ON THE PROJECTIONS OF A CONVEX POLYTOPE

ROLF SCHNEIDER

It is shown that in the class of all centrally symmetric convex bodies in E^d a polytope is uniquely determined, up to a translation, by its brightness (or certain similar functionals) in a suitable, though "arbitrarily small", set of directions.

It is well known that a centrally symmetric convex body (compact, convex set with interior points) in d-dimensional Euclidean space $E^d(d \geq 3)$ is, up to a translation, uniquely determined by its brightness function. To formulate a more general result, let $S^{i-1} := \{x \in E^d : ||x|| = 1\}$ be the unit sphere in E^d ; for a convex body $K \subset E^i$ and a unit vector $u \in S^{d-1}$ let K(u) be the convex set that arises by orthogonal projection of K on to the (d-1)-dimensional linear subspace orthogonal to u. For $p \in \{0, 1, \dots, d-2\}$ let $v_p(K, u)$ denote the p-th cross-section measure (Quermassintegral; for a definition see Bonnesen-Fenchel [2, p, 49], or Hadwiger [5, p, 209]) of dimension d-1 of the set K(u). Thus, e.g., $v_i(K, u)$ is the brightness of K in the direction u, and $v_{d-2}(K, u)$ is, up to a factor depending only on d, the mean width of K(u). The following theorem has been proved by A. D. Aleksandrov [1]:

If $K, \overline{K} \subset E^d$ are centrally symmetric convex bodies satisfying $v_p(K, u) = v_p(\overline{K}, u)$ for each $u \in S^{d-1}$ and for some $p \in \{0, 1, \dots, d-2\}$, then \overline{K} is a translate of K.

For another proof and a generalization see Chakerian [3].

One might ask whether in Aleksandrov's theorem it is really necessary to assume the equality $v_p(K,u)=v_p(\bar{K},u)$ for the set of all directions u or whether some nondense subset thereof might suffice. The latter is, however, not true in general. In fact, given a centrally symmetric convex body $K \subset E^d$ with sufficiently smooth boundary and a symmetric subset $A \subset S^{d-1}$ which is not dense in S^{d-1} , there exists a centrally symmetric convex body $\bar{K} \subset E^d$, not a translate of K, which satisfies $v_0(K,u)=v_0(\bar{K},u)$ for each $u \in A$. Examples to this effect have been constructed in [7, §4]. The object of the present note is to exhibit a contrary situation: In case K is a centrally symmetric polytope, there exist sets $A \subset S^{d-1}$ of arbitrarily small (positive) measure such that the assumption

$$v_{\mathfrak{p}}(K, u) = v_{\mathfrak{p}}(\overline{K}, u)$$
 for each $u \in A$

forces the centrally symmetric convex body \bar{K} to be a translate of K. More precisely, we shall prove the following

THEOREM. Let $K \subset E^d$ be a centrally symmetric convex polytope. Let $p \in \{0, 1, \cdots, d-2\}$, and let $A \subset S^{d-1}$ be an open set which contains, corresponding to each (d-1-p)-dimensional face of K, a vector which is parallel to that face. If $\overline{K} \subset E^d$ is a centrally symmetric convex body which satisfies

$$v_p(K, u) = v_p(\bar{K}, u)$$
 for each $u \in A$,

then \bar{K} is a translate of K.

For $p \le d-3$ there exist universal sets A with the properties demanded in the theorem. For instance, if A is a neighborhood of an "equator sphere" of S^{d-1} , then A contains, corresponding to any (d-1-p)-face F of any convex polytope, a vector which is parallel to F.

The following remarks are preparatory to the proof of the theorem. For a convex body $K \subset E^d$ let $\mu_p(K,\cdot)$, $p=1,\cdots,d-1$, be its p-th surface area function; thus μ_p is a positive Borel measure on S^{d-1} which may be characterized by the fact that

(1)
$$V(\overline{K}, \underbrace{K, \cdots, K}_{p}, \underbrace{B, \cdots, B}_{d-1-p}) = \frac{1}{d} \int_{S^{d-1}} \overline{h}(v) \mu_{p}(K, dv)$$

for every convex body $\overline{K} \subset E^d$ (see Fenchel-Jessen [4]); here the left side is a mixed volume, B is the ball bounded by S^{d-1} , and \overline{h} is the support function of \overline{K} . As a special case of (1) we have the representation

(2)
$$v_{p}(K, u) = \frac{1}{2} \int_{S^{d-1}} |\langle u, v \rangle| \, \mu_{d-1-p}(K, dv) \,, \qquad u \in S^{d-1} \,.$$

For a convex polytope $P \subset E^d$ and $p \in \{1, \dots, d-1\}$ let $\sigma_p(P) \subset S^{d-1}$ be the spherical image of the p-faces of P, thus, by definition, $u \in \sigma_p(P)$ if and only if the supporting hyperplane of P with exterior normal vector u contains a p-face of P. We assert that the measure $\mu_p(P, \cdot)$ is concentrated on $\sigma_p(P)$. In fact, if $\omega \in S^{d-1}$ is a Borel set having empty intersection with $\sigma_p(P)$, then $\mu_p(P, \omega) = 0$ as may be seen from the last formula of Fenchel-Jessen [4] and an easy estimate of the measure of the "brush set" corresponding to ω .

We shall need two lemmas concerning expressions of the type occurring in (2). Let μ be a positive Borel measure on S^{d-1} which is

symmetric (i.e., attains

(3)

is, for $x \in E^d$, a (symmet denote the directional deat x in the direction y.

LEMMA 1. If H is

$$H'(x;y)=2$$

where

 $\boldsymbol{\omega}$

For the easy comp

LEMMA 2. If μ i which satisfies

$$\int_{S^{d-1}} |\langle u, v \rangle|$$

then $\mu = 0$.

Essentially, this proving his theorem quation of Lemma 2 to be two (d-1-p)-th su assumption is not nee special case, since from Aleksandrov, and Fench metric Borel measure area functions of two hence Lemma 2 follow earlier. For further respectively.

We proceed now t to write d-1-p= with formula (2) give

$$\int_{S^{d-1}} \langle u \rangle$$

symmetric (i.e., attains the same value at antipodal sets). Then

(3)
$$H(x):=\int_{S^{d-1}}\langle x, v\rangle |\mu(dv)$$

is, for $x \in E^d$, a (symmetric) convex function. Let H'(x; y) for $y \in E^d \setminus \{0\}$ denote the directional derivative (see Bonnesen-Fenchel [2, p. 19]) of H at x in the direction y.

LEMMA 1. If H is given by (3) with symmetric μ , then

$$H'(x; y) = 2 \int_{S_x} \langle y, v \rangle \mu(dv) + \int_{\omega_x} |\langle y, v \rangle| \mu(dv)$$

where

$$S_x$$
: = $\{v \in S^{d-1}: \langle x, v \rangle > 0\}$,

$$\boldsymbol{\omega}_{x} := \{ v \in S^{d-1} : \langle x, v \rangle = 0 \}.$$

For the easy computation, see [6, Lemma 6.1].

Lemma 2. If μ is a symmetric signed Borel measure on S^{d-1} which satisfies

$$\int_{S^{d-1}} |\langle u, v \rangle| \, \mu(dv) = 0 \quad \textit{for each} \quad u \in S^{d-1}$$
 ,

then $\mu = 0$.

a1

.)

ng m

ne

Essentially, this has been proved by Aleksandrov [1, §8]. In proving his theorem quoted in the introduction, he showed the assertion of Lemma 2 to be true in the case where μ is a difference of two (d-1-p)-th surface area functions of convex bodies; but this assumption is not needed in the proof. To be sure, this is not a special case, since from the well known existence theorem of Minkowski, Aleksandrov, and Fenchel-Jessen [4, p. 16], it follows that every symmetric Borel measure on S^{d-1} is the difference of the (d-1)-st surface area functions of two appropriate centrally symmetric convex bodies; hence Lemma 2 follows also directly from Aleksandrov's theorem cited earlier. For further references and a generalization of Lemma 2, see [6].

We proceed now to the proof of the theorem. It is convenient to write d-1-p=q. The assumptions of the theorem together with formula (2) give

$$\int_{s^{d-1}} |\langle u, v \rangle| \, \mu_q(K, dv) = \int_{s^{d-1}} |\langle u, v \rangle| \, \mu_q(\overline{K}, dv)$$

for each $u \in A$. Let F be a q-dimensional face of the polytope K. We have assumed that the set A contains a vector f which is parallel to F. Since A is an open set it contains a neighborhood of f. If equation (4) holds for a unit vector u, it holds also for every αu , $\alpha > 0$; thus there is an open set U of E^4 containing f such that (4) holds for each $u \in U$. Therefore the convex functions which are defined by the left and the right side of (4), respectively, must have equal directional derivatives at f with respect to every direction g. Then Lemma 1 yields

$$\begin{split} 2\int_{s_f} \langle y, v \rangle \mu_{\mathfrak{q}}(K, dv) &+ \int_{\omega_f} |\langle y, v \rangle| \, \mu_{\mathfrak{q}}(K, dv) \\ &= 2\int_{s_f} \langle y, v \rangle \mu_{\mathfrak{q}}(\bar{K}, dv) + \int_{\omega_f} |\langle y, v \rangle| \, \mu_{\mathfrak{q}}(\bar{K}, dv) \end{split}$$

for each $y \in E^{d}$. If we replace y by y and add the resulting equation to the former one we see that

$$\int_{\omega_f} |\langle y, v \rangle| \, \mu_q(K, \, dv) = \int_{\omega_f} |\langle y, v \rangle| \, \mu_q(\overline{K}, \, dv) \; .$$

Since K and \bar{K} are centrally symmetric, the measures $\mu_q(K,\cdot)$ and $\mu_q(\bar{K},\cdot)$ are symmetric. We can now apply Lemma 2 with the dimension d replaced by d-1, with S^{d-1} replaced by ω_f , and with μ replaced by the restriction of $\mu_q(K,\cdot)-\mu_q(\bar{K},\cdot)$ to ω_f . We deduce that

(6)
$$\mu_q(K, \omega \cap \omega_f) = \mu_q(\bar{K}, \omega \cap \omega_f)$$

for every Borel set ω of S^{d-1} . Now observe that the vector f has been chosen parallel to the q-face F. Thus every unit vector which is orthogonal to F is contained in ω_f , hence ω_f contains the spherical image of the face F. Therefore equation (6) is especially true if ω_f is replaced by the spherical image of F. Now F is an arbitrary q-face of K, hence the the additivity of the measures allows us to further replace the spherical image of F by the union of the spherical images of the q-faces of K:

(7)
$$\mu_{q}(K, \omega \cap \sigma_{q}(K)) = \mu_{q}(\overline{K}, \omega \cap \sigma_{q}(K)).$$

It has already been noticed that the measure $\mu_q(K, \cdot)$ is concentrated on $\sigma_q(K)$, therefore to intersect ω with $\sigma_q(K)$ on the left side of (7) is indeed superfluous; we have

(8)
$$\mu_q(K, \omega) = \mu_q(\overline{K}, \omega \cap \sigma_q(K))$$

for every Borel set ω on S^{d-1} . Write

ン(の

then (8) gives

3

so that v is still a positi

H(.

defined for $x \in E^{d}$, is the By (4) we have H(u) = 0 S^{d-1} , and since H is eve set antipodal to A. Thus This gives H(x) = 0 for eac 2 shows that ν , being sypproved that the convex parea function, hence they [1]. Fenchel-Jessen [4]).

1. A. D. Aleksandrov, Zur The

II (Russian , Mat. Sbornik N.S.2. T. Bonnesen and W. Fenchel

3. G. D. Chakerian, Sets of con Trans, Amer. Math. Soc. 129 (1

4. W. Fenchel and B. Jessen. . Selsk. Mat. Fys. Medd. 16 (193

5. H. Hadwiger, Vorlesungen a Berlin-Gottingen-Heidelberg, 1957

6. R. Schneider, Über eine Inte Math. Nachr. (to appear).

7. R. Schneider and W. Weil. L die Inhalte seiner Projektionen (1

Received July 14, 1969.

MATHEMATISCHES INSTITUT DER R 463 BOCHUM, GERMANY lytope K. is parallel of f. If every αu , in that (4) are defined have equal y. Then

g equation

 (K, \cdot) and the diand with μ We deduce

ector f has ector which he spherical true if ω_f is trary q-face to further ical images

oncentrated side of (7)

 $\nu(\omega)$: = $\mu_q(\vec{K}, \omega) - \mu_q(K, \omega)$,

then (8) gives

$$u(\omega) = \mu_q(ar{K}, \, \omega \cap [S^{d-1} \setminus \sigma_q(K)])$$

so that ν is still a positive measure. Hence the function

$$H(x):=\int_{S^{d-1}}\langle x,v\rangle|\nu(dv)$$
,

defined for $x \in E^d$, is the support function of a compact convex set C. By (4) we have H(u) = 0 for each $u \in A$, where A is an open set on S^{d-1} , and since H is even, we have also H(u) = 0 for each u in the set antipodal to A. Thus C cannot contain a point different from 0. This gives H(x) = 0 for each $x \in E^d$, and another application of Lemma 2 shows that ν , being symmetric, must vanish identically. We have proved that the convex bodies K and \overline{K} have the same q-th surface area function, hence they differ at most by a translation (Aleksandrov [1]. Fenchel-Jessen [4]).

REFERENCES

- 1. A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, II (Russian), Mat. Sbornik N.S. 2 (1937), 1205-1238.
- 2. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Springer, Berlin, 1934.
- 3. G. D. Chakerian, Sets of constant relative width and constant relative brightness, Trans. Amer. Math. Soc. 129 (1967), 26-37.
- 4. W. Fenchel and B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selsk. Mat. Fys. Medd. 16 (1938).
- 5. H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer, Berlin-Gottingen-Heidelberg, 1957.
- 6. R. Schneider, Über eine Integralgleichung in der Theorie der konvexen Körper, Math. Nachr. (to appear).
- 7. R. Schneider and W. Weil, Über die Bestimmung eines konvexen Körpers durch die Inhalte seiner Projektionen (to appear).

Received July 14, 1969.

MATHEMATISCHES INSTITUT DER RUHR-UNIVERSITÄT 463 BOCHUM, GERMANY