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Abstract

Traditional models in multistage stochastic programming are directed to minimizing the expected
value of random optimal costs arising in a multistage, non-anticipative decision process under un-
certainty. Motivated by risk aversion, we consider minimization of the probability that the random
optimal costs exceed some preselected threshold value. For the two-stage case, we analyse structural
properties and propose algorithms both for models with integer decisions and for those without.
Extension of the modeling to the multistage situation concludes the paper.
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1 Introduction

Stochastic programs with recourse arise as deterministic equivalents to random optimization problems. In
the present paper the main accent will be placed at the two-stage situation, and the most general random
optimization problems to be considered are random mixed-integer linear programs. These are accompa-
nied by a two-stage scheme of alternating decision and observation. After having decided on parts of the
variables in a first stage, the random data infecting the problem are observed, and in turn the remaining
(second-stage or recourse) variables are fixed. In our present analysis two basic assumptions underly this
scheme. First, and naturally, the first-stage decision has to be taken on a “here-and-now” basis, i.e.,
it must not depend on (or anticipate) the outcome of the random data. Secondly, and providing some
modeling restriction, the first-stage decision does not influence the probability distribution of the random
data.

In multistage stochastic programs the above two-stage scheme is extended into a finite horizon sequential
decision process under uncertainty. Again we have to maintain nonanticipativity of decisions, and, so
far, almost all results concern problems where the decisions do not influence the probability distribution
of the random data. In the final section of the present paper we will return to multistage stochastic
programs.

After having sketched the rules for how to make decisions, let us now discuss criteria for how to select
a “best” decision. In this respect, the existing literature on stochastic programs with recourse (cf. the
textbooks [5, 15, 20] and the references therein) almost unanimously suggests to start out from expecta-
tions of objective function values of the random optimization problem. For two-stage models (in a cost
minimization framework) this implies that the deterministic first-stage decision is selected such that the
expectation of the sum of the deterministic first-stage costs and the random second-stage costs (induced
by the random data and an optimal second-stage decision) becomes minimal. Such a criterion has proven
useful in many applications. In case the random optimzation problem is a linear program without integer
requirements, the resulting stochastic program with recourse enjoys convexity in the first-stage variables.
This enabled application of powerful tools from convex analysis, both for structural investigations and
algorithm design (cf. [4, 5, 15, 20, 32]).

In the present paper, we will discuss recourse stochastic programs where the optimization is based on
minimizing the probability that the above sum of deterministic and random costs exceeds a given thresh-
old value. Such models provide an opportunity to address risk aversion in the framework of recourse
stochastic programming.



The proposal to replace the usual expectation-based objective function in recourse stochastic program-
ming by a probability objective seemingly dates back to Bereanu [2] and, hitherto, has not been elaborated
in much detail. Reformulating the stochastic program by adding another variable and including level sets
of the objective into the constraints leads to a chance constrained stochastic program which is noncon-
vex in general. We will see that, along this line, some structural knowledge on chance constraints (cf.
[5, 15, 16, 20, 29]) reappears in the structural analysis of our models. Algorithmically, we will view
several well-established techniques from a fresh perspective. Among them there are cutting planes from
convex subgradient optimization, Lagrangian relaxation of mixed-integer programs, and decomposition
techniques for block-angular stochastic programs.

The paper is organized as follows. In Section 2 we formalize the modeling outlined above, collect some
prerequisites, and compare with the usual expectation-based modeling in recourse stochastic program-
ming. Section 3 is devoted to structural results. In Section 4 we present some first algorithmic approaches.
Separate attention is paid to models without integer decisions since they allow for an algorithmic short-
cut. As already announced, the final section will discuss the extension of our modeling to multistage
stochastic programs.

2 Modeling

Consider the following random mixed-integer linear program

zmin,{cTaz: + ¢y +q¢Ty  Te4+Wy+W'y = h(w), z€X, ye Z?T, y € RII} (1)
Yy
We assume that all ingredients above have conformal dimensions, that W, W’ are rational matrices, and
that X C JR™ is a nonempty closed polyhedron. Integer requirements to components of z are formally
possible but will not be imposed for ease of exposition. For the same reason, randomness is kept as simple
as possible by claiming that only the right-hand side h(w) € IR® is random, i.e., a random vector on some
probability space (2, A, IP). Decision variables are divided into two groups: first-stage variables = to be
fixed before and second-stage variables (y,y’) to be fixed after observation of h(w).
Let us denote

®(t) :=min{gTy + ¢Ty : Wy+W'y' =t, y€ VAT R:_”I}. (2)
According to integer programming theory([19]), this function is real-valued on IR® provided that W(ZT)+
W’(BT/) =R and {ueR* : Wlu<gq, Whu< ¢'} # 0 which, therefore, will be assumed through-
out.
The classical expectation-based stochastic program with recourse now is the optimization problem

min { / (cTz 4 ®(h(w) — Tz)) P(dw) : z € X}. (3)
0
The recourse stochastic program with probability objective reads
min {IP({w €Q: Tz + ®h(w) - Tz) > @o}) t TE X} (4)

where ¢, € IR denotes some preselected threshold (some ruin level in a cost framework, for instance).
For convenience, we will call (3) the expectation-based and (4) the probability-based recourse model. In
doing so, we are well aware of the fact that, of course, (4) is expectation-based too, if probabilities are
understood as expectations of indicator functions.

We will see in a moment, that both (3) and (4) are well-defined nonlinear optimization problems. Their
objective functions are denoted by Qg (z) and Qp(z), respectively. To detect their structure, the func-
tion @ is crucial, which arises as a value function of a mixed-integer linear program. From parametric
optimization ([1, 6]) the following is known

Proposition 2.1 Assume that W(ZT") + W’(RT') =R and{uc R° : Wlu<gq, Wiu<q}#£0.
Then it holds

(i) @ is real-valued and lower semicontinuous on IR®,

(i) there exists a countable partition R® = U T; such that the restrictions of ® to T; are piecewise
linear and Lipschitz continuous with a uniform constant L > 0 not depending on i,



(i) each of the sets T; has a representation T; = {t;+K} \ UL {t;;+K} where K denotes the polyhedral
cone W’(RTI) and t;,t;; are suitable points from IR®, moreover, N does not depend on i,

(iv) there exist positive constants 8,~ such that |®(t1) — ®(t2)| < Bl[t1 — t2|| + v whenever t,t, € IR®.

In case m = 0, i.e., if there are no integer requirements in the second stage, ¢ becomes the value function
of a linear program. Under the assumptions of Proposition 2.1, ® is real-valued on R®*. By linear
programming duality it is convex, piecewise linear, and adopts a representation

d(t) = T
®) jiE?%Jd]é

where dy,...,ds are the vertices of {u € R® : wTy < ¢'}, which is a compact set in this case.

As an immediate conclusion we obtain, that, without integer requirements in the second stage,
1 — Qp(z) coincides with the probability of a closed polyhedron, providing a direct link to chance
constrained stochastic programming ([5, 15, 20]).

Before we will turn our attention to Qp(z), we review some properties of Qg (z). For convenience we
denote by p the image measure IP o h~! on IR®. Without integer requirements (7 = 0), convexity of ®
extends to @z under mild conditions. A standard result of stochastic linear programming reads

Proposition 2.2 Assumem =0, W/(R?' )= R*,{u € R* : WTu<q}#0, and Jre IR]| u(dh) < oc.
Then Qg : IR™ — IR is a real-valued convex function.

As already mentioned in the introduction, convexity has been exploited extensively in stochastic linear
programming. For further reading we refer to the textbooks [5, 15, 20]. The remaining models, both
expectation- and probability-based, to be discussed in the present paper enjoy convexity merely in ex-
ceptional situations. Straightforward examples (cf. e.g. {35]) confirm that convexity in (3) is lost already
for very simple models as soon as integer requirements enter the second stage. In [33] the following is
shown.

Proposition 2.3 Assume that W(ZT) + W’(RT’) =R, {ueR® : WTu <q, w'Tu < g} #0, and
S s 1B}l (dh) < oo. Then it holds

(1) Qr : R™ — IR is a real-valued lower semicontinuous function,

(i) if  has a density, then Qg is continuous on IR™.

3 Structure
To analyse the structure of Qp we introduce the notation
M(z) = {he R : Tz +®h-Tz) > p,}, =€ R™

By liminf, . M(z,) and limsup, _,, M(z,) we denote the (set theoretic) limes inferior and limes
superior, i.e., the set of all points belonging to all but a finite number of the sets M(z,), n € IN, and to
infinitely many of the sets M (z,,), respectively. Moreover, we denote

M. (z) = {heR : Tz+®h—-Tz)=p,}
Mi(z) = <{heR° : ®is discontinuous at h — T'z}.

Note that, by Proposition 2.1, both M, (z) and My(z) are measurable sets for all z € IR™.
Lemma 3.1 For all x € IR™ there holds

M(z) C Hminf M(z,) C limsup M(z,) C M(z) U M.(z) U My(z).
Lo

Tp—T



Proof: Let h € M(z). The lower semicontinuity of ® (Proposition 2.1) yields

liminf(c"z, + ®(h — Tz,)) > Tz +®(h—Tz) > ¢

Tn—T
Therefore, there exists an n, € IV such that ¢’'z,, + ®(h — Tz,) > ¢, for all n > n,, implying h € M (z,,)
for all n > n,. Hence, M(z) C liminf, _,, M(z,). 3
Let h € limsup, _,, M(z,)\ M(z). Then there exists an infinite subset IV of IN such that

Ty + ®h—Tzy) >, ¥n € IN and cF'z+®(h—Tz) < p,.

Now two cases are posssible. First, ® is continuous at h — T'z. Passing to the limit in the first inequality
then yields that Tz + ®(h — T'z) > ¢,, and h € M. (z). Secondly, ® is discontinuous at h — Tz. In other
words, h € My(z). O

Proposition 3.2 Assume that W(Z7) + W/'(RT) = R® and {u € R®* : WTu < q, WTu < ¢} 0.
Then Qp : R™ — IR is a real-valued lower semicontinuous function.
If in addition p(Me(x) U My(z)) = 0, then Qp is continuous at x.

Proof: The lower semicontinuity of ® ensures that M(z) is measurable for all z € JR™, and hence Qp
is real-valued on IR™. By Lemma 3.1 and the (semi-) continuity of the probability measure on sequences
of sets we have for all z € R™

@r(z) = p(M(@) < p(liminf M(z,)) < liminf p(M(en)) = liminf Qp(zn),

establishing the asserted lower semicontinuity. In case p(M.(zx) U M4(x)) = 0 this argument extends as
follows

Qr(@) = (M) = u(M(z)UM.(2)UMy(z)) > p(limsup M(z,))

Tp—T

> limsup p(M(zy)) = limsup Qp(zn),

Tn—rT Lpn—T

and Qp is continuous at z. ]

Proposition 2.1 now reveals that, for given z € IR™, both M, (z) and My(z) are contained in a countable
union of hyperplanes. The latter being of Lebesgue measure zero we obtain that (M. (z) U My(z)) =0
is valid for all z € IR™ provided that p has a density. This proves

Conclusion 3.3 Assume that W(ZT) + W'(R?) = R*, {u ¢ R* : WTu<gq, WTu< ¢} #0, and
that u has a density. Then Qp is continuous on IR™.

This analysis can be extended towards Lipschitz continuity of Q. In [36], Tiedemann has shown

Proposition 3.4 Assume that q,q are rational vectors, W(ZT) + W’(RT/) = IRrs,

{fue R® : WTu < q, Wy < ¢} # 0, and that for any nonsingular linear transformation
B € L(IR*, IR*) all one-dimensional marginal distributions of po B have bounded densities which, outside
some bounded interval, are monotonically decreasing with growing absolute value of the argument. Then
Qp is Lipschitz continuous on any bounded subset of IR™.

From numerical viewpoint, the optimization problems (3) and (4) pose the major difficulty that their
objective functions are given by multidimensional integrals with implicit integrands. If h{w) follows a
continuous probability distribution the computation of Q@ and Qp has to rely on approximations. Here,
it is quite common to approximate the probability distribution of h(w) by discrete distributions, turning
the integrals in (3), (4) into sums this way. In the next section we will see that discrete distributions,
despite the poor analytical properties they imply for QE and Qp, are quite attractive algorithmically,
since they allow for integer programming techniques.

Approximating the underlying probability measures in (3) and (4) raises the question whether “small”
perturbations in the measures result in only “small” perturbations of optimal values and optimal solutions.
Subjective assumptions and incomplete knowledge on 1 = IPoh~" in many practical modeling situations



provide further motivation for asking this question. Therefore, stability analysis has gained some interest
in stochastic programming (for surveys see [9, 35]).

For the models (3) and (4) qualitative and quantitative continuity of Qg, Qp jointly in the decision
variable z and the probability measure p becomes a key issue then. Once established, the continuity,
together with well-known techniques from parametric optimization, lead to stability in the spirit sketched
above. In the present paper, we will not pursue stability analysis, but show how to arrive at qualitative
joint continuity of Q. For continuity results on Qi we refer to [14, 24, 30, 33, 34], for extensions towards
stability to [35] and the references therein.

For the rest of this section, we consider Qp as a function mapping from IR™ x P(IR®) to IR. By P(IR°®) we
denote the set of all Borel probability measures on IR*. While IR® is equipped with the usual topology, the
set P(IR?) is endowed with weak convergence of probability measures. This has proven both sufficiently
general to cover relevant applications and sufficiently specific to enable substantial statements. A sequence
{un} in P(IR?) is said to converge weakly to u € P(IR®), written pu, — u, if for any bounded continuous
function g : IR®* — IR we have

| s@uni@e) > [ a©utde) as n— oo )
R* R?
A basic reference for weak convergence of probability measures is Billingsley’s book [3].

Proposition 3.5 Assume that W(ZT) + W' (R?') = R® and {u € R* : WTu < g, Whu <q}#0.
Let u € P(IR®) be such that p(Me(z) U My(z)) = 0. Then Qp : R™ x P(IR°) — IR is continuous at
(z, ).

Proof: Let z, — « and g, — g be arbitrary sequences. By xn,x : IR® —> {0,1} we denote the
indicator functions of the sets M(x,), M(x),n € IN. In addition, we introduce the exceptional set

E = {he R’ : 3h, — hsuch that x»(hn) # x(h)}.

Now we have E C M, {x)UMy(z). To see this, assume that A € (Me(w)UMd(ac))c = (Me(m))cﬂ(Md(x))c
where the superscript ¢ denotes the set-theoretic complement. Then @ is continuous at h —T'z, and either
Tz +®(h—Tx) > ¢, or Tz + ®(h — Tx) < ,. Thus, for any sequence h,, — h there exists an n, € IV
such that for all n > n, either ¢Tz, + ®(hy, — Tzn) > 9o or Ty + ®(hy — Txn) < @,. Hence,
Xn(hn) = x(h) as h, — h, implying h € E°.

In view of E C M.(z)UMg(x) and p(M.(z)UMy(z)) = 0 we obtain that 4(E) = 0. A theorem on weak
convergence of image measures attributed to Rubin in [3], p. 34, now yields that the weak convergence
L — 11 implies the weak convergence g, o X, * s pox L

Note that u, o x;1,uox~!,n € IN are probability measures on {0,1}. Their weak convergence then
particularly implies that

pnoXn ({1}) — wox H({1}).
In other words, p, (M(zn)) — p(M(z)) or Qp(Tn, n) — Qr(z, 1). O

As done for the expectation-based model (3) in [33], continuity of optimal values and upper semicontinuity
of optimal solution sets of the probability-based model (4) can be derived from Proposition 3.5.

Remark 3.6 (probability-based model without integer decisions)

Without integer second-stage variables the set My(x) is always empty, and Propositions 3.2 and 3.5 readily
specify. A direct approach to these models including stability analysis and algorithmic techniques has been
carried out in [23]. Lower semicontinuity of Qp in the absence of integer variables can already be derived
from Proposition 3.1 in [29], a statement concerning chance constrained stochastic programs. Some early
work on continuity properties of general probability functionals has been done by Raik ([21, 22], see also
[16, 20]).

4 Algorithms

In the present section we will review two algorithms for solving the probability-based recourse problem (4)
provided the underlying measure u is discrete, say with realizations h; and probabilities 7;,7 = 1,...,J.
The algorithms were first proposed in [23] and [36], respectively, where further details can be found.



4.1 Linear Recourse

We assume that there are no integer requirements to second-stage variables which is usually referred to
as linear recourse in the literature. Suppose that p is the above discrete measure and consider problem
(4) with

®(t) :=min{g’y : Wy >t, ye R"}. (6)

For ease of exposition let X C IR™ be a nonempty compact polyhedron. Let e € IR* denote the vector
of all ones and consider the set

D = {(w,uo) € R : 0<u<e 0<u, <1, Whu —u,q <0}
together with its extreme points (dg,dko), k = 1, ..., K. Furthermore, consider the indicator function

1, heM()

x(@:h) ::{ 0 , otherwise. (™)

The key idea of the subsequent algorithm is to represent x by a binary variable and a number of optimality
cuts which enables exploitation of cutting plane techniques from convex subgradient optimization. The
latter have proven very useful in classical two-stage linear stochastic programming, see e.g. [4, 32].

Lemma 4.1 There exists a sufficiently large constant M, > 0 such that problem (4{) can be equivalently
restated as

J
Iiliel’l{z mi8;  + (h; — Tz)'dy + (c'Ta: — ©o)dro < M,b;,
=1 ceX, 0;€{0,1}, k=1,... K, j=1,...,J}. (8)

Proof: For any z € X and any j € {1,...,J} consider the feasibility problem
min{e’t +t, : Wy+1t> hj — Tz, ¢Ty—to<ypo—clz, ye RT’, (t, ) € IRiH} (9)
and its linear programming dual
max{(h; — Tz)Tu+ (cTx — po)uo : 0<u<e, 0<u, <1, Whu — u,q < 0}.

Clearly, both programs are always solvable. Their optimal value is equal to zero, if and only if x(z, h;) = 0.
In addition, D coincides with the feasible set of the dual. If M, is selected as

M, = max{(h; — Tz)Tdp + (Te — po)dpo : z€ X, ke {l,...,K},je{1,...,J}},

then, for any = € X, the vector (x,0) with §; =1, =1,...,J is feasible for (8).
If x(z,h;) =1 for some z € X and j € {1,...,J}, then there has to exist some k € {1,..., K} such that

(hj — T:E)Tdk + (CT:I: — ¢o)dio > 0.

Hence, given z € X, f; = 0 is feasible in (8) if and only if x(z, h;) = 0. Therefore, (8) is equivalent to
min{}"7_, m;x(z, h;) : z € X}. O

The algorithm progresses by sequentially solving a master problem and adding violated optimality cuts
generated through the solution of subproblems (9). These cuts correspond to constraints in (8). Assuming
that the cuts generated before iteration » correspond to subsets K, C {1,..., K} the current master
problem reads

J
mien{ZﬂjHj i (b~ T2)Tdk + (T2 — 9o)dro < Mo,

i=t zeX, 0,€{0,1}, keK,, j=1,...,J} (10)

The full algorithm proceeds as follows.



Algorithm 4.2

Step 1 (Initialization): Set v =0 and K, = 0.

Step 2 (Solving the master problem): Solve the current master problem (10) and let (z*,6") be an optimal
solution.

Step 3 (Solving subproblems): Solve the feasibility problem (9) for x = z¥ and all j € {1,...,J} such
that 67 = 0. Consider the following situations:

1. If all these problems have optimal value equal to zero, then the current ¥ is optimal for (8).

2. If some of these problems have optimal value strictly greater than zero, then, via the dual solutions,
a subset (dg,dko), k € K c {1,..., K} of extreme points of D is identified. The corresponding cuts
are added to the master.

Set K1 =K, U Kandv:=v+ 1; go to Step 2.

The algorithm terminates since D has a finite number of extreme points. For further details on ¢correctness
of the algorithm and first computational experiments we refer to [23].

4.2 Linear Mixed-Integer Recourse

In the present subsection we allow for integer requirements to second-stage variables. Again we assume
that X C IR™ is a nonempty compact polyhedron and that p is the discrete measure introduced at the
beginning of the present section. We consider problem {(4) with

®(t) :=min{¢’y : Wy>t, yeY} (11)

For notational convenience we have integrated the former vector (y,3’) into one vector y now varying
inY := Z7 x R . Accordingly, the former (g,¢') and (W, W’) are integrated into ¢ and W. To be
consistent with Subsection 4.1 we have inequality constraints in (11).

Lemma 4.3 There exists a sufficiently large constant My > 0 such that problem (4) can be equivalently
restated as

J
min {Zwﬂj . Wy; 2 hy —Tx, quj +cfe -, < M, 0,
j=1

z,y,0

re X, ijY, 6j€{0,1}, j:1,..‘,J}. (12)
Proof: We choose M; by
My = sup{c’z+®(h; ~Tz) : 2€ X, j=1,...,J}.

To see that this supremum is finite, recall the compactness of X and the general assumptions on @ in
the paragraph following formula (2). Part (iv) of Proposition 2.1 then confirms that ®(h; — T'z) remains
bounded if  and j vary over X and {1,...,J}, respectively.

The selection of M, guarantees that for any z € X and y; € Y such that Wy; > h; — Tz the selection
8; = 1 is feasible.

Given z, the selection 6; = 0 is feasible if and only if there exists a y; € Y fulfilling Wy; > h; ~ Tz
and Tz + quj < ¢,. The latter holds if and only if ¢’z + ®(h; — Tz) < ¢, which is equvalent to

x(z, h;) = 0. This proves that (12) is equivalent to min{zjzl mix(z, hy) : € X}, O

Compared with problem (8), problem (12) again arises by representing the indicator function x from (7)
by a binary variable. Lacking duality, however, prevents the usage of optimality cuts such that minimiza-
tion with respect to y has to be carried out explicitly in (12). Hence, (8) is a variant of (12) where the
linear programming nature of the second stage enables an algorithmic shortcut.

Problem (12) is a mixed-integer linear program that quickly becomes large-scale in practical applications.
General purpose mixed-integer linear programming algorithms and software fail in such situations. As
an alternative, we present a decomposition method based on Lagrangian relaxation of nonanticipativity.



This decomposition method for block-angular stochastic integer programs has been elaborated for the
first time in [7] for the expectation-based model (3).

Introduce in (12) copies z;,j = 1,...,J, according to the number of scenarios, and add the nonanticipa-
tivity constraints ¢; = ... = zs (or an equivalent system), for which we use the notation Z}Izl Hjz; =0
with proper (I,n)—matrices H;,j =1,...,J. Problem (12) then becomes

J
glnnyiré{Zﬂ'jaj o T+ Wy; > hy, CT:Bj+quj—M10j < Yo,
b 3 jZl
J
g eX, y €Y, 0,€{0,1}, j=1,...,J, > Hz; =0} (13)
j=1

This formulation suggests Lagrangian relaxation of the interlinking constraints E]J.Zl H;z; = 0. For
X € IR' we consider the functions

Lj(mbijgj,)‘) = mif; + )\TH]'-T]', j=1,...,J,

and form the Lagrangian
J

L(z,y,6,)) = Y L;j(z5,5,05, A).

j=1

The Lagrangian dual of (13) then is the optimization problem
max{D(}\) : X € R'} (14)

where

J
D(A) = min{ZLj(ﬂﬁj»yj,@ja)\) . Txj+Wy; > hy, cTaj+q7y; — Mi8; < oo,
=1
ijX, ijY, (91‘6{0,1}, jzl,...,J}.

For separability reasons we have
D) = Y D;(\) (15)
where

D;(A\) = min{L;(z;,y;,0;,A) : Tz; + Wy; > h;, cT:cj—I—quj—M19j < Yo,
z; € X, Y; € Y, 9j S {0,1}}. (16)

D(X) being the pointwise minimum of affine functions in A, it is piecewise affine and concave. Hence,
(14) is a non-smooth concave maximization (or convex minimization) problem. Such problems can be
tackled with advanced bundle methods, for instance with Kiwiel’s proximal bundle method NOA 3.0,
[17, 18]. At each iteration, these methods require the objective value and one subgradient of D. The
structure of D, cf. (15), enables substantial decomposition, since the single-scenario problems (16) can be
tackled separately. Their moderate size often allows application of general purpose mixed-integer linear
programming codes.

Altogether, the optimal value zrp of (14) provides a lower bound to the optimal value z of problem
(12). From integer programming ([19]) it is well-known, that in general one has to live with a positive
duality gap. On the other hand, it holds that z;,p > zpp where z;,p denotes the optimal value to the LP
relaxation of (12). The lower bound obtained by the above procedure, hence, is never worse the bound
obtained by eliminating the integer requirements.

In Lagrangian relaxation, the results of the dual optimization often provide starting points for heuristics
to find promising feasible points. Our relaxed constraints being very simple (z; = ... = zn), ideas for
such heuristics come up straightforwardly. For example, examine the z;—components, j = 1,...,J, of
solutions to (16) for optimal or nearly optimal X, and decide for the most frequent value arising or average



and round if necessary.

If the heuristic yields a feasible solution to (12), then the objective value of the latter provides an upper
bound % for z. Together with the lower bound z7p this gives the quality certificate (gap) Z — zLp.

The full algorithm improves this certificate by embedding the procedure described so far into a branch-
and-bound scheme in the spirit of global optimization. Let P denote the list of current problems and
z1p = z1p(P) the Lagrangian lower bound for P € P. The algorithm then proceeds as follows.

Algorithm 4.4

Step 1 (Initialization): Set Z = +oo and let P consist of problem (13).

Step 2 (Termination): If P = () then the solution & that yielded Z = Qp(&), cf. (4), is optimal.

Step 3 (Node selection): Select and delete a problem P from P and solve its Lagrangian dual. If the
optimal value zr,p(P) hereof equals +oo (infeasibility of a subproblem) then go to Step 2.

Step 4 (Bounding): If zp(P) > z go to Step 2 (this step can be carried out as soon as the value of the
Lagrangian dual rises above z). Consider the following situations:

1. The scenario solutions z;, j = 1,...,J, are identical: If Qp(x;) < Z then let Z = Qp(z;) and
delete from P all problems P’ with zp(P') > z. Go to Step 2.

2. The scenario solutions xj, y=1,...,J differ: Compute the average T = Z]J-ﬂ m;jz; and round it by
some heuristic to obtain %, If Qp(Z®) < z then let Z = Qp(Z®) and delete from P all problems

P’ with zpp(P') > z. Go to Step 5.

Step 5 (Branching): Select a component ) of ¢ and add two new problems to P obtained from P by
adding the constraints z(xy < |Z(k)] and zpy > |T(k)] + 1, respectively (if x(x) is an integer component),
or Tk < Tk — € and T(xy > T(x) + €, respectively, where € > 0 is a tolerance parameter to have disjoint
subdomains. Go to Step 3.

The algorithm works both with and without integer requirements in the first stage. It is obviously finite
in case X is bounded and all z—components have to be integers. If z is mixed-integer (or continuous, as
in the former presentation) some stopping criterion to avoid endless branching on the continuous com-
ponents has to be employed. Some first computational experiments with Algorithm 4.4 are reported in
[36].

5 Multistage Extension

The two-stage stochastic programs introduced in Section 2 are based on the assumptions that uncertainty
is unveiled at once and that decisions subdivide into those before and those after unveiling uncertainty.
Often, a more complex view is appropriate at this place. Multistage stochastic programs address the
situation where uncertainty is unveiled stepwise with intermediate decisions.

The modeling starts with a finite horizon sequential decision process under uncertainty where the decision
z, € R™ at stage t € {1,...,T} is based on information available up to time ¢ only. Information is
modeled as a discrete time stochastic process {£;}X_; on some probability space (£, A, IP) with & taking
values in JR*t. The random vector £ := (£1,...,&;) then reflects the information available up to time £.
Nonanticipativity, i.e., the requirement that z; must not depend on future information, is formalized by
saying that x, is measurable with respect to the o —algebra A; C A which is generated by &', t =1,...,T.
Clearly, A, C A;4q for all t = 1,...,7 — 1. As in the two-stage case, the first-stage decision z; usually
is deterministic. Therefore, A; = {0, Q}. Moreover, we assume that Ar = A.

The constraints of our multistage extensions can be subdivided into three groups. The first group com-
prises conditions on z; arising from the individual time stages:

zi(w) € Xy, Bi(&(w))ze(w) > di(§e(w)) P—almost surely, t=1,...,T. (17)

Here, X; C IR™ is a set whose convex hull is a polyhedron. In this way, integer requirements to
components of x; are allowed for. For simplicity we assume that X; is compact. The next group of
constraints models linkage between different time stages:

Z Air(&(w))zr(w) > ge(&(w)) P—almost surely, t=2,...,T. (18)

T=1



Finally, there is the nonanticipativity of zy, i. e.,
x; is measurable with respect to A;, t=1,...,T. (19)

In addition to the constraints we have a linear objective function

3 erl&w))ai(w).

t=1

The matrices A¢-(.), B¢(.) as well as the right-hand sides d:(.), g:(.) and the cost coefficients ¢;(.} all have
conformal dimensions and depend affinely linearly on the relevant components of £.

The decisions z; are understood as members of the function spaces Lo.(Q2, A, IP; R™),t = 1,...,T.
The constraints (17), (18) then impose pointwise conditions on the z;, whereas (19) imposes functional
constraints, in fact, membership in a linear subspace of xI_;L..(Q,A4, P; R™t), see e.g. [31] and the
references therein.

Now we are in the position to formulate the multistage extensions to the expectation- and probability-
based stochastic programs (3) and (4), respectively.

The multistage extension of (3) is the minimization of expected minimal costs subject to nonanticipativity
of decisions:

min { min { Z ct(&e(w))me(w) = (17), (18)} IP(dw) : = fulfilling (19)} (20)

Q=w) t=1

To have the integral in the objective well-defined, the additional assumption & € L{(, A, IP; R*),
t=1,...,T, is imposed in model (20), see [31] for further details.

The multistage extension of (4) is the minimization of the probability that minimal costs do not exceed
a preselected threshold ¢, € IR. Again this minimization takes place over nonanticipative decisions only:

min{zp<{weQ : min{th(&(w))xt(w) :(17), (18)} > %}> .z fulfilling (19)} (21)

z(w) =1

The minimization in the integrand of (20) being separable with respect to w € €, it is possible to
interchange integration and minimization. Then the problem can be restated as follows:

T
min {/S)th(ét(w))xt(w) P(dw) : z fulfilling (17), (18), (19)}. (22)

t=1

Extending the argument from Lemma 4.3 we introduce an additional variable 8 € L..(Q, A, IP; {0,1}) as
well as a sufficiently big constant M > 0. Then problem (21) can be equivalently rewritten as:

T

min {/QQ(LU) P(dw) th(ét(w))wt(w) ~ o < M-0(w), 8(w) € {0,1} P—as.,

t=1

z fulfilling (17), (18), (19)}. (23)

Problem (22) is the well-known multistage stochastic (mixed-integer) linear program. Without integer
requirements, the problem has been studied intensively, both from structural and from algorithmic view-
points. The reader may wish to sample from [4, 5, 8, 10, 13, 15, 20, 25, 26, 27, 32] to obtain insights into
these developments. With integer requirements, problem (22) is less well-understood. Existing results
are reviewed in [31].

To the best of our knowledge, the multistage extension (21) has not been addressed in the literature so
far. Some basic properties of (21), (23) regarding existence and structure of optimal solutions can be
derived by following arguments that were employed for the expectation-based model (22) in [31]. Their
mathematical foundations are laid out in [11, 12, 28]. The arguments can be outlined as follows:
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Problem (23) concerns the minimization of an abstract expectation over a function space, subject to mea-
surability with respect to a filtered sequence of o—algebras. Theorems 1 and 2 in [12] (whose assumptions
can be verified for (23) using statements from [11, 28]) provide sufficient conditions for the solvability of
such minimization problems and for the solutions to be obtainable recursively by dynamic programming.
The stage-wise recursion rests on minimizing in the t—th stage the regular conditional expectation (with
respect to A;) of the optimal value from stage ¢ + 1. When arriving at the first-stage, a deterministic
optimization problem in z; remains (recall that A; = {0,Q}). Its objective function QB(x1) can be
regarded the multistage counterpart to the function Qp () that we have studied in Section 3.

Given that (23) is a well-defined and solvable optimization problem, Sections 3 and 4 provide several
points of departure for future research. For instance, unveiling the structure of QB (z1) may be possible
by analysing the interplay of conditional expectations and mixed-integer value functions. Regarding so-
lution techniques, the extension of Algorithm 4.4 to the multistage situation may be fruitful. Indeed, it is
well-known that the nonanticipativity in (19) is a linear constraint. With a discrete distribution of £ this
leads to a system of linear equations. Lagrangian relaxation of these constraints produces single-scenario
subproblems, and the scheme of Algorithm 4.4 readily extends. However, compared with the two-stage
situation, the relaxed constraints are more complicated such that primal heuristics are not that obvious,
and the dimension [ of the Lagrangian dual (14) may require approximative instead of exact solution of
(14). Further algorithmic ideas for (23) may arise from Lagrangian relaxation of either (17) or (18). In
[31] this is discussed for the expectation-based model (22).

Acknowledgement. I am grateful to Morten Riis (University of Aarhus), Werner Romisch (Humboldt-
University Berlin), and Stephan Tiedemann (Gerhard-Mercator University Duisburg) for stimulating
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