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A FAMILY OF UNIFORM POLYTOPES WITH

SYMMETRIC SHADOWS

BARRY MONSON

ABSTRACT. A peculiar manipulation of the Coxeter diagrams used in Wythotl’s vonstruction
provides a family of orthogonal projections of one uniform polytope onto another.

1. INTRODUCTION

In [5] Coxeter exhibited an orthogonal projection of the vertices of the £,
polytope 4,, onto those of a pair of concentric 600-cells whose circumradii
are in the golden ratio 1:1 (where 7 = (1 + /\wv\mv. This example is just one
of a large and interesting class of orthogonal projections from 2n-space to
n-space, here derived by manipulating Coxeter diagrams in a way
‘compatible’ with Wythoff’s construction. We note that Peter McMullen
has independently encountered many of our examples as part of
unpublished work on realizations of regular polytopes; we also thank him
and the referee for suggesting several improvements.

We first choose a basis {e,,...,¢,,} for R2" and write x € R*" uniquely as

n
x=Wv)=Y ue, +vpe,,
1=1
for row vectors u, ve R". Now fix a non-zero real 4 and define a linear map
@ ﬁw: . zwa UV\
(11 o(x) = @, )= (1 + A2) "+ v, Au + Atp).
Next equip R2" with a symmetric bilinear form '+’ whose Gram matrix

m=|? B
B C
has symmetric n x n blocks A and B, while
(1.2) C=A+(r-4+""B.
In the orthogonal geometry (R?",:) we routinely check:

(1.3) (a) The map ¢ is an orthogonal projection onto the a-dimen-
sional subspace S = {{w, iw): we R"}.
(b) For all x = (u,v), x' = (', 1)

ox)o(x)=(1 4+ i) "[u+ ][4 + AB][w + 4c']"
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1/2

(c) For 1 i< letd;, =(1+ 2%)"? ¢ole;). Then ¢le;,,) = Aple;) and the
basis |d,,...,d,} for § has a Gram matrix M = 4 + AB.

(d) By replacing 4 by y = —4i7!', we replace ¢ by its complement
¢ = Id - @, whose image space is T = {(—4v,t):ve R"}. Thus T< S,
with equality if and only if ‘M is invertible.

In what follows M = [ —cos(n/p;;)] is the Coxeter matrix for the Coxeter
group G with presentation

oy o rgltrir)Pi = 1,1 <0, j < 2n),

where all p; =1, and for i #j, p;;€ {2, 3, 4, ..., |; (delete any relation
with p,; = ). G is represented faithfully in GL(2n, &) [1, p. 91], where, for
1 < i < 2n, we take r, 1o be the reflection

rix—x—2x-e)e; (xeR™").

Both M and G are conveniently represented by a Coxeter diagram A on
2n nodes; when p;; # 2, nodes i and j are joined by a branch labelled p;;,
though the frequent label ‘3" is omitted and understood. The most
interesting examples, when G is finite and irreducible and M has signature
(+ + - +), are indicated in Figure 1(a)- (d). Nodes 1, ..., n appear across
the top row, with nodes n + 1, ..., 2n just below. The symmetry of B forces
symmetrical connections between the rows, so that these exampies, in which
G acts on spherical space S2"~ !, are easily selected from the list in [2, p.
2971. Similarly, if M has signature (+ + -+ + —), as in Figure 3(a), (b), we
may take G as acting on hyperbolic space H*"~!. In both cases, a fundamen-
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Fig. 1. Spherical diagrams.
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tal region for G is
L={xel* xe
which (considering point coordinates as homogeneous up to positive
multiples) describes & simplex bounded by the mirrors for the r;, with
dihedral angles n/p,; and vertices v/, where e;-1/ = 8/, | <, j<2u.

In the only degenerate cases considecred here, M has slgnature
(+ + - +0) with null space spanned by SHASLH:._}.N < 2) for
Figure 2(a) and m = (1, 1,..., 1} for Figure 2(b}, (c), etc. To model the action
of G on Euclidean space E*"~! we must use the dual space L") (of lincar
functions) with basis {f',..., f?"} satislying fi(e,) = &!. Then as described
in [1, pp. 92-99], G acts in the contradredient way on

(1.4) E?'=!f¢ L(R3"): f(m) = 1)
with fundamental simplex
L={feE>™ :f(e)>0,1<i<2n!

having vertices v/ = m ! 4.

2. A SUBGROUP GENERATED BY HALF-TURNS

Let H be the subgroup of G generated by the half-turns h =r r.
I <i<n We henceforth

(2.1) Assume that the diagram A has no nodes i and i + n adjacent. (Thus B
has vanishing diagonal and we avoid graphs such as that in Figure 3(c).)
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Fie 2 Fuchdean diaprams
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Fig. 3. Other Coxeter diagrams.

We casily check that this assumption is equivalent to:
(2.2) For 1 <i<n, ¢ and § each commute with h,.
By (1.3(c)) each d;-d, = 1, so that the new reflections

Fix—x —2x-d)M, xeS,

gencrate @ group G of isometries acting on S. In fact:
12.3) Each h, fixes S (and T) and equals 7, on S.

Furthermore, a case by case check yields

(2.4) PROPOSITION. The group G is a Coxeter group with mutrix
M =A+.Bund diagram A(;), displayed next 1o A in the JNigures.

Proof. From (1.2), ay; + (A — 47", = ¢,,. For each A compute M
then A(7), noting that Ff, has period q;; if costniq,) = —d,-d, =
—{u,; + 2b,]. For instance, in Figure 1(a), 0 + (4 — A~ ') )= - _\/\M. SO
hat 2= (1 +/3)//2and ¢,, =12, and 5 = =37 = (1 — /3)//2 with
fi2 = 12 4

2.5) REMARK. Euach result is displayed in the figures, which also include
he diagrams A(y) which arise when 4 is replaced by 5. Even with a non-
ntegral branch label ¢, . A(y) still describes a stmplex L with dihedral angle
1.4, If not immediately the corresponding group. O
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Now the period of iih; is determined by its action on the complementary
spaces S and T. Noung, for instance, that a rotation through 21 (35 3} has

pertod 5 we verify: y

(2.6) PROPOSITION. For each group G with diagram A in Figures Huy-
3(b), the subgroup H generated by the half-turns h,,... . h
the group G with diagram A(%) (pair h; with F).

(27) EXAMPLE (Figure 1(d)). The E, group G = [(3**'7 has
H=x>=G={335]asa subgroup generated by half-turns. Clearly, in both ¢
and G the product of the generators must have ‘Petrie’ period h = 30 [2. pp
221, 234].

o I8 Isomorphic to

3. WYTHOFF'S CONSTRUCTION AND EXAMPI k3

In Wythofl's construction [2, p. 196] we ring certain nodes of A therchy
describing a uniform polytope (or honeycomb) [T whose vertex set I1, 15 the
G-orbit of a point ve L, which is equidistant from mirrors corresponding 1o
ringed nodes but lies on the remaining mirrors. Likewise, a standard p-lace
F of IT is specified by the subgraph A, of A induced on those nodes
corresponding to mirrors fixing F (setwise); of course, the G-orbit of F
provides other faces of I1 congruent to F. In fact, since A, 15 the Coxeter
graph for the stabilizer G, of F in G, there are [G: G,] faces of IT equivalent
to F. Note that A, is the subgraph on unringed nodes {2, p. 197].

Suppose the ringed nodes are j, ..., k + n, ... for certain j ke '1,... . n.
Then, for some a > 0 and all ie {t,....n}

Gl (@ v=af/+--+ 4" 4]
(b) di-pley=a(l + 22)7 V208 + o) + AS%--)).

Since G ~ H ¢ G, we also find that
(3.2) @(I1,) contains the G-orbit of ofv) and is the union of the vertex sets
of various G-symmetric (perhaps non-uniform) polytopes in 8.

Furthermore, if each r; is rational with respect to the basis fer..oel,
and 4 is irrational, then ¢(w) # ¢(c) for distinct w, z € I1,. Hence, for those
polytopes derived from Figures 1(b)-(d), 3(b), distinct p-faces of [1 project
to distinct (though perhaps overlapping) convex subsets of @(I1). Compare
Example (3.6) below, with 4 = 1.
(3.3) EXAMPLE. The regular 4-simplex a, is defined by ringing node 1 of
A in Figure 1(b). By 26, G =~ D, the symmetry group of the regular
pentagon (5] Hence, the 5 vertices and 10 edges of a, project onto those of
a {5}, together with its vertex figures. which form an inscribed pentagram
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5;3}. Other faces of x, such as the {3} specified by A, on nodes | and 4, are
sreshortened by ¢[2, p. 120]. O

Trvially, all vertices and edges of IT have uniform projections. For the
tandard p-face F, ¢(F) (and :m,m,-:smmnm in S) will be uniform only when
he ringed nodes in A, are properly disposed. If @(F) is uniform, then each
on-zero d,- ¢(r) must take one value, so that (3.1(b)} forces one of several
onditions on the ringed nodes in A: no bottom nodes, no top nodes, 4 = 1
.nd no nodes j and j + n both ringed, etc. For brevity we consider just one
ase abundant with examples.

3.4) PROPOSITION. Suppose the standard p-fuce F of [1 has a graph A,
vhose ringed components have all nodes j, k,...€e J < 41,...,n} (thus p < n).
{Is0 suppose that in A no node k + n is ringed or is adjacent to node j, for any

ke J. Then @F) (or any G-image) is a uniform p-fuce of the polytope I1
‘efined in S by ringing nodes j, k, ... of AG) for j, ke J. Each such face of T1
rises by projection of a Tl-fuce equivalent to F, und they are enumerated by
malyzing the ringed graph A(4).

Remarks. Notice that 11 € o(I1). As in Example (3.3) IT generally hus
“ftover faces equivalent under G to F, which have other uniform or non-
:mform projections. Some sort of condition on the nodes of both A and A,
s needed to force ¢(F) to be uniform.

Proof. Let j, k...€J. The given assumptions, with (2.1) and (2.3), imply
hat

elthh,.. )]
(hjh, .. Jow)=(F .. )olr). O

oltryr ..}

The analysis of specific cases depends on the combinatorial pecularities of
he groups G and G. We therefore conclude with a variety of examples
aased on (3.4), whose details are readily verified by hand or machine.

avariably, A = A(/) from the figures.

+.5. Other Uniform Polytopes

4) Ring node 3 from A and A in Figure t(c). Using (3.3) to analyze the
ertex figures, we find that the 12 vertices, 60 edges and 40 of the 160
riangular faces of the cross polytope fi, project onto corresponding
lements of the icosahedron {3, 5}, with an inscribed great icosahedron {3,
i35 cf. [2, p. 254). Ringing node | instead provides a projection from & set
{ alternate vertices of the 6-cube onto those of a dodecahedron and
eciprocal icosahedron.
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(b} Ringing node 4 from A in Figure 1(d) we obtain the E, polytope 4, |,
whose 240 vertices give unit normals for the mirrors of reflection in the E,
group. Using 3.5(a) for the vertex figures, we find that the vertices und
certain edges, triangles and tetrahedral faces from 4,, project onto those of
a concentric {3,3,5} and {3,3,5/3} with circumradii in the ratio r:1: of (3}

(c) Ringing node 1 in Figure 1(a) provides a projection of the vertices
and certain edges of the 24-cell {3, 4, 3} onto those of a concentiic 2 and
112/7} (in contrast with (a), (b) the inner dodecagon 1s rotated 7 12 with
respect to the outer; cf [2. pp. 149, 245- 247]).

(d) By ringing nodes 1 and 2 from A in Figure 1(b) we obtain the L,
polytope 1, ya,, whose 20 vertices are the unit normals to the hy perplanes
of symmetry of x,. The projection ¢ yields concentric polygons 1) andg
{10/3} with circumradii in the ratio 7:1. (The remaining 40 edges ol 1,
connect the two decagons.) The conditions of (3.4) are not satisticd here:
indeed @(I1) is more symmetrical than first expected.

(¢) In the complex reflection groups described in Figure 3 (d). cuch r, hus
period 3. Nevertheless, our results apply since we can tuke Al real. with
entry —1,/3 for adjucent nodes in A [3. p. 132] As in Figure Lib).
(4, 1) = (r, =t~ '). Ringing node 1 of A provides an orthogonal projecuon
of the 240 vertices, and a certain 240 edges, of the Witting polytope
3{3}3{3}3{3}3 onto the vertices and edges of concentric polygons 3,5!3 und
3{5/3}3, with circumradii in the ratio t:1 (cf. 6. pp. 192-1937 for « dual
result, and [3, pp. 105, 134] for the connection with (b) above).

(f) A diagram A with a fractional label still describes u sumplex. In Figure
3e) we consider just one of many available examples;  here
A=+ /\m. | - /\.B. Now let

€y = —€,,
ey = —(01111221) = PyryrolaFstaboro( —¢,),
and
€, €3, €5, €0 ¢ TESP. ¢} = €5, ¢y, €3, €y, €,, TESP. .

Then M’ = (¢}-¢}) is the Coxeter matrix for the E, diagram in Figure 1(d).
In fact, in the present example G is the Ey group (generaled in u starry’
way). By ringing node 4 of A we obtain a starry uniform polytope 1T with
the same vertices, edges and triangular faces as the polytope 4,, described
in 3.5(b). The 240 vertices project in sets of 24 + 24, 144 and 24 + 24 10
three concentric hyperspheres with radii in the ratio 2'2:2' ., "'2 The
inner and outer sets each belong 10 a pair of reciprocal {3, 4, 3s, while the
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ices of the middle set belong to the truncation defined by ringing nodes
d 4 in the diagram A(4) in Figure 3(e).

:) Remarks. The complementary projection  provides a similar set of
dts. I several nodes of A are ringed, we cannot expect the projected
ices 1o yield just one or two uniform polytopes since [G:H ] is generally
e.

Euclideuan Honeycombs

‘e the graph A in Figure 2(a) describes the symmetry group of the
iliar cubic lattice in E3, we consider only the infinite fumily of groups
. n 22, given in Figures 2(b), (c), etc. Since 4 =1 and ¢ fixes the null
or m. the adjoint @* acts naturally on E?"~! (see (1.4)). The image of
orthogonal projection is the Euclidean space E" ' through the
points of edges (¢!, ' *"), ..., (v", ¢?") of L. By ringing node 1 in A, and
., we describe honeycombs a,,_ hin E?""} and «,_,h in E*"' [4, pp.
1527; in fact, @* maps the vertices of the former onto those of the latter,
» covered infinitely often. The complementary projection ¢* (with
— 1) has non-canonical image space since Y(m) = O; and for n 2 3, the
esponding diagram A(y) is an n-gon with one branch labelled *3/2".
ections in the walls of the resulting simplex generate the D, group with
sity” 2772 (4, pp. 161-164]. Thus the vertices of «,,_h project onto
¢ of infinitely many concentric polytopes with D, symmetry. Here we
Dy =4;,D,=4, x 4,.

Hyperbolic Honeyvcombs

Let I1 be the honeycomb in H? defined by ringing node | of A in Figure
Now ¢ is the orthogonal projection onto the line S perpendiculur to
s (' ey and (02, 0*) of the fundamental simplex L. The planes through
¢ edges and perpendicular 10 S enclose a fundamental region of infinite
-me for H. Since L is compact, it easily follows that the vertices of I
ect onto a dense subset of S.
') Such non-discrete behaviour attends the example in Figure 3(b). By
:paring the action of the subgroup H on S and on T = §*, we observe
the group [5, 5] acting discretely on the hyperbolic plane is isomorphic
2¢ non-discrete group generated by reflections in the sides of a spherical
1igle K with ungles 3n,5, 3n;/5 and n/2; thus K is not a Schwarz triangle
2. 20}

bl A
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