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Abstract. Gomory’s and Chvátal’s cutting-plane procedure proves re-
cursively the validity of linear inequalities for the integer hull of a given
polyhedron. The number of rounds needed to obtain all valid inequal-
ities is known as the Chvátal rank of the polyhedron. It is well-known
that the Chvátal rank can be arbitrarily large, even if the polyhedron is
bounded, if it is of dimension 2, and if its integer hull is a 0/1-polytope.
We prove that the Chvátal rank of polyhedra featured in common relax-
ations of many combinatorial optimization problems is rather small; in
fact, the rank of any polytope contained in the n-dimensional 0/1-cube
is at most 3n2 lg n. This improves upon a recent result of Bockmayr et
al. [6] who obtained an upper bound of O(n3 lg n).
Moreover, we refine this result by showing that the rank of any polytope
in the 0/1-cube that is defined by inequalities with small coefficients is
O(n). The latter observation explains why for most cutting planes de-
rived in polyhedral studies of several popular combinatorial optimization
problems only linear growth has been observed (see, e.g., [13]); the coeffi-
cients of the corresponding inequalities are usually small. Similar results
were only known for monotone polyhedra before.
Finally, we provide a family of polytopes contained in the 0/1-cube the
Chvátal rank of which is at least (1+ ε)n for some ε > 0; the best known
lower bound was n.

1 Introduction

Chvátal [11] established cutting-plane proofs as a way to certify certain prop-
erties of combinatorial problems, e.g., to testify that there are no k pairwise
non-adjacent nodes in a given graph, that there is no acyclic subdigraph with k
arcs in a given digraph, or that there is no tour of length at most k in a pre-
scribed instance of the traveling salesperson problem. In this paper we discuss
the length of such proofs. Let us first recall the notion of a cutting-plane proof.
A sequence of inequalities

c1 x 6 δ1, c2 x 6 δ2, . . . , cm x 6 δm (1)

is called a cutting-plane proof of c x 6 δ from a given system of linear inequalities
Ax 6 b, if c1, . . . , cm are integral, cm = c, δm = δ, and if ci x 6 δ′i is a
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nonnegative linear combination of Ax 6 b, c1 x 6 δ1, . . . , ci−1 x 6 δi−1 for some
δ′i with bδ′ic 6 δi. Obviously, if there is a cutting-plane proof of c x 6 δ from
Ax 6 b then every integer solution to Ax 6 b must satisfy c x 6 δ. Chvátal
[11] showed that the converse holds as well. That is, if all integer points in a
nonempty polytope {x ∈ Rn : Ax 6 b} satisfy an inequality c x 6 δ, for some
c ∈ Zn, then there is a cutting-plane proof of c x 6 δ from Ax 6 b. Schrijver
extended this result to rational polyhedra [36].

In a way, the sequential order of the inequalities in (1) obscures the (recursive)
structure of the cutting-plane proof; it is better revealed by a directed graph
with vertices 0, 1, 2, . . . , m, in which an arc goes from node i to node j iff the
i-th inequality has a positive coefficient in the linear combination of the j-th
inequality. Here, 0 serves as a representative for any inequality in Ax 6 b. The
number of arcs in a longest simple path terminating at a node i is usually referred
to as the depth of the i-th inequality ci x 6 δi w.r.t. the cutting plane proof. The
depth of the m-th inequality is called the depth of the proof, whereas m is the
so-called length of the cutting-plane proof. We also say that an inequality c x 6 δ
has depth (at most) d relative to a polyhedron {x : Ax 6 b} if it has a cutting-
plane proof from Ax 6 b of depth less than or equal to d. The following theorem
clarifies the relation between the depth and the length of a cutting-plane proof.
It resembles very much the relation between the height and the number of nodes
of a recursion tree where every interior node has at most degree n. It can be
proved with the help of Farkas’ Lemma.

Theorem 1 (Chvátal, Cook, and Hartmann [13]). Let A ∈ Zm×n and
b ∈ Zm, let Ax 6 b have an integer solution, and let c x 6 δ have depth at most
d relative to Ax 6 b. Then there is a cutting-plane proof of c x 6 δ from Ax 6 b
of length at most (nd+1 − 1)/(n − 1).

Gomory-Chvátal cutting-planes have gained importance for at least three
reasons. First, the cutting-plane method is a (theoretical) tool to obtain a linear
description of the integer hull of a polyhedron. In fact, as we already mentioned
before any valid inequality for the integer hull has a cutting-plane proof from
the defining system of the polyhedron. The Chvátal rank of this polyhedron is
the smallest number d such that all inequalities valid for its integer hull have
depth at most d relative to the defining system. Hence, if we later state lower
and upper bounds for the depth of inequalities they immediately apply to the
Chvátal rank of the corresponding polyhedron as well. Second, despite the early
disappointments with Gomory’s cutting-plane method [21, 22], it is of practical
relevance. On the one hand, it has stimulated to a certain extent the search
for problem-specific cutting planes which became the basis of an own branch
of combinatorial optimization, namely polyhedral combinatorics (see, e.g., [33,
23, 35]). On the other hand, Balas et al. [2] successfully incorporated Gomory’s
mixed integer cuts within a Branch-and-Cut framework. Third, since cutting-
plane theory implies that certain implications in integer linear programming
have cutting-plane proofs, it is of particular importance in mathematical logic
and complexity theory. It is a fundamental problem whether there exists a proof
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system for propositional logic in which every tautology has a short proof. Here,
the length of the proof is measured by the total number of symbols in it and short
means polynomial in the length of the tautology. This question is equivalent to
whether or not NP equals co-NP. Cook, Coullard, and Turán [14] were the first to
consider cutting-plane proofs as a propositional proof system. In particular, they
pointed out that the cutting-plane proof system is a strengthening of resolution
proofs. Since the work of Haken [25] exponential lower bounds are known for
the latter. Results of Chvátal, Cook, and Hartmann [13], of Bonet, Pitassi, and
Raz [7], of Impagliazzo, Pitassi, and Urquhart [30], and of Pudlák [34] imply
exponential lower bounds on the length of cutting-plane proofs as well. On the
other hand, there is no upper bound on the length of cutting-plane proofs in
terms of the dimension of the corresponding polyhedron as the following well-
known example shows. The Chvátal rank of the polytope defined by

−t x1 + x2 6 1
t x1 + x2 6 t + 1

x1 6 1
x1, x2 > 0

grows with t. Here, t is an arbitrary positive number. This fact is rather counter-
intuitive since the corresponding integer hull is a 0/1-polytope, i.e., all its vertices
have components 0 or 1 only. That is, for any 0/1-polytope there is a simple
certificate of the validity of an inequality c x 6 δ. Just list all, at most 2n possible
assignments of 0/1-values to the variables. One of our main results helps to
meet the natural expectation. We give a polynomial bound in the dimension for
the Chvátal rank of any polytope contained in the 0/1-cube. Then, Theorem 1
implies the existence of exponentially long cutting-plane proofs, matching the
known exponential lower bounds.

In polyhedral combinatorics, it has been quite common to consider the depth
of a class of inequalities if not as an indicator of quality at least as a measure
of its complexity. Hartmann, Queyranne, and Wang [29] give conditions under
which an inequality has depth at most 1 and use them to establish that sev-
eral classes of inequalities for the traveling salesperson polytopes have depth at
least 2, as was claimed before in [3, 8, 9, 10, 18, 20, 24]. However, it follows
from a recent result in [16] that deciding whether a given inequality c x 6 δ
has depth at least 2 can in general not be done in polynomial time, unless
P = NP. Chvátal, Cook, and Hartmann [13] (see also [27]) answered questions
and proved conjectures of Schrijver, of Barahona, Grötschel, and Mahjoub [4], of
Jünger, of Chvátal [12], and of Grötschel and Pulleyblank [24] on the behavior
of the depth of certain inequalities relative to popular relaxations of the stable
set polytope, the bipartite-subgraph polytope, the acyclic-subdigraph polytope,
and the traveling salesperson polytope, resp. They obtained similar results for
the set-covering and the set-partitioning polytope, the knapsack polytope, and
the maximum-cut polytope, and so did Schulz [38] for the transitive packing,
the clique partitioning, and the interval order polytope. The observed increase
of the depth was never faster than a linear function of the dimension; we prove
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that this indeed has to be the case as the depth of any inequality with coeffi-
cients bounded by a constant is O(n), relative to a polytope in the 0/1-cube.
Naturally, most polytopes associated with combinatorial optimization problems
are 0/1-polytopes.

Main Results. We present two new upper bounds on the depth of inequalities
relative to polytopes in the 0/1-cube. For notational convenience, let P be any
polytope contained in the 0/1-cube, i.e., P ⊆ [0, 1]n, and let c x 6 δ, c ∈ Zn be
an arbitrary inequality valid for the integer hull PI of P .

We prove first that the depth of c x 6 δ relative to P is at most 2(n2 +
n lg ‖c‖∞). This yields an O(n2 lg n) bound on the Chvátal rank of P since
any 0/1-polytope PI can be represented by a system of inequalities Ax 6 b
with A ∈ Zm×n, b ∈ Zm such that each absolute value of an entry in A is
bounded by nn/2. Note that the latter bound is sharp, i.e., there exist 0/1-
polytopes with facets for which any inducing inequality a x 6 β, a ∈ Zn satisfies
‖a‖∞ ∈ Ω(nn/2) [1].

Second, we show that the depth of c x 6 δ relative to P is no more than
‖c‖1 + n. A similar result was only known for monotone polyhedra [13]. In fact,
we present a reduction to the monotone case that is of interest in its own right
because of the smooth interplay of unimodular transformations and rounding
operations. The second bound gives an asymptotic improvement by a factor n
to the before-mentioned bound if the components of c are bounded by a constant.

Third, we construct a family of polytopes in the n-dimensional 0/1-cube
whose Chvátal rank is at least (1 + ε)n, for some ε > 0. In other words, if r(n)
denotes the maximum Chvátal rank over all polytopes that are contained in
[0, 1]n, then it is one outcome of our study that this function behaves as follows:

(1 + ε)n 6 r(n) 6 3n2 lg n .

Finally, we also show that the number of inequalities in any linear description
of a polytope P ⊆ [0, 1]n with empty integer hull is exponential in n, whenever
there is an inequality of depth n.

Related Work. Via a geometric argument, Bockmayr and Eisenbrand [5] derived
the first polynomial upper bound of 6 n3 lg n on the Chvátal rank of polytopes in
the n-dimensional 0/1-cube. Subsequently, Schulz [39] and Hartmann [28] inde-
pendently obtained both a considerably simpler proof and a slightly better bound
of n2 lg(nn/2), by using bit-scaling. The reader is referred to the joint journal
version of their papers [6], where the authors actually show that the depth of any
inequality c x 6 δ, c ∈ Zn, which is valid for PI is at most n2 lg ‖c‖∞, relative to
P . For monotone polytopes P , Chvátal, Cook, and Hartmann [13] showed that
the depth of any inequality c x 6 δ that is valid for PI is at most ‖c‖1. More-
over, they also identified polytopes stemming from relaxations of combinatorial
optimization problems that have Chvátal rank at least n.

Eventually, our study of r(n) can also be seen as a continuation of the in-
vestigation of combinatorial properties of 0/1-polytopes, like their diameter [32],
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their number of facets [19], their number of vertices in a 2-dimensional projection
[31], or their feature of admitting polynomial-time simplex-type algorithms for
optimization [40].

The paper is organized as follows. We start with some preliminaries and
introduce some notation in Section 2. We also show that any linear description of
a polytope in the 0/1-cube that has empty integer hull and Chvátal rank n needs
to contain at least 2n inequalities. In Section 3, we prove the O(n2 lg n) upper
bound on the Chvátal rank of polytopes in the 0/1-cube. Then, in Section 4, we
utilize unimodular transformations as a key tool to derive an O(n) bound on the
depth of inequalities with small coefficients, relative to polytopes in the 0/1-cube.
Finally, we present the new lower bound on the Chvátal rank in Section 5.

2 Preliminaries

A polyhedron P is a set of points of the form P = {x ∈ Rn |Ax 6 b}, for some
matrix A ∈ Rm×n and some vector b ∈ Rm . The polyhedron is rational if both A
and b can be chosen to be rational. If P is bounded, then P is called a polytope.
The integer hull PI of a polyhedron P is the convex hull of the integer points
in P .

The half space H = (c x 6 δ) is the set {x ∈ Rn | c x 6 δ}, for some non-zero
vector c ∈ Qn . It is called valid for a subset S of Rn , if S ⊆ H . Sometimes we
also say that the inequality c x 6 δ is valid for S. If the components of c are
relatively prime integers, i.e., c ∈ Zn and gcd(c) = 1, then HI = (c x 6 bδc),
where bδc is the largest integer number less than or equal to δ. The elementary
closure of a polyhedron P is the set

P ′ =
⋂

H⊇P

HI ,

where the intersection ranges over all rational half spaces containing P . We refer
to an application of the ′ operation as one iteration of the Gomory-Chvátal pro-
cedure. If we set P (0) = P and P (i+1) = (P (i))′, for i > 0, then the Chvátal rank
of P is the smallest number t such that P (t) = PI . The depth of an inequality
c x 6 δ with respect to P is the smallest k such that c x 6 δ is valid for P (k).

Let P ⊆ Rn be a polyhedron. A polyhedron Q with Q ⊇ P is called a
weakening of P , if QI = PI . If c x 6 δ is valid for PI , then the depth of this
inequality with respect to Q is an upper bound on the depth of this inequality
with respect to P . It is easy to see that each polytope P ⊆ [0, 1]n has a rational
weakening in the 0/1-cube.

The following important lemma can be found in [37, p. 340]. (For a very
nice treatment, see also [15, Lemma 6.33].) It allows to use induction on the
dimension of the polyhedra considered and provides the key for the termination
of the Gomory-Chvátal procedure, which was shown by Schrijver for rational
polyhedra in [36].
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Lemma 1. Let F be a face of a rational polyhedron P . Then F ′ = P ′ ∩ F .

Lemma 1 yields the following upper bound on the Chvátal rank of rational
polytopes in the 0/1-cube with empty integer hull (see [6] for details).

Lemma 2. Let P ⊆ [0, 1]n be a d-dimensional rational polytope in the 0/1-cube
with PI = ∅. If d = 0, then P ′ = ∅; if d > 0, then P (d) = ∅.
Thus, if c x 6 δ is valid for a rational polytope P ⊆ [0, 1]n and c x 6 δ − 1 is
valid for PI , then c x 6 δ − 1 is valid for P (n).

With these methods at hand one can prove the following result due to Hart-
mann [27].

Lemma 3. If P ⊆ [0, 1]n is a polytope and
∑

i∈I xi −
∑

j∈J xj 6 r is valid for
PI for some subsets I and J of {1, . . . , n}, then this inequality has depth at most
n2 with respect to P .

A side-product of our result in Section 4.3 is a reduction of this bound to 2n.
Chvátal, Cook, and Hartmann [13, p. 481] provided the following family of

rational polytopes in the 0/1-cube with empty integer hull and Chvátal rank n:

Pn =
{
x ∈ Rn |

∑
j∈J

xj +
∑
j /∈J

(1 − xj) >
1
2
, for all J ⊆ {1, . . . , n}}. (2)

The polytopes in this example have exponentially many inequalities, and this
indeed has to be the case.

Proposition 1. Let P ⊆ [0, 1]n be a polytope in the 0/1-cube with PI = ∅ and
rank(P ) = n. Any inequality description of P has at least 2n inequalities.

Proof. For a polytope P ⊆ Rn and for some i ∈ {1, . . . , n} and ` ∈ {0, 1} let
P `

i ⊆ Rn−1 be the polytope defined by

P `
i = {x ∈ [0, 1]n−1 | (x1, . . . , xi−1, `, xi+1, . . . , xn)T ∈ P}.

Notice that, if P is contained in a facet (xi = `) of [0, 1]n for some ` ∈ {0, 1}
and some i ∈ {1, . . . , n}, then the Chvátal rank of P is the Chvátal rank of P `

i .
We will prove now that any one-dimensional face F1 of the cube satisfies

F1 ∩ P 6= ∅. We proceed by induction on n.
If n = 1, this is definitely true since P is not empty and since F1 is the cube

itself. For n > 1, observe that any one-dimensional face F1 of the cube lies in a
facet (xi = `) of the cube, for some ` ∈ {0, 1} and for some i ∈ {1, . . . , n}. Since
P has Chvátal rank n it follows that P̃ = (xi = `) ∩ P has Chvátal rank n − 1.
If the Chvátal rank of P̃ was less than that, P would vanish after n − 1 steps.
It follows by induction that (F1)`

i ∩ P̃ `
i 6= ∅, thus F1 ∩ P 6= ∅.

Now, each 0/1-point has to be cut off from P by some inequality, as PI = ∅.
If an inequality c x 6 δ cuts off two different 0/1-points simultaneously, then it
must also cut off a 1-dimensional face of [0, 1]n. Because of our previous obser-
vation this is not possible, and hence there is at least one inequality for each
0/1-point which cuts off only this point. Since there are 2n different 0/1-points
in the cube, the claim follows. ut
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We close this section by introducing some further notation. The `∞-norm
‖c‖∞ of a vector c ∈ Rn is the largest absolute value of its entries, ‖c‖∞ =
max{|ci| | i = 1, . . . , n}. The `1-norm ‖c‖1 of c is the sum ‖c‖1 =

∑n
i=1 |ci|. We

define the function lg : N → N as

lg n =

{
1 if n = 0
1 + blog2(n)c if n > 0

where byc denotes the largest integer smaller than or equal to y. Note that lg n
is the number of bits in the binary representation of n. For a vector x ∈ Rn , bxc
denotes the vector obtained by component-wise application of b·c.

3 A New Upper Bound on the Chvátal Rank

We call a vector c saturated with respect to a polytope P , if max{c x | x ∈
P} = max{c x | x ∈ PI}. If Ax 6 b is an inequality description of PI , then
P = PI if and only if each row vector of A is saturated w.r.t. P . In [6], it is
shown that an integral vector c ∈ Zn is saturated after at most n2 lg ‖c‖∞ steps
of the Gomory-Chvátal procedure. Since each 0/1-polytope has a representation
Ax 6 b with A ∈ Zm×n, b ∈ Zm such that each absolute value of an entry in
A is bounded by nn/2 (see, e.g., [33]), the known bound of O(n3 lg n) follows.
One drawback in this proof is that faces of P which do not contain 0/1-points
are taken to have worst case behavior n. The following observation is crucial to
derive a better bound.

Lemma 4. Let c x 6 α be valid for PI and c x 6 γ be valid for P , where α 6 γ,
α, γ ∈ Z and c ∈ Zn. If, for each β ∈ R, β > α, the polytope Fβ = P ∩ (c x = β)
does not intersect with two opposite facets of the 0/1-cube, then the depth of
c x 6 α is at most 2(γ − α).

Proof. Notice that F ′
β = ∅ for each β > α. The proof is by induction on γ − α.

If α = γ, there is nothing to prove. So let γ −α > 0. Since F ′
γ = ∅, Lemma 1

implies that c x 6 γ − ε is valid for P ′ for some ε > 0 and thus the inequality
c x 6 γ − 1 is valid for P (2). ut

Proposition 2. Let P be a rational polytope in the n-dimensional 0/1-cube.
Any integral vector c ∈ Zn is saturated w.r.t. P (t), for any t > 2(n2 +n lg ‖c‖∞).

Proof. We can assume that c > 0 holds and that PI 6= ∅. (It is shown in [6] that
polytopes with empty integer hull have Chvátal rank at most n.) The proof is
by induction on n and lg ‖c‖∞. The claim holds for n = 1, 2 since the Chvátal
rank of a polytope in the 1- or 2-dimensional 0/1-cube is at most 4.

So let n > 2. If lg(‖c‖∞) = 1, then the claim follows, e.g., from Theorem 3
below. So let lg ‖c‖∞ > 1. Write c = 2c1 +c2, where c1 = bc/2c and c2 ∈ {0, 1}n.
By induction, it takes at most 2(n2 + n lg ‖c1‖∞) = 2(n2 + n lg ‖c‖∞) − 2n
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iterations of the Gomory-Chvátal procedure until c1 is saturated. Let k = 2(n2+
n lg ‖c‖∞) − 2n.

Let α = max{c x | x ∈ PI} and γ = max{c x | x ∈ P (k)}. The integrality gap
γ − α is at most n. This can be seen as follows. Choose x̂ ∈ P (k) with c x̂ = γ
and let xI ∈ PI satisfy c1 xI = max{c1 x | x ∈ P (k)}. One can choose xI out of
PI since c1 is saturated w.r.t. P (k). It follows that

γ − α 6 c(x̂ − xI) = 2c1(x̂ − xI) + c2(x̂ − xI) 6 n .

Consider now an arbitrary fixing of an arbitrary variable xi to a specific value
`, ` ∈ {0, 1}. The result is the polytope

P `
i = {x ∈ [0, 1]n−1 | (x1, . . . , xi−1, `, xi+1, . . . , xn)T ∈ P}

in the (n− 1)-dimensional 0/1-cube for which, by the induction hypothesis, the
vector c̃i = (c1, . . . , ci−1, ci+1, . . . , cn) is saturated after at most

2((n − 1)2 + (n − 1) lg ‖c̃i‖∞) 6 2(n2 + n lg ‖c‖∞) − 2n

iterations.
It follows that

α − `ci > max{c̃i x | x ∈ (P `
i )(k)} = max{c̃i x | x ∈ (P `

i )I}.
If β > α, then (c x = β)∩P (k) cannot intersect with a facet of the cube, since a
point in (c x = β) ∩ P (k) ∩ (xi = `), ` ∈ {0, 1}, has to satisfy c x 6 α.

With Lemma 4, after 2n more iterations of the Gomory-Chvátal procedure,
c is saturated, which altogether happens after 2(n2 + n lg ‖c‖∞) iterations. ut

We conclude this section with a new upper bound on the Chvátal rank.

Theorem 2. The Chvátal rank of a polytope in the n-dimensional 0/1-cube is
O(n2 log n).

Proof. Each polytope Q in the 0/1-cube has a rational weakening P . The integral
0/1-polytope PI can be described by a system of integral inequalities PI = {x ∈
Rn | Ax 6 b} with A ∈ Zm×n, b ∈ Zm such that each absolute value of an entry
in A is bounded by nn/2. We estimate the number of Gomory-Chvátal steps until
all row-vectors of A are saturated. Proposition 2 implies that those row-vectors
are saturated after at most 2(n2 + n lg nn/2) 6 3 n2 lg n steps. ut

4 A Different Upper Bound on the Depth

In this section we show that any inequality c x 6 δ, which is valid for the integer
hull of a polytope P in the n-dimensional 0/1-cube, has depth at most n + ‖c‖1

w.r.t. P .
We start by recalling some useful properties of monotone polyhedra, prove

then that the Gomory-Chvátal operation is compliant with unimodular trans-
formations, and eventually reduce the general case to the depth of inequalities
over monotone polytopes via a special unimodular transformation.
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4.1 Monotone Polyhedra

A nonempty polyhedron P ⊆ Rn
>0 is called monotone if x ∈ P and 0 6 y 6 x

imply y ∈ P . Hammer, Johnson, and Peled [26] observed that a polyhedron P
is monotone if and only if P can be described by a system x > 0, Ax 6 b with
A, b > 0.

The next statements are proved in [27] and [13, p. 494]. We include a proof
of Lemma 6 for the sake of completeness.

Lemma 5. If P is a monotone polyhedron, then P ′ is monotone as well.

Lemma 6. Let P be a monotone polytope in the 0/1-cube and let w x 6 δ,
w ∈ Zn, be valid for PI . Then w x 6 δ has depth at most ‖w‖1 − δ.

Proof. The proof is by induction on ‖w‖1. If ‖w‖1 = 0, the claim follows trivially.
W.l.o.g., we can assume that w > 0 holds. Let γ = max{w x | x ∈ P} and let
J = {j | wj > 0}. If max{∑j∈J xj | x ∈ P} = |J |, then, since P is monotone, x̂
with

x̂i =

{
1 if i ∈ J,

0 otherwise

is in P . Also w x̂ = γ must hold. So γ = δ and the claim follows trivially. If
max{∑j∈J xj | x ∈ P} < |J |, then

∑
j∈J xj 6 |J | − 1 has depth at most 1. If

‖w‖1 = 1 this also implies the claim, so assume ‖w‖1 > 2. By induction the
valid inequalities w x − xj 6 δ, j ∈ J have depth at most ‖w‖1 − δ − 1. Adding
up the inequalities w x − xj 6 δ, j ∈ J and

∑
j∈J xj 6 |J | − 1 yields

w x 6 δ + (|J | − 1)/|J |.

Rounding down yields w x 6 δ and the claim follows. ut

4.2 Unimodular Transformations

Unimodular transformations and in particular switching operations will play a
crucial role to relate the Chvátal rank of arbitrary polytopes in the 0/1-cube to
the Chvátal rank of monotone polytopes. In this section, we show that unimod-
ular transformations and the Gomory-Chvátal operation commute.

A unimodular transformation is a mapping

u : Rn → Rn

x 7→ Ux + v,

where U ∈ Zn×n is a unimodular matrix, i.e., det(U) = ±1, and v ∈ Zn.
Note that u is a bijection. Its inverse is the unimodular transformation

u−1(x) = U−1x − U−1v. Since U−1 ∈ Zn×n, u is also a bijection of Zn.
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Consider the rational halfspace (c x 6 δ), c ∈ Zn, δ ∈ Q. The set u(c x 6 δ)
is the rational halfspace

{x ∈ Rn | c u−1(x) 6 δ} = {x ∈ Rn | c U−1x 6 δ + c U−1v}
= (c U−1x 6 δ + c U−1v).

Notice that the vector c U−1 is also integral. Let S be some subset of Rn . It
follows that (c x 6 δ) ⊇ S if and only if (c U−1x 6 δ + c U−1v) ⊇ u(S).

Consider now the first elementary closure P ′ of some polyhedron P ,

P ′ =
⋂

(c x6δ)⊇P
c∈Zn

(c x 6 bδc).

It follows that

u(P ′) =
⋂

(c x6δ)⊇P
c∈Zn

(c U−1x 6 bδc + c U−1v).

From this one can derive the next lemma.

Lemma 7. Let P be a polyhedron and u be a unimodular transformation. Then

u(P ′) = (u(P ))′.

Corollary 1. Let P ⊆ Rn be a polyhedron and let c x 6 δ be a valid inequality
for PI . Let u be a unimodular transformation. The inequality c x 6 δ is valid for
P (k) if and only if u(c x 6 δ) is valid for (u(P ))(k).

The i-th switching operation is the unimodular transformation

πi : Rn → Rn

(x1, . . . , xn) 7→ (x1, . . . , xi−1, 1 − xi, xi+1, . . . , xn),

It has a representation

πi : Rn → Rn

x 7→ Ux + ei,

where U coincides with the identity matrix In except for U(i,i) which is −1. Note
that the switching operation is a bijection of [0, 1]n. For the set (c x 6 δ) one
has πi(c x 6 δ) = c̃ x 6 δ − ci. Here c̃ coincides with c except for a change of
sign in the i-th component.
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4.3 The Reduction to Monotone Weakenings

If one wants to examine the depth of a particular inequality with respect to a
polytope P ⊆ [0, 1]n, one can apply a series of switching operations until all
its coefficients become nonnegative. An inequality with nonnegative coefficients
defines a (fractional) 0/1-knapsack polytope K. The depth of this inequality
with respect to the convex hull of P and K is then an upper bound on the depth
with respect to P . We will show that conv(P, K)(n) has a monotone weakening
in the 0/1-cube.

Lemma 8. Let P ⊆ [0, 1]n be a polytope in the 0/1-cube, with PI = KI , where
K = {x | c x 6 δ, 0 6 x 6 1} and c > 0. Then, P (n) has a rational, monotone
weakening Q in the 0/1-cube.

Proof. We can assume that P is rational. Let x̂ be a 0/1-point which is not
contained in P , i.e., c x̂ > δ. Let I = {i | x̂i = 1}. The inequality

∑
i∈I xi 6 |I| is

valid for the cube and thus for P . Since c > 0, the corresponding face F = {x |∑
i∈I xi = |I|, x ∈ P} of P does not contain any 0/1-points. Lemma 2 implies

that
∑

i∈I xi 6 |I| − 1 is valid for P (n).
Thus, for each 0/1-point x̂ which is not in P , there exists a nonnegative

rational inequality ax̂ x 6 γx̂ which is valid for P (n) and which cuts x̂ off. Thus

0 6 xi 6 1, i ∈ {1, . . . , n}
ax̂ x 6 γx̂, x̂ ∈ {0, 1}n, x̂ /∈ P

is the desired weakening. ut

Theorem 3. Let P ⊆ [0, 1]n, P 6= ∅ be a nonempty polytope in the 0/1-cube
and let c x 6 δ be a valid inequality for PI with c ∈ Zn. Then c x 6 δ has depth
at most n + ‖c‖1 with respect to P .

Proof. One can assume that c is nonnegative, since one can apply a series of
switching operations. Notice that this can change the right hand side δ, but in
the end δ has to be nonnegative since P 6= ∅. Let K = {x ∈ [0, 1]n | c x 6 δ}
and consider the polytope Q = conv(K, P ). The inequality c x 6 δ is valid for
QI and the depth of c x 6 δ with respect to P is at most the depth of c x 6 δ
with respect to Q. By Lemma 8, Q(n) has a monotone weakening S. The depth
of c x 6 δ with respect to Q(n) is at most the depth of c x 6 δ with respect to
S. But it follows from Lemma 6 that the depth of c x 6 δ with respect to S is
at most ‖c‖1 − δ 6 ‖c‖1. ut

5 A New Lower Bound on the Chvátal Rank

To the best of the authors’ knowledge, no example of a polytope P in the n-
dimensional 0/1-cube with rank(P ) > n has been provided in the literature so
far. We now show that r(n) > (1 + ε)n, for infinitely many n, where ε > 0.
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The construction relies on the lower bound result for the fractional stable-set
polytope due to Chvátal, Cook, and Hartmann [13].

Let G = (V, E) be a graph on n vertices, C be the family of all cliques of
G, and let Q ⊆ Rn be the fractional stable set polytope of G defined by the
equations

x(C) 6 1 for all C ∈ C,
xv > 0 for all v ∈ V.

(3)

Let e be the vector of all ones. The following lemma is proved in [13, Proof
of Lemma 3.1].

Lemma 9. Let k < s be positive integers and let G be a graph with n vertices
such that every subgraph of G with s vertices is k-colorable. If P is a polyhedron
that contains QI and the point u = 1

k e, then P (j) contains the point xj =
( s

s+k )ju.

Let α(G) be the size of the largest independent subset of the nodes of G. It
follows that e x 6 α(G) is valid for QI . One has

exj =
n

k
(

s

s + k
)j
>

n

k
e−jk/s ,

and thus xj does not satisfy the inequality e x 6 α(G) for all j < (s/k) ln n
kα(G) .

Erdös proved in [17] that for every positive t there exist a positive integer
c, a positive number δ and arbitrarily large graphs G with n vertices, cn edges,
α(G) < tn and every subgraph of G with at most δn vertices is 3 colorable.
One wants that ln n

kα(G) > 1 and that s/k grows linearly, so by chosing some
t < 1/(3e), k = 3 and s = bδnc one has that xj does not satisfy the inequality
e x 6 α(G) for all j < (s/k).

We now give the construction. Let P be the polytope that results from the
convex hull of Pn defined in (2) and Q. Pn ⊆ P contributes to the fact that
1/2 e is in P (n−1) [13, Lemma 7.2]. Thus x0 = 1/3 e is in P (n−1). Since the
convex hull of P is QI , it follows from the above discussion that the depth of
e x 6 α(G) with respect to P (n−1) is Ω(n). Thus the depth of ex 6 α(G) is at
least (n − 1) + Ω(n) > (1 + ε)n for infinitely many n, where ε > 0.
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rank of polytopes in the 0/1 cube. Technical Report 616, Technical University of
Berlin, Department of Mathematics, December 1998.

[7] M. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting planes proofs with
small coefficients. Journal of Symbolic Logic, 62:708–728, 1997.

[8] S. C. Boyd and W. H. Cunningham. Small travelling salesman polytopes. Math-
ematics of Operations Research, 16:259–271, 1991.

[9] S. C. Boyd, W. H. Cunningham, M. Queyranne, and Y. Wang. Ladders for
travelling salesmen. SIAM Journal on Optimization, 5:408–420, 1995.

[10] S. C. Boyd and W. R. Pulleyblank. Optimizing over the subtour polytope of the
travelling salesman problem. Mathematical Programming, 49:163–187, 1991.
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