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Abstract. A central problem in classical geometry is the classification of all regular polytopes and
tzssellations in spherical, cuclidean or hyperbolic space. When asked within the theory of absiract
regular polytopes, the classification problem must necessarily take a different form, because a priori
an abstract polytope is not embedded into the geometry of an ambient space. The appropristic
substitute now calls for the classification of abstract regular poiyiopes by their local or globasl
topological type. The classical theory of regular polytopes is concerned with, and solves, the
spherical case. In recent years, much work has been done on the toroidal case and a complete
cl&::.ir"..:a'.ion iz now within reach. .

Key words: Abstract regular polytopes, Toroidel polytopes, Refiection groups, Coxeter gToups.

1. Introduction

Symmetry of geometric figures is a fascinating phenomenon which males = poweriul
appearance in the classical theory of regular polytopes (Coxete: [9]). These figures
have an outstanding history of study unmatched by almost any other geome:ric
object. For a more detailed discussion on this history the reader is referred to the
article by Peter McMullen in this volume,

Tn the past 13 vears this area of classical geometry has been extended in sevaral
directions which are all centered zround an abstract combinatoria) polyiope theory
and a combinatorial notion of regularity. Abstract regular polytopes generalize the
classical notion of a regular polytope and tessellation to more cemplicated combina-
torial structures with 2 distinctive geometric and topological favour. The notion of
an abstract polytope was introduced in Griinbaum (18] and Danzer & Schulie (2],
with a more systematic approach starting in [36). For related concepts which oc-
curred earlier or at about the same time, we also refer to Buekenhout {3}, Dress [13],
McMullen [21], Tits [46] and Vince [47]. See again the article by Peter McMullen
for more details on the history of this subject.

A central problem in the classical theory is the complete classification of 2ll reg-
uiar polytopes and tessellations in spherical, euclidean or nyperbolic space. The
solution to this problem is well-known and is closely related to the classification of
Coxeter groups of spherical, euclidean or hyperbolic type: see Coxeter & Moser {10,
Humphreys [19], or the article by Arjeh Cohen in this volume. When asked within
the theory of abstract polytopes, the classification problem must necessarily take

* Supporied by NSFT grant DMS-9202071
1 Email address: schulte@northeastern.edu
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a different form, because a priori an abstract polytope is not embedded into the
geometry of an ambient space. The appropriate substitute now calls for the classi-
fication of abstract regular polytopes by their local or global topological type. In
the first place this requires to associate with abstract polytopes a natural topology,
a problem which is very subtle and which in general cannot be uniquely solved. On
the other hand, many polytopes admit a natural topology and so are subject to the
classification with respect to this topology.

The classical theory of regular polytopes is concerned with, and solves, the spher-
ical case. Convex polytopes and tessellutions are locally spherical in ihe cence
that their local building blocks ({acets or tiles, and vertex-figures) ale topoiogicilly
spheres; and convex polylopes are also globally spherical ([17]). Using terminol-
ogy introduced further below we can restate this by saying that the only universal
abstract regular polyvtopes which are locally spherical are the classical regular tes.
sellations in spherical, euclidean or hyperbolic space; among those, only the spheri-
cal regular tessellations (convex regular polytopes) are finite and globally spherical
(I8, 9, 21, 14)).

A major concern is now to extend this classification to polytopes with more so-
phisticated topologies like that of arbitrary spherical, euclidean or hyperbolic space-
forms (Wolf [52]). In this generality the clessification problem is wide open, yet
significant progress has been made in the case where the euclidean space-form is a
torus (McMullen & Schulte [25, 27, 28, 29, 30]). In this paper we shall mainly discuss
this toroidal case. For a clarification of what classification means in this context we
refer to Section 3.

in the 70's, Grinbaum [18] triggered the theory of abstract polytopes by pos-
ing the challenging problem, as yet unsolved, of completely classifying the locally
toroidal regular polytopes in each rank n > 4. As a first step this requires, for each
rank n, the classification of the globally toroidal regular polytopes, the toroids; see
Section 4. For rank 3 the toroids are the well-known regular (reflexible) maps on the
2-torus (Coxeter & Moser [10]). An abstract polytope of rank n is now called locally
toroidal if its facets and vertex-figures are (globally) spherical or toroidal, with at

_least vne kiad icreidel. Locally toroidal resular nolvtopes can exist in ranks 4, 5

and 6 alone, because in higher ranks there are no suitable hyperbolic honeycombs

to derive them from.

The situation is currently best understood in ranks 4 and 5. In rank 4, the
classification involves analysis of the Schlifli types {4,4,r} with r = 3,4, {6, 3,p}
with p = 3,4,5,6, and {3,6,3}, and their duals. A complete classification is known
for all types except {4,4,4) and {3,6,3} ({25, 27, 28]). For {4,4,4) the clessification
is almost complete, and for {3, 6,3} partial results were obtained. The picture is
particularly satisfactory for the types {6,3,p} 2nd the known cases of {3, 6,3} ([25]).
Here the structure of the polytopes is governed by a complex hermitian form. In
particular, the polytope is finite if and only if the corresponding form is positive
definite. This generalizes the well-known classical situation where the structure of
a regular convex polytope or regular tessellation is determined by a real quadratic
form which determines the geometry of the ambient space; this correspondence sets
up a beautiful link between geometry and algebra ([9]).

In rank 3, only one Schléfii type occurs, {3,4,3,4} (2nd its dual). The locally
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toroidal polytopes of this type are completely classified ({29, 30)).

In rank 6, the types are {3,3,38,4,3}, {3,3,4,3,3} and {3.4,3,3.3}, and their
duals. There is a list of known finite polytopes which is conjectured to be complete
({29, 30]). In general, these polytopes are huge and wild, and so their classification
is difficult. Honoring our old friends who used to inhabit our planet millions of vears

ago, we may wish to call them dinotopes. However .in contrast to those, they arec,

still giving us a hard time.

On the group level, the classification of toroidal and locally toroidal polytopes
amounts to the classification of certain groups which are defined in terms of gener-
ators and relations. These groups are quotients of euclidean or hyperbolic Coxeter
groups and are obtained from those by either one or two extra relations. These
extra relations force the toroidal structure upon the whole polytope or its facets or
vertex-figures.

In contrast to regular polytopes, relatively little is known about chira) polytopes
(Schulte & Weiss [39, 40], Monson & Weiss (33], Nostrand [34]). While regular
polytopes have maximal symmetry with respect to (combinatorial) refiection, chiral
polytopes are abstract polytopes with maximal rotational symmetry. Chirality of
polytopes is a fascinating phenomenon which does not occur in the classical theory.
In rank 3, the chiral polytopes are the irreflexible maps on surfaces ({10]); there are
infinitely many such maps of genus 1 but for higher genus the occurrence is rather
sporadic. For ranks n > 4 there are no chiral toroids, so the classification of locally
toroidal chiral polytopes makes sense in rank 4 alone, However, here our knowledge
is rather incomplete and is complicated by the fact that chiral polytopes occur in
two enantiomorphic (mirror image) forms. The methods used for the construction of
chiral polytopes of rank 4 all employ representations of hyperbolic rotation groups
as projective linear groups over finite rings.

2. Basic Notions

In this section we give 2 brief introduction to the theory of abstract regular and
chiral polytopes. For more details the reader is referred to [31, 39] or the article by
Peter McMullen in this volume. ;

An (abstract) polytope of rank n, or simply an n-polytope, is a partially ordered set
P with a strictly monotone rank function with range {-~1,0, ...,n}. The elements
of rank ¢ are called the i-foces of P, or vertices, edges and facets of P if i = 0,1
or n — 1, respectively. The flags (maximal totally ordered subsets) of P all contain
exactly n+2 faces, including the unique minimal face F_, and unique maximal face
Fn of P. Further, P is strongly flag-connected, meaning that any two flags ® and ¥
of P can be joined by a sequence of flags ¢ = ¢, d,,...,¢; = ¥, which are such
that ®;_, and ®; are adjacent (differ by just one face), and such that ¢ N ¥ C 9;
for each i. Finally, if F and G are an (i — 1)-face and an (i + 1)-face with F < G,
then there are exactly {wo i-faces & such that F<H<G.

If F and G are faces with F < G, we call G/F={H|F<H< G} a section of
P. We can usually safely identify a face F with the section F/F_1. For a face F,
the section Fn/F is called the coface of P at F, or the verlez-figure ot Fif Fis a
vertex.

e b e e . .
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An abstract n-polytope P is reguler il its (combinatorial cutomorphism) group
A(P) is transitive on its flags. Let & := {F_y, Fo,.. .+ Fn} beafixedor bese flag of P,
The group A(P) of a regular n-polytope P is gencrated by distinguished generators

PO, -+ s pr—y (with respect to &), where p is the uniqu

e automorphism which keeps

all but the i-face of ¢ fixed. These gencralors satisly relations

' (pips) = € (Li=0,...,n=1) (1)
with e n RIS — —:.—-
pi=1, py=p 220 #7), (2)
and
piy =2 il -2 2. (2)
Here the numbers piyy := pij+; determine the (Schiafir) type {P1y-+-1Pn=1} of

P. Further, A(P) has the infersection property (with respect 1o the distinguished

generalors), namely
(pili e 1) (psli € 7) = (pili € INJ) forall I

By a C-group we mean 2 group which is generated

Jc{0,...,n=1}. (4)

by involutions such that (1),

(2) and (4) hoid. If in addition (3) holds, then the group is called 2 siring C-group.
The group of 2 regular polytope is 2 string C-group. Conversely, given a string C-
group there is an 2ssociated regular polytope of which it is the autornorphism group
({36]). Note that Coxeter groups are examples of C-groups ([19]).

Each string C-group is 2 quotient of the Coxeter.group [P1)-.-1Pn=1) With the

string diagram

-

Pn-2

'Y PO Iy SRR I

PR (3)
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tope is denoted by {p,..
{Pl:---»?n—l}~
For 2 regular polytope P the rotations

ci=pipi-1 (F=1-.

.,Pn—1} 2nd covers zny other regular polytope of type

L,n=1)

generate the rotation subgrovp AT(P) of A(P), which is of index 2t most 2. These

rotations o; fix all faces in ¢\ {F;_y, F;} and cyclically

permute consecutive j-faces

of P in the section Fj.,/F;_2 of P of rank 2. A regular polytope P is called direcily
rcnglar if A¥(P) has index 2 in A(P). For a regular polytope P, direct regulanity is
e.qux\':alent to orientability of its order complez A(P), the simplicial complex whose
su'riphces are given by the totally ordered subsets of P not containing F_; and F,
([43)). Note that for P = {pj,...,Pn-1} the rotation subgroup A¥(P) is the even

subgroup [?1.---.Pn—1]+ of [p1, .-+, Pa=1] ([10]).

Now let P be 2 polviope of rank n > 3. Then P is said to be chiral if P is

not regular, but if for some base fag ¢ = {F_,, Fo,.-
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automorphisms oy, ...,0n-; of P such that ¢; fixes all faces in @\ {F;_,, F;} and
cyclically permutes consecutive j-faces of P in the section Fj4,/Fj—2 of rank 2
These automorphisms 0;,...,0n_; (Wwhen suitably oriented) are called the dist:n-
guished generafors of A(P). Then a polytope P is chiral if and only if its group
A(P) has precisely two orbits on the flags with adjacent flags belonging to different
orbits.

Each chiral polytope occurs in iwo enanticmorgiaic forms, in aseuse in a right and
a left version. In terms of groups and generators, these can be represented Dy two Qis-
tinct systems of generators for A(P), {¢1,...,0r-1} 2nd {017}, 020,%,03,...,0n-1],
belonging to @ and its adjacent flag with another vertex, respectively. Note that
for a directly regular polytope P the corresponding systemns are equivalent under
conjugation in A(P) by the “reflection” pg; that is, there is no distinction between
a left and right version of P or, equivalently, the two enantiomorphic forms are the
same. An oriented chiral or oriented directly regular polytope is a chiral or directly
regular polytope together with a distinguished enantiomorphic form; in the chiral
case there are two “orientations”, in the directly regular case only one. We shall
often drop the qualification “oriented” when confusion is not possible.

3. The Classification Problem

A main thrust in regular polytopes is the amalgamation of polytopes of lower rank.
Let P; and P2 be two polytopes of rank n such that the vertex-figures of P, are
isomorphic to the facets of Ps. -

If P, and ‘P-a are regular, we denote by (P, P2) the class of all regular polytopes
P of rank n + 1 whose facets are isomorphic to Py and whose vertex-figures are
isomorphi¢ to Pa. Each non-empty class {P;,P,) contains 2 member, denoted by
{P1,P2}, which is universal in the sense that it covers any other polytope in the
class [Py, P,) ([38]). By [P, P2] we denote the group of {Py,P2}. If P; and P, are
directly regular, then so is {P;,P2}. Note that there are examples where (P, V2) 1s
empty.

These universal polytopes are our main object of study. The following simple
example illustrates some natural questions about these polytopes. Assume that we
wish to construct a triangulated surface in which every vertex of the triangulation is
contained in § triangles; that is, the vertex-figures are pentagons {5}. This can be
done in only two ways both leading to finite triangulations. If the triangulation is
“freely” generated , then the resulting surface is the 2-sphere and the triangulation
is isomorphic to the icosahedron {3,3}. However, if additional identifications are
allowed to be made, we can also construct the hemi-icosahedron {3,5}/2, the trian-

gulation of the real projective plane obtained from {3,5} by identifying antipodal

points. In the above notation, {3,5} and {3,5}/2 are members of ({3}, {5}), and
{3,5} = {{3},{5}}, the universal 3-polytope with triangular facets and pentagonal
vertex-figures. The important point to make here is that this universal polytope is
finite. :

The picture changes completely if we require exactly 6 triangies around a vertex.

Now there are many ways to generate triangulations including the maps {3, 6}(5 ¢y 0n

the torus (described in Section 4) and the (freely generated) triangular tessellation
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{3,6) in the euclidean plane. All these are members of ({3},{6}), and {3,0) =
{{3},{6}) which is now infinite.

These examples address the following problems about general universal polytopes
{Py, P2} for given regular n-polytopes Py and Ps.
—  When is (Py,P2) # 07 Or, cquivaleatly, when does {P1, P} exist?
—  When is {P;,P) finite? (That is, when does it behave like a convex polyiope,

when like an infinite tessellation?)

—  ldentify the group [Py, P2) of {P1,P2). (That is, construct {P, P2} explicitly.)
In this paper, when we use the term “classification”™ of poiyiopes, tiwn i thz Zhven

context we mean the classification of alf the finife unversal polytopes.

Given P; and P, the search for the universal polytope in (P, P2) involves analysis .

of the group .4 generated by involutions gz, ..., p, subject to the relations dictated
by A(P)) (for pg,...,pn-1) and A(P2) (for py,...,ps) together with (popn)’ = ¢
([38))- This group is 2 quotient of the {ree amalgamated product of A(P;) and A(P3)
with amalgamation along their joint subgroup which is the group of the vertex-figure
of Py (and the facet of P,), the quotient being defined by the additional relation
(pop,,)z = £. Now, the universal polytope {P;, P2} exists if and only if this group A
has the intersection property (4) and its subgroups (po,...,pn-1) and {(p1,...,Pn)
are isomorphic to A(P,) and A(P2), respectively. It is usually difficult to verify
these conditions.

It is easy to see that in rank 3 the universal polytopes {P;, P2} are precisely the
regular tessellations {p, ¢} on the 2-sphere, in the euclidean plane or in the hyperbolic
plane. However, in higher ranks the structure of abstract regular polytopes is far less
obvious and is complicated by the lack of easily accessible non-classical examples. To
give an example in rank 4, let P; be the torus map {6, 3}(,'._) and Pa the tetrahedron

{3,3). Then {P;,P2} = {{6,3}, ,), {3,3}} is 2 4-polytope with toroidal facets and
spherical vertex-figures. Its group {{6,3},, ,y, {3,3}] has the presentation

:E'

Wy

=p

[NEN]

=p

[ ]

=p

o

s

) . & N ’ 3 ’ 2 [ \
.. LPopL) = Ap1p2) = \P2p3) T ALPOPR) = \LOPE)

(Po(mp:)z)m =c.

The relations in the first two rows are the standard relations for the Coxeter group
[6,3,3], and the one extra relation in the third row corresponds to (7) below and
causes the collapse of {6,3} to the torus map {5,3}(_",). In Section 6.2 we shall
use hermitian forms to study these groups and the related universal polytopes
{{6’ 3}(:,:)' {31 3}}

For chiral polytopes the definition of classes is more subtle and involves taking
care of the two enantiomorphic forms in which a polytope can occur. More precisely,
if Py and P, are oriented chiral or directly regular n-polytopes, then ('P;,P:)‘h
denotes the class of all oriented chiral (n + 1)-polytopes P with (oriented) facets
isomorphic to P; and (oriented) vertex-figures isomorphic to P;. Again, if P; or
P> is chiral and the class (’P,,'P;)‘h is non-empty, then it also contains a universal
member denoted by {'Pl,?;}‘h. Note that if the orientations of both P; and P2 get
changed, then the orientations of 21l members in the class get changed; and hence
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that of {771,7—"3}‘}‘. However, the classes seem to be unrelated if the orientations of
only one polytope is changed ([40}).

An abstract n-polytope P is called spherical if it is isomorphic to the partially
ordered set of faces of a spherical complex on the euclidean (n—1)-sphere $™~* ([17}).
If a spherical polytope P has a Schlafli symbol {Pr,.-- pn=1} (with p1,... Py
> 3), thea it ic regular and is isomorphic te the face-latiice of = regular convex

polytope (121, 14]). In particular this rules out the existence of chiral spherical
polytopes.

A toroidal polytope or, more briefly, 2 toroid, of rank n+1is an abstract (n +1)-
polytope which is the quotient of a periodic tessellation 7 of euclidean n-space
" by 2 subgroup A of its translational symmetries generated by n independent
translations; the resulting toroid is written 7 /A ({29]). For a regular (resp. chiral)
toroid P we may also assume 7 to be regular and then A must be normel in the
svmmetry group A(7) of 7 (resp. the rotation subgroup A7 (7) of A(T)). We shall
also refer to A as the identificciion lattice for P. .

For a classification of the regular and chiral toroids see Section 4. It would
be interesting to extend this clessification to polytopes on arbitrary cpherical, eu-
clidean or hyperbolic space-forms {[52]). In rank 3 this (essentially) amounts to
the classification of regular and chiral maps on surfaces; in the orientable case such
a classification is known up to genus 6 ([10, 44, 16]). For higher ranks see aiso
Section 12.

Let P be an zbstract polytope. We call P locelly spaerical if both its facets
and vertex-figures are spherical. We say that P is locally toroidel if its facets and
vertex-figures are spherical or toroidal, with at least one kind toroidal. Our use of
the term “locally of some type” always refers to the sections of rank n — 1 of the
polytope. More general terminology may only require the minimal sections which
are not spherical to be of the required topological type; see for instance ([23]).

In general ii is & very subile piobiem to define the globel topeiegy ef an zhetzact
polytope P. Clearly, since P is a partially ordered set, its order complex A(P) is
a simplicial complex which provides a topological space |A(P)| en which the full
automorphism group A(P) acts as 2 group of homeomorphisms ({43]). However,
unless all facets and vertex-figures of P are spherical, this space distorts some of the
topological features of P which we may wish to preserve. ,

For example, if P is a locally toroidal 4-polytope in ({6,3}(,',), {3,3}), then in
[A{P)] each facet is realized as a cone over the 2-torus but not as a solid torus as
may be desirable. However, we can overcome this problem at the price of ambiguity.
In fact, given P we can construct a closed real 3-manifold M and a decomposition
P’ of M into solid tori, each equipped with a map {6,3}(,',) on its boundary, such
that P’ is isomorphic to P. In a sense, P’ is a combinatorially regular generalized
Heegaard splitting of M of genus 1 ({41]). But as for ordinary Heegaard splittings
of genus 1 (which involve only two tori), there are many difierent ways in which the
solid tori can be glued together to give a manifold. (In fact, for two tori the resulting
manifolds are known to be §3, §% x S! and the lens spaces.)

These examples illustrate some of the difficulties in defining the global topological
tvpe of an abstract polytope. For a more systematic approach to these problems as
well as some classification results on the possibie manifolds M, the reader is referred
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to Brehm, Kihnel & Schulte [2]. Examples with M = S3 were also discovered in
Griinbaum [18], Coxeter & Shephard [11].

It is worth noting that our definition of spherical or toroidal polytopes avoids
any of the problems just mentioned. In fact, by definition a spherical or toroidal
polvtope P has spherical facets and vertex-figures, and so the sphere or torus 1s
its natural topological space (which also coincides with |A(P)]). A more generai
notion of spherical or teroidal pelytope P may zalso allow the sphere or Lorus Lo be
decomposed into handlebodies which are then the facets of P. This wider use of
ierminology adds

responding classification is then completely intractable. However, in this paper we
shall not pursue these lines.

4. The Toroids

The regular and chiral toroids of rank 3 are well-known, and have been much dis-
cussed in the literature ({10]). They are the reflexible and irreflexible maps on the
2-torus and are of types {3,6}, {6,3} and {4,4}. We begin with the first type.

Consider the euciidean plane tessellation 7 = {3,6}. Its translation group is
generated by translations 7y, 72 zlong unit vectors =y, =5 inclined at =/3. If A(T) =
{po, o1, p2) and AF(T) = (g1, 02), we can take

- 2 -
s = (papipe)’ = @37t 2= (pop2py)’ = o0t o (6)

For each pair s = (b,c) of non-negative integers the fundamental region of the
subgroup A, = Agpcy = (737, 7 7 ¥¢) is a parallelogram with vertices (b, ¢), (0, 0),
(—e,b+c¢), (b~ c, b+ 2¢) (with coordinates relative to =y,z2). We define {3,6}, =
{3,6}(5’6) := T/A,, the quotient of 7 by A,. If (b,c) # (1,0),(0, 1), this is a toroid
of rens 3, which is regular if de(b = &) = C and
cases the map on the torus is not a polytope in our sense. We give the details of
the toroids in Table 1. The most important things we need subsequently are the
numbers v of their vertices and f of their facets, and the orders g of their groups. In
the regular case we usually write s = (b, ¢) in the form s = (s*,027¥) with s > 1 and
k=1or2. In the chiral case the maps {3,6}, . and {3,6)}, ;) are enantiomorphic.

We shall also write [3,6), for the group of {3,6},, and [3,6]] for its rotation
subgroup. Then we have

chire! cthervize; in the exzluded

Theorem 1 (a) For each s = (st,0%"¥) with s > 2,k =1 or s > 1,k = 2, the
group [3,6), of the regular toroid {3,6), is the Cozeter group 13,6) = {po, p1,p2),
factored oul by the relation

(pop12)* =c ifk=1, -
(po(prp2)) =c¢ k=2,

(8) For each s = (b,c) with b,c > 0 end (b,c) # (0,0), (1,0), {0,1), the rotaiion
subgroup [3,6]?;‘) of the (regular or ckirel) toro

id {3,6) ¢y is the even subgroup
[3,6]7 = (01,02) (defined by ¢3 = ¢ =

(¢102)" = £) of the Cozeler group (3, 6),

on considerable cemplications and it may well be that the cor- .
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Table 1. The regular toroids {3,6},

factored out by the relations
- b
(0307") (o207 02) = ¢ (8)

For Theorem 1 and similar situations below, note that the extra relations corre-
spond to the defining translation, here in the direction of s = (b,¢); this translation
and its conjugates in the group span the identification lattice.

The toroid {6, 3}y is the dual of {3,6}, ). The corresponding presentations
for 6, 3];.cy and [6, 3}(1:) can be obtained by dualizing the above relations; that is,
by replacing po, p1,p2 by p2,p1.p0, 2nd 61,62 by c7%, o7

The toroids of type {4,4} are constructed in a similar way from the euclidean
plane tessellation 7 = {4,4} with vertex-set Z 2, the set of points with integer carte-
sian coordinates. Now the translation group is generated by the unit transiations
7, 72 along the cartesian axes. If A(T) = (po, p1,p2) and AT(T) = (01, 02), we can
take

™I = pop1papy = 07 102, T2 = pap1popy = 0207}
For each pair s = (b, ¢) of non-negative integers we set {4,4}, = {44}y = T/A,,
with A, = A, = (775, 77 °72) whose fundamental region is the square with
vertices (b, ¢), (0,0), (—¢,b) and (b—ec,b+¢). If (b,¢) £ (0,0),(1,0),(0,1),(1,1) this
1s a toroid of rank 3, which is regular if b¢c(b — ¢) = 0 and chiral otherwise. In the
chiral case, {4,4}, .y and {4,4}(,,, are enantiomorphic.

The regular toroids {4,4}, with s = (s5,0%7%) with s > 2, k = 1,2 are the first
instance of a series of toroids {4,3"7% 4}, of rank n + 1. These will be discussed
further below.

Theorem 2 For cach s = (b, c) with b,c > 0 and (b,c) £ (0,0), (1,0), (0,1),
1,1), the rotation subgroup (4,4]}, .y of the (regular or chiral) toroid {4,4 is
(3,¢) (b,¢)

the cven subgroup [4,4] = (01,03) (defined by o} = o3 = (0'102) = ¢) of the
Cozeter group [4,4], factored out by the relations
(o7 02) (e207Y) = <. (9)

For a detailed discussion of the toroids of higher rank we refer to [29). Here we
recall some important facts. \We begin with the following observation.

-~

Theorem 3 There are ao chirel toroids of rank greater than 3.

For notational reasons, in the remainder of this section we prefer to denote the
rank by n + 1. To consiruct a regular toroid‘of rank n + 1 > 4, we st begin
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Table 2. The regular toroids {4,372 4},

with a reguiar honeycomb of E°. Except for n = 4, the only such honeycomb is th
tessellation {4,3"~% 4} of E™ by cubes; here and below, r* will be used to denote
string of k conseculive r'’s. In E*, there are two other regular honeycombs {3, 2, .3
and {3,4,3,3}, which are duals.

We first consider the cubic tessellation {4,3772,4) (with n > 2). Its vertex set
may be taken to be Z ™ this set can also be regarded as its translation group. Because
we wish the resulting toroid to be regular, if the translation by s € Z™ occurs in the
identification lattice A, then so must all its conjugates under the group [4,3772,4]
of the honeycomb, or, what amounts to the same thing, under the group (372, 4]
of its vertex-figure, which consists of all permutations of the coordinates of vectors
with all changes of signs. We shall write A, for the translation group generated by
s:=(s*,07"*) and its images under permutation and changes of sign of coordinates,
where s > 1 is an integer and 1 < k£ < n. We shall see that the only allowed values
of k are k = 1,2 or n. The regular polvtope which results by this factorization is
denoted by {4,3"~?,4}, := {4,372 4}/A,. In order that the corresponding group,
which we write 25 (4,372 4] | satisfy the intersection property, we must actually
have s > 2, but otherwise there are no further restrictions; see Table 2.

-~ M o

Theorem 4 For cach n > 2, and s = (s5,0"%) with s > 2 and k = 1,2 orn,
thereis a (self-dual) regulartoroid {4,3"~2, 4}, of rankn+1. Its group (4, 3n=2.4), is
the Cozeter group [4,372,4] = (po, .. -1Pn), factored out by the single ezira relation

. N .. .
(Pop1 - Prpn-s...pr) " =¢. (10)

As we said above, the only other toroids are dual pairs derived from {3, 3,4,3)}
and {3,4,3,3}). We just consider the former. We may take the vertex set to be
ZAU(Z45+(1,4,4,1)), the set of points of =% whose cartesian coordinates are al]
integers or all halves of odd integers. These points also correspond to the integer
quaternions; in this context, the symmetry group [3, 3, 4, 3] consists of the mappings
Z— q1292 + h and = — ¢;Zg. + h, where 91,92 are unit integer quaternions, A is
an integer quaternion, and = is the (quaternion) conjugate of = ([15)). Much the
same znalysis as above applies, and, initially bearing only the vertices of {3.3,4,3)
in Z* in mind, we conclude that the identification is by a2 vector (sk,O‘“k) (and
its images under permutation and changes of sign of cordinates) for some integer
s > 2 and some k = 1,2 or 4. However, taking the full group of symmetries of
{3,3,4,3) into account, we observe that (%) is equivalent to (2s,0%), and so the last
case has already been counted. Using the same notation as for the cubic toroids,
and denoting the dual by the same suffix, we thus obtain

N
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Theorem 5 Forcach s = (s¥, 09" %) withs > 2 and k = 1 or 2, At
toroid {3,3,4,3}, (and i1s dual {2,4,3,3)},) of renk 3. The group (3,3,4,3], is ¢
Cozeter group [3,3,4,3) = (po, ..., pa), factored out by the exira relation

{ (poC’TU’)J =¢ ifk
(poa,’)" =€ ifk =

ci5 ¢ regu!

Il

I
£ b

—
—
—t
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where ¢ 1= Prp2pap2pi, T 1= P4PIP2PIPS-

We list the details of these polytopes in Table 3. However, since the number of
vertices of {3,3,4,3}, is the same as the number of {zcets of its dual {3,4,3,3},,
and vice versa, we need only consider the former. -

There are various quotient and subgroup relations between the groups of these
toroids ({29])). The quotient relations arise from corresponding subgroup relations

between the translation groups A,. For (4,372, 4], we have

A(Z:,O"") < { A(,: 0:—’) } < A(:,0"‘1) )

foer all s > 2. U n is even, there is also the relation
A(:-\) < A(,z,on—a) .

Moreover, If p is an odd prime, we obviously have A,, < A, for every s. It may be
seen that every other subgroup relationship is a consequence of these. We deduce

Theorem 6 Letn > 3. For eech s > 2, there are coverings

n—2 {4’3'1-2’4}(:") n—2
{4.,3 ,4}(2:‘07.—1) \, { {4’ 3,,_’_7’4}(" 0-_’) \. {4)3 )4}(,'07.-1) .

In addition, if n is even, there is a covering
{413"-2’4}(:‘) \ {413"—2!4}(37,0"") .

Lastly, for each s = (s*,0"*%) (with s > 2 and k = 1,2 or n) and cvery odd prime

p, there is a covering

{4,377%,4),, N\ {4,377%,4), .

"

Exactly similar considerations apply to the polytopes of type {3.3.4,3}, and we

obtain
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5. Hyperbolic Honeycombs

In preparation for our investigation of the locally toroidal regular polvtopes, we now
recall some facts about regular honeycombs in hyperbolic space E™ of dimension
n > 3 ({8]). Since the facets and vertex-figures of a locally toroidal polytope are
spherical or quotients of euclidean tessellations, the polytope itself must necessarily

be a quotient of a hyperbolic honeycomb with spherical or euclidean facets or vertex-
figures.

In B2, there are 15 regular honeycombs. The honeycombs {3,4,4}, {3,3,6),

{4,3,6} and {5,3,6)} have spherical facets and have all their vertices on the absolute.
Their duals, {4,4,3},{6,3,3},{6,3,4) 2nd {6, 3,5) have spherical vertex-figures and
alt their facets are inscribed in horospheres instead of finite spheres. The self-dual

- combs {4,4,4}, {6,3,6} and {3,6,3) have both their vertices at infinity and
their facets inscribed in horospheres. All these eleven types occur as Schiafli svmbols
of locally toroidal regular polytopes of rank 4. The remaining four honeycombs
{3,5,3}, {4,3,5}, {5,3,4) and {5,3,5} are locally spherical and are (locally finite)
tesselkations in B3,

In E#, there are 7 regular honeycombs. Of those, only {3,4,3,4} 2nd its dual
{4,3,4,3} are not locally spherical and can occur as the type of some locally toroidal
regular pelytope of rank 8. The first has 24-cells 25 facets 2nd
the absolute, and the second has 24-cells as vertex-figures and its facets are cubic
tessellations inscribed into horospheres.

In E°, there are 5 regular honeycombs, all of which are not locally spherical
and have euclidean tessellztions as facets inscribed into horospheres or all their
vertices at infinity. These are {3,3,3,4,3}, {4,3,3,4,3}, {3,3,4,3,3}, {3,4,8,3,4)
and {3,4,3,3,3}. Only the first has spherical facets (which are crosspolytopes), and
only the last, the dual of the first, has spherical vertex-figures (which are cubes).
These are the only types for locally toroidal regular polytopes of rank 6.

6.1. Tyres {4,4,r)

The universal regular 4-pol
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6. Polytopes of Rank 4

i

In constructing regular polytopes from groups, the following twisting techaigue has i
FsE
proved to be extremely useful ({24, 30)). =
Let ¥ be a group generated by k involutions oy, ..., c5: usually 147 is a C-group,
for example, a Coxeter group or unitary reflection group.

A tuisling operalion
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CLASSIIICATION OF LOCALLY TORUIDAL RLGULAN POLVTO LS iZ
shall only be defined {or those groups ¥ which admit certzin automerphisms r
permuting the generators o;. I these autemorphisms 7 are themselves involutions,
we can augment }¥ by their addition and in suitable cases obtain 2 new group
A with certain distinguished generators po,..., pn-1. Writing B for the group of
automnorphisms of ¥ generated by these v, we have A = W B, the semi-direct
product of W by B. We shall write such a twisting operation as

(o'll"‘)o'k;r’s) - (POw--,Pn-—l) .
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7 (as in (12)), or, in the other extreme case, may itsell be the group of any regular
polvtope of higher rank suitably acting on W. In many examples the group ¥ can
actually be represented by a diagram and the automorphism r can be realized by
symmetries of this diagram.

We now discuss the locally toroidal regular polytopes of rank 4 and begin with
those of Schlafii type {4,4,r} (or {r,4,4}) with r = 3 or 4.

6.1. Typres {4,4,r}

The universal regular 4-polvtopes

1T = {{4,4),,{4,3}},

s = (s%,0°7%) with s > 2 and k = 1 or 2, can be constructed directly from twisting

operations on Coxeter groups. Since these are simple, we shall include them here.
Tk =1, wecan simply take the group W = [zg, ..., 05} with diagram
0 1
A
s 2 (12)
——
4 * 3

and apply the operation

(001"'104;"—) — (0017v03102) = (pOl . "1p3)' (13)
It is straightforward to verify the defining relations for the corresponding group,
which in turn implies the universality of the polytope.

If k=2, we can work instead with W = (cq,...,0s) with diagram
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and use the operation

(Go, -, 0570, 71y T2) — (70,02, 71,72) =: {po, ..., p2) -

This proves

Theorem 8 The rcgular 4-polytope T} = {{4,4),,{4,3)} ezists for all 5 =

(s%,027%) with s > 2 and & = 1,2 The only finitc insionces occur fer s =
.~ ~ ~ . . ~
(2,0),(3, 0y wnu (2,%), witk groups D, 0 &, of order 102, L. v Ta nf arder 1220

and C2 1 D¢ (wreath product) of order 708, respectively.

The clessification of the universal regular 4-polytopes

270 = {{4,4),, {440

s = (s5,077%),t = (¢',0%"") with 5,0 > 2 and k1 =1 or 2, is more difficult and
requires more sophisticated twisting operations ({27]). The classification is complete
except when k=1 =1 and s,1 are odd and distinct.

Theorem 9 The regular 4-polytope 27',4'(:‘,) = {{4,4},,{4,4}(1',)} exisis for all
s = (s5,02%) with s > 2 and k = 1,2 and allt > 2. The only finite instances occur
for:s=(2,0),t>2;s=(3,0),1 =2 ands=(2,2),t=20r3. The corresponding
groups are: (D; x D; x Ca x Ca)»(Ca x Ca) of order 64t2; (S5 x S4)x(Ca x C2) of

o;‘d:lr 230¢4; Cincl4,4), o of order 1024; cnd CSec[4,4)3qy of order 0216, respec-
Lively.

Theorem 10 Let 2 < s < t, and let 5,1 not be both odd and distinct. Then
the rcgi_ilar 4-polylope ;7'(‘3'0)"("0). = {{4,4}(,'0),{4,4}(!'0)} exisis except when s = 2
end 1 is odd. The only finile insiances occur for s = 2 and t = 2m cven, and
(s,1) = (3,8) or (3,4). The worresponding groups are (Dm D,.)x4,4); 0, of ord--
128m? (with Dy = Ca if m = 1), Ss x Ca of order 1440, and C21 [4,4)3,0y Of order
36864, respectively.

In the exceptional case when s,? are odd and distinct, the cut method of Section 7
below supports the following

Conjecture 1 Let s,t > 3 be odd and distinct. Then the regular 4-polytope
'-’T(:,o),(x,o) = {{4, 4} 0y {4,4)(1.0y) esists and is infinite if (s,1) 2 (3,5),(5,3).

Note that an application of the Coxeter-Todd coset enumeration algorithm sug-
gests that the polytope is also infinite in the two cases excluded in the conjecture
(even though the corresponding cuts are finite).

6.2. Tyres {6,3,p)}

In this section we classify the universal regular 4-polytopes

2T ={{8.3),.{3,p}}

e

i,
e

"." ;{ﬂ‘tﬂIlﬁiu'ﬁi”“miﬂ"ﬂ(s"w;r\(”“l{ [P, T R A LA LR AR A S [P PO P PRI D

‘ todw

s
!

e

|44t

™

MY

r ———
=
erpr—

i by

CLASSIFICATION

with p=3,4,5and s = (st

with s = (s5,0%7 %)t = (t'
that the left suflix (3,4,95 ¢
Schlifli symbol. We write |
[6,3,6) which is defined by
Then, H , 7.0 and ¢7F; exis
with tne notation ss in 5o
In classifying these pols
1. Find a “suitable” norr
2. Construct 2 “locally u:
[ W = GLn(C) (sa>
This representation [
3. Use (, ) to determine
The construction of W =
fiection groups (Shephard
Consider the group (1
and abstractly defined by

[EYR)

(&R

2 _ _
cy =0 =C

This group can be represe

(the underlying Coxeter -
rightmost extra relation.

.. act 2s indicated by the
=" both simple examples of

(c1,

recognizes the group {6,

(G;,C

“gives [6,3), y= (11 1)’

t. . Geometrically the ger

" be the canonical base of ¢




.
HG A

£ 0T

= (p01'-'1p3) *

in

[P

lonces occur fo- s = :".‘T-oa
x Ca of order 1440, e

‘O u-
(r)

1 or 2, is more difficult a.nd w.:_;;,
The cla.ssxﬁcatxon 1s complete _.'ﬁ_fs_'ﬁ

4}, {4 4}( ()} exists for all '—‘g;’

‘:xr-: 1

he only finite instances occur 2 =
=2 or 3. The corresponding 2z

F{é?

;'1L H (Jq X J4)D((C-b X C;z) Of.::—':'z;
1 of order 9216, - ==
](3,3) f order respec- =3

-~ ::“._j.'—:!‘s'
. =x=1
oth ad.d and distinct. Then =
o)} ezists ezcept when s = 2 Ei
= 2 and t = 2m cven, and =
Om X Dm)rx[é,4](2'0) of order ==

3, and C») [4,4](3'0) of order
. the cut method of Section 7
Then the regular 4-polylope

¢ if (s,1) # (3,5), (5, 3).

eaumeration algorithm sug-
s excluded in the conjecture

:pes

(&%)
O

CLASSIFICATION OF LOCALLY TOROIDAL REGULAR POLYTOPES !

0°=%), with s > 2ifk=1and s > 1if k=2, as well as

o= {{6.3},,{3.6),)

with s = (s¥,0%7%),t = (¢/,02-"), with s,t > 2ifk, Il = 1 and s,t > 1 if k,{ = 2. Note
that the left suffix (3,4,5 or 6) in our notation is the same as the last entry in the

with p=3,4,5 and s = (s*,

-~ . . ., . 1
Schlaki s;,'.“uol We write ,,A‘ and O.";  ferthe oo M::en: log o0, P2, pa o 18,3 2l or
ra ~nY vV in M

v, o GJ witich 1> delined u_y Ule eatio reialivlis fu lV U], @iiu U, v, SEL T'I.\.uﬂ.“.
Then, if ;7,% and 67, exist, then , A} = {{6,3},,{3,p}] and A}, = [{6,3},,{3,5},
with the notation as in Sect.ion 3.

In classifying these polytopes P the following strategy proved to be successful.

1. Find a “suitable” normal subgroup W of A (= ,A4f, 6.4 ,) of finite index.

2. Construct 2 “locally unitary” representation of W over the complex numbers C,
[ Wi— GLn(C) (say) with m determined by the vertex-figure {3, p} or {3, 6},.
This representation f will support a hermitian form (, ) on €™,

3. Use (, ) to determine the structure of P and A.

The construction of W and f is based on the following observation on unitary re-
flection groups (Shephard & Todd [43), Coxeter {7], Cohen [4]).

Consider the group [111)’ (s > 2) which is generated by involutions o1, 02,03
and abstractly defined by the presentation

)
IS
1
b

¢ =0} =c} =(0,02)° = (0203)° = (c103)° = (61020302) = ¢ (13)

This group can be represented by 2 triangular diagram

(16)

2 4
(the underlying Coxeter diagram), with 2 mark s inside the triangle to indicate the
rightmost extra relation. Now, using the two group automorphisms =, and which
act as indicated by the diagram symmetries, we can extend {111}’ in two ways,
both simple examples of twisting operations. First, the operation

(0.1107)03;-‘-1) amd (‘—1102103) =: (PO;PI,P‘.’)

recognizes the group (6,3], oy as [11 1)’ xCa. And second,

(01,0’2,0’3;71,72) — (01,71, 72) =t (PO:/’I»P‘.’)

gives [6,3), ,y = [111)' xSs.

Geometrically the generators ¢; can be described as follows ({7, 25]). Let ey, €0, e3

be the canonical base of complex 3-space C®. Define the linear mapping S; : C° — C3
by

=Si=z-2z¢)e (zeC0), (17)
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where {, ) is a hermitian form on C® defined by

3 3
(z,y) = ZI;E’ - 3 Z e (18)
=1 I N3]

There are several choices for the coefficients c;; each of which gives a positive definite

form { , ) {(defining a uniiary geometry) such ihat o; — 5; {i = 1,2,8) defraz s
. N N . . aE s, - - Dpite e
unitary representation of [1 117, Write vy23 '= €12€23€3) anu ¢, 1= 77 C. luen

one such choice requires that both each ¢;; and 7323 are equal to ¢, or ¢, Note that
thic is a symmetrizal version of the choice in {7)].

For each of the groups ,Af and ¢A], it is now possible to identify the group
W and representation f. In each case the choice depends on the parameters s, p
and t. We shall illustrate the method by an example rather than discussing the
construction in full generality.

Consider the group 34f, ,y of 37,y = {{6,3}, ), {3,3}}. Then the vertex-
figure is a tetrahedron {3,3} and has 4 vertices. Take the group W = W, ,) with 4
generators oy,...,04 abstractly defined by

2 3
'

¢l = (ci6;)” = (cic;0r0;) =€ (1 <14,7,k <4; distinet). (19)

This group can be represented by the tetrahedral diagram

71 2

in which each triangular 2-face is marked by s. (The number of generators is 4
because the vertex-figure has 4 vertices, not because the rank of the locally toroidal
polytope is 4. If the vertex-figure is an icosahedron {3,5}, then there are 12 gener-
ators and the hermitian form has 12 variables.) Now 11" admits three group auic-
morphisms 7, 72, 73 each represented by a transposition. Adjoining these to ¥ and
using the twisting operation

(Ul:" '164;‘—11'—2)73) e (01771)721‘-3) =: (pO!"‘1p3) (21)

we can now recognize 3. 4% | as W(, .y 845 in fact, the defining relations for the two

1,3)

groups correspond to each other.

Next we construct 2 complex representation f : W, ,j — G L4(C) which supports
a hermitian form (, ) on C*. We define S; as in (17) (with C° replaced €*) and
(z,y) as in (18) (with 3 replaced by 4). Writing 7ijx = cijcjxcei (1,7, k distinct) we
impose the condition that each ¢;; and each 7ij; is equal to ¢, or . (In the case of
an arbitrary vertex-figure modifications to this rule are needed for index sets {1, j}
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or {i,7,k} which are non-edges or non-faces of the vertex-figure.} For instance, we
can take

2= €34T €31 =€, Co3 = Caqg =Cqy =0,.

The condition on the ¢;;’s and 7ij&'s implies that any restriction of {, ) to 3 variables
Is a positive definite form; that is, h is locally unitery. In particular,

{oropieny 2 (8,8, &

.
B L]

>~ |
-1

11y
forall {i,7,%}, and (Sy,...,5;) acts irreducibly on %
We can now decide which groups W, ) are finite. If A is a non-degenerate and
indefinite form, then (S1,...,54) acts irreducibly on € and is infinite; it foliows
that W(, .,y must zlso be infinite. If A is positive definite, then (S1,...,854) is a finite
unitary reflection group and the representation f is faithful. (In the general case it
Is not known if f is always faithful.) It follows that Wi, .5y is finite if and only if & is
positive definite. The same is now also true for 3AZ",'4) and its polvtope 37'(5”. But

det(h) = (=9 — 16 cos (27 /s) — 2 cos (47/s))/16

so that positive definiteness occurs exactly for s = 2; in particular,
3.4(‘2‘,.,) = S5 x Sy, so we actually have real groups here.

In a similar fashion we can classify (almost) all universal locally toroidal reguler
4polytopes of types {6,3, p} with p = 3,4,5,6. We now summarize the resuits. For
notation for unitary reflection groups we refer to {7, 23].

"Yr’('.p.;l) : 55 an\)l

Theorem 11 The regular 4-polytope 37 = {{6,3},,{3,3}} ezists for all s =
(Sk,O""") with s > 2 and k = 1,2 (but not for s = 1,k = 2). The only finits
instances occur for s = (2,0), (3,0), (4,0) and (2,2). In the first cese, its group is
Ss x Ca of order 240, and in the last case it is Sg x S4 of order 2880. In the second
and third case (where s = 3,4), the group is [112) XCy, of order 1296 or 25360
respectively; here (112}
oblained by atieching cf vertez 3 of (16) ¢ tail consisting of one unmarked brench.

18 tive findle wniiary icflection group in O whose divyruim is

Note that Theorem 11 confirms a conjecture of Griinbaum [18] on the finiteness
of these polytopes (which he denoted by M(,,0) 2nd K, )y, respectively). See also
Altshuler (1] for the construction of 3-dimensional simplicizl complexes whose vertex
links are preassigned torus maps; the duals of the corresponding face lattices are
abstract 4-polytopes with toroidal facets and simplicial vertex-figures; however, in
general, these are neither regular or chiral.

Theorem 12 The regular 4-polytope JT0 = {{6,3},,{3,4)) ezists for all s =
(Sk,O:'*), withs > 2 ifk=1ends>1if k=2 The only finite instances occur
fors =(1,1) and (2,0), with groups S3x{3,4) of order 288 and [3,3,4)xCa of order
768, respectively.

Theorem 13 The regular 4-polylope sT.0 = {{6,3},,{3,5)) ezists for cll s =
(s*,0%~%) with s 2 2and k= 1,2 (but not for s = 1,k = 9). The only finile
instance occurs for s = (2,0), in which case the group 15 [3,3,3)xCs of order 28800.
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Theorem 14 (a) The regular4-polytope 57'(4 = {{6 3}(‘ 0 {3,6),) ezists for
¢ll s > 1 and all t = (¢,0°7"), exeept when s =1 =1 end 3J 1. The only finite
instances occur Jor s =1, ors=2andt = 0). ]n 11:: first cese the group is
S3x[3,6), which is of ordcr A2l =1 or 31617 ifl =2, and in the second case
the group is Ss % Sy x Cs of order 5760.

(6) The regular4-polytope 57" 06,0 = = {{85, }
s, 'l > 2. The only finile instances occur fort
sedie orovp is [112Y (Cr x &), of

-
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Many polytopes in the above theorems admit geometric realizations in euclidean
spaces, and for several finite examples explicit coordinates of the vertices of these
realizations are known ({24, 23]). For a general discussion on realizations we refer
to [22] or the article by Peter McMullen in this volume.

6.3. Tyre {3,6,3)}

Relatively little is known about the universal regular 4-polytopes

4: = {{3:6}41 {6’3}z}

with s = (s¥,027%) 1 = (¢/,027'), with 5,4 > 2ifk,! = 1 2nd s,1 > 1kl =2
Except for some specific paremeter values like those mentioned in [o, 49], the only
results known are those obtained by the method in the previous section and some
variants of this ({23, 28]). However, these methods are not strong enough to settle
the general case for the type {3,6,3}. In particular, one can prove

~Theorem 15 The regular 4-polytopes 7'(J a0 = {13,6],, 0 {6, 3](J 0)} and
(, a0 = ({3, 6}(, oy {6, 3}, 0)} exist for all s > 2, the latter (but not the
former) also for s = 1. Among these, the only finile insiances are 771 1).(3.0) Witk

group {11 1] = S3 of order 324 and % ,.(., .,) (2.0) with group Ss X S3 of order 720.

There are various quotient and subgroup relations between the locally toroidal
regular 4-polytopes of types {6,3,3}, {6,3,4}, {6,3,6)} and {3,6,3); see [28] for 2
detailed discussion. These are based on relations between the symmetry groups of
the corresponding hy perDohc honeycombs. For example, the polytopes in the next
theorem are related to 37, oy = 116,30y, {33}

(j 0).(4,0). = {{3, 6}(: 0)» {6, 3}(, 0)} erists
at least for all s with 3 ) s. I is infinite when s > 5 end 3] s (and most likely also
when s = 4). If.s = 2 il is fintle and iis group is Ss X Co of order 240.

Theorem 16 The regular 4-polytope -

7. The Cut Method

Before we proceed with the discussion in ranks 5 2nd 6 we illustrate 2 powerful
geometric method, the cut method, which sheds some light on why certain parameter
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fi i : ,
(i = this cut is de
— s N )
I [ (2,0,0) | 24 5 2216 ;
5—1 4 ; | (2,2.0) 48 32 36864 .
3 ﬁf ; | {2,2,2) | 1536 | 2048 | 2359296 " which emplos
%6 8 . - Y- gram. But fr.
3}, {4 g1 Table 4. The finite polytopes 7 = {{3,4,3},{4,3,4),) ! that this cut
Y gj k=2 Lee
i P st U
EE It would be very heipful to be able Lo preserve some of the arguments in this {7 are Just tnose
ome 9 % {! example and prove universality of the cut M without using an explicit construction anzlogous cu:
using EE for P. In fact, this would immediately imply non-finiteness results for P, which
aitene ;“ would be especially useful in higher ranks. 9. Polytope
i }
;i - For locally to
¥ 8. Polytopes of Rank 5 - F Y

=i settled. Howe
The only candidates for regular 5-polytopes whose facets and vertex-figures are o {3,4,3,3,4) (
spherical or toroidal (with at least one of the Jatter kind) are those of type {3, 4, 3,4} - 6-polytopes w
and their duals. Confining our 2ttention to the first of each dual pair, we shall write '

e

77 = {{3,4,3},{4,3,4},}, == 0.1. Tyee {3

sl We beri -
1 1 : . Eosasz. Y¥e begin wit}
with the convention thet s = (s*,0%%) with s > 2 and k = 1,2 or 3. Then we have RS Drecisely thre

(129, 30])

Theorem 17 The universal regular 5-polytope T} = {{3,4,3},{4,3,4)},) ezists %
foralls = (sk,O:")‘) with s > 2 and k = 1,2,3. It is finite when s = 2, and infinile ) :;v'ith s = (&5,
when s > 3. Ifs = 2 and k = 1,2,3, the corresponding groups are C?tx[3,4,3] i Write A( S
of order 9216, C3x(3,4,3] of order 36864, cnd (C3xC3)%[3,4,3) of order 2959295 41%},”350“

respectively.

For k = 1 the polytopes can be constructed by a direct twisting argument, as
indicated in

...This leads us t
(23) - Ee we know that

.

Wehn, 2
X & &=
e e e [ ZC Y -~ )
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If W, is the underlying Coxeter group, then A(T(f.o,o)) = W, xS3. Hence, finite-

)) = ness occurs exactly for s = 2. We list all the finite polytopes in Table 4.
.c;p:s § Let us also note that, when & = 1, we have 2 cut {{3,4},{4,4)) of 73, where > We remark -
34H ) "5 = (s%5,0%7%) with s > 2, induced by 2 corresponding cut of {3,4,3,4). In fact, '°dd ([29]). 1
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| (2.0,00) | 20 | 960 368640

| (2,2,0,0) | 160 | 30720 | 11796480

[ {3.0.0.0) | 780 | 189540 | 72782360 ]

Tabic 5. The known finite polytopes 1 TE = {{3.3.3,4},{3.3.4,3},)

9.2. Type {3,3,4,3,3}
The situation for the remaining two types of locally toroidal regular polytopes cf
rank 6 is somewhat similar. We can appeal in each case to known results about
which of the regular 4-polytopes of type {4,4,4) exists and is finite, but since these
do not, at present, cover all possibilities, our knowledge of the polytopes of rank 6
is correspondingly incomplete ([29)).

Consider the universal regular 6-polytope

TS5 =1{{3,3,4,2),,{3,4,3,3),),

with s = (s*,0%-%) 1 = (2',0%=") with s,1 > 2and k1= 1,2, Now, if AQRTS) =
(Poy .-, ps), 1= pypapspapy and r:= Pap3papsps, then the operation

(Pos - ps) = (po,c, 7, ps) =: (20,...,22)

vields a cut of ; 7%, (with group (v, ..., ©3)) in the class (4,4}~ {4,4}) (es usual,
s = (sF,0775) wh

en £ — [¢f 0%=5) and o on). Evidence incicates that this cut is
ndeed 27’:%-: {{4, -‘x};-, {4, ¢}+} (thatis, the cut is universal), but so far we have not
been zble to prove this. Now, most cases of the regular polytopes of type {4,4, 4}
re completely settled, and 2s a consequence, we have the following conjecture and
ubsequent theorem. The known finite polytopes are listed in Table 6.

Conjecture 3 Inre reguicr 6-poiytope - 75 = {{3,3,4,3},, 13,4, 3,3}, ezisis jor
cach s = (s5,0%-%) ¢t = (t1,0%1) with 5,2 > 2 and k,1 = 1,2, exzcept when s =
2,0,0,0) and 1t is odd, ort = (2,0,0,0) and s is odd.

Theorem 18 Under the essumplion that the cu? above is universal, then if the
olytope o T8, ezists, it is infinite in af lecs! the following cases:
a)s:(s,O;0,0),tz(t,t,0,0) end <
b) s =(s,5,0,0), t = (£,£,0,0) end <
€) s = (s,0,0,0), 1 = (1,0,0,0), with s ort cven, ors =1 odd, and ’l +1<l,

(K]

]

!
o

Lol Sy
W )]s

+ +1<

3 b

or

-

“

-~
(K]

We shall denote by ; A% and 247, the groups abstractly defined by the presenta-
lon belonging to the polytopes 17,% and 2 TS,; these are the quotients of (3.3,3,4,3]
nd [3,3,4,3,3] defined by the extra relations for the facets or vertex-figures. If the
+0 polytopes exist, then ;.45 and 245, are their groups, respectively.

It is known that {3,3,4,3,3) is 2 subgroup of index 5 in 3,3,3,4,3] ({28, 30)).
he corresponding relationship between the groups of the locally toroidal polyiopes
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12 locally toroidal polytopes

| I 9 l
; (t,0,0,0) (t even) | 22 | 21 368641 |
| (1,6,0,0) (t even) | 32 | 8t 14747614

! (2.2,0,0) | 2048 | 2048 | 150994944

[ (3.0,0,0) | 7740 | 2340 | 218350080 ||

Teble 6. The known Rnite polytopes 7'.7"5" = {{3.3,4,3},.{3.4,3,3}}

Theorem 18 Under the assumption that Con]cciurcs
2, (_‘ ,0,0),(+,0.0,0) 15 @ subgroup of indez 5 in JA(J +,0,0) while aA(.,

D)

15 a subgroz.p of indez 5 in 1 AS

8.3. Type {3,4,3,3,4)

(25,0,0,0)

In the case of the universal regular 6-polytope

and 3 hold, for each s >

5,0,0,0),(s,s,0,0)

H = {{31413:3}“ {4, 31 314}1}

with s = (s"

{{4,3,3, 4},,13,3,4, 3L
operation

(Po,---,PS)’—

L0 )Yt = (21,040, with 5,1 >
again use a cut of type {4,4,4} but now, strictly speaking, of the aLal (57,

I A((TE)) = les-

5

kF=12and ! = 1,24, we can
=

,pe), this ent is induced hy the

(Pos P1, P2P3P4P3P2, PSP4P3IPAPS)

and, if/ = 1 or 2, belongs to the class ({4, 4“, {4,4};), where the notation for sufiixes
s that introduced earlier. In fact, we conjecture again that the cut is universal, so
that it is isomorphic to 7’]'-— {{4 4} {4.4)7}: on the other hand, if'l = 4, this

cut is not universal. Now, employmg the results on polytopes of type {4,4,4} this

‘supports the following conjecture.

Conjecture 4
all s = (s*

The regular6-polytope 37T,
04-k),t = (11104—‘) with S,t Z “ L - 1'2 and [ = 1’2’

(a) s =(2,0,0,0) and t = (1,0,0,0) with t odd,

(8) t=(
(C)i:(

,0,0) and s odd.

2,0,0,0) and s = (5,0,0,0) with s odd,
2,2,0,0

. =1{{3,4,3,3},,{4,3,3,4),} exists for
4

, excepl when

Note that only the first two excluded cases of this conjecture correspond to cuts
which do not give 4-polytopes. The third case of collapse can be proved directly

([2¢, 30)).

Conjecture 4 was confirmed in {30] for all s, with /=1 and t= 2m even using

a rather sophisticated twisting argument. To explain this, let A

= {3 3,-—:,«}

toroid of rank 3 whose facets are 4-crosspolytopes {3, 3, 4}. Consxde. a Coxeter dla-

gram D, , whose nodes are the vertices of X and whose branches are of two types:
one connects antipodal vertices of facets of K and its branches are marked m(> 2),
and the other connects pairs of vertices which are not vertices of 2 common facet
Then the group of the universal 6-polytope

of iZ and its branches are marked oc.
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T

s | t 1 v /] 9 |
(5,0,0,0) (s even) (2,0,0.0) 3st 16 1842254 |

(s,5,0,0) (2,0,0,0) | 12s* 16 73728

{5.€,0,0) (s cven) {2,2.0,0) 63! 64 737285

(3,5,0,0) (2 cven) (2,2.0.0) 2444 64 2949125

(2.0,0.0) 2,2,2,2 384 1024 18574368
i 2,0,0,0) (4.0,0,0) | 12288 | 65536 1207959552 ||
il (3.0.6.0) 1773.0.0,0) | 2350 | 780 | 7278336y il

Teble 7. The known finite polytopes 37-‘6" = {(3,4,3,3)‘,{4,3.3,4),}

(37:6'(2m'0,))' can be constructed by a twisting operation on the corresponding Cox-
eter group W, m with diagram D, m, using the fact that A{K) acts on Dym 2s a
group of diagram automorphisms; in particular, W, » X A(K) is the group of the
resulting polytope. The case m =1 requires a variant of this construction.

Theorem 20 The 6-polytope 3752 05y = {{3,4,3,3},, {4,3,3,4}(-_.",'0,)} exists
for each s = (sk,O“'k) with s > 2 and k = 1,2 end each m > 1. The only finile
instances occur for m = 1, and s = (2,0,0,0),m =2. In the first case the group

is C$1x(3,3,4,3),, of order 18432s% or 73728s% if k = 1 or 2, respectively; in the
second case it is C3%1(3,3,4, 3](-_,’0.0’0), of order 1207958552.

Table 7 lists 21l the known finite polytopes 37‘,5", and it is conjectured that this
list is complete. The table entries were checked (or obtained) by an zpplication of
the Coxeter-Todd coset enurmeration algorithm. For all polytopes, except the one in
the Jast row, the structure of the group is explicitly known ([30]). The first two rows
and the next to last row are covered by Theorem 20. The group in the third and
fourth rowis C$x(3,3,4,3], with s = (s,0,0,0) or (s,5,0, 0), respectively; and in the

cp=nlte A nalvtAnec
< o1 polytapec

with small facets or vertex-figures like those discussed here.

Writing 3A$ , for the group abstractly defined by the presentation belonging to
the polytope 37f,, and using the fact that 3,4,3,3,4] is a subgroup of index 10 in
[3,3,3,4,3], we now have

Theorem 21 Under the assumption that Conjectures 2 end { hold, for each s >

is a subgroup of indez 10 in IA?:.:,O.O)' while 3.45,‘_“0_0)'(2_,,0‘0.0)

6
2, 34(,,0,0,0),(5.2,0.0)
is ¢ subgroup of indez 10 in 1/‘;52"0‘0'0)'

Concerning the polytope in the last row of Table 7, it is interesting to note
that the two groups lAgs,o,o,o) and 3.4{‘3'0'0'0)‘(3‘0'0.0) are isomorphic and that the
corresponding polytopes l’f(g 0.0.0) and 37'(g 0,0.6,(3.0,0.0) have the same number of
vertices. Further, 1A€’3'°.°'°) is a quotient of 3A€3_0‘0.0)‘(3’°'o,0) by 2 normal subgroup
of order 3, so that the number of vertices of 1’1'(2 0,0,0) is only one third of that of

6
27—(3,0,0,0),(3,0,0,0)'
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10. Finite Quotients

It is well known that the euclidean and hyperbolic regular tessellations {p,q,r}
are the universal coverings for infinitely many finite regular tessellations of the same
type on closed compact 3-manifolds. This generalizes also to many classes of abstract
regular polytopes. The previous sections were aiming at the classification of all the
finite polytopes among the universal locally toroidal regular polytopes {Py.P2}. Tha
question remains whether the infinite polytopes of this kind cover in fact infinitely
many finite regular polytopes in the same class, namely (P;,P.). For most classes
{(P1,P2) this can indeed be preved by generzlizing a technique used in Vince [47);
see [26]. This seems to indicate that in general it is very hard to fully describe these
clesses.

Let U be any group. Then U is called residually finile if for each finite subset
{¢1,...,¢m} of U\{e} there exists a homomorphism f of U onto a finite group such
thet ¢;f # e for j=1,...,m. By a central result in the theory of linear groups, due
to Malcev [20], every finitely generated linear group is residually finite; see also [48].
In particular, every (finitely generated) Coxeter group is residually finite.

Theorem 22 Let Py and P, be finile regular n-polytopes with (Py,Py) # 0. Let
P be an infinite regular (n + 1)-polytope in (P, P2) whose group A(P) is residually
finite. Then (P;,P,) conicins infinitely many regular (n + 1)-polytopes which are
ﬁn:'te//o«nd are covered by P.

Clearly the groups of reguler polytopes are finitely generated. But then, by
Malcev’s result, Theorem 22 applies if P is an infinite member in (P, P.) whose
group is isomorphic to a linear group. This is the form in which Theorem 22 can
be applied to many classes of polytopes. We give two examples in rank 4, the first
bemg the well-known classical case. There are similar results for other types and for
Sigher ranks.

Theorem 23 Let{p,q,7} = {4,3,4},{3,5,3}.{5,3,5},{4,3,5} 0r {3,3,4). Then
({r,q},{q,7}) contcins infinitely many regular polytopes which are finite.

Theorem 24 Let Py and P2 be regular toroidal maps for which the universal
{731,'Ps} ezists, is infinile, and is of type {4,4,3} or {6,3,p} with p = 3,4,5 or 6.
Then (Py,P2) conicins infinitely many reguler polytopes which are finite.

11. Chiral Polytopes

Relatively little is known about locally toroidal chiral polytopes. By Theorem 3,
there is no chiral toroid of rank > 4, and so the classification of such polytopes
mekes sense in rank 4 alone. The corresponding Schlafii types {p, ¢, r} are the same
as for regular 4-polytopes but now the parameter vectors s and t for the facets
and vertex-figures are less restricted; see Section 4. Another complication is added
through enantiomorphism.

We shall introduce notation similar to that of universal regular Dolvtopes, except

that now we drop the superfix “4” for the rank and replace it by “ch”. For example,
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we write

T o= {{4,4),,(4.3))7,
s = (b, c) with be(b — ¢) £ 0, for the oriented universal chiral 4-polytope whose ori-
ented facets are maps {4, 4}, and whose vertex-figures are (oriented) cubes {4,2).
(Recall that for directly regular polytopes the two orientations can canonically be
identified.) Note that interchanging b and ¢ in s changes 17, to the other enan-

tiomorphic form, ;7,8 (say), of the same underlying polytope. In short, i := (¢, b)
when s = (b, ¢), thep ,T7£h = ,Ter, The situation is similar for the chiral peiytopes

X',TJC}‘ = {{61 3};! (31P}}CH

with p=3,4,5 and s = (b, ¢}, be(b — ¢) # 0; that is, ;7% = ;7,<* ([39, 40)).
For the three remaining chiral 4-polytlopes

T = {{4,4),,{4,4),)", T = {{6,3),,{3,6),)",

77—:‘:,? = {{3r6}n {673}1}Ch )

with s = (b,¢),t = (d,e) and be(b — c) # 0 or de(d — ¢) # 0, the situation is more
complicated, because now both the {acets and vertex-figures can be chiral. In general,
interchanging the components in only one parameter vector, s (say), does not simply
change ;7% to the other enantiomorphic form ,'T,‘f‘ In fact, in general it seems that
the two polytopes ;7.°? and ; 7:** are unrelated. However, if the components 1n both
parameter vectors are intercharlxged, then only the enantiomorphic form is changed;
that is, ,-’f;; = ,-7;? fori=2,6,7.

Problem 1 Clessify all the universal chiral 4-polylopes ;T,* for eachi=1,3,4,5
and ,T,‘h for each1=2,6,T.

Here the term “classification” is used in the same sense as in Section 3. Except
for the existence part of the problem and solutions for a few sporadic cases ([3]),
no general classification results are known. As usual the existence of the universal
polytope can be deduced from the fact that the corresponding class of poiytopes is
non-empty.

For all seven types {p, ¢, 7} of locally toroidal 4-polytopes, chiral polytopes have
been constructed from representations of the hyperbolic rotation groups {p, g, 77 as
projective linear groups over finite rings (Weiss {51}, Schulte & Weiss (40}, Nostrand
& Schuite [33)). See also Nostrand [34} for similar such examples of (locally spherical)
types {3,5,3} and {3,3,4). We shall not give the details of these constructions
but instead illustrate a typical result for the type {3,6,3)}, which relates to prime
decomposition in the ring Z [w] of Eisenstein integers. Let Z , := Z /mZ, the ring
of integers modulo m.

Theorem 25 Let m be a positive integer, let m = p§ - ...-pi* be its prime
decomposition, and let p; = 1(mod 3) for each j = 1,...,k. Let b,c be positive
infegers such that m = 6% + be + ¢?, (b,¢) = 1. Then there exists a self-dual chiral
4-polytope in ({3,6}“'5), {6,3](b_c))‘h whose group is
(a) PSL:Z ) if p; = 1(mnod 12) for all j;

(8) PSLA(Z )% Cs if p; = 7 (mod 12) for ct least one j.
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12. Other Local Topological Types

As remarked in the introduction, there is as yet no comprehensive study of abstract
regular or chiral polytopes which are locally of some topological type that is not
spherical or toroidal. However, many interesting examples are known, and here we
shall mention a few to point out some possible direction of further research

In rank 4, call a regular {or chiral) polviepe P locally of venus g il both its facets
an \mnav-ﬂgnrp< are mans An arientable cnrfurec Af manne ot maoci o with 2t teac
one kind of genus exactly ¢. For ¢ = 1 this gives .hc locally tcrcxd“l polytopes.

Variants of this terminology could also include maps on non-orientable surfaces.

Problem 2 For small g > 2, classify all the regular 4-polytopes which are locelly
of genus g.

Problem 3 For small ¢ > 2, clessify all the regular 4-polytopes whose facets are
of genus ¢ and whose vertez-figures are spherical.

Clearly, a solution for Problem 2 includes one for Problem 3. Note that the
polvtopes in Problem 3 are of interest also because they can be realized zs combina-
torially regular decompositions of certain topological 3-manifolds into handlebodies
of genus ¢ ((2)).

An interesting special case is ¢ = 3. In {32, 33], Monson and Weiss construct a
family of regular or chiral 4-polytopes of type {p, 3,3} with p > 3 which are related to
the Picard group, the projective linear group PbL(..fi[ ]) over the Gaussian integers
Z[i). For p = 7 this gives the universal regular polytope {{7,3}4, {3,3}} with grem-
PSLy(7?)xCs of order 72(7% — 1), whose facet is Klein’s map {3,7}, of geru: ..
((10, 44]). For many other interesting examples with facets of small genus see also
[24, 23).

For higher ranks, the locally projective case has received some attention. For
instance, McMullen [23] consiructs the reguler polytopes P of rank n > 3 and type
{3,4,3"~3) which are universa] with respect to having their 4-faces isomorphic to
the projective polytope {3,4,3}, (which is constructed from the 24-cell {3,4,3}
by identifying antipodal points); that is, A(P) is the Coxeter group [3,4,3"~% =
{P0,--.,Pn-1), factored out by the single extra relation

3
(poprpapa) =

In particular, A(P) = 5,15, of order 24"~ }(n — 1)!. These polvtopes are locally
projective in the more general sense of the term that each minimal non-spherical
section is a projective polytopes (which here is {3,4,3}4). Similarly there are locally
projective regular polytopes of types {3*,4,3,3,4,3'} all of whose non-spherical 4-
sections of types {3,4,3}, {4,3,3} and {3, 3,4} are isomorphic to {3,4,3};, {4,3, 3},
and {3,3,4)},, respectively.

We also mention two examples of mixed toroidal-projective type, the polytopes
{{6.3}(,',). {3,5)s} of rank 4 with hemi-icosahedral vertex-figures and with s > 2,
and the polytopes {{4,3,4}(._,,.'0, ’y {3,4,3)4} of rank 3 with ¥ = 1,2,3. Using a
suitable hermitian form as in Section 6.2 we find that the first polviope is infinite
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if s > 3; an application of the Coxeter-Todd coset enumeration algorithm suggests

“that it is also infinite if s = 2 (but there is no proof vet). The group of the second

n

polytope is Co** (3,4, 3]s, of order 576-2™*, with my = 3,50r 8if k= 1,2 or 3,
respectively ([30]).
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