff measure.
The same is true for its image p(K, F' N B), since the nearest-point
map is contracting. Since there are only countably many rational r-
flats, we see that the set of r-singular points of K can be covered by
countably many compact sets of finite H"-measure. This completes
the proof of Theorem 1.0.3.
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Our second example for the use of Hausdorff measures in describ-
ing the boundary structure of convex bodies concerns segments in
the boundary. Can the boundary of a convex body contain segments
in all directions? The answer is “no”, but the proof is not easy. It
gives a stronger result; a simpler proof of the weaker result is not
known.

For a convex body K € K™, we denote by U(K) C S™! the set
of all unit vectors that are parallel to some segment in the boundary
of K. The example of a polytope shows that U(K) can contain
great subspheres of S"~1. Obviously, there are convex bodies K for
which U(K) contains infinitely many great subspheres, which are
sets of positive (n — 2)-dimensional measure. The following theorem
is, therefore, best possible.

THEOREM 1.0.5 (EWALD-LARMAN-ROGERS). For every conver body
K € K", the set U(K) is of o-finite (n — 2)-dimensional Hausdorff
MEASUTE.

We cannot give here the full proof, but want to sketch the prin-
cipal ideas. These become already clear if we restrict ourselves to
the three-dimensional case. Let K € K3 be a convex body. We con-
sider two parallel planes Hy, H; intersecting K. It suffices to prove
that the set U* of all unit vectors parallel to a segment in 0K that
cuts both planes Hy, H, has finite one-dimensional Hausdorff mea-
sure. This is sufficient, since every segment in 0K cuts some pair
of rational planes, and there are only countably many pairs of this
kind.

Since directions of boundary segments do not change under ho-
motheties and under the addition of a ball to the convex body, we
may assume that K = K’ + B® with a convex body K’ and that
Hy = E2 — e, H; = E? + ¢ with E2 C E3 and a unit vector e
orthogonal to E2. Let Ko := K N Hy, K; := K N H; and

A= {.’L‘l —x0:721 € Ki,10 € Ky, Ju € Sn_l 1 Zg, X1 € H(K,u)}

If § C OK is a segment meeting Hy and Hj, then it lies in a support
plane of K, hence the points zg, z; defined by SNHy = {zo}, SNH, =
{x1} satisfy z1 — zo € A. This observation has a converse, and it
follows that

U*:{ﬁjﬂ:yeAU(—A)}.
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Since U* is the image of AU (—A) under a Lipschitz map, it is suffi-
cient to prove that A has finite one-dimensional Hausdorff measure.
Let 1 — 2o € A, with zg € Ko and z1 € K lying in a support
plane of K. Then the points z; — e and o + ¢ lie in parallel support
lines of the two-dimensional convex bodies K| := K; — e and K, :=
Ky + e, respectively. Observe that Kj), K| are convex bodies in E?.
Let A’ be the set of all differences y; — yo of boundary points y; of
K/ and yo € K}, lying in parallel support lines. Essentially, we have
to show that A’ is a small set. This is achieved by using certain cap
coverings. By a cap of a convex body in E? one understands the part
of the body cut off by a line. The following lemma is elementary.

LEMMA 1.0.6. IfC4,...,Cpn are caps of Kj+ K7 covering the bound-
ary of K + K1, then

AN c | JDCi+a),

i=1
where DC; = {z —y : z,y € C;} and ay,...,an are suitable trans-
lation vectors.
Let Cy,...,Cp be as in the lemma. If now zo,x; are as above,

then (z; —e) — (zo +€) € A, hence there is an index ¢ such that
(x1—e)— (zo+e€) € DC; +a; and thus x1 — 9 € DC; +a; + 2e. Thus

Ac | JDCi+t)
i=1

with suitable translation vectors ¢;.

The bulk of the work now consists in showing that the bound-
ary of the two-dimensional body K + K] can be covered by caps
Ci,...,Cy in a very economical way, that is, without too much over-
lapping. More precisely, for every sufficiently small € > 0 one needs
a covering of the boundary by caps whose widths are essentially of
order ¢ and such that the sum of their volumes is also of order e.
This can be done, but requires a series of technical arguments from
convex geometry. The result is as follows. There exists a constant ¢
such that, for every sufficiently small € > 0, the set A can be covered
by less than ce~! cubes of diameter e. It follows that A has finite
one-dimensional Hausdorff measure.
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This was only a brief sketch of a proof that works in all dimen-
sions. Theorem 1.0.5 implies, in particular, that the set U (K) of
directions of boundary segments is of (n — 1)-dimensional Hausdorff
measure zero. It is this weaker result that is needed in applications
to the integral geometry of convex bodies.

PROBLEM 1.0.7: Is there a short proof of this weaker result?

In certain investigations about integral geometry and touching
probabilities of convex bodies, the following extension of Theorem
1.5 is needed. Here the Hausdorff measure on the rotation group
S0O,, of E" is derived from a natural metric on SO,,.

THEOREM 1.0.8. Let K, K' € K™ be convez bodies, and let U(K, K')
be the set of all rotations p € SOy for which K and pK' contain
parallel segments lying in parallel support planes. Then U(K, K')
has o-finite [3n(n — 1) — 1]-dimensional Hausdorff measure.

Observe that the Lie group SO, has dimension 2n(n—1); hence
it follows from Theorem 1.0.8 that U(K, K') is a set of Haar measure
zero in the rotation group. Theorem 1.0.5 essentially corresponds to
the special case of 1.8 where K' is a segment.

It has recently turned out that for some questions in the integral
geometry of convex bodies one would need a result that is in a vague
sense dual to the consequence of Theorem 1.0.8 noted above. Let
K,K' € K} be convex bodies. We say that they are in singular
position if there is a point x € 0K NOK " such that

lin N(K,z) Nlin N(K', z) # {0},

where lin denotes the linear hull.

OPEN PROBLEM 1.0.9: Is the set of all rigid motions g such that K
and gK’ are in singular position a set of Haar measure zero in the
motion group of E*? _

This question came up in the work of Glasauer [21]. The answer
is known to be affirmative in dimensions n < 3.

Notes. The proof of Theorem 1.0.3 given here goes back to An-
derson and Klee [8]. The covering assertion of Theorem 1.0.3 can
be refined considerably. Such refinements are due to Zajicek [51],
Alberti, Ambrosio and Cannarsa [2], Alberti [1], Anzellotti and Ser-
apioni [9], Fu and Ossanna [20]. From the latter paper we quote that
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the set of r-singular points of a convex body can be covered by a set
My with ‘H"(Mp) = 0 and countably many r-dimensional embedded
submanifolds of class C2.

Theorem 1.0.5 was proved by Ewald, Larman and Rogers [17],
and Theorem 1.0.8 by Schneider [39]. Full proofs of both Theorems
are reproduced in [42], Section 2.3. The Notes for that section give
references to further related results.

2. Curvature measures

As a motivation for the measures to be introduced, let us first con-
sider the notion of curvatures in elementary differential geometry.
Let F be an oriented surface in Euclidean space E3, and suppose
that F' is twice continuously differentiable and regular (in the sense
of differential geometry). At every point of F there are two principal
curvatures, k1 and kg. Their arithmetic mean is the mean curva-
ture, H = %(kl + kg), and their product is the Gauss curvature,
K = ki1ky. Closed surfaces with constant H or constant K are of
particular interest, the first, for instance, as forms of soap bubbles
in equilibrium, the second, since they locally realize the geometry
of the elliptic plane. Classical theorems tell us that a closed convex
surface F' with H = const or K = const must be a sphere. Can these
theorems be extended to general convex surfaces, that is, boundaries
of convex bodies, without assuming any differentiability? The first
step towards such a generalization has to be the extension of the
mean curvature and the Gauss curvature to general convex bodies.
Such an extension is possible if measures are used. A hint how this
can be done is given by the familiar intuitive interpretation of the
integrated Gauss curvature: If § is a measurable subset of F, then
/ s K d#H? is the area of the spherical image o(F, 3); the latter is the
subset of the unit sphere 52 which is defined as the set of all exterior
unit normal vectors to F' at points of 3. Clearly

Co(F, B) := H*(o(F, B))

defines a measure Cy(F,-) on F'. Now, this measure can be defined
for an arbitrary convex surface. The assumption of constant Gauss
curvature can then be replaced by the assumption that Cy(F,-) be
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proportional to the surface area measure. We shall see that this does
in fact lead to a characterization of the ball.

We may also reverse the viewpoint above. Instead of a measur-
able set 3 of points on F, we consider a measurable set w of unit
normal vectors, thus w is a set on the unit sphere S2. Let 7(F,w)
be the set of points of F' where the outer unit normal falls in w. We
call 7(F,w) the reverse spherical image of the set w. Its area,

So(F,w) = H2(r(F,w)),

again defines a measure, this time on the sphere. If F' is of class C?
and has positive curvatures, then Sy(F,-) is the indefinite integral of
the reciprocal Gauss curvature, hence of the product of the principal
radii of curvature, considered as functions of the exterior unit normal
vector. The well-known Minkowski problem of differential geometry
asks for the existence of a closed convex surface for which the Gauss
curvature is prescribed as a function on the spherical image. A ver-
sion of this problem for general convex surfaces asks for a convex
surface for which the measure S;, the area of the reverse spherical
image, is prescribed. We shall see that this problem has a complete
solution.

2.1. Support measures and curvature measures

The introduction has given us some idea how a Gaussian curvature
measure and its reverse counterpart can be defined for general convex
bodies. So far, however, a measure theoretic extension of the mean
curvature is not in sight. The consideration of local parallel sets,
instead of spherical images, will yield such measures easily. Since we
want to have measures on the boundary of a convex body on one
hand and measures on normal vectors on the other hand, we shall
first introduce a common generalization.

In Chapter 1, we have defined the nearest-point map p(K,-) :
E" — K of a convex body K. For z € E" we also define d(K, z) :=
|z — p(K,z)||, and for z € E"\K,

T p(K, )
W 2) = TR D
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Then u(K, z) is an outer unit normal vector to K at . A pair (z,u),
where z € 8K and u is an outer unit normal vector of K at z, is
called a support element of K. The set of all support elements of K
is denoted by Nor K and called the generalized unit normal bundle
of K. It is a closed subset of the cartesian product E® x §"~1 =: I.

We use the notation B(T') for the o-algebra of Borel subsets of a
topological space T'.

Now let K € K. For a Borel set n € B(X) and for p > 0 we
define the local parallel set

M,(K,n) = {z € E": 0 <d(K,z) < p, (p(K,z),u(K,z)) € n}.

EXERCISE 2.1.1: Show that this is a Borel set.

Recall that we denote the Lebesgue measure on E™ by A,. We
define

:U‘p(K’ 77) = )‘n(MP(Ka 77))

Clearly this defines a measure p,(K,-) on B(X). The reason for
defining this measure becomes clear if one computes it in the case
where 8K is a regular hypersurface of class C? and n = {(z, u(z)) :
x € 3}, where B C 8K is open and u(z) is the unique outer unit
normal vector of K at z. Elementary differential geometry then
yields that

n—1

1 _i(n e
it 25 (0) [ e
B

j=0

where H; denotes the i-th normalized elementary symmetric function
of the principal curvatures. For example, for n = 3 we have

1
wo(K,m) = §p3/H2d’H2+p2/H1d’H2+p/ a2,
8 8 B

where now Hs denotes the Gauss curvature and H; is the mean
curvature. Thus, u,(K,7n) is a polynomial in p, and the coefficients
will give us the measures we are looking for. We will, however, not
perform this differential-geometric calculation, but rather exhibit the
polynomial behaviour in the more elementary case of polytopes.
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If P is a polytope (by which we always mean a convex polytope),
we denote by F;(P) the set of its j-dimensional faces, j =0,...,n.
For a face F of P, the normal cone N (P, F) of P at F is defined as
N(P,z) for an (arbitrary) point  in the relative interior of F.

By decomposing the local parallel set M,(P, n) into the sets of
points z for which p(P, z) lies in the relative interior of a given face
of P, and by applying Fubini’s theorem, one finds that

n—1
1 s ‘
,Ufp(Pyn)ZZP ]n__ ; Z H ! J(N(P,F)ﬂny)dﬂj(y),
j=0 ']FE.'F]‘(P)F

(1)
where
Ny :={u€ Snt: (y,u) € n}
is the y-section of the set 7.
EXERCISE 2.1.2: Perform the proof of (1), at least for n = 2 and
n = 3, taking some “obvious” properties of polytopes for granted.

Our next task is to extend the polynomial behaviour of p,(P,n)
to general convex bodies. This is done by approximation. For this
purpose, the set K™ of convex bodies is equipped with the Hausdorff
metric 6, defined by

X " o o
6(K,L) max {gleagr;lelgllx yll, r;lgﬂrggﬂw yll}
= min{a>0:K CL+aB", LCK+aB"}.

It is easy to see that the set of polytopes is dense in the space (Km,9).
Thus we can approximate a given convex body K by a sequence
(Kj)jen of polytopes, and we want to show that the corresponding
measures u,(Kj, ) converge weakly to po(K,-). Weak convergence
is denoted by 5. By a familiar characterization of the weak conver-
gence of measures, we have to prove that K; — K in K™ implies

po(K,n) <liminf p,(Kj,n) for open 7
j—o0

and
pp(K, ) = jli)ngoup(Kj,E)-
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THEOREM 2.1.3. If K; — K in K", then py(Kj,) = po(K, ).

Proof. First let n C ¥ be open, and let z € M,(K,n) be a point with
d(K,z) < p. The continuity of the nearest-point map, as a map on
the product space K™ x E", implies that z € M,(Kj,n) for almost
all j. Thus we have

Mp(K,n) \ 0K, C lim inf M,(K;, )
and hence, using A, (0K,) = 0,
up(K,m) = A(Mp(K,n)\ 0K))
on (limint M4, (K, m))
< liminf An(M,(K;, )

IA

= liminf 4o, (Kj, 7).

Moreover, since the volume is a continuous function on K", we get
lim p2p(K;, %) = Jim [hn(K; + pB") = An(K)]

j—o0
= A(K +pB") — A(K)
= NP(K, ¥),

which completes the proof. O

Theorem 2.1.3 tells us how the measures u,(K,-) depend on K.
We must also know how u,(K,n), for fixed 7, depends on K.
THEOREM 2.1.4. For fized p > 0 and for n € B(X), the function
Lo(-,m) : K™ = R is Borel measurable.

EXERCISE 2.1.5: Prove this, along the following lines. In the proof
of Theorem 2.1.3 it was shown that K; — K implies

iminf py(Kj,m) > po(K,n),

00
if 7 is open. Why does this imply that p,(K,7) is measurable for
open 1? Next, show that the family of all sets n € B(X) for which

tp(-,m) is measurable is a Dynkin system (for Dynkin systems, see
Bauer [11], §2).
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We are now in a position to define generalized curvature measures
or support measures, as we call them briefly, following a suggestion
of S. Glasauer [21].

THEOREM AND DEFINITION 2.1.6. For every conver body K € K™
there exist finite measures Oy(K,-),...,0,-1(K,-) on B(X) such
that, for every n € B(X) and every p > 0, the measure pu,(K,n)
of the local parallel set M,(K,n) is given by

n—1

po(K,m) = % St <Z> Om (K, 7).

m=0

The map On : K™ x B(¥) — R has the following properties. If
K; — K in K", then On(Kj,") = On(K,-). For each n € B(X),
the function ©,,(-,n) is measurable.

The measure O, (K, -) is called the m-th support measure of K.

Proof. If P is a polytope, we define

(”;L 1) On(Pm)i= Y [ HIN(PF) ) dH(y).
FEFm(P) fr
(2)

From (1) we then know that

1l n
Pn) == o .
Ho(P,m) n Z p <m> Om(P,n)
m=0
Writing down this equation for p = 1,...,n, we obtain n linear

equations, which can be solved for the ©’s, and we get
Gm(Pa 77) = Z a'mkp'k(Pa "7)
k=1
with coeflicients a,,;. We define
n
@m(Ka 77) = Z amk/j’k(Ka 77) (3)
k=1

for arbitrary K € K™. Then 6,,(K,-) is a finite signed measure.
If K; - K in K", then ©,(Kj,) 5 0,(K,-) by Theorem 2.1.3.
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Since any K € K™ is the limit of a sequence (K;)jen of polytopes
and ©,,(Kj,-) > 0, we deduce that ©,,(K,) is a measure. From (3)
and Theorem 2.1.4 it follows that ©,,(-,n) is measurable. O

EXERCISE 2.1.7: (a) Show that ©,,(K,-) is concentrated on the set
Nor K of support elements of K (hence the name “support mea-
sure” ).

(b) Show that ©,, has the additivity (or valuation) property
@m(Kl U K27 ) + Gm(Kl N K27 ) = Gm(Kl, ) + em(KZ, )

for Ki,Ko € K* with K; U Ky € K" (Hint: Show first a

corresponding property for the indicator function of the local

parallel set M,(K,n).)

We now specialize the support measures, to obtain measures ei-
ther on sets of boundary points or on sets of unit normal vectors.
For this, we put

C(K,B) = On(K,BxS"1) for 8 € B(E™),
Sn(K,w) = Onp(K,E"xw) for w € B(S™1).

The measure Cp,(K,-) is called the m-th curvature measure of K,
and Sy, (K,-) is called the m-th area measure of K.

We first have a closer look at the curvature measures Cr, (K, ),
which are measures concentrated on the boundary of the convex body
K. With

A(K,B) = My(K,BxS")
= {zcE":0<d(K,z)<p, p(K,z) € B},

the definition reads

n-—1

M(Ap(E,B) = = Y

m=0

P (m) Cnm(K,B).

Considering this identity for either p — 0 or p — oo, it is easy to
guess the meaning of the two measures Cp—1(K,-) and Co(K, ). The
set o(K, 3), the spherical image of K at 3, is defined as the set of
all outer unit normal vectors to K at points of .



228 ROLF SCHNEIDER

THEOREM 2.1.8. Let K € K™ and 8 € B(E"). Then
Co(K,B) = H" ! (o(K, B)). (4)
If K is n-dimensional, then
Cn-1(K, B) = H" (BN OK). (5)

Sketch of the proof. First one has to observe that o(K, 3), for a
Borel set (3, is not necessarily a Borel set. However, the following is
true. If 81,52 € B(E™) are disjoint and if u € o(K, £1) N o(K, B2),
then u is a singular normal vector of K, that is, a normal vector at
two different boundary points. This notion is dual to the notion of
a singular boundary point of K. Dualizing Reidemeister’s theorem,
one deduces that

H" Y o(K,B1) No(K,B)) =0.

This can be used to show that o(K,S), for 8 € B(E"), is H"!-
measurable, and also that the function k(K -) defined by

(K, B) = H"Yo(K,B)) for § € B(EY

is a measure. Next one shows that K; — K implies the weak con-
vergence x(Kj,-) = k(K,-). Now the equality Co(K,) = w(K,-)
follows, since it is true for polytopes and both sides are weakly con-
tinuous functions of K.

For the proof of (5), the procedure is similar. One defines

n(K,B) := H" (BN IK) for B € B(E™)

and then has to show that K; — K implies n(K;, ) = n(K,-). For
the complete proof, see [42], Theorem 4.2.5.

For the remaining curvature measures C;(K,-),...,Cnh_2(K,"),
we can give explicit representations if K is either a polytope or suf-
ficiently smooth. Let P be a polytope and F € Fi(P) a k-face of P
(k €{0,...,n —1}). The ezternal angle of P at F is defined by

Hk—L(N(P, F)n §"1)
v(E,P) = Hr—F=1(Gn—h-1) .
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By specializing (2), we see that

Cm(P,f) = 2onm 5™ y(F, PYH™(F N B),
(m) FeFm(P)

where k; denotes the volume of the i-dimensional unit ball. Thus,
Cr(P,-) has a simple structure. It is concentrated on the set of
m-faces of P, and on each m-face, it is proportional to the m-
dimensional Hausdorff (or Lebesgue) measure, and weighted by the
external angle of P at that face.

If K is a convex body whose boundary is a regular hypersurface
of class C?, then one can compute that

Com(K, ) = / Hy1om dH* L.
BNOK

This explains the name “curvature measure”.
Now we have a closer look at the area measures Sp(K,-). Let
w € B(S™1). With

B,(K,w) = M,(K,E" xw)
= {z€E":0<d(K,z) <p, u(K,z) € w}

we see from the definitions that

n—1

M (Bp(K,w)) = % Z " (Z) Sm(K,w).

m=0

The measure So(K,-) does not depend on Kj; it is just the spherical
Lebesgue measure. As a counterpart to Theorem 2.1.8, we obtain
the following result by a similar argument. Here 7(K,w), the reverse
spherical image of K atw, is the set of all boundary points of K with
an outer unit normal vector belonging to w.

THEOREM 2.1.9. Let K € K¥ and let w € B(S™!). Then
Sn-1(K,w) = H" H1(K,w)). (6)
If P is a polytope, then
1

Sn(Pw)=— >, HMFH" ' ™(N(P,F)Nw).
( m ) FeFn(P)
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If the boundary of K is of class C? and has everywhere positive
curvatures, then

S (K, w) = / s dH™ L.

w

Here sm(u) denotes the m-th normalized elementary symmetric func-
tion of the principal radii of curvature of 8K at the unique point with
exterior unit normal vector u.

While the two series of measures, the curvature measures and the
area measures, exhibit a strong duality, there is one important dif-
ference. The curvature measures are concentrated on the boundaries
of the convex bodies, whereas the area measures are concentrated on
the fixed sphere S™~1. The latter fact allows us to put area measures
of different convex bodies in relation. In particular, the following ex-
pansion can be proved:

n—1

Sn—l(K + ana ) = Z pn——l—m (n;l 1) Sm(K1 ) (7)

m=0

This shows that all the area measures S1(K,"),...,Sn—2(K,) can
be derived from S,_; applied to the “outer parallel body” K + pB".
Since Sy-1 is just the area of the reverse spherical image, this ex-
plains the name “area measures”. We also note that formula (7)
involves the Minkowski (or vector) addition of convex bodies. This
observation can be extended considerably and indicates why the
area measures and their generalizations are important in the Brunn-
Minkowski theory of convex bodies, which relates Minkowski addi-
tion to metric notions like volume.

Notes. The curvature measures Cp,(K,-) (with a different nor-
malization) were introduced, more generally for sets of positive reach,
by Federer [18]. The area measures S,,(K,-) already appeared in
the work of Aleksandrov [3] and Fenchel and Jessen [19]. For convex
bodies, both types of measures were further studied by Schneider
[38]. See [42], Section 4.2 and the Notes therein, for more informa-
tion, and particularly for full proofs of the results that were only
sketched here. The support measures can be expressed as integrals
over the generalized normal bundle, involving elementary symmetric
functions of generalized principal curvatures. Such representations
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and related results are due to Zihle [50]; see also Kohlmann [26] and
Hug [24].

2.2. Curvature measures and shape

If the curvature measures are to be useful extensions of the differen-
tial-geometric curvature functions, there should be close relation-
ships between properties of curvature measures and the local shape
of convex bodies. There are clearly such relations in the case of
polytopes or of bodies of class C2. In the case of general convex
bodies, they are harder to obtain, but interesting and challenging.
Any measure-theoretic property of a curvature measure should cor-
respond to some intuitive geometric property of the convex body.
However, even simple questions of this kind are unanswered. The
following is an example.

PROBLEM 2.2.1: Is there a simple geometric property of a convex
body K that is equivalent to the assumption that the m-th curvature
measure Cy,,(K,-), for some m € {0,...,n — 2}, is absolutely contin-
uous with respect to the (n — 1)-dimensional Hausdorff measure?

Similarly, one may ask which intuitive geometric conclusions can
be drawn from the assumption that Cp(K,-) < aCnh_1(K,-), for
some m € {0,...,n — 2}, with a constant a. Forn = 3, m =0
see Aleksandrov [7] and Busemann [15], Section 5; this was recently
extended to n > 3 and general m by Burago and Kalinin [14].

We shall now give two examples of results where a property of
a curvature measure can be translated into geometric information
on the convex body. Full proofs are technical and require advanced
results from the geometry of convex bodies. We shall, therefore, only
give an intuitive description of the main ideas of the proofs.

The first result characterizes the support of the m-th curvature
measure. The support of a Borel measure is the complement of the
largest open set on which the measure vanishes. To formulate the
result, we need the notion of m-extreme points. A point z of the
convex body K is an m-eztreme point, for m € {0,...,n — 1}, if
there is no (m + 1)-dimensional ball with centre = contained in K.

THEOREM 2.2.2. Let K € K" be an n-dimensional convex body
and let m € {0,...,n — 1}. The support of the curvature measure
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Cm(K,-) s the closure of the set of m-extreme points of K.

To sketch the proof, we denote the support of a measure y by
supp ¢ and the set of m-extreme points of K by ext,, K. Thus the
assertion says that

supp C (K, -) = clexty, K,

where cl denotes the closure. We put 5, := 0K \ ext,, K; this is a
Borel set. First we consider the case m = 0. By Theorem 2.1.8,

Co(K, Bo) = H" (o (K, Bo)).

Let u € o(K, Bp). If the supporting hyperplane H(K,u) of K with
outer normal vector « contains only one point x of K, then z € Gy =
OK \ extoK, hence z is not an extreme point of K. Thus H(K,u)
contains a segment of K, and hence u is a singular normal vector.
This implies H" (o (K, 8)) = 0 and therefore

CO(K7 /80) =0.

To extend this result to m > 0, we use a formula from integral
geometry. To formulate it, let £ denote the space of k-flats (k-
dimensional affine subspaces) in E™ with its usual topology. It carries
a rigid motion invariant measure ux, which is unique up to a constant
factor. Now the Crofton-type formula

Conl(K, B) = G / Co(K N E, B) ditn—m (E) (8)
o

n—m

is valid for g € B(E™), where ay, is a positive constant. This for-
mula, by the way, gives an interesting interpretation of the curvature
measure Cr, (K, -) as a mean value of Gaussian curvature measures
of intersections with (n — m)-flats.

Now for each £ € £]_,, we have

Bm NE C 8(K N E)\ exto(K N E),

since a point £ € B, N E is the centre of an (m + 1)-dimensional
ball contained in K and hence the centre of a segment contained in
K N E. From the result obtained above, but applied in F, we have

Co(K N E, ) = Co(K N E, B N E) = 0.
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The integral-geometric formula (8) hence gives
Cn(K,0K \ ext,, K) =0

and thus
supp Cn (K, -) C clext K.

For the opposite inclusion, we first observe that
CO(Ka /3) =0

for an open set 3 implies that no point of K N 3 ¢an be an extreme
point of K. This observation, however, is not strong enough; we need
a quantitative improvement. The following can be proved: Let 8 C
E™ be an open ball with centre € K and radius p. If Cy(K, 8) =0,
then z is the centre of a segment of length 2p/n contained in K.

Now let 8 C E™ be an open set for which C,,(K,3) = 0. From
(8) we obtain

Co(KNE,3)=0 for pip—m-almost all E € &7_ .

The fact that this relation holds only almost everywhere is the reason
for the necessity of the quantitative result above. Using it, we can
now infer the following. If x € K N 3, then there is a number r > 0
such that every (n —m)-flat through z that meets int K meets K in
a set containing a segment of length r with centre x. This implies
that z is the centre of an (m + 1)-dimensional ball contained in K.
Thus z ¢ ext,, K. This shows that 3N ext,, K = @ and thus

clext,, K C supp Cm(K, ')7

which completes the proof.

Similarly to Theorem 2.2.2, the support of the area measure
Sm(K,-) can be characterized: it is the closure of the set of all
(n — 1 — m)-extreme unit normal vectors of K. The vector u # 0 is
an r-extreme normal vector of K if it is not a positive linear com-
bination of r + 2 linearly independent normal vectors at the same
boundary point of K. This characterization of supp Sp, (K, ) is part
of a more general, but unproved conjecture. This concerns the mized
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area measures, which can be defined as the coefficients in the poly-
nomial expansion

Y4
Sn_l(a1K1+. . .+apr, ) = Z o7 ain_IS(Kil, cee ;Kin_la ')a

i1,ein_1=1

which extends (7).

OPEN PROBLEM 2.2.3: Determine the support of the mixed area
measure S(Ky,...,Kn—1,-).

A conjecture is formulated in [42], p. 366. A proof would be of
some interest for the theory of mixed volumes. The proof for the
special case of

Sm(K,) = S(K,...,K,B",... B".)
N e’

m

cannot be extended in an obvious way, since it uses an integral-
geometric formula involving a rotation invariant measure. It would,
therefore, also be of interest to find a proof of Theorem 2.2.2 and its
counterpart without using rigid motion invariant integral geometry.

Our second example extends a classical theorem from global dif-
ferential geometry to arbitrary convex bodies.

THEOREM 2.2.4. Let K € K} be a convez body with interior points,
and let m € {0,...,n — 2}. If the curvature measure Cp(K,-) is

proportional to the surface area measure Cn_1(K,-), then K is a
ball.

If the boundary 9K of K is of class C?, the condition of the the-
orem is equivalent to the condition H,_;_,, = const, and classical
methods of differential geometry yield the result. For general convex
bodies, a different approach is necessary. We shall sketch the prin-
cipal ideas of such an approach. It makes use of some results from
the theory of convex bodies, which will be explained without proof.

After applying a suitable homothety, we may write the assump-
tion of the theorem in the form

Cm(Kv') = Cn-—l(K7')' (9)

In the first step, this condition is transformed into one involving
area measures instead of curvature measures. This reformulation is
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possible due to the following facts. Using the support measures, one
can show that

Con(K, 7(K,w)Nreg K) < Sp(K,w) < Cp (K, 7(K,w)) (10)

for w € B(S™ 1), where reg K is the set of regular (= non-singular)
boundary points of K. Recall that 7(K,w) is the reverse spherical
image. By (5) and Reidemeister’s theorem,

Cn-1(K,0K \reg K) = 0. (11)
Now suppose that w C S" ! is closed. Then 7(K,w) is closed, and

Sm(K,w) < Cm(K,7(K,w)) by (10)
= Cn1(K, 7(K,w)) by (9)
= Co—1(K, 7(K,w)Nreg K) by (11)
= Cn(K,7(K,w)Nreg K) by (9)

< S (K, w). by (10)
This implies

Sm(K,w) = Cpo1(K,7(K,w))
= H7H(r(K,w))
= Sn_l(K,w)

by (6). Since the equality
Sm(K,w) = Sp_1(K,w) (12)

holds for all closed sets, it holds for all Borel sets.

The advantage of passing over to the area measures lies in the
fact that these are closely related to the theory of mixed volumes of
convex bodies. In particular, the coefficients appearing in the Steiner
formula

M(K + eB™) = ia <7;)Wi(K) (13)

1=0
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have the integral representations

Woen(K) = = [ dsn(K,) (14)
Sn—1

Wim1(K) = / h(K,u) dSp (K, u). (15)

1
n
N

Together with (12) this gives the equalities
Wam(K) = Wi(K), Wa_m_1(K)=Wo(K).  (16)

From the Aleksandrov-Fenchel inequalities in the theory of convex
bodies one knows that in general
%>@>...>L/’Z‘m :
WO o Wl o - n—m—1

By (16), for the body K this holds with equality throughout. Equal-
ity in one of the Aleksandrov-Fenchel inequalities usually has strong
consequences. In our case, we can conclude, using deeper results from
convex geometry, that K must be a so-called m-tangential body of
a ball. This means that K contains a ball B with the property that
each support plane of K that is not a support plane of B contains
only (m — 1)-singular points of K. In the special case m = 1 (corre-
sponding to the mean curvature) it follows that every support plane
of K not touching B contains only vertices of K. In this case, K
is the convex hull of B and a (possibly empty) set of points with
the property that the segment connecting two such points meets B.
Such a body is called a cap body of B. It is now easy to check that
such a cap body satisfies (9) only if it is a ball. Also in the cases
m > 1 we must exploit condition (9) (whereas (12) would not be
sufficient) to show that K is a ball. This, however, requires deeper
results from convexity, like derivatives of curvature measures and the
twice differentiability almost everywhere of convex functions, and we
cannot go into the details.

Notes. Theorem 2.2.2 was proved in [38], and its counterpart
for the area measures in [37]. The proofs are reproduced in [42],
Section 4.6; also the integral geometric formula (8) can be found in
[42], or see [45]. The complete proof of Theorem 2.2.4 is found in
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[40]. By a different approach, Kohlmann [25], [26], [27], [30] has
recently given another proof and has extended the theorem to con-
vex bodies in spaces of constant curvature. Using techniques from
geometric measure theory, he succeeded in extending a tool from
classical differential geometry, the so-called Minkowski integral for-
mulas, to general convex bodies in space forms. He has also treated
related stability problems, [28], [29]. Further information on older
related results can be found in [43].

2.3. The Aleksandrov-Fenchel-Jessen theorem

The area measures S1(K,-),...,Sp—1(K,") of a convex body K are
measures on the unit sphere S*~!, which is independent of K. This
fact makes it possible to compare area measures of different convex
bodies and to pose natural uniqueness and existence problems. For
example, if K, L € Kfj are convex bodies satisfying

Sm(K, ") = Sm(L,") (17)

for some m € {1,...,n — 1}, what does this imply for K and L? To
get a feeling for condition (17), let us first consider the case where
K and L have boundaries of class C? with positive curvatures. In
this case, (17) is equivalent to the condition that 0K and 8L have
the same m-th elementary symmetric function of the principal radii
of curvature, at points with parallel (oriented) tangent planes. This
means that the support functions of K and L satisfy a certain second
order partial differential equation (linear only for m = 1, of Monge-
Ampere type for m = n — 1). Hence, the following result can be
considered as a global uniqueness theorem for this equation: K and
L differ only by a translation. A differential-geometric proof of this
result was given by Chern [16]. Remarkably, the more general result
referring to (17) and general convex bodies is much older; it was
proved independently by Aleksandrov [4] and by Fenchel and Jessen
[19].

THEOREM 2.3.1 (ALEKSANDROV-FENCHEL-JESSEN).

Letm € {1,...,n—1} and let K, L € K" be convez bodies of dimen-
sion at least m+ 1. If Sy (K, -) = Spy(L, ), then K and L differ only
by a translation.
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We had to mention this result here, since it is a classical and
useful result about the determination of convex bodies by certain
measures. The proof, however, requires so much convexity theory
that we can only refer to the literature. A slightly more general
result is proved in [42].

2.4. Minkowski’s existence theorem

The area measure S,_1(K,-) of a convex body K has a simple ge-
ometric meaning; recall that S,—;(K,w) is the area (= (n — 1)-
dimensional Hausdorff measure) of the reverse spherical image 7(K, w).
In particular, if K is a polytope, the measure S,_1(K,-) is concen-
trated on the finitely many unit normal vectors uq,...,u,, of the
facets of K, and S,—1(K, {u;}) is the area of the facet with normal
vector u;. It is of considerable interest to know which measures on
Sm~1 are the (n — 1)-st area measures of convex bodies (with inte-
rior points). Two necessary conditions for such measures are easily
obtained. First, a special case of formula (15) says that

)\n(K)=% / h(K, w) dSn_1(K,u). (18)
S’n*—l

If we replace K by a translate K + ¢, then h(K,u) is replaced by
h(K,u)+ (t,u), but neither A,(K) nor S,,—1(K,u) is changed. Since
this holds for all t € E™ we infer that

/ “wdS_ (K, u) = 0. (19)
Sn—l

For a unit vector v, let K, be the image of K under orthogonal
projection onto the hyperplane through 0 orthogonal to v. For the
(n — 1)-dimensional volume of K,, it is not difficult to obtain the
formula

)\n_l(Kv):% / (11, 0)| 1 (K, ). (20)
S‘n—l

EXERCISE 2.4.1: Prove (18) and (20), first for polytopes and then
for general convex bodies, using approximation.
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Since (20) is not zero, the measure S,—1(K,-) cannot be concen-
trated on the great subsphere

vi={ue 8" (u,v) =0}
It is a remarkable fact that these two simple necessary conditions
for area measures of order n — 1 are already sufficient.

THEOREM 2.4.2 (MINKOWSKI, ALEKSANDROV AND FENCHEL-JESSEN).
Let ¢ be a finite measure on B(S™™1) such that

/ wdp(u) =0 (21)
Sn—l
and
p(sy) < 9(S"7) (22)
for each great subsphere s,. Then there is a conver body K with
¢ =S, 1(K,-). The body K is unique up to a translation.

The uniqueness assertion is only a special case of Theorem 2.3.1.
For the existence proof one can use that the body K, if it exists, must
have a certain minimum property. This information is provided by
the theory of mixed volumes. Extending the Steiner formula (13),
one has

An(K + €L V(K,...,K,L,...,L
+el) = Ze<i> ( )

for convex bodies K,L € K™ and € > 0, where the coefficients are
so-called mixed volumes. Formula (15) for m = n — 1 extends to

V(K, .. KL /hLudSnl(Ku)
S
Minkowski’s inequality from the theory of mixed volumes says that
V(K,...,K, L™ > \(K)" '\ (L),

where equality holds if and only if K and L are homothetic. Hence,
if there exists a convex body K for which S,_1(K,-) is the given
measure ¢, then the functional ® defined by

@(L):% / h(Lu)do(w), LeKm,
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satisfies
B(L) > M (L) ™M (BTG,

with equality if and only if L and K are homothetic. Therefore, a
strategy for proving Minkowski’s theorem is to show that the mini-
mum problem

®(L) =min! on {LeK": (L) =1}

has a solution K and then to show by a variational argument that,
in fact, S,—1(aK, ) = ¢ for a suitable factor o > 0. In this way,
Minkowski [34] gave a proof (in dimension three) for polytopes, and
Aleksandrov [5] gave one for general convex bodies. In the latter case,
the variational argument requires deeper results from the theory of
mixed volumes. It is, therefore, easier to prove the theorem for
polytopes first and then to use approximation together with weak
continuity. This path was followed by Fenchel and Jessen [19] and
also in a further paper by Aleksandrov [6]. We shall now sketch the
essential steps of this procedure.

Sketch of a proof of Theorem 2.4.2. The first step is the essential
one, but since it is not measure-theoretic, we don’t go into details
here. One starts with measures with finite support and satisfying
the assumptions. Thus, let

N
=1

(8 = Dirac measure), where uy, ..., uy € S"~! are given unit vectors,
not all in a great subsphere, and fi,..., fy are positive numbers so

that
N
> fiui =0.
i=1

One considers all polytopes of the form

N
Pla) = ﬂ{m e E": (z,u;) < a;}
i=1
with & := (o, ...,an) € RV, a; > 0, and the subset of RY defined
by
M :={a e RN : \,(P(a)) > 1}.
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The functional ® defined by
1 n
== iJ1y [ Z )
®(a) - ,-Ezla f o ay >0

attains a minimum on M. If this minimum is attained at o* and its
value is "1, one can show by elementary means that the polytope
uP(a*) solves Minkowski’s problem for the measure . With other
words,

Sn-l(uP(a*),{ui}) =fi for i = 1,...,N

and
Sp—1(uP(a*), S 1\ {uy,...,un}) = 0.

In the second step, the result is now extended by approxima-
tion. Let ¢ be a measure satisfying (21) and (22). We construct
a sequence (¢ )keN of measures with finite supports, also satisfying
these assumptions and converging weakly to ¢. For given k € N, the
sphere S"~! can be decomposed into Borel sets of diameter at most
1/k and with spherically convex closure. Let Ay, ..., Ay be the sets
of this decomposition on which ¢ does not vanish, and define

udp(u fori=1,...,N.
‘P(Ai)A/ o)

=
If f; is defined by ¢; = f;u; with u; € S"~1, one can easily show that
1—(2k%)7! < f; < 1. The measure

N
Ok = > (D) fibu,
i=1

satisfies
/ udpg(u) = 0.
gn—1
Let g be a continuous real function on S”~!, and let € > 0 be given.
For i € {1,...,N} and for u € A; we have ||u; — u|| < 1/k, hence
from the uniform continuity of g it follows that

|fig(ui) — g(w)] < |fi — 1| [g(us)l + 1g(us) — g(u)]
max |g(v)| + |g(u:) — g(w)]

2k2 yegn—1
€

IA

IA
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for k > kp and suitable kg. This gives

N
[ saoe— [ gde| < 3 [1ha(w) - gl dp
gn—1 gn—1 =14,
< ep(S"7Y).

From this, we conclude that
Yk =P for k — oo.

We have to show that ¢y is not concentrated on a great subsphere,
if k is sufficiently large. Since ¢ is not concentrated on a great
subsphere, we have

/ (u,v)" dp(u) > 0 for each v € ™71,
Sgn—1

where + denotes the positive part. By continuity, this integral has
a positive lower bound independent of v. Since

lim (u,v)" dr(u) = / (u,v)t dp(u)

k—o0
Sn—1 Sn—1
uniformly in v (by the estimate above), we conclude that there exist
a >0 and k; € N with

[ wor deww) >

Sn—l

for k > k; and v € S»1. This means that the measure gy is not
concentrated on a great subsphere if k > k.

We can now apply the first step of the proof and deduce that,
for k > ki, there is a polytope Pr € K@ with Sp_1(Pk,) = ¢r. We
may assume that 0 € Py. Then all polytopes P lie in some fixed
ball. This can be seen as follows. Since @x(S™ 1) < (S™!) by the
definition of ¢y, the surface areas of the polytopes Py are bounded
by ©(S™1). By the isoperimetric inequality, there is a constant b
with A, (Pg) < b. For z € P;, and setting z = [|z|lv with v € sl
we have

h(Py,u) > h(conv {0, z},u) = ||z||{u, v)"
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for u € 871, hence, using (15) form =n — 1,

b > An(P) =~ / h(Pe, 1) dSr—1(Pe, )
ns’n—l
> 2T 0y doutuy 2 12l
- n 1 k) —_ n
Sn—

and thus ||z|| < nb/a.

We can now apply the Blaschke selection theorem. It says that
in the space K™ with the Hausdorff metric § every bounded set is
relatively compact; hence, from the bounded sequence (Py)k>k, we
can select a subsequence that converges to some convex body K €
K™. The weak convergences pr — ¢ and Sp_1(Pk,") = Sp_1(K, ")
now imply that S,_1(K,-) = . This completes the proof of Theorem
2.4.2.

2.5. The length measure in the plane

In the case of the plane E2, Minkowski’s existence and uniqueness
theorem shows some special features and has, therefore, a number
of applications which have no immediate analogue in higher dimen-
sions. It is particularly useful for the treatment of certain decompo-
sition problems and of mappings on convex bodies with additivity
properties.

The area measure S1 (K, -) of a convex body K € K? is also called
the length measure of K. It is well adapted to an important operation
for convex bodies, the Minkowski or vector addition, defined by

K+L:={z+y:z€K, ye L}.
For K, L € K?, we have
Sl(K + L, ) = Sl(K, ) + Sl(L, ) (23)

This is easily seen if K and L are polygons; the general case is
obtained by approximation. Similarly one sees that Si(aK,:) =
aS1(K, ) for a > 0. These facts can be used to establish an isomor-
phism between a cone of translation classes of convex bodies in E?
and a cone of measures.
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It is convenient to select from each translation class of bodies in
K? a particular one, in the following way. For K € K2, one defines
the Steiner point by

s(K) = % / h(K, u)u dH (u).
Sl

We put
K2%:={K e K?: s(K) = 0}.

Observing that s(K + t) = s(K) + t, we note that X2 contains pre-
cisely one element from each class of translates of a convex body.
From the fact that the support function satisfies h(K + L,-) =
h(K,-) +h(L,-), we get s(K + L) = s(K) + s(L), hence K? is closed
under Minkowski addition. Since also s(aK) = as(K) for a > 0, the
set K2 is a convex cone under Minkowski addition and multiplication
by nonnegative scalars.

Let us denote by Mo(S!) the cone of finite Borel measures on S*
satisfying

/ uwdp(u) = 0.
S1
Then the map ® defined by

@:’Cg - Mo(Sl)
K - Sl(K,)

is bijective. The injectivity follows from the uniqueness part of
Minkowski’s theorem. That every p € M(S?) is attained under @,
follows from Minkowski’s existence theorem if y is not concentrated
on a pair of antipodal points. But if 4 = ad, + ad_, with u € St
and a > 0, then u = S1(K,-), where K is the segment of length a
orthogonal to u and with centre 0. As ®(K +L) = ®(K)+ ®(L) and
®(aK) = a®(K) for a > 0, the map @ is an isomorphism between
the cones K2 and Mo(S1). If K2 is equipped with the Hausdorff
metric and Mg(S!) with the topology of weak convergence, then
is continuous.

We shall now give a few examples of results which can be obtained
by working with this isomorphism.
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Let K,L € K% The body L is said to be a summand of K if
there exists a convex body M € K? so that L + M = K. The body
K is called indecomposable if every summand of K is homothetic to
K (that is, of the form aK + t with a > 0 and t € E?).

THEOREM 2.5.1. Let K, L € K2. Then L is a summand of K if and
only if S1(L,-) < S1(K,").

Proof. If K = L+ M with M € K2 then Si(K, ) = Si(L,-) +
S1(M,-) > Si(L,-). Vice versa, if Si(L,-) < Si(K,-), then ¢ =
S51(K, ) — Si(L,-) € Mo(S?), hence ¢ = &(M) for some M € K2,
and M + L = K. Thus L is a summand of K. O

EXERCISE 2.5.2: Using Theorem 2.5.1, show that K € K? is inde-
composable if and only if K is either a triangle or a segment (possibly
one-pointed).

Due to its linearity properties, the length measure is a natural
tool for the description of certain additive mappings on the space of
convex bodies. We quote without proof two results of this type.

A (real) valuation on K2 is a map f : K2 — R satisfying

F(KUL)+ f(KNL) = f(K)+ f(L)

whenever K, L, K U L € K2.

Valuations arise often in the theory of convex bodies; classifica-
tions of valuations with additional properties are therefore of interest.
The following result of this type is a reformulation of a theorem of
Hadwiger [23].

THEOREM 2.5.3. Let f be a valuation on K? which is continuous
and translation invariant. Then there exist constants a, b and a
continuous function g : S' — R such that

FUE) = a+ [ g(w)dSi(K,u) + bra(K)
S1

for all K € K2.

By an endomorphism of K2 we understand a continuous map
T : K? - K? satisfying

T(K + L) = T(K) + T(L)
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for K,L € K? and
Tg=gT

for every rigid motion g of E2. Thus an endomorphism of K? re-
spects the essential geometric structures of X?. The following the-
orem shows, in two different ways, how measures on the unit circle
can be used to give a complete description of endomorphisms. For a
convenient formulation, we choose an orthonormal basis e;, ea of E?
and write

u = (cosfy)er + (sinb,)er with 0 <8, <27
for u € S1, as well as

u(p) = (cosp)e + (siny)ea for 0 < ¢ < 2m.
THEOREM 2.5.4. Let T be an endomorphism of K2.

(a) There exists a continuous, 2m-periodic function g : R — R such
that

WTK,u) = / 9(6, — 6,) dS1(K, v) + (s(K), w)
St
for K € K2.

(b) There exists a finite Borel measure v on [0,27) such that

WTK ) = [ BE = s(K),un,49) dv(s) + (s(K), )
[0,27)

for K € K2.

The function g and the measure v are essentially unique, that is,
unique up to trivial summands. For the proof of Theorem 2.5.4 we
refer to Schneider [36].

A second particular aspect of the planar case of Minkowski’s exis-
tence and uniqueness theorem is the fact that here one has an explicit
integral representation of the support function in terms of the length
measure. This is given by Theorem 2.5.5, in the proof of which we
follow a recent paper of Christina Bauer [10].
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Put N, := {v € 8! : 0 < 8, < 6,}; this is the half-open circular
arc from e; to u. For u € 8! we write

F(K,u) :={z € K : (z,u) = h(K,u)};

this is the face of K with outer normal vector u.
The following theorem expresses the support function of a convex
body K € K? in terms of its length measure.

THEOREM 2.5.5. Let K € K2. Determine xo € E? so that
F(K,el) = {.’IJ() +aey:0<a< Sl(K, {61})}

Then
h(K,u) = (zo,u) + / sin(6, — 6,) dS1 (K, v) (24)
Nu

for all u € S*.

EXERCISE 2.5.6: Prove (24) in the special case where K is a poly-
gon.

Proof of Theorem 2.5.5. Let K € K? and u € S\ {e;}. We can
easily construct a sequence (P;);en of polygons so that lim; o, P; =
K in the Hausdorff metric and

F(P,e1) = F(K,e1),  F(P,u)=F(K,u), (25)
thus
S1(P, {e1}) = Si(K,{e1}),  Su(Bi, {u}) = Su(K,{u}) (26)
for all i € N. For i € N and a Borel set w € B(S') we define

ul(w) = Sl(P,,,wﬂintNu),
plw) = Si1(K,wnNintN,),

where int denotes the interior relative to S!. By Theorem 2.1.6,
S1(P;,-) B S1(K,-) for i — oo, hence (26) implies that

S1(P;, -\ {e1,u}) 3 S1(K, -\ {e1,u}).
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Let w C S! be a Borel set whose boundary dw has measure zero
under g; then the set (wNint N, ) has measure zero under S (K, -\
{e1,u}). By a well-known characterization of weak convergence, this
implies lim; 00 pts(w) = p(w) and, hence, p; — p.

We now use (24) for the polygons P; (as proved in the exercise)
and obtain from (25) and (26) that

h(P;,u) = (wo,u)+/sin(0u—0v) du;(v) + / sin(f,, —0,) dS1(K, v).
' St {e1}

For i — oo, we have h(P,,u) — h(K,u) and pu; — p, hence

WK, u) = (zo,u) + / sin(8, — 0,) du(v) +
Sl
+ / sin(8,, — 8,) dSy (K, v)
{e1}
— (zo,u) + / sin(0, — 8,) dS1 (K, v),
N,

which completes the proof of Theorem 2.5.5. [l

Theorem 2.3.1 for n = 2 can be deduced from Theorem 2.5.5.
Let K, L € K3 be convex bodies such that S1(K,-) = S1(L,-). With
suitable points zo,yo it then follows from (24) that h(K — zo,u) =
h(L — yo,u) for all u € S, which implies K — zg = L — yg.

We conclude this section with a few applications of Theorem
2.5.5.

In Theorem 2.5.1 we showed that S1(L,-) < S§1(K, -) implies that
L is a summand of K; in particular, L can be covered by a translate
of K. The latter fact follows also from a weaker assumption:

THEOREM 2.5.7. Let K,L € K2. If there is a point zo € S* so that
Sl(L7w) < Sl(Kaw)

for all Borel sets w € B(SY) with 29 ¢ w, then L can be covered by a
translate of K.
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Proof. Let e; := —z and define the point zo = zo(K,e1) as in
Theorem 2.5.5. After applying suitable translations, we may assume
that zo(K,e1) =0 =zo(L,€e1). Forue A:={v e Sl:0<0, <7}
we have 29 ¢ N, and thus Si(L,- N Ny) < Si(K,-N Ny). Since
sin(fy — 6,) > 0 for v € N, with u € A, we deduce from Theorem
2.5.5 that h(L,u) < h(K,u) for u € A.

Let u € ST\ A. Then zp ¢ S\ N, and thus Si(L, N(ST\NVy)) <
S1(K,-N(ST\ Ny)). From

/vdSﬂv)=0
S1
we get
/cos 6,dS1(v) =0= /sin 6, dS1(v)
s1 S1
and thus

/sin(@u —6,)dS1(v) =0.
Sl

Hence, from (24) we have

h(K,u) = — /sm%—&m&mwy
SN,

Since —sin(fy — 6,) > 0 for v € S* \ N, with u € 51\ A, we get
h(L,u) < h(K,u).

We have proved that h(L,u) < h(K,u) for all u € S', which
implies L C K and thus the assertion of Theorem 2.5.7. O

Theorems 2.5.1, 2.5.5 and 2.5.7 can be used to further investigate
the additive structure of K2. We conclude with describing a recent
result of Bauer [10]. For K, M € K2, let S(K, M) be the set of all
convex bodies C € K2 for which K and M are summands. Clearly, if
K + M is a summand of C, then K and M are summands of C, but
not necessarily vice versa. We say that the pair (K, M) € K2 x K2
is reduced if C € S(K, M) implies that K + M is a summand of
C. The pair (K, M) is called minimal if C € S(K, M) together
with C € K + M implies that K + M is a summand of C (and
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hence C = K + M). An equivalent notion was introduced recently,
motivated by a question from quasidifferential calculus. On K™ x K™
one can define an equivalence relation ~ by

(K,M) ~ (K'M) & K+ M =K + M.

Let £(K, M) denote the corresponding equivalence class of (K, M).
The pair (K, M) is a minimal element of its equivalence class if
(K',M') € E(K,M) together with K’ C K and M’ C M implies
that (K', M') = (K, M). It is easy to see that this is the case if and
only if (K, M) is minimal in the sense defined above. For dimen-
sion two, it has been proved that every equivalence class contains
a minimal element and that this is unique up to translations. (In
higher dimensions, neither existence nor uniqueness up to transla-
tions are generally satisfied.) The existence proof, however, was non-
constructive, using Zorn’s lemma, and the uniqueness proofs used
deeper techniques (see [10] for references). In Bauer [10], simple
proofs are given using the length measure: For K, M € K2, consider
the Jordan decomposition

Sl(K,~) - Sl(M,-) = l/+ -V

and determine z € S! and £ > 0so that v+ +£48, € My(S?), then also
V™ + €6, € Mo(S'). Minkowski’s existence theorem yields convex
bodies L*, L™ € K? satisfying

S1(L*, ) =vt + ¢4, S1(L™,)=v~ +&4,

and (LT, L™) € £(K, M). 1t is not difficult to show that (L*, L™ ) isa
minimal element of £(K, M) and that it is unique up to translations.

That the length measure is the appropriate tool here is also shown
by the following complete characterization of reduced and minimal
pairs in the plane.

THEOREM 2.5.8 (C. BAUER [10]). Let K, M € K?. The pair (K, M)
is reduced if and only if the length measures S1(K,-) and S1(M,-)
are mutually singular.

The pair (K, M) is minimal if and only if there is a point zy € S!
such that the restrictions of S1(K,-) and S1(M,-) to S\ {z} are
mutually singular.
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Notes. Letac [31] described in greater detail the use of length
measures in the study of planar convex bodies; Theorem 2. 5.5 ap-
pears there (and also, without a complete proof, in Levin [32], p. 81).
Theorem 2.5.7 is due to Scholtes [47]. Both theorems were proved in
a simpler way by Bauer [10].

3. Zonoids

The connection between measure theory and convex geometry de-
scribed in this last chapter is of an entirely different nature. A class
of convex bodies appearing in measure theory, namely as ranges of
nonatomic vector measures, is of considerable interest from a geomet-
ric point of view. On the other hand, certain questions on measures
arising in stochastic geometry can be answered by constructing such
special bodies from the measures and applying to them known results
on convex bodies.

A convex body Z € K™ is called a centred zonoid if its support
function can be represented in the form

_ / |(u, v)| dp(v) for u e SV, (27)

where p is a (real-valued) measure on B(S™"!). Any translate of a
centred zonoid is a zonoid. With a given measure p on B(S™™') we
can associate a convex body Z via (27). Then Z is called the zonoid
generated by p, and p is called the generating measure of Z. Since

/|uv|dp 2/Iuv )| [dp(v) + dp(—v)],

we can always assume that p is an even measure, that is, p(—A) =
p(A) for A € B(S™1).

To get an intuitive interpretation of zonoids, let us first assume
that the measure p in (27) is concentrated in finitely many points
+o1,. .., tum, where p({v;}) = p({—vi}) = a;/2 > 0. The line
segment S; with endpoints a;v; and —a;v; has the support function

h(SMU) = a'iKuv vi)la
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hence
m
/ [{u, v)| dp(v) = Z h(S;,u) for v € §*1
gn—1 i=1

and therefore
Z=51+...4+ 8,

Thus the zonoid Z generated by a measure p with finite support is a
finite Minkowski sum of segments. Such a body is called a zonotope.
It is a polytope with the property that each of its faces has a centre
of symmetry. Vice versa, if Z is a polytope with the property that
all its two-dimensional faces are centrally symmetric, then Z is a
zonotope. Since the two-dimensional faces of a three-dimensional
zonotope are centrally symmetric, they are arranged in “equatorial
zones”. This explains the name “zonotope”.

From (27) it is easy to see that every zonoid is a limit, in the
Hausdorff metric, of a sequence of zonotopes. Conversely, by a suit-
able compactness argument one can show that every such limit is a
zonoid.

3.1. Ranges of vector measures

Let ¢ be a nonatomic E"-valued measure (always countably addi-
tive) on some measurable space (X, A), and let Z, be its range. By
Liapounoft’s theorem, Z, is a compact convex set. First we want to
show that Z; is a zonoid. This is well-known, and a proof can be
found, e.g., in a concise form in Bolker [13]. We find it instructive
and useful to reproduce here the argument in a slightly expanded
form.
If o and Z, are as above, then 0 = (@) € Z,, and for A € A

o(4) - 30(X) = = |o(X\4) - 30 (X)),

hence Z, is centrally symmetric with respect to %O'(X ).
Let z € Z,, say = o(B) with B € A. Then

7(A) :=0(A\B)—o(ANB) forAc A
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defines a nonatomic vector measure 7 on A satisfying

T(AAB) = o(A)—-o(B)=0(4) -z,

c(AAB) = 1(A)+0o(B)=T1(A)+z
for A € A. Tt follows that Z, — z = Z,. For this reason we may
assume in the following, without loss of generality, that o(X) = 0
and, hence, Z, = —Z,.

Now let p be a real-valued Borel measure on the sphere 5™~ 1 and
define

a(A) = /xd,u(x) for A € B(E"™).
A

(We may assume that p is defined on all of E, but concentrated on
S"~1. The vector-valued integral can be defined coordinate-wise.)
Then i is an E™-valued measure on B(E"), possibly with atoms. By
K, we denote the closed convex hull of the range of ji.

LEMMA 3.1.1. If K, = —K},, then
1
MKy, u) = 5 / \u, )| du(z)  for ue B
S'n—l

Proof. For u € E™\ {0}, let
Hf = {z € E": (z,u) > 0}.

Let A € B(S™1). Since (z,u) > 0 for z € H} and (z,u) < 0 for
z € —H}, we get

(@A) = [wadp@)< [ (we)du(a)
A

AnHF

< [ woE
Sr-1nHE

= (A(H[), u).

By the definitions of K, and of the support function, this gives

A(Eyw) = (B, = [ (w,2) du(a).
HY
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Since K, = —K,,, it follows that
2h(K,uu) = h(K,u)+ h(K,, —u)
= [wardu@) + [ (-u,2) duo)
HT HY,

= [ lwo)du(a),
Sn—l

which completes the proof of Lemma 3.1.1. a

After this preparation, let Z, be the range of the nonatomic
vector measure o. Let |o| be the total variation measure of o and

do
1= do]

the Radon-Nikodym derivative, then f : X — S™! |g|-almost ev-
erywhere. (The properties of the total variation measure of a vector
measure used here can be proved similarly as the corresponding ones
in the case of complex measures; see, e.g., Chapter 6 of Rudin [35].)
Hence, the image measure of |o| under f,

pi=lolo f1,

is a measure on S”7!, and we can define K u @s above. Denoting by
1,4 the indicator function of A and by id the identity mapping on
S"~1 we have for A € B(S™ 1)

) = [ a@edu@)= [ 1a-iddn

Sn—1 Sn-1

= /(lA-id)ofd|a| =/(1A°f)fd|0|
X X

= |10 fdo= 14d(oo f71),
[roere=]

thus 2 = o o f~1. Since fi(A) = o(f71(A)), each value of fi is also a
value of o, hence K,, C Z,.
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To show the opposite inclusion, we estimate the support function
of Z,. Let A€ Aand z € S L. For w € X we have
<f(w)a$> >0s f(w) € H: And lf—l(H:)(w) =1,

hence
14(f,z) < lf—l(H;r)<fa$>a
which yields

(@(A)2) = [1atf)dol < [ s (fardo
X X

= (o(f71(HD)),2) = (A(HT),z)
= h(K,, ).

This implies h(Z,,z) < h(K,,z). Since z € S"~! was arbitrary,
Zs; C K, and thus Z, = K,,.
Since we may assume that Z, = —Z,, Lemma 3.1.1 gives

W(Zou) = [ lwolduz)  forueEn,
Sn—l

thus Z, is a centred zonoid.

Vice versa, if (27) is satisfied, we refer to Bolker [13] for the
construction of a nonatomic vector measure o satisfying Z = Z,.

We add two further observations on ranges of vector measures. If
the E™-valued measure o on (X, .A) is nonatomic, then its range Z,
is convex. Under which stronger condition on o is the range strictly
convex?! (A convex body is called strictly convez if its boundary
does not contain a segment.) Extending the method used above, we
can give the following answer.

THEOREM 3.1.2. The range of the nonatomic E™-valued measure o
on (X, A) is strictly convez if and only if for every set A € A with
o(A) # 0 there are n measurable subsets Ai,..., A, C A such that
o0(A1),...,0(Ay) are linearly independent.

' This question was asked by Carlo Mariconda in a discussion at the Workshop.
We are not aware of an answer given in the previous literature.
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Proof. Suppose that the range Z, is not strictly convex. Then there
is a vector e € S™! such that the face

F(Z,,e) = Z,NH(Z,,€)

contains more than one point. We may assume that Z, = —Z,, then
there is a real even measure u on the sphere S”~1 so that

1
hZs,u) = 3 / |{u, v)| dp(v) for u € E".
Sn—1

By directional differentiation, one can obtain a representation for the
support function of the face F(Z,,e): if

se = {zeS!:(z,e) =0},
St = {zeS"!:(z,e) >0},
then
A(F(Zo,e)u) = 5 [ |<u,v>|du(v>+< / vdu(v),u> (28)
Se S:'

for u € E"; see [42], Lemma 3.5.5. Since F(Z,, ) is not one-pointed,

we must have u(s.) > 0. As in the proof given above, we have
p=lo|of ! with f = %.

Therefore, the set f~1(s.) € A satisfies |o|(f~!(s.)) > 0 and hence

contains a subset A € A with 0(A) # 0. Forany B€ Awith BC A

we have (f(w),e) = 0 for w € B and hence

(o(B),e) = [(f.e)dlo| =0.
B

Thus, for any measurable sets By, . .., B, C A, the vectors o(By), ...,
o(By,) are linearly dependent.

Conversely, suppose that there exists a set A € A with o(A) # 0
and such that

lin{ec(B): Be A,BC A} =: L # E"™.
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The range of the restriction of o to A is a zonoid Z’ in L. Let Z” be
the range of the restriction of o to X \ A. Then Z, =2’ + Z". If e
is a unit vector orthogonal to L, then

F(Zy,e) = F(Z',e) + F(2",e) = Z' + F(Z"e).

Thus the face F(Z,, €) of Z, contains a translate of Z’. Since o(A) #
0, the zonoid Z’ contains more than one point, hence Z, is not strictly
convex. This completes the proof of Theorem 3.1.2. O

Finally, we remark that formula (28) also permits to prove the
following result.

THEOREM 3.1.3. Let Z, be the range of the nonatomic E™-valued
measure o on (X, A). If y is an exposed boundary point of Z,, then
a set A € A with 0(A) = y is uniquely determined, up to sets of
|o|-measure zero.

Proof. That y is an exposed boundary point of Z, means that there
exists a unit vector e so that F(Z,,e) = {y}. From (28) it then
follows that

p(se) =0 (29)
and
y=/vW@)
5¢

Here p and [ are derived from o as before, in particular
p(A) = /vd,u(v) for A € B(S™ 1)
A
and ji =0 o f~! hence
y=a(SF) =0(A)  with A:= f71(S)).

Suppose that B € A is another set with y = o(B). Write A := AU
f7(se). For w € B\ A we have (f(w), e) < 0. Since |o|(f1(se)) = 0
by (29), we deduce that

(w(B\A), &)= [ (fe)dio] 0. (30)

B\A
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For w € BN A we have (f(w),e) > 0, hence

B = [ (fedol < [(fe)dol = (o(4)e) = w.e)
BNA A (31)

This gives
(y,€) = (o(B),e) = (¢(B\ A),e) + (a(BN A),e) < (y,e).

Therefore we have equality in (30), which gives |o|(B \ 4) = 0 and
hence |o|(B\ A) = 0, and equality in (31), which gives |o|(A\B) = 0.
This completes the proof of Theorem 3.1.3. O

3.2. An application of zonoids

In the following, we want to give an example for the application
of zonoids to a certain problem on measures arising in Stochastic
Geometry. We consider infinite systems of random hyperplanes in
E™ and study their intersections.

A few preliminary explanations are necessary. Let T be a locally
compact, second countable topological space. Let M be the family of
all locally finite subsets of T' (M is locally finite, if card (M N C) <
oo for every compact set C C T'). Let M be the o-algebra on M
generated by all functions fg, B € B(T'), where

fB(M) := card (M N B) for M € M.

A (simple) point process on T is a measurable map X from some
probability space (£, A, P) into the measurable space (M, M). Let
X be such a point process. Let

O(B) := Ecard (X N B) for B € B(T),

where E denotes mathematical expectation. Then © is a measure,
called the intensity measure of X; we assume that it is locally finite
(i.e., finite on compact sets). The point process X is called a Poisson
process if each counting variable card (X N B), B € B(T), has a
Poisson distribution, that is, if

e(B)*

P(card (X NB) =k) = e_@(B)T for k € No.
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Poisson processes are, for several reasons, the simplest and most
interesting class of point processes.

Now we consider the space £7_; of hyperplanes in E”. With the
usual topology, it is a locally compact, second countable space, so
that the foregoing can be applied. Let X be a stationary Poisson pro-
cess on £7_;. Here “stationary” means that the intensity measure ©
of X, which is a measure on B(£7_,), is invariant under translations.
Since © is assumed to be locally finite and translation invariant,
it can be decomposed in the following form. We parametrize the

hyperplanes by writing
Hu,T = {1‘ e E": (ZL‘,’LL> = T}

for u € S"! and 7 € R. Then it can be shown that there exists
a uniquely determined finite even measure p on the sphere S*~1 so

that .
[ ra0= [ [ fH.r)drdotu)
&y

Sn—l —00

for every O-integrable real function f. The measure p describes
the frequency of hyperplanes with given directions in the process X.
More precisely, for a hyperplane H let u(H) be one of its unit normal
vectors. For a symmetric Borel set w C S""! we then have

p(w) = %Ecard (HeX:HNB" 40, u(H) € w}.

The number
1
v = p(§" 1) = §Ecard {He X: HNB" # 0}

is called the intensity of the hyperplane process X.

The hyperplanes in a realization of X determine lower-dimension-
al flats by intersections. We want to measure the density of such
intersections by a number. Let k € {2,...,n}. In each realization of
X, we form all intersections of any k hyperplanes in general position.
Let X} be the set of all (n — k)-flats obtained in this way. We call

1
Ve = K—Ecard{FE Xy : Fn B™ # 0}
k
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the k-th intersection density of the hyperplane process X.

If the intensity v of X is given, the intersection density ~y; de-
pends on the probability measure v~!p, the direction distribution of
X. We may ask for which direction distributions the k-th intersec-
tion density -y; becomes maximal (the minimum, of course, is zero).
This question can be answered with the help of zonoids.

First, we need an explicit expression for the intersection density
k. One finds that

1
=g [ [ Bl dotun) - dp(u),
Sn-—l Sﬂ—l

where [ui,...,ux] denotes the k-dimensional volume of the paral-
lelepiped spanned by the vectors ug,...,u;. Next, one associates
with the stationary Poisson hyperplane process X the Matheron
zonoid Z, defined by its support function

h(Z,u)z% / (u,0)|dp(v),  ueE™ (32)
gn—1

We need an expression for the volume A,(Z) if Z is defined by
(32). Suppose, first, that

k
p= Za"i(&ui + 6—%‘),

=1
thus
k
h(Z,-) =Y ail (- vs)l
i=1
and
Z=8+...+5; with S; := conv{a;v;, —a;v;}.
It is easy to see that

M(S14 ... +8) = Yoo Sy .+ S5

1<i1<... <in <k
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On the other hand,
Z )\(Si1‘+‘--~+Sin)

1<i1 <. <in <k

o &
= _| Z ['Uil’ .. vin]ail TGy,
11 4eeesin=1

/ /[ul, tn) dp(u) -+ dp(u)

By approximation, we obtain for general (even) measures p the result

W) = — / / [, wn] dpur) -+ dp(un).  (33)

We are interested in A,(Z + eB™) for € > 0. But the ball B™ is also
a zonoid, since

hB") = 5 / (-, 0] dAs(v)

-1

with As(A) := H"1(A)/kn_1 for A € B(S"1). Hence,

1
MZ+eBn ) =5 [ [o)lde+en).
Ssn—1
Using formula (33) for Z + eB"™ instead of Z, we see that for the
zonoid Z the functionals W; defined by the Steiner formula (13)

(the so-called quermassintegrals or Minkowski functionals) have an
integral representation in terms of the generating measure, namely

wiz) = = [ [l
sn-1  gn-1
dp(u1) - - - dp(un—i) AAs(Un—it1) - - - dAs(tn).

The integrations with respect to A; can be carried out, and one
obtains

Wi(Z)-—-i!ni / /[ul,...,un_i]dp(ul)---dp(un_i). (34)
S’n.-—-l

n!
Sn—l
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Thus, the intensity v = 1 and the intersection densities of the hy-
perplane process X are essentially quermassintegrals of its Matheron
zonoid:

n
Yo = (&) Wyx(Z) fork=1,...,n.

Kn—k

From the theory of convex bodies it is known that
We-1(2)* 2 kp " Woi(2),

with equality if and only if Z is a ball. The zonoid Z is a ball if and
only if its generating measure p is rotation invariant. For the station-
ary hyperplane process X this is equivalent to the rigid motion in-
variance of its intensity measure. Such a hyperplane process is called
isotropic. Thus it has turned out that among the stationary Poisson
hyperplane processes of given intensity v > 0, precisely the isotropic
ones have maximal k-th intersection density, for k = 2,...,n.

Notes. Special zonoids (though not under this name) were al-
ready treated by Blaschke [12], pp. 154-157; also special cases of
formula (34) appear there. For later generalizations of such formu-
las, see [42], Section 5.3, and the references given there in Note 1.

The paper of Bolker [13] collects various equivalent characteri-
zations of zonoids, among them that as ranges of nonatomic vector
measures. Later surveys on zonoids, mainly from the geometric point
of view, were given by Schneider and Weil [44] and by Goodey and
Weil [22].

The Matheron zonoid was first used (under the name of Steiner
compact) by Matheron [33]. The extremum property of isotropic
hyperplane processes just shown was observed by Thomas [48], and
in an essentially equivalent form for finitely many random hyper-
planes by Schneider [41]. Further applications of associated zonoids,
which generalize the Matheron zonoid, are surveyed in Schneider and
Wieacker [46], Section 6, and in Weil and Wieacker [49], Sections 6
and 7.
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