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Abstract

A polyhedron having vertices is called integer if all of its vertices
are integer. This property is coNP-complete in general. Recogniz-
ing integral set-packing polyhedra is one of the biggest challenges of
graph theory (perfectness test). Various other special cases are major
problems of discrete mathematics.

The focus of this talk is not the recognition of classes of integer
polyhedra. We aim at communicating their relevant properties, and
satisfactory alternatives to their recognition, whenever this latter is
difficult; for instance,

— combinatorial or geometric properties related to integrality; con-
nections between integer polyhedra, graphs and numbers;

— a general coNP characterization of minimal noninteger struc-
tures that contains the known special cases for set-packing, set-
covering, and particular mixtures of these.

— complexity questions related to integer polyhedra, some of which
do not fit into the P-NPC axis.

We are giving priority to some topics that may need to be further
explored.

*CNRS, Leibniz-IMAG, 38000 Grenoble, France, Andras.Sebo@imag.fr



Introduction

A polyhedron having vertices is called integer if all of its vertices are in-
teger. It is co-NP-complete to check in general whether a polyhedron
{r € R" : Az < b} is integer [87], even if the constraint matrix is 0 — 1
and the polyhedron is in the nonnegative orthant. However, it is one of the
biggest challenges of graph theory to decide the complexity of this problem if
the right hand side is also 1. (This is polynomially (and easily) equivalent to
certifying the perfectness of a graph.) Various other special cases are major
problems in different subfields of discrete mathematics.

The significance of this problem is obvious: when optimizing on poly-
hedra having vertices, there is always an optimal solution which is a vertex.
Therefore on integer polyhedra linear programming, which is solvable in poly-
nomial time by [64] is equivalent to integer programming, in turn A/P-hard
in general.

We do not provide in this paper a full classification of properties that
ensure a polyhedron to be integer, even if we provide a survey of a relevant
part of the results; we do certainly not want to restrict ourselves to such
characterizations; we will not treat integer programming algorithms (for an
introduction to various aspects of integer programming see [99], [80] [84] etc.),
or provide efficient tests about the integrality of the polyhedron defined by a
program, even if we will point at some of these algorithms. We will not deal
with the structure of polytopes from the convex geometry viewpoint (which
does not take into account integrality) ; we do not decompose problems that
behave well with respect to some integer programs; the complexity will not
mean classifying the arising problems into polynomially solvable and NP-hard
ones, even if we will mention the most crucial results; we will also not analyse
the complexity of particular polytopes such as the travelling salesman, or the
stable-set polytope.

We wish to show combinatorial NP and coNP characterization theorems
for integrality in some interesting cases; some of these involve elementary
properties of numbers, some others structural properties of hypergraphs, etc.

We will explain some combinatorial aspects of integer polyhedra, some of
which have come to the surface recently, and point at some new challenges
concerning these, in particular

— explain purely combinatorial or algebraic formulations of structural



questions concerning simple objects such as parallelepipeds and sim-
plices. These come up as helpful tools in more general questions about
integer polyhedra. We summarize the state of the art about the Hilbert-
property of cones, together with the most recent developments and the
questions that remain. We arrive at a simple set of problems to study
concerning the structure of integer parallelepipeds and simplices.

— show some common features of integer packing, covering and of the
corresponding minimal noninteger structures that provide coNP char-
acterizations for such problems, including the intersection of packing
and covering problems. We survey some subclasses of integer polyhedra
and state the main open problems about them.

— exhibit some new complexity results and questions concerning integer
polyhedra, including some new occurances of ‘total search problems’,
where the searched object always exists, but it is not evident to find.
Such a problem may also be ‘complete’ in a well defined complexity
class containing difficult problems. This is a new tool proposed by Pa-
padimitriou and his coauthors to show that finding some combinatorial
objects might be desperately difficult, even if deciding the existence of
the same object is easy.

We will not go into the details of algorithms, which does not mean that we
do not care about them. The main benefit of the integrality of a polyhedron is
that integer programming problems collaps to linear programming for them.
Therefore the main customers of results about integer polyhedra are integer
programmers. The results we study have the same type of relation to integer
programming algorithms as for instance ‘total unimodularity’: they are not
directly concerned with algorithms, but many of them turn out to be helpful.

We will be satisified with a brief survey and the main references about
more or less closed theories, and give priority to open subjects.

The role played by simple combinatorial arguments involving the divisi-
bility of numbers in the existence of integer solutions to linear programs is
not surprising: even the simplest integer program ax = b, x > 0, (a, b, x are
integers) involves divisibility. Indeed, it has a solution if and only if a|b and
a, b have the same sign.



We suppose basic knowledge of linear algebra, and some definitions and
facts from [99], or [28]. A lattice generated by a finite set B of integer vec-
tors is the set of linear combinations of vectors in B with integer coefficients.
Lattices can always be generated by linearly independent vectors. In the
questions we are studying it is usually not an essential restriction of gener-
ality to suppose that the underlying lattice is the lattice of integers — the
generalizations to arbitrary lattices are straightforward. The greatest com-
mon divisor and the least common multiple of the integers ay,...,a, € Z
will be denoted by ged(ay, ..., a,), and lem(ay, ..., a,) respectively.

In Section 1 we treat the simplest possible integer polyhedra: (shifted)
linear subspaces, cones, parallelepipeds, simplices.

A set S C R" is called a simplez, if S = conv{0,vy,...,v,}, where
0 € R" and vy, ..., v, are linearly independent. (In other words a simplex is
a polytope whose vertices are affinely independent; our definition restricts a
simplex to be full dimensional, and to have 0 as one of its vertices.) Under
the same condition, cone{wvy,...,v,} is called a simplicial cone.

For simplices, testing integrality itself is trivial, on the other hand if a
simplex is integer, finding out about other integer points seems to be difficult.
Moreover, this turns out to provide a common language to more and more
relevant problems.

In Section 2 we define some classes of polyhedra and characterize them
with some combinatorial properties. After a short survey of the classical
theorems we would like to show some more recent results on packing, covering
and their intersection.

In Section 3 we study some complexity questions related to integer poly-
hedra. One of the complexity measures is provided by cutting plane methods,
and these lead also to some computational questions. We then show some
integer polyhedra for which an integer solution can be desperately difficult
to find even if we surely know and can certify that one exists (and therefore
they cannot be N'P-complete).

Summarizing: we will exhibit some of the combinatorial properties under-
lying the integrality of polyhedra, along with some new computational com-
plexity phenomena behind them.



1 The Simplest Integer Polyhedra

The simplest possible polyhedra from the point of view of integrality, are
shifted (affine) linear subspaces. The structure of integer points of cones or
parallelepipeds lead to some simple questions about Abelian groups. These
also provide natural tools for treating some most basic questions concerning
simplices, of which occur to be difficult.

Parallelepipeds are a useful intermediate tool implying at the same time
the basic simple affine subspaces as simple corollaries and also acting as a
stepping stone towards simplices and general polyhedra. Therefore we make
parallelepipeds the main subject of this section, and show several examples
of their concrete use. Among these we will touch in Section 1.2 the well-
known and easier affine subspaces and in 1.2.2, 1.2.3 several other problems
are formulated as special cases.

For the sake of an example, let us forecast how simplices will occur as
a special case of parallelepipeds. It is trivial to decide whether a simplex is
integer, no matter how it is given: any natural way of providing the input
for a simplex allows computing the coordinates of all of its vertices and all of
its facets. (We do not wish to deal with the computational problems related
to approximation of irrational data.)

However, the second question one can ask, seems to be already open in
4
R™:

Problem 1 [102] Given an integer simplex S, is the property that S has no
integer point besides its vertices in NP ¢ Moreover, can it be decided in
polynomial time ?

We will call an integer simplex containing no integer point besides its
vertices empty. For the results in R* see [94], [96], [124], [102].

This will arise as a special case of finding an integer vector in a cone
generated by a set of linearly independent vectors, for which the (uniquely
determined) coefficients satisfy some particular inequalities. The main point
is to miz equations modulo n with linear inequalities. We believe that this is
an interesting problem; we will show some applications of it, and we believe
that many others will show up in the future. This explains why we spend a
relatively big amount of space to an introduction to parallelepipeds.



1.1 Parallelepipeds
Let VCZ", V ={vy,...,v,} be linearly independent, and define

par(V):={z € Z" :x=> M\v;: 0< )\, <1(veV)},

=1

and call it a parallelepiped. If in addition |V| = n, then det(V') denotes the
absolute value of the determinant of the matrix whose rows are the elements
of V. More generally, if |[V| < n then let det(V") denote the greatest common
divisor of the |V| x |V| subdeterminants of the matrix whose rows are the
elements of V. For z € R" the vector coeff(z, V') := A\, where \ is defined by
the unique combination x = A\v; +. ..+ A0y, ), will be called the V -coefficient
vector of .

Theorem 1.1 Let V' be as above. Then |par(V)| = det(V), in particular,
par(V) = {0} if and only if det(V) = 1.

Moreover, x € Z" if and only if det(V') coeff(x, V') is integer; for all x € Z"
there exists a unique vector x' € par(V), such that x — ' is on the lattice
generated by V; coeff(x', V') is the residue vector of coeff(z’, V) mod 1.

Let us call the 2’ defined in the theorem the residue of x mod V', and
denote it mod(z, V).

The main content is | par(V')| = det(V'), which is a basic and often used
fact in the geometry of numbers, and can be proved in several essentially
different ways (see for instance Cassels [20]). It is basic and well-known.
We provide a full elementary proof (sketched in [100]), in order to show
the underlying combinatorial structure, and to be prepared for a translation
between group terminology and polyhedral combinatorics:

Proof. Let V ={vy,...,v,,} CZ", (m,n € N), and let My be the m x n
matrix whose i-th row is v;, (i = 1,...,m). Denote by A(V) the set of V-
coefficients of integer vectors multiplied by det(V’). For square matrices the
rest is evident from ‘Cramer’s rule’, and for arbitrary matrices it will also
be an easy byproduct of the proof. Let a; denote the i-th column of My,
(t=1,...,n). The following fact is obvious:

6



Claim 1: Replacing a column a; by a; £ a; (i # j), or interchanging a; and
a; and denoting the new row-set by V',

A(V) = A(V"), moreover, | par(V)| = | par(V')]

Let A = det(V)(A1,..., Am) € Z™ be the V-coefficient of an integer vec-
tor. Replace a column a; by a; £ a; (i # j), or interchange two columns;
denoting the new row-set by V', A is also the V'-coefficient of an integer vec-
tor. A(V) € A(V’) follows. Since the operations in this claim are reversible,
we have in fact A(V)) = A(V’). Moreover, there is a bijection between par(V)
and the set

Aoi={A =01, s Am) EAV) 10> N < 11,

and also between par(V’) and this set: we have therefore | par(V')| = | par(V")|.

In other words, Ay does not change through the operations of Claim 1,
and we also know that the determinant does not change. With such oper-
ations, called elementary column operations one can easily arrive at a lower
triangular matrix My (every entry is 0 except the lower m x m corner), where
U ={uy,...,uy,} denotes the set of the row vectors of the obtained matrix.
Requiring in addition that the matrix is nonnegative and the diagonal ele-
ment of each row is the unique maximum of the row, the resulting matrix is
unique and is called the Hermite normal form of My, see [99] p.45. (All this
is straightforward to see. It can also be determined in polynomial time with
some extra work, as well as the Smith normal form below, see [72], [99].)

It is immediate to check that the greatest common divisor of the m x m
determinants does not change during the procedure, and at the end, it is
equal to the product of the entries in the main diagonal.

Let the elements in the main diagonal of My be dy, ... d,,. We have
proved:

Claim 2: |par(V)| = |par(U)|, and det(V) = det(U) = didy . .., dp.
Therefore we are remained only with:
Claim 3: |par(U)| = dids. .., dpy,.

Let A € RP. For Mp)\ to be in par(vy,...,v,), we have d,, different
choices for Ap: Z= (t = 0,...,dy, — 1). Similarly, if Ay, ..., Ap_iy1 have
already been chosen, and the m — i-th component of E;;B Am—jQm—j 18 @,



then the possible choices for A,,_; are restricted by the fact that that m — -
th coordinate of the result does not depend on rows with smaller index than
m — i

(2] =2+ 7=, (t =0,...,dy ; — 1): for all possible choices of A, ...,
Am—it1 we have exactly d,,_; choices for \,,,_;. We conclude that par(uy, ..., u,)
has d; .. .d,, elements.

In the additional claim the only nontrivial fact is that the V-coefficient
vector det(V)(A, ..., \,) of z is integer. Equivalently, the denominators of
the coefficients in a combination z = oyv; + ... + a,v, all divide det V.
However, because of Claim 1, A(V) = A(U), and it is clear that d; ...d, is a
common denominator of the solutions exhibited in the proof of Claim 3. O

The above proof hopefully enlightens the definition of det(V) when m =
|V| < n, and also the basic structure of V-coefficients.

Let us say that o € Z" is a par(V)-coefficient vector, or if there is no
ambiguity, a parallelepiped coefficient vector, if a = det(V') coeff(z, V) for
some z € par(V). With the notations of the above proof A = (A1,..., A\p) €
R" is a par(V)-coefficient vector, if and only if A € A(V), and 0 > \; <
det(V) for i = 1,...,m. Attention ! For x € par(V') the par(V)-coefficient
is det(V') times the V-coefficient, and it is integer.

The par(V)-coefficient vectors form a commutative group with respect to
mod det(V") addition. Denote this group by G(V).

The last part of the proof evades Cramer’s rule, and is in fact equivalent to
it (but it also include the ‘non-full-dimensional’ case of it). We can see from it
that G(V) is isomorphic to the group formed by the par(V')-coefficient vectors
(which are integer vectors) with respect to mod det(V') addition. We will also
exploit the fact that parallelepipeds are symmetric: if © € par(vy,...,vn,),
then vy + ...+ v, —x € par(vy,...,Uy). In other words, if (Ay,..., \p) €
G(V), then (D — Ay,...,D — \,) € G(V). Parallelepiped coefficients, and
these simple properties have been extensively exploited in [100], and we will
apply here the same approach. This is similar to the method of ‘barycentric
coordinates’ used by Reznick in [93] for somewhat different purposes.

We will use the notation G(V) for the set of par(V')-coefficient vectors
(even when we do not use the group operation).

We now generalise Problem 1:

Parallelepiped Programming (PP)
INPUT: A set V. C Z" of linearly independent vectors, m := |V, and
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Sj - {1,...,m}, lj S [0,1], u; € [0,1], ke %,(] = 1,,]€)
QUESTION: Is there a A = (\y,..., \,;) € G(V) satisfying the inequalities

llg Z)\ZSU“ fOI‘aH]ZL,k

iGSj

We restricted the problem to 0 — 1 inequalities, since this is the case
that occurs in all of our applications. For instance in the special £k = 1 and
S1=A{1,...,m}, l; = D+ 1, u; = 00, the question becomes exactly: is the
simplex conv{{0} UV} empty ?

If we do not restrict ourselves to 0—1 constraints we get close to Gomory’s
corner polyhedra see 1.2.3, but the restriction does not help.

Theorem 1.2 Parallelepiped programming is NP-complete, and it remains
so if there are only upper bound constraints.

Proof. It isclearly in NP. We reduce PARTITION [52] toit. Let aq,...,an_1 €
IN (an instance of PARTITION) and A := Y | a;/2. Consider now the n—1-
dimensional cone (homogenized knapsack polytope) C' in R™ defined by one
equality and the nonnegativity constraints:

n—1
Zaixi—Axn:(), ;> 0(=1,...,n).
i1

Clearly, the (least integer multiples of) extreme rays of this cone are
U = (b1,0, AN 0,61), Vo = (0,()2,0, AN 0,02) ey Up_1 = (0, C ,0, bn—lacn—l);
where

b; = lem(a;, A)/a;, ¢; = lem(a;, A)/A. Let V= {vy,..., v, 1}

Claim: If 2 = (21,...,2,) € CNZ", 2, <1(i=1,...,n—1),0 < X'z <
n — 1, then x,, = 1.

Indeed, it is sufficient to prove 0 < x,, < 2. We have from the assumption
that not all the x;, (i =1,...,n — 1) are 0, and not all are 1, so

n—1 n—1
0< Zaixi < 2012214
=1 i=1

Since o € C, we can substitute here 77" a;2; = Ax,, that is,

0< Ax, < 2A,

9



as claimed.

It follows that PARTITION with input aq,...,a, has a solution if and

only if there exists € par(V) such that z; <1 (i = 1,...,n—1), 0 <

"“la; < n — 1. Indeed, by the claim, such a solution is in {0, 1}", and
because of x,, = 1 it determines a solution of PARTITION; conversely, a
solution of PARTITION defines such a 0 — 1 solution.

Now the existence of # € par(V) such that z; <1 (i = 1,...,n — 1),
0 < Y '2; < n—1is a parallelepiped programming problem. Let x €
par(V), and let A € Z" be its par(V')-coefficient. Now note that z; < 1 is
equivalent to A; < det(V)/b; 0 < 377! 2; holds for every vector in par(V);

nta; < n—1is equivalent to 37 Ay < (X0, det(V)/b;) — 1. The decision
problem about the existence of a parallelepiped coefficient vector satisfying
these inequalities, is a parallelepiped programming problem, and it has only
upper bound constraints. O

Parallelepiped programming matches the group structure with linear in-
equalities. In order to treat interesting particular cases of this problem and
its applications, one should have in mind a synthesis and interrelation of
these two aspects.

A recent beautiful work of Alan Hoffman [70] about linear inequalities
over Abelian groups mixes the group structure with linear inequalities. It is
not straightforward to see a direct connection of this work to Parallelepiped
Programming, since the group G(V') with the ordering of numbers is not an
ordered group.

1.2 The Group and the Inequalities

First note that the general definition of determinants allows a simple formu-
lation of the (well-known) theorem characterizing when an affine subspace
contains integer vectors:

Fact 1.1 Given an m x n integer matriz A with linearly independent rows,
and an integer vector b € Z™, the set {x € Z" : Ax = b} (the set of integers
in an affine subspace) is nonempty, if and only if det(A) = det(A, b).

The proof is easy: The vector b is on the lattice generated by the columns

of A if and only if adding b to the matrix as a new column, it can be zeroed
by elementary column operations. (Elementary operations do not change
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the determinant, and adding a 0 column does not change it either. On the
other hand, for matrices in Hermite normal form with nonzero diagonal, the
statement is obvious.

The problem PP combines this linear structure with some linear inequal-
ities. In the following we wish to study first the groups alone, and then
together with the inequalities.

1.2.1 The Group Structure

The group G(V) is a finite Abelian group: it has a simple and well-known
structure that we would like to present from our biased viewpoint. We will
go through some elementary facts well-known from algebra in terms of the
parallelepiped coefficient vectors of G(V'). This is necessary for some sub-
sequent arguments, and for a good understanding of the problems we are
stating. We would also like to give a dictionary between the terminology of
polyhedral combinatorics and algebra.

By Theorem 1.1, for the integers 0 < A; < det(V') we have (A,..., \y) €
G(V) if and only if a1\, + ..., apA, = 0 moddet(V) for every column a =
(al, ey am) of Mv.

The group G(V) is actually nothing else but a general finite Abelian
group. Indeed, let G be such a group on n vertices and {g1,...,gm} a set of
generators. Let us use the additive notation for the group operation. The
vectors

{(ar,...,am) €EZ™ :a1g1 + ... + apgm = 0}

form a lattice. The finiteness of the group implies that there exists k; € IN
such that k;g; = 0 (i = 1,...,n), so there are at least n linear independent
points on this lattice; then the lattice has a basis consisting of n vectors, that
can be xhosen to be the columns of an n x n matrix My. (The rows U of
My will arise from My by a unimodular transformation.)

Choose any basis of this lattice to be the columns of the matrix My, and
let V' denote the rows of Mj, .

G(V) is the group defined from the free group on n elements ‘presented’
with the relations given by the columns of My. (Any generating set of the
above equations is called a presentation.) Clearly, such a group is unique,
whence G is isomorphic to G(V'). The matrix My and G = G(V'), mutually
determine one another.
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For the rest of this section we fix V' C Z", |V| = m, My is the m x n
matrix whose row-set is V' (in arbitrary order), and G = G(V).

The elementary column operations (see the proof of Theorem 1.1) corre-
spond to replacing a presentation by an equivalent one, and this transforma-
tion does not change the vectors in G(V') representing G (the par-coefficients
of the rows). Similarly, if g; and g, are two generators of the group, then any
of them can be replaced by g; +g¢2, and the order of the generators can also be
changed (and this changes the par(V')-coefficients, that is, the isomorphism
from G to Z™), the group of parallelepiped coefficient vectors of the rows
remains unchanged. These correspond to adding or subtracting a row of My
to another row, or interchanging the order of the rows, and we will refer to
them as elementary row operations.

It is straightforward to see that one can pursue these operations until
arriving at the Smith normal form [115], [99]:

Theorem 1.3 (Smith normal form) If M is an m X n integer matriz with
linearly independent columns or rows, then it can be brought by elementary
row and column operations into a form where the only nonzero elements are
on the diagonal of the leftmost and uppermost m xm submatriz, and denoting
by dy,...,dy the diagonal of this matriz, d;|d;v, (i =1,...,m —1).

The Smith normal form of a matrix can be determined in polynomial
time [72].

It is easy to see that the effect of a sequence of elementary column oper-
ations on a matrix corresponds to multiplying it by a unimodular matrix (a
square matrix of determinant 1) from the right; conversely, multiplying by a
unimodular matrix from the right can be decomposed to column operations.
(This is easy to see by bringing the unimodular matrix to its Hermite normal
form.) Similarly, a sequence of elementary row transformations is equivalent
to a single multiplication with a unimodular matrix from the left. Recall
that elementary column operations do not change the set of par-coefficients,
whereas the row operations do change them; since row operations correspond
to changing the generators of the group, G(V') remains isomorphic to G(V"),
but the inequalities do change.

Algebrists call these elementary operations Tietze-transformations. The-
orem 1.3 is called the fundamental theorem of finite Abelian groups, or Kro-
necker’s theorem. (See [116], [99].)
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The following corollary allows decomposing some parallelepiped program-
ming problems into a polynomial number of subproblems:

Corollary 1.1 The group G(V) is isomorphic to the group of parallelepiped
coefficient vectors of the rows of the Smith normal form of M, which itself is
the direct sum of cyclic groups of size d; (i = 1,...); in particular, this group
is the direct sum of at most log,(det(V')) cyclic groups.

Indeed, from Theorem 1.3 we get immediately d,,, ; < d,,,/2° (i =1,...,m—
1), so at most d,,, < det(My) = det(V) < log, det(V') entries are bigger than
1 in the Smith normal form. We have already checked in our previous remarks
that G(V') does not change through elementary row and column operations
on My, so it is isomorphic to G(U) where U is the set of rows of the Smith
normal form. But then G(U) is the direct sum of the cyclic groups on d;
elements, for all i = 1,...,n such that d; > 1.

1.2.2 Cyclic groups and jumps

We conclude that parallelepiped coefficient vectors form a group which be-
haves computationally well: it is the direct product of a polynomial number
of cyclic groups. However, we cannot solve Problem 1 even if G(V') is cyclic.
It is so actually if and only if the diagonal of the Smith normal form is
(1,...,1,d). This allows to establish that G(V) is cyclic in various cases. In
particular, the following will be important for us:

Fact 1.2 If V C Z" are linearly independent vectors and the parallelepiped
generated by at least one of n — 1-element subset of V' is equal to {0}, then
G(V) is cyclic.

Indeed, choose the n — 1-element set of the condition to be the first n — 1
rows of My,. If in the Hermite normal form not all the first n — 1 entries of
the diagonal were 1, then it is easy to exhibit (in the same way as in the proof
of Theorem 1.1) a vector in the parallelepiped which is a linear combination
of these first n — 1 rows, contradicting the condition. (The statement can
also be seen easily directly, without the normal forms.)

The condition of this fact is not necessary: for instance, if all prime fac-
tors of d are at the first power, then the condition is not necessarily satisfied,
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but the group is also cyclic. In the following we mostly focus on the cyclic
special case since the structure is simple to think about, according to Corol-
lary 1.1 this is not an essential restriction of generality, moreover, most of
the examples will involve directly this case.

Let us now consider the inequalities together with the group structure.
Let us suppose that G(V') is cyclic and try to keep track of how the paral-
lelepiped coefficients vary. Let o € G(V) be a generator of G(V'), that is,
the V-coefficients are (a;/det(V),..., a,/det(V)). Then the V-coefficients
of the det(V') — 1 nonzero vectors in par(V') are:

({icn/ det(V)), ... {icwm/ det(V)}), (i = 1,...,det(V) — 1),

where {z} := x — |z| is the fractional part of . Therefore an ‘atom’ of PP
is the following problem, and actually we can reduce the general problem to
this:

Residue Inequalities

INPUT: Rational numbers a; € Q 0 < a; < 1,7 = 1,...,n, sets S; C
{1,...,k} and numbers u; € Q.

QUESTION: Does there exist a z € Z so that

» {za;} <wi(i=1,...k)?

JES;

Theorem 1.4 Parallelepiped Programming can be reduced in polynomial time
to Residue Inequalities, in other words the latter is also N'P-complete.

Proof. (Sketch) By Corollary 1.1 we can list a generating set of G(V)
whose size is polynomial in the input. For the multiples of each generator, it
is straightforward to see that the set of inequalities to check is equivalent to
a Residue Inequalities problem. O

We do not know, however, the complexity of the problem if there is only
one inequality. Moreover, in the applications the u; are integer. (They can
always be supposed to have the same denominator as z: multiplying by this
denominator all the data are integer, and we get linear congruences.)

Problem 2 What is the complexity of the following problem: Given rational
numbers 0 < a; <1,i=1,...,n,, and u € Z, does there exist z € IN so that

{za1} + ...+ {zan} < u?

14



Note that the complementary problem is to decide whether for the same input
it us true for all z € IN that

{zar} + ... + {za,} > u.

Is this problem also in N'P ¢ Is there a particular and ‘interesting’ subset of
inputs for which some of these problems can be solved ?

The first condition is in AP, but not the second, since we have to check
the condition for all z € IN, equivalently for z = 1,..., D — 1, where D :=
lem(ay, ..., a,), and the input size contains only the logarithm of D. (In the
special case we solve below the condition will actually be independent of D.)

This, and other problems we will mention, make sense for irrational num-
bers as well, and can mostly be reduced to rational numbers.

Note that the emptiness of a simplex is exactly the special case u = 1
of this problem. Indeed, we can suppose without loss of generality that one
of the vertices of the simplex is 0, and use Corollary 1.1 to assume that the
parallelepiped group generated by the others is cyclic.

If n = 3 this decomposition does not have to be used: if the parallelepiped
generated by some face, say the face of v; and v, is not equal to {0}, then
any v € par(vy,vs) \ {0} or v; + vy — v which is also in the parallelepiped
(this property will be called ‘symmetry’) are in the simplex, contradicting
emptiness. Then by Fact 1.2 the parallelepiped is cyclic. This argument can
be straightforwardly generalized to prove that in even dimension if the sum
of the coordinates of every parallelepiped coefficient vector is at least n/2,
then the parallelepiped group is cyclic. (Then it can be easily checked using
the symmetry again, that the sum of every parallelepiped coefficient vector
must be equal to n/2.) Therefore the following conjecture would provide a
good characterization of such parallelepipeds.

Conjecture 1 [102] If n is even, and 0 < a1 < ... < a, <1l,i=1,...,n,
are rational numbers with denominator D, then for all i =1,...,D — 1 we
have

{taa} + ...+ {ia,} > n/2,

if and only if a; + an—j =1 for j =1,...,n/2, and ged(a;D,D) =1 (i =
1,...,n).
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We do not know of direct applications of this conjecture, but it can be
a good stepping stone to other problems, for instance to empty simplices.
For n=4 it implies a characterization for three dimensional empty simplices.
Moreover, the key lemma that supports the case n = 4 provides new insight
to Hilbert bases and the key-lemma leading to the solution provides a bridge
towards another circle of applications (problems involving fractional parts,
stated by number theorists) we show in the next section. Let us state this
key-lemma, and sketch its applications.

Let x € Q, x = d/D, ged(d,D) =1, d,D € IN, d < D. Let us say that
ie{l,...,D—2}isajump forx € R, 0 <z <1,if {iz} +2 > 1, that
is, if {(i + 1)z} # {iz} + 2. (This means that between iz and (i + 1)z we
‘jump’ over an integer.) Let us state two straightforward, but crucial facts
from [102] :

Fact 1.3 The set of jumps forx € R, 0 <z < 1is{|z/x]:2=1,...,D—

2}

Fact 1.4 (Symmetry) If v € R, 0 < x < 1, and iz is not integer, then i is
a jump for x if and only if it is not a jump for 1 — x. In particular, if v is
not rational, the jumps of x and 1 — x bipartition IN, and if x = d/D where
d,D € IN, ged(d, D) = 1, then the jumps for x and for 1 — x bipartition
{1,...,D —2}.

If 0 <x <y<1and yisa multiple of z, then the jumps of y contain all
jumps of z. Our key-lemma tells that this can be reversed if z,y < 1/2:

Lemma 1.1 [102] Let ay,a5 € §, 0 < ay,ay < 1/2. Then every jump of a;
is a jump of as if and only if a;|as.

Without the condition the statement is not true, see[102].

This simple, elementary fact is not as trivial to prove as it looks. It
can be proved as a difficult exercise in more than one way, but a short and
elegant proof (as it could be expected) is still to be found. It is a key to
empty simplices, a simple proof for unimodular triangulation in 3-space, and
using Fact 1.3 a stepping stone to some new applications shown in the next
subsubsection.

The following straightforward corollary, however, opens the way to several
applications:
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Lemma 1.2 LetV := {vi, v, v3} C Z° be linearly independent. If conv(0, vy, va, v3)
is empty, then there exists A = (A, A2, A3) € par(V) and i € {1,2,3} so that

M+ X+ A3=det(V)+1, and \; =1

Proof. Suppose conv(0, vy, v9,v3) is empty, and let A = (A1, Ay, A3) be any
generator of G(V). Let D := det(V). From the emptiness ged(v;, D) = 1
(1 =1,2,3), and using also the symmetry of parallelepipeds we get that

D+1<{iM}+{id}+{iXs} <2D—1,(i=1,...D—1),

and it follows that
M+ A+ =D+1

can be supposed without loss of generality. (See more details if necessary
of this first part of the proof in [100] or [102].) Suppose without loss of
generality A\ > Ay > A3.

It follows that the jumps of A; /D, of A\y/D and of A\3/D partition {1, ..., D—
2}. Applying this to i = 1 we get that A\;/D > 1/2 > X\y/D > A\3/D. There-
fore, by Fact 1.4 every jump of A\y/D or A\3/D is a jump of (1—\;)/D, and all
these are at most 1/2, so Lemma 1.1 can be applied: both Ay and A3 divide
D — ). If neither of them is equal to D — A, then both are smaller than
)D — X1)/2 and A\; + Ay + A3 < D follows, contradicting the second equation
above.

It follows that A\ = D — \; and applying the equation again, A3 = 1, as
claimed. O

For n = 3 several solutions of the empty simplex problem have been
found, mostly independently of one antother, see [94], [96], [124], [93]. The
following was found as an application of Lemma 1.1, and it turned out to
imply all these results:

Theorem 1.5 Let V := {v,v5,v3} C Z° be linearly independent. Then
conv (0, vy, ve,v3) is empty, if and only if G(V) has a generator g so that
coeff (g, V') has two coordinates which sum up to 1. (Equivalently, all paral-
lelepiped coefficient vectors have two such coordinates.)
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The proof follows straightforwardly from Lemma 1.2. The same Lemma
contains the core of the proof of unimodular partitions of Hilbert cones of
3-space.

For an introduction to Hilbert bases we refer to [99]. A triangulation of a
cone is a covering by cones with linearly independent extreme rays (simplicial
cones), which do not have a common inner point.

Theorem 1.6 [100] Let H C R® be a Hilbert basis. Then H can be trian-
gulated with cones whose (linearly independent) extreme rays are in H and
are Hilbert-bases themselves.

A weakening — by deleting the requirement that the simplicial Hilbert
cones don’t have a common interior — of the statement of this theorem was
hoped to be true in general, and became known as the 'Unimodular Covering
Conjecture’. (The original proof in [100] used the weakening of Lemma 1.2
where the existence of i € {1,2,3} with A\; = 1 is not proved. The surplus of
our statement here requires some additional effort, but simplifies the proof
of the unimodular covering conjecture for n = 3.)

Bouvier and Gonzalez-Sprinberg provided a counterexample to unimod-
ular partitioning in 4-space [13]. Triangulations have some significance for
toric varieties see [117], [48].

Bruns and Gubeladze have shown, a counterexample to the unimodular
covering conjecture [14]. The same six dimensional (pointed) Hilbert cone
contains an integer vector that is not a nonnegative integer combination of
at most six vectors from the Hilbert basis (only of seven vectors), as Henk,
Martin and Weismantel noticed in the new variant [15]. The conjecture is
open in four- and five-space.

1.2.3 Other Applications

Parallelepiped Programming has in fact been already investigated in other
terms, with the objective of solving integer programs: the heart of Gomory’s
approach [62], [126], [99] is a kind of description of the convex hull of integer
points of a cone.

The parallelepiped groups defined in the previous section are in fact a
special case of Gomory’s groups, if one restricts the cones to have linearly
independent extreme rays. It could be useful to work out more about the
connections of the results themselves.
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Let us now relate some other well-known problems to parallelepiped pro-
gramming.

A connection between Hilbert bases and diophantine approximation with
interesting results open problems has been pointed our in [67]. The similarity
of the methods applied to Parallelepiped Programming (Hilbert bases, empty
simplices, ... ) and those used to solve some other particular diophantine
equations see for instance [8], is also apparent. This peculiar problem seems
to formulate the essence of some diophantine approximation problems [125],
a geometric problem like view obstruction [38] and combinatorial problems
like nowhere zero flows in graphs and matroids.

Problem 3 (The Lonely Runner Problem [125], [38], [8])
Given v = (vy,...,v,) € Z", does there exist for all k € {1,...,n} at =
t(k) € [0,1] so that the following Lonely Runner Inequality (LRI) holds:

(LRI) vt=umod1, and |u; —ug| >1/n, (i=1,...,n)?

Clearly, adding a constant to v the statement does not change. In partic-
ular, one can suppose that there exists i € {1,...,n} such that v; = 0. For
a relatively simple proof of the cases n < 5, see [8]. For n > 6 the problem
is open.

The Lonely Runner Problem is a common generalization of some problems
in combinatorial geometry, and diophantine approximation. We give the
following reformulation as a parallelepiped programming problem, but we
omit the proof:

Fact 1.5 Let v € Z" ', and define d to be the least common multiple of the
set of numbers {v;i+vj:i#j=1,...,n}, and V :={eyr,...,e5_1,7} C R",
where v = (v1,...,vn_1,d) € R"™'. Then (LRI) holds for the numbers v =
(0,v1,...,0,1) and k=1 if and only if there ezists a par(V')-coefficient that
satisfies the inequalities

1 —1
<n<TToG=1,...n)7
n+1 n+1

Note that it is not true in general that any parallelepiped having an
integer point which is not on any of the facets, contains an integer point
satisfying (LRI): if n = 2, V := {(2,1),(1,3)}, we have det(V) = 5 and in
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every par(V')-coefficient vector at least one of the two coordinates is at most
1/5 < 1/3 or bigger than 4/5 > 2/3.

At last, I would like to mention some newly discovered connections of
jumps to some classical work by Skolem [114], [3]. A scheduling problem
studied by Brauner and Crama [11] revealed some further connections of
parallelepiped programming to ‘number-oriented-combinatorics’.

In the revised version I may say a few more words and state a generalization of Fact 1.3
as a conjecture leading to a general problem containing Skolem, Brauner-Crama, Beatty
sequences, empty simplices etc.

Moreover, (through pointers of Gerhart Woeginger concerning the prob-
lem of Brauner and Crama) one can arrive at further connections to number
theory problems of similar nature, involving fractional parts, see Tijdeman’s
work [120] about particular cases of Fraenkel’s conjecture [49].

2 Classes of Integer Polyhedra

There are several exhaustive surveys of the classical results concerning basic
general results and characterizations of subclasses of integer polyhedra (see
Schrijver’s survey paper [98] or book [99], or the more recent survey of [24] on
+1 perfect, ideal and balanced matrices, and Gérard Cornuéjols’s book [32]
provide a detailed account of the results - a transitive closure of the pointers
from these covers the literature of the subject.) In this survey we restrict
ourselves to a brief overview of the classical hierarchy of integer polyhedra
followed by an account of recent results concerning intersections of known
classes of polyhedra mizing constraints of different kind. Some details of
several subsubsections are left out until the revised version.

2.1 Classical hierarchy

The four cornerstones of each subsubsection of this subsection are

the definition of the subclass treated there. This definition usually
dates from the early days of integer programming or of graph theory,
together with

the proof of the integrality of polyhedra in the subclass. For some of
these subclasses
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combinatorial characterizations were proved before the construction of

recognition algorithms with polynomial complexity bounds.

These four cornerstones will be indicated in italics in each subclass.

Recognition algorithms exist only for the two simplest classes of totally
unimodular and balanced matrices. These are among the most difficult prob-
lems, and most complicated algorithms of combinatorial optimization. The
complexity of recognizing more general classes is still not known, and even
the problem of nonalgorithmic characterizations (that would put some classes
of problems in A'P) is open. This is the subject of ongoing research.

2.1.1 Totally Unimodular Matrices

A matrix is totally unimodular if each of its square subdeterminants is 0, 1
or —1.

Totally unimodular matrices were introduced in [68], which also estab-
lishes a link to integer polyhedra: a matrix A is totally unimodular, if
{z : Az < b} is an integer polyhedron for arbitrary integer vector b.

Several other useful combinatorial characterizations have been shown and
are surveyed in [99]. However, these provide only coN P certificates to total
unimodularity, like the definition itself. Tutte [123] has proved that the
matroids representable by a totally unimodular matrix over the reals, are
representable over an arbitrary field. Such matroids are called regular. He
characterized such matroids in [121] with three simple excluded minors. For
a simple proof see Gerards [56].

The recognition of totally unimodular matrices is therefore equivalent to
testing whether a matroid contains the three minors of Tutte’s theorem. Sey-
mour developped a decomposition procedure of regular matroids providing
a polynomial algorithm and a simpler NP certificate for them, reproving
Tutte’s theorem. A decomposition can be found in polynomial time us-
ing Cunningham and Edmonds’ reduction [37] to matroid intersection; the
‘bricks’ of the decomposition are graphic matroids for which a recognition
algorithm has already been designed by Tutte [122], and several improved
algorithms followed [9], for an account see [86].

Besides its self-interest, Seymour’s method also paved the way of many
similar decomposition theorems for various problems. Variants of the self-
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contained algorithm are presented in [86] and [99], the latter in terms of
totally unimodular matrices.

2.1.2 Balanced Matrices

A matrix with all entries from {0,1} is balanced, if it does not contain a
square submatrix with an odd number of rows and columns, and all entries
equal to 0 except exactly two entries in each row and each column. Since
the determinant of such a matrix is 2 we have immediately that nonnegative
totally unimodular matrices are balanced.

Balanced matrices were introduced in [6], see also [7], where many of their
interesting properties are shown.

The main link to integer polyhedra is shown in [51]: a matrix A is bal-
anced, if and only if {z € R" : A’z < 1} is an integer polyhedron for any
subset of rows, or equivalently, if and only if {z € R" : A'x > 1} is an integer
polyhedron for an arbirary subset of rows. By linear programming duality
we also get other characterizations. These characterizations are clearly less
restrictive than those for totally unimodular matrices.

Several other useful combinatorial characterizations have been shown and
are surveyed in [99]. However, these provide only coNP certificates of bal-
ancedness, like the definition itself.

No NP characterization was proved before the recognition of totally uni-
modular matrices could be solved with a polynomial time algorithm by Con-
forti, Cornuéjols and Rao [25]. While the most interesting questions about
totally unimodular matrices seem to be essentially closed the same cannot
be said about balanced matrices: there is no natural NP-characterization
simpler than the algorithm itself.

2.1.3 Packing and Perfect Matrices

A packing type of polyhedron is a polyhedron of the form P := {z € R" :
Ax <1,z > 0}.

In this section we summarize the results about packing type polyhedra
that are integer.

Let us call an n x n matrix A with all entries from {0, 1} perfect, if for
every ¢ € {0,1}" the polytope P := {x € R" : Ax < 1, z > 0} contains an
integer vector that maximizes ¢’ x. That is, there exists o € PN {0,1} such
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that cxyg > cx for all x € P. Let us then also say that the polytope P is
perfect.

In other words, the definition requires from the matrix A that the poly-
tope P is integer ‘in the direction of 0 — 1 objective functions’. Clearly,
balanced matrices are perfect.

The integrality of perfect polyhedra is equivalent to the so called ‘Lovasz
replication lemma’ modulo basic polyhedral combinatorics see for instance
in [99]. Fulkerson [50] showed that for packing type of polyhedra integrality
is equivalent to total dual integrality.

Theorem 2.1 Perfect polyhedra are integer, moreover the minimal system
of inequalities that describes them is totally dual integral.

Chvatal [23] noticed:

Corollary 2.1 A matriz M s perfect if and only if there exists a perfect
graph G so that the rows of M are exactly the characteristic vectors of inclu-
stonwise mazrimal cliques of G.

See some detailed algorithmic comments about the connections of these

results to three different certificates of imperfectness in [92].

the corollary that perfect matrices are exactly the clique matrices of per-
fect (in which the size of a maximum clique is equal to the chromatic number
for every induced subgraph). In the revised version a short survey of some points to
know will follow in the style of the preceding sections. This will include a short coAN P
certificate (in accordance with analogous short certificates for ideal matrices), having also
in mind to prepare 2.2.1. The short proofs in [53], [55] help preparing the generalization.

The subsection will finish with the statement of the SPGC and some words about
perfectness test. Theta will be mentioned and Shepherd’s lemma [112] for testing parti-
tionability will be stated. Questions for analogous results in the ideal case will be stated.
(All this will not be more than one page altogether.)

2.1.4 Covering and Ideal Matrices

In the revised version the definitions and summary of results (mainly Lehman) will occur
by analogy with the results on perfect graphs, including partitionabilityn, and having in
mind 2.2.1 (about half a page).

We will also have to define binary clutters, down-matroids, up-matroids, we will need

these for 3.1 as well.

23



We include here the full details of the end of this subsection:

The complete list of minimal nonideal matrices is not known, even not as
a conjecture like for perfect graphs; furthermore, the existing examples show
that a complete list would be hard to establish [85], [34] [82]. However, a
wide class of important applications is provided by binary clutters, including
theorems on packing paths on surfaces, themselves equivalent to multiflows.
(For a survey on these see [57].)

Theorem 2.2 [65] Seymour’s conjecture is true for binary clutters whose
up-matroid is graphic or the blockers of such clutters.

A lack in Guenin’s theorem: there is one major class of ideal clutters that
it does not contain, which also plays a role as a building block for further
classes in [107]. Cornuéjols and Guenin [33] made one more step towards
Seymour’s conjecture: they generalize Guenin’s theorem so that it contains
Edmonds and Johnson’s theorem [44] on the idealness of T-join clutters.

Couldn’t the theta function be generalized to covering polyhedra, maybe
with the help of Lovasz-Schrijver cuts [81] 7 Can partitionability be tested
for ideal clutters 7

2.1.5 Total Dual Integral Systems and Hilbert Bases

Totally dual integral systems were defined by Edmonds and Giles [43] as
follows:

A system of inequalities Az < b (A is an m X n matrix, b € R™) is
called totally dual integral (TDI), if any inequality ¢’z < d, and ¢ € Z"
which is their consequence (in other words if Az < b is satisfied for x € R",
then ¢Tx < d is also satisfied), arises by weakening a non-negative integer
combination of inequalities in the system (that is, there exists y € Z+",
yA=c, y'b < d).

Theorem 2.3 [43] A TDI system with integer right hand sides defines an
integer polyhedron.

Giles and Pulleyblank [60] observed that this can also be reversed. We
combine their result with the unicity result of Schrijver [99]:
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Theorem 2.4 FEvery full dimensional polyhedron P has a unique TDI defin-
ing system, and P is integer if and only if the right hand sides in this system
are integer.

Hilbert bases and TDI systems have many occurances already from the
early days of the theory of integer programming see for instance [41], [42],
[35], [36], for surveys see [98], [99], [100]. Some well-known examples (among
these) are matching polytopes and their generalizations, (poly)matroid poly-
topes and their intersections, submodular flows, etc.

The most fundamental problem about TDI systems raised by Edmonds
and Giles [43] remains open:

Problem 4 Given an integer matriz A and an integer vector b, is the system
Ax <b TDI ?

Through the above correspondance between TDI systems and Hilbert
bases, a special case that contains the essence of the problem is the following:

Problem 5 Given a set H C Z" of integer vectors, do they form a Hilbert
basis ¢

If the dimension (somewhat more generally the rank) is bounded by a
constant, then these problems have been solved by polynomial algorithms
[30].

Testing whether a given element is in the Hilbert basis is N"P-complete,
see [100].

In the revised version we will profit some more on the reformulation of Hb properties
to TDI systems, including a ‘greedy’ way of deducing dual solutions. This insight will
be used later on for subclasses of polyhedra (for instance for the TDI-ness of packing-
polyhedra or £1 matrices. Some simple properties of Hilbert bases will allow us to include

more proofs, for instance to Edmonds-Giles. All this will be less than a page.

2.2 Mixing packing and covering

The subject of this subsection can be viewed to be the intersection of different
kinds of integer polyhedra. The intersection of integer polyhedra is of course
not necessarily integer. (For a simplest example, partition the edges of a
circuit on 2n + 1 vertices into two nonempty sets F; and Ej, and let P, :=
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{vy + 1, € R*™™ :uv € E;}, i = 1,2. The all 1/2 vector is a vertex of the
intersection.)

The matroid intersection theorem is an example where the intersection of
pairs of polyhedra is integer (moreover the facet inducing inequalities form a
TDI system) by the theorem of Edmonds [42]. We do not study this theorem
in details, it is treated in any book on combinatorial optimization or matroid
theory in the past three decades [28], and at a general level we cannot say
more about them than about TDI systems. But why aren’t there other
intersection theorems:

Problem 6 Given two classes of integer polyhedra in IR"™ which belong to
one of the known subclasses. Is it possible to identify conditions, or types of
pairs of polyhedra for which the intersection is also be integral ?

In the first half of this section (Subsection 2.1) almost all the considered
polyhedra had 0 — 1 constraints, only the first and the last subclass, totally
unimodular matrices and totally dual integral systems, were allowed to have
negative coefficients. Typical applications of these are to packing and cov-
ering problems (polyhedra). Writing all inequalities in the smaller or equal
form, covering polyhedra have zero-minus-one constraint matrices. The best
would therefore be to state results in general for £1 constraint matrices.

This is difficult though. The results that have been reached so far do
require strong conditions on the system.

Problem 7 Is it possible to identify conditions depending both on A and b,
where A is a 0 — £1 matriz, under which the polytope P = {x : Ax <
b, x > 0} is integral, and so that the conditions are satisfied both by packing
and covering polyhedra ¢ Are there coN'P characterizations of the noninte-
grality of P in terms of A and b, at least for subclasses containing both the
characterization of minimal imperfect and minimal nonideal matrices ?

This last problem has found some first solutions explained in the following
subsubsection. The other subsubsection surveys the so called +1 constraint
matrices which arise by flipping packing constraints or covering constraints
but without mixing the two.
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2.2.1 Generalizing minimal imperfect and minimal nonideal clut-
ters

This subsubsection will state the simplest common generalization of minimal imperfect
and minimal nonideal clutters [55]. We explain what are the main obstacles for more
powerful results, how these are treated in some other papers, and what is needed for a
solution. Some more explanations will follow in one direction, involving elementary number
theory again: a lemma based on divisibility, implying tight properties for a somewhat
more general minimal noninteger structure, and also the full dimensionality of minimal
noninteger polyhedra will be proved in a few lines. These give an idea of the proof and
lead to interesting questions and also to answering a question of Shepherd’s on clutters

that are both minimal imperfect and minimal nonideal. (About one page.)

2.2.2 Flipped packing and covering

This subsubsection will provide an account of the so called +1 balanced, perfect and ideal
matrices. The constraints of these are flipped packing or covering constraints, and don’t
mix these two basic cases. A simple treatment reducing the perfect case to perfect graphs
will be sketched, and some direction concerning the references will be given [], including

also balanced and ideal £1 matrices. (About one page.)

2.2.3 Kernels

Besides the self-interest of the integrality of the following polyhedra, they
will provide us a main sample example in Section 3. After some definitions
and an introduction (borrowed from [92]), we develop some of their aspects
related to integer polyhedra.

The notion of kernels originate in game theory. Some related problems
belong to the kernel of the theory of integer polyhedra, and also of perfect
graphs.

We allow the presence of cycles of length two in a directed graph. If an
arc is not contained in such a cycle we will call it strictly oriented. A path,
an arborescence (a rooted tree where every vertex can be reached from the
root) or a cycle will be called strictly oriented, if all of its arcs are strictly
oriented.

Given a directed graph G, a kernelis a stable set S, such that SUN~(S) =
V(G). G is called kernel-perfect, if all of its (induced) subgraphs has a kernel.
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For a directed graph G to be kernel-perfect, it is obviously necessary that
G is clique-acyclic, that is, cliques in G' do not contain a strictly oriented
cycle.

A fractional kernel is a vector x € [0, 1]" such that x(N*[v]) > 1 for all
velV.

The subject of this subsection is the intersection of the set-covering type
polyhedron consisting of the fractional kernels, and of the set-packing polyhe-
dron which is the convex hull of stable-sets of perfect graphs.

This is certainly the intersection of a packing and a covering polyhedron,
whence it has its place in the present subsubsection.

Aharoni and Holzman [2] defined an intermediary notion between kernels
and fractional kernels: x € [0,1]" is a strong fractional kernel if it is a frac-
tional kernel, and z(K) = 1 for some clique K C N*[v]. Clearly, any kernel
is a strong fractional kernel; a strong fractional kernel is a kernel if and only
if it is integer.

Theorem 2.5 [2] If G is a directed graph, it has a strong fractional kernel.

The proof of this theorem uses a theorem of Scarf of linear programming
character, developed to treat problems arising in game theory; the use of such
tools is due to Boros and Gurvich to prove the following theorem. Aharoni
and Holzman’s prove through (0.3) the following:

Theorem 2.6 [12] If G is perfect, then it has a kernel.

Strong fractional kernels were introduced as an auxiliary notion suited
for the proof of Theorem 2.6. It seems to be also a remarkable compromise
between kernels and their fractional relaxation.

The following three main questions arise naturally:

Problem 8 Does Scarf’s algorithm have a version that terminates in poly-
nomial time ¢

Problem 9 Can a strong fractional kernel in a directed graph G be found in
polynomaal time ?

Problem 10 Let G be a clique-acyclic orientation of a perfect graph. Can
a kernel in G be found in polynomial time ?
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These questions match a very interesting phenomenon in complexity the-
ory, and therefore we will come back to it: in Section 3.2.3 we will see the
alternative to a polynomial algorithm. (This problem cannot be NP com-
plete, since the answer to the corresponding decision problem is always Yes;
yet it can be ‘complete’ in another class of problems, and the meaning of
completeness is again that a polynomial algorithm is not likely to exist.)

Any negative result on this problem (see more explanations in 3.2.3) would
suggest that perfectness cannot be tested in polynomial time : indeed, if such
a test works with a decomposition procedure into simple building blocks in
polynomial running time, then kernels in G would likely be reconstructable
from those in the building blocks; moreover, in particular classes of graphs
kernels can often be found in polynomial time, so one can expect this to be
the case in the building blocks. Is this a reason to think that a kernel in a
perfect graph can be found in polynomial time ? To enlighten this question is
one of the guiding goals (but not the only objective) in the following section.

3 Complexity

We do not wish to treat here the classical results on the well-known complex-
ity of testing for special cases of integer programming: the most basic results
treated already in Garey and Johnson’s book [52], and in the ongoing guide
of the same authors in the Journal of Algorithms; the more recent books
on integer programming also mention the most interesting results; Schrijver
[99] contains a full chapter on the complexity of integer linear programming
(Chapter 18) and some related problems. The complexity of most of the par-
ticular problems mentioned earlier in this paper will also not be considered
again (most of these are in Section 2, with references to the classical results
in Subsection 2.1).

The recognition problems for classes of integer polyhedra have actually
weaker alternatives that are more attractive and more useful in some sense.
This alternative is finding either a combinatorial object crucial for all in-
stances of the class or a certificate that a given instance is not in the class.
For example an algorithm that either colors a graph or provides a certificate
that the graph is not perfect occurs to be closer to what we need, than test-
ing perfectness. Indeed, according to [63] one can either color a graph with
the same number of colors as its clique number k£ or certify that it is not
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perfect. In the first case we can be satisfied with the coloring and we don’t
care whether the graph is perfect : in fact our main interest is to k-color, and
perfectness is defined only as a substitute of this ANP-hard problem; in the
second case we can show a certificate of inperfectness. The recognition of sim-
ilar examples lead to the complexity investigation below, see Subsection 3.2,
and further remarks on this particular example in Subsubsection 3.2.1.

3.1 Gomory-Chvatal cuts

In this subsection we show some complexity questions related to Gomory-
Chvatal cuts and the Chvétal closure of polyhedra. These lead already to
some complexity questions that get us out from the P-NP axis. Further-
more, the complexity of the cuts themselves, and the length of the cutting
plane procedures leading to the convex hull of integer points already express
the complexity of the problem in some sense, [27], [46].

If P is a polyhedron and the inequality a’x < a¢ (a € Z", ay € R) is
satisfied by all & € P, then the inequality a’a < |ag] is called a Gomory-
Chvétal cut. The intersection of the Gomory-Chvatal cuts is the (first)
Chvétal-closure of P (cf. [28], [99] or [22], [61]). The k-th Chvdtal clo-
sure P*) of P is the Chvatal closure of P*~1) (k =1,...,), where Py := P.
Chvatal [22] proved for polytopes and Schrijver [99] for arbitrary polyhedra
that P*) = conv(P N %Z") for some k € Z. One of the goals of Polyhedral
Combinatorics is to find (or to optimize, or to ‘separate’) on conv(P N Z")
for given P. Indeed, if this goal is fulfilled for a class of polyhedra, then
integer programming on the class is reduced to linear programming.

There is an ‘explicit construction’ of P(Y) from P (if it is full dimensional)
by Schrijver [99]: round down the right hand sides in a TDI description
{z : Ax < b} of P, where A is an integer matrix. (The size of a minimal TDI
description is exponential in general.)

Note that the integrality of polyhedra can be expressed in terms of Gomory-
Chvétal cuts: a polyhedron P is integer, that is, P = conv(P N Z") if and
only if P) = P. (This is an obvious fact — the proof does not have to use
any of the mentioned deeper results.) In this case one can test membership
in, or optimize on conv(P N Z") with linear programming. However, the
problem that stands one step further seems to be already open:
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Problem 11 Given an integer matriz A and an integer vector b of appro-
priate dimensions so that for P = {z € R" : Az < b}, PY = conv(P N Z")
holds, can one optimize on PN Z" ?

Note that Lovdsz and Schrijver [81] provide another cutting plane algo-
rithm that makes possible separation and optimization on the ‘first Lovéasz-
Schrijver closure’ of ‘solvable’ polyhedra in polynomial time. This method
uses semidefinit programming; the domain of problems for which it works
is different from that of Gomory-Chvatal cuts’. For instance the ‘Lovasz-
Schrijver rank‘ of matching polyhedra is high (Cook, Dash 7), whereas the
clique inequalities satisfied by stable sets can be derived from the edge in-
equalities in one step. Since Gomory-Chvatal cuts concern arbitrary integer
programs, and therefore they are closely related to divisibility and mod D
computations whereas Lovéasz-Schrijver cuts concern 0 — 1 programs, and are
not closely related with the methods we are discussing, we will not study
them in this paper.

A special case of this problem has been solved in the already mentioned
work [59]. The following more difficult variant was also a well-known open
problem for a long time (see [99] ) until Eisenbrand [45] settled it:

Theorem 3.1 Given an m X n integer matrixz A, integer vectors b € Z",
c € Z" and k € Z the problem of deciding whether

max{cTz:2 ¢ PW} >k,
where P := {x € R" : Az < b}, is N'P-complete.

The proof is based on Caprara and Fischetti’s reduction [19] of finding
the minimum weight of a set in a binary clutter to separating a given vector
from a well-defined superset of the Chvatal closure. Eisenbrand observes
that this superset is in fact equal to the Chvatal closure, and concludes the
NP-completeness. On the positive side, Hartmann, Queyranne and Wang
[66] show examples where some simple and quite general sufficient conditions
for proving that the Chvatal rank of some given inequalities is at least two,
do work. In this context it is natural to ask the following more particular
question, mentioned to the author by Fritz Eisenbrand, which is clearly in

NP:
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Problem 12 What is the complexity of the following problem: Given an
m X n integer matriz A, integer vectors b € Z™, ¢ € Z", decide whether
QY =0, where Q := {x € R" : Av < b}.

Theorem 3.1 leaves the possibility for the ‘reason of the N'P-completeness’
to be that separating (in the sense of Grotschel, Lovasz and Schrijver [64])
exactly from the Chvatal closure can be difficult:

The difficulty could be preventing ‘to cut more than the Chvatal closure’.
But why to prevent an event that makes us happier 7 It is completely
satisfying to separate on a polyhedron contained in the first Gomory-Chvatal
closure and still containing P N Z". A simpler special case of this problem
is stated in Problem 11.

Note that the more difficult questions of deciding whether the Chvatal
rank of given polyhedra is zero, or whether it is at most one, seem to be too
difficult.

Problem 13 Is the following problem in NP 2 Is it in coN'P ¢ Given an
m X n integer matriz A, an integer vector b € Z™, P = {x € R" : Az < b},
decide whether the Chvdtal rank of P is at most one.

In Section 3.2.5 we show how a negative answer to both of these questions
could be possible.

Note however, that Edmonds and Johnson [44] and Gerards and Schrijver
[59] exhibit two important classes of polyhedra where the Chvétal closure is
equal to the convex hull of integer points. The first includes the convex hull
of the solution of (generalized) matching problems, the second the convex
hull of stable-sets of special (¢-perfect) graphs.

Note also that Lovéasz and Schrijver’s [81] cutting plane algorithm does
have the property that one can separate on the ‘first closure’ of ‘solvable’
polyhedra.

3.2 Searching what Surely Exists

In this subsection we would like to explore how difficult it can be to find an
integer vertex of a polyhedron even if we surely know that it exists. (You
can experience the difficulty of finding a surely existing object, when you
lose your surely existing glasses or keys in your own house !) One meets this
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problem already when learning the four-color problem, or kernels in perfect
graphs: it is not easy to debug the contradiction between the dumbness
of the decision problems (modulo the four color theorem and Theorem 2.6
respectively) and the difficulty of finding the certificates.

As we have already mentioned in the introduction of this section, when-
ever the recognition of a property P; is needed because it is the condition of
a problem P, in fact much less is sufficient than the recognition of P;: what
we need then, is to decide whether ‘P, or not P;’ holds. At one hand this
can be much easier than recognition.

On the other hand, even if there is a theorem that states ‘P, implies
Py, that is, if ‘P, or not P’ always holds, the problem ‘Find either P,
or an obstacle for P’ can be difficult. It cannot be A/P-hard, since the
corresponding decision problem can be solved with a ‘dumb yes’. The results
we present here show that yet there are possibilities for showing that such a
problem is difficult.

We use the notation and terminology of [52] for the basics of complexity
theory. Two documents had a revealing nature for the author: the summary
on ‘total problems’ in Cristina Bazgan’s thesis [5] written under the supervi-
sion of Miklés Santha and Papadimitriou’s book [88]. The following sections
present, this theory from the viewpoint of a combinatorial optimizer, with
the not hidden goal of stimulating its use for our problems. We will show
the clarifying effect of this on one major problem concerning the integrality
of polyhedra.

3.2.1 Examples

The list of natural sources of such problems is endless: first of all, finding the
good certificates for well-characterized problems provides one of the sources
(and actually all other sources are in a precise sense equivalent to this, see
Fact 3.1 below). For some of these problems there is still no polynomial
algorithm for finding the good certificates.

FOUR-COLORING OF PLANAR GRAPHS (FCPG) is a well-known
example: according to Appel and Haken’s celebrated results [1] the answer
to the corresponding decision problem is identically yes, that is, can be solved
in 0 time. But how to find the coloring ? According to Appel and Haken
[1], or Robertson, Seymour, Sanders, Thomas [95] it can also be found in
polynomial time. Yet this is already an example of a problem where a dumb
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‘always yes’ answer solves the decision problem and finding the good certificate
is less evident.

Another example from graph theory: COLORING WITH CLIQUE CER-
TIFICATE OR SHOWING IMPERFECTNESS (CCCI). For given graph as
input either find a coloration (a partition into sets of vertices into classes
such that none of the edges has both of its endpoints in the same class) and
a clique of the same size, or a certificate that the graph is not perfect.

A graph is called perfect if its maximum clique-size is equal to its chro-
matic number. According to a sharpening of the perfect graph theorem
see Lovész [78], perfectness is in coN'P [79], for a short certificate see [92].
Therefore it is straightforward to see that one of the certificates (either the
clique and the coloration or the certificate for imperfectness) always ezists.
As an implicit consequence of Grotschel, Lovdsz and Schrijver’s results [64]
(see also [63]), at least one of these certificates is present in every graph ! In
other words, the following question is solved if ‘combinatorial’ is deleted.

Problem 14 Is there a ‘combinatorial algorithm’ that solves CCCI in poly-
nomial time ¢

This is a variant of the coloration problem for perfect graphs. It does not
imply an algorithm for testing the perfectness of graphs. However, if it does
not end up with a certificate of imperfectness it does solve a difficult integer
program:

Let G be a graph, and

Q(G) ={r e R": Az < 1},

where the rows of A are the characteristic vectors of the cliques of A.

According to Corollary 2.1, Q(G) is integer if and only if G is perfect.

If the matrix A is given explicitly (which is not the case for the cliques
of graphs) , there is no need of any theorem, the results about the existence
of certificates are obvious in this case. Let us generalize:

Suppose we are given an m X n integer matrix A and integer vectors
beZ™, ce X", Q :={xr e R": Ar < b}. Since the ellipsoid method
can find a vertex z with ¢’z = max,cq ¢’ @ in polynomial time, with some
care it can be turned to an algorithm that either finds an optimal point of )
which is integer, or a certificate of nonintegrality. (If ) has vertices, then a
fractional vertex zy and n linearly independent valid inequalities for (), each
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satisfied by xy with equality, suffice. For more details concerning certificates
of nonintegrality, see [92]. ) Linear programming for integer (or 0 — 1 ?7)
polyhedra could be easier:

Problem 15 Given A,b,c find the integer optimum or a noninteger vertex
of Q with a ‘combinatorial algorithm’, in polynomial time.

Another example, one of the most applied problems of complexity the-
ory is the prime factorization of numbers (PFN). According to introductory
courses of number theory a factorization to prime numbers surely exists (and
is unique), it can also be certified to be one (by Pratt’s famous elementary
lemma see [88] a number can be certified to be a prime), but it is strongly
believed that there is no polynomial algorithm to find one ! (See any book
on complexity theory, for instance [88].)

A most illuminating example can be found in [71]: LOKL (Local Op-
timum for Kerninghan-Lin), which could also be called the ‘local max-cut
problem’. Find a cut in an edge-weighted graph that has the property, that
it cannot be increased by moving one vertex to the ‘other side’. Such a cut
surely ezists. Can one be found in polynomial time ? (It is known that the
procedure of moving one by one vertices from one side to the other does not
always terminate after a polynomial number of steps, which does not mean
that a locally maximum cut cannot possibly be found in shorter time.)

More generally, in a sequence of papers Papadimitriou and his coauthors
define several classes of problems where a (directed or undirected) Huge
Graph (it can have exponentially many edges and vertices) is associated with
each instance. (Think about the vertices of this graph as corresponding to
solutions and ‘quasi-solutions’ to the problem; for LOKL the quasi-solutions
are bipartitions of the input graph, and the solutions those bipartitions where
the weight of the determined cut cannot be increased by putting a vertex to
the other side; we put an edge between two vertices if one arises from the
other by putting a vertex to the other side; we orient the edge towards the
bigger; we delete edges between vetices of equal weight.)

The following two properties have to be assumed (we define them infor-
mally, but in a way that can be easily made precise):

the problem can be defined as finding ‘a vertex with a given particular
property in the graph’. (The property is usually simple, for instance
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having degree equal to 1’; the difficulty comes from the big size of the
graph.) For LOKL this property is to be a sink that is, to have no
out-neighbor.

the graph can be ‘locally explored in polynomial time’ (for example
with an algorithm that computes for any given vertex as input the list
of all of its neighbors (or out- and in-neighbors in directed graphs), and
this list is of polynomial size). For LOKL this is obviously satisfied.

In general, the class PLS (Polynomial Local Search) is defined as the
class of problems where the QUESTION is to find a vertex of the Huge (but
finite) acyclic Graph which is the best (according to an objective function
computable in polynomial time), and an initial solution can be found in
polynomial time, moreover, for any vertex of the Huge Graph it can be
decided whether the corresponding solution of the problem is at least as
good as the objective values of its neighbors in the Huge Graph, and if not,
a better neighbor can be found in polynomial time.

Cameron and Edmonds [17], [18] and Poljak [90] provide a rich collection
of other problems with a dumb yes answer. However, they do not explain the
Optimizers’ chances of proving her or his unability of providing a polynomial
algorithm for such a problem. The strength of a series of papers by Papadim-
itriou and his coauthors is that they recognize typical proof styles, that allow
them to define classes of optimization problems that can contain complete
problems, and can be used similarly to the theory of N'P-completeness for
telling easy problems from the difficult ones. The message is that a problem
with an identically yes answer can be difficult as hell, and can be proved to
be so similarly to N'P-completeness proofs. Let us sketch the main points of
this theory and apply what we will have understood to a major problem of
the present paper.

3.2.2 Search Problems

We would like to clarify here the differences between search problems and
the decision problems concerning the existence of the searched object.

Let ¥ = {0,1} and let X* be the set of all 0-1 series. A relation is
R C ¥* x ¥*; with an abuse of notation, whenever it does not cause a
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misunderstanding, we will not distinguish in the notation the characteristic
function R : ¥* x ¥* — {0, 1} of the relation.

The notation F'R will be used for the problem of computing for any given
x € ¥* as input, a y € X* so that (z,y) € R, or if such a y does not exist,
giving the answer ‘no’. We will say that R recognizes

Lg :={r € ¥*: there exists y € ¥*, (z,y) € R },

and that F'R is the search problem associated to R.

We will also say that Lg (or the problem ‘Is x € Ly 7°) is the decision
problem associated to FR. A search problem is always defined along a re-
lation, so every search problem is associated to a unique decision problem.
However, it is not at all true that a decision problem (language) is associated
with a unique search problem. For any language L there are many relations R
so that L = Lg, of various nature and difficulty. (We will actually see many
interesting relations R so that Lr = X*.) Therefore, it does not make any
sense to speak about one search problem associated to a decision problem.

If R is a relation, and there exists a polynomial p(n) = pr(n) such that
for all z € Ly there exists y € X, |y| < p(|z|) so that (z,y) € R, and R(x,y)
can be computed in p(|z|) time, then R will be called an NP-relation. A
substitution x € X* for the first variable is called an input, and then for
x € Lg, a y as in the definition is called a certificate for x. If in addition
Lr € P, then R will be called a P-relation.

For a language L € NP a problem of searching after a certificate for L is
a search problem FR, where R is an N'P-relation, and L = Lg. There can
be many such relations for L , but the role of all is the same: they provide
a certificate for x € L, that can be checked in polynomial time. Many
other examples show several essentially different relations R: for instance
imperfectness can be certified with a partitionable subgraph, and if the SPGC
is true, also with an odd hole or odd antihole.

Recall

NP :={L CX": there exists an N'P-relation R such that Lr = L}.

FNP :={FR: R is an N'P-relation}.
FP:={FR: R is a P-relation}.

The polynomial reductions from one problem to another have to be un-
derstood as usual (we can think of Cook reductions, but everything would

37



work as well by using Karp reductions see [52]). Of course, for search prob-
lems not only the input of problem A has to be mapped in polynomial time to
the input of problem B, but also the output of problem B has to be mapped
back to an output of problem B. In both of these requirements hold, we will
say that problem A is reducible to problem B in polynomial time. We say
that A and B are polynomially equivalent, if each can be reduced to the other
in polynomial time.

We have to distinguish from F'P the class FP of search problems solvable
in polynomial time (in the literature only this one is used). (FP # FP,
unless P = NP see Section 3.2.3) !

If HAMILTONIAN PATH (G, P) is defined to be 1 if and only if P is
a Hamiltonian path of the graph G, then FHAMILTONIAN PATH is the
problem of finding a Hamiltonian path. 1t is easy to reduce this problem
(polynomially) to the existence of a Hamiltonian path. (Delete the edges
one by one, and ask whether there is still a Hamiltonian path.) It is quite
commonly thought that decision problems describe well the problems we
meet ‘in life’, and that defining the complexity of search problems with the
complexity of deciding the existence of the searched object is a reasonnable
simplification.

This common prejudice occurs to be false | The easier the problem L is,
the bigger the difference between complexity of L and F'L can be ! The prej-
udice comes from the fact that for A"P-complete problems, the polynomial
equivalence of L and F'L is usually easy to prove. Selman [109] proved in
general:

Theorem 3.2 If R is an N'P-relation and Ly is N'P-complete, then Lp and
F'R are polynomially equivalent.

One cannot state, however, a similar result about problems in NP N
coNP, as will be explained in the following Section 3.2.3. While most of
the decision problems in N'PNcoNP turn out to be polynomially solvable,
in F(NPNcoNP) there are classes of polynomially equivalent problems for
which this is not believed to be the case ! For some of these problems finding
the good certificate occurs to be essentially more difficult than the decision
problem (even if this, like many other negative results, cannot be proved).

Even concerning NP-complete problems one must be careful with the
relation of the optimization problems and the corresponing decision problems:
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for instance Integer Programming is not the search problem of finding any
kind of certificate to the corresponding decision problem or its complement
(see 3.2.5) !

3.2.3 Total Relations

A relation R C ¥* x ¥* is called a total relation if for all x € ¥* there exists
y € ¥* so that (z,y) € R. We will be interested in total N"P-relations, that
is, in total N'P-relations for which every input x € X* has a polynomial
certificate.

A polynomial certificate for the set of all words 7 We are more used to
certifying a nontrivial set of words (language). In 3.2.1 though we saw such
nontrivial search problems where deciding the existence of the searched object
is just the recognition of ¥* (‘dumb yes’); we will see some more examples to
this in the next subsubsection. Don’t forget that we are no more recognizing
languages, but searching after certificates for relations. This subsubsection
is devoted to clarifying this difference.

In other words, R is a total relation if and only if Lr = ¥*. Define

TFNP :={FR: R is an N'P-relation, L = ¥* }.

That is, TFNP consists of the problems of searching after the certificates
for total N'P-relations.

If R is a total relation, even though Lg(= X*) is trivial to recognize, the
examples already show that FR can be nontrivial ! This warns against as-
sociating search problems merely to languages, as it is erronously written in
the books and papers I saw on the subject. Different relations may of course
recognize the same language. (For instance: total relations all recognize
3*; this leads to a big variety of relations and search problems that recog-
nize ©* by considering R’ := RU R, where R and R are the polynomially
testable relations recognizing a well-caracterized language and its comple-
ment, respectively. (We have just borrowed the proof of Fact 3.1 below.) It
is therefore important to associate search problems to relations, and not to
decision problems !

Total relations have occurred much earlier in the literature than the recog-
nition of differences between decision and search, or the completeness results
concerning subclasses of TFNP. Poljak [90] calls them ‘existence theorems’,
and such theorems are mentioned first in [91]. Cameron and Edmonds [17]
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call such relations EP-theorems, where EP stands for existentially polytime.
Papadimitriou and his coauthors’ theory realize the difference between deci-
sion and search, present subclasses and provide for them theorems analogous
to Cook’s theorem.

The following fact is inspired by the equality TFNP = F(NP N coNP)
of Meggido and Papadimitriou [83]. (This formulation drags the inaccuracy
of the definition of a search problem along. Formally, a search problem does
not search after a certificate of the complementary language.)

Let P; and P, be two classes of problems. Let us say that the the problems
in the classes Py and Py are polynomially equivalent, if every P, € Py is
polynomially equivalent to some P, € P,, and every P, € P, is polynomially
equivalent to some P; € P;. (That is, if in the undirected bipartite graph of
polynomial equivalences between the problems in these two classes as vertices
there is no isolated point.)

Fact 3.1 The problems in the three classes FP, TFNP and ‘searching after
certificates both for L and for ¥*\ L, L € NP N coNP’ are polynomially
equivalent.

Proof. Suppose first L € P, and show that F'L is polynomially equivalent
to a problem in TFNP. Indeed, fix a polynomial algorithm that recognizes
L, and for all x € ¥* let r(z) encode the running of the algorithm with input
z. Define R := {(z,r(z)) : « € ¥*}. Then R can be computed in polynomial
time by running the algorithm, and Lz = ¥*. Hence FR € TFNP.

Now let FR € TENP. Then Ly = ¥*, and indeed, F'R itself is searching
after a certificate for ¥*, and it is polynomially equivalent to itself. Choosing
any trivial certificate for () = X* \ L, the equivalence remains true.

Last let L € NP N coNP, let R be an NP relation so that Ly = L,
and R be an NP relation so that Ly = %*\ L. (That is, FR is searching
after a certificate for L, and FR for ¥* \ L.) We show a relation T such
that Ly € P, and F'T is polynomially equivalent to solving both F'R and
FR. Define T := RU R. We have indeed, Ly = ¥* € P. Let us show the
polynomial equivalence of FT with solving both FR and FR. Indeed, if FT
can be solved in polynomial time, then for x € L it provides y such that
(z,y) € R, and for x € ¥* \ L we have for the y it provides: (z,y) € R.
Therefore FR, FR € FP. Conversely, if FR, FR € FP it follows similarly
that F'T'e FP. O
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We get the following immediate corollary:

Fact 3.2 If P # NP, then FP # FP.

3.2.4 Subclasses and their difficult problems

We are getting now near to a most interesting question: how to prove about
a ‘trivial’ decision problem with a dumb yes answer, that it is difficult. For
instance, do we have any chance of proving that finding a kernel in a perfect
graph (or a strong fractional kernel in an arbitrary graph) is difficult ?

Here again, there is no chance for lower bounds on the running time,
and since by Fact thm:equal this problem is at most as difficult as any well-
characterized problem there is also no chance of proving N'P-completeness.
On the other hand, there are no completeness results known for problems in
NPNcoNP. However, it turns out that there are interesting completeness
results in some subclasses containing many different kinds of problems !

A class that turns out to be crucial for our ultimate goal is the class
PPA. We do not wish to go into the formal details, but explain the main
ideas instead, as one can understand from [89] or [5]:

A typical problem in this class is SMITH: given a cubic graph G with a
given Hamiltonian circuit H, find another Hamiltonian circuit. Let us con-
sider the Huge Graph whose vertices are the Hamiltonian paths of GG, and
the edge (Hy, Hy) is in the Huge Graph, if H; and H, have n — 2 common
edges. Thomason [119] gave an algorithmic proof of Smith’s theorem stating
that a cubic graph that has a Hamiltonian circuit has a second Hamilto-
nionian circuit, along the following lines: delete an edge of H, denote the
endpoints of the resulting Hamiltonian path by 1 and 2; construct a series
of Hamiltonian paths with 1 as endpoint, by adding to the last Hamiltonian
path P with endpoints 1 and P, the unique edge of GG incident to p which is
neither in P nor was the deleted edge in the previous step; if pl € E(G), a
Hamiltonian circuit is found; if p1 ¢ E(G), there is a unique edge to delete,
different from the one that was added, so that the result is a Hamiltonian
path with endpoint 1. Each step of this algorithm uniquely determines the
previous and the next step. Consequently the algorithm cannot cycle, and
therefore pl € E(G) holds after a finite number of steps, and again because
of the unicity of the preceding and following steps the found Hamiltonian
circuit must be different from the initial one.
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It is noteworthy that this algorithm leaves the executor unemployed: it
(the executor) has no choice all along the execution. It goes one by one to
uniquely determined Hamiltonian paths, executing each step in polynomial
time, until a Hamiltonian circuit is determined. In other words, the Huge
Graph is the union of vertex disjoint paths in this case, and the algorithm
does not do anything else but walking along one of the paths, without branch-
ing with ’if’ commands. Let us call an algorithm ‘without if commands’
dumb. Surprisingly, the result of a dumb algorithm cannot be foreseen with-
out ezxecuting the algorithm, Papadimitriou [88] actually proved that this is
NP-hard to find, (and even PSPACE-complete). It is known that Thoma-
son’s particular algorithm, does not always solve SMITH in polynomial time,
see Cameron’s analysis of Krawczyk’s example [16]. (For readers who are not
yet confused, let us mention that Papadimitriou proved: the problem of find-
ing ’the other endpoint’ of a fixed path, which is exactly the problem solved
by Thomason’s algorithm, is complete in a complexity class containing NP,
whereas SMITH is included in a subclass of NP N coNP ! Therefore, if
NP # coNP, then finding 'the other endpoint’ is more difficult than ’find-
ing an endpoint’.)

Papadimitriou [89] first notes that SMITH belongs to a general class of
problems that can be put into the form: given a graph and an odd degree
vertex of a Huge Graph related to the problem that can be explored in
polynomial time, find another odd degree vertex. This class of problems
is called PPA. Moreover, he shows that every problem in PP.A can be
reduced to a problem on a Huge Graph whose local complexity differs from
the original one only by a polynomial factor, and can be solved by a dumb
algorithm. However, SMITH is not proved to be PP.A-complete, and in
general no PP.A-complete problem is shown in [89].

Therefore a subclass of PP.A is defined, where the edges of the Huge
Graph are directed forming directed paths. This orientation provides an
additional structure to the problem: in SMITH, given two Hamiltonian Paths
we do not know which one will be reached first by the algorithm, if they will
be reached at all. The subclass where the orientation of the edges is known
without running the algorithm is denoted by PPAD.

Examples of problems in PPAD are beyond the scope of this paper, we
only point at [89] again. We especially recommand the reader to look at
SPERNER, BROWER or P-LCP.

The only relation known between the classes is PPAD C PPA. Is it
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really impossible to prove PPA = PPAD = PLS 7 One thing is sure:
these three classes are syntactic, and therefore contain complete problems.
Johnson, Papadimitriou and Yannakakis [71] prove for instance that LOKL is
PLS-complete. The status of SMITH is open. Completeness here has to be
interpreted similarly to NP-completeness: for instance, PLS-completeness
means that it a polynomial combinatorial algorithm for one of the problems
would imply one for all the problems. On the other hand, a polynomial
algorithm for so many different problems like LOKL, Linear programming,
etc., is unlikely.

(The polynomial time reductions do not necessarily respect the borders
of the subclasses, but we can afford here not to care. Indeed, accepting for
instance that a PPAD-complete problem A is ‘difficult’, we get a valuable
negative result by reducing such a problem to a problem B in PPA: we can
get a “PPAD-hard’ problem even if the problem is not in PPAD.)

Let us turn now back to kernels, and try to situate the complexity of the
problems we are interested in. Recall kernels - and ‘strong fractional kernels’
as a compromise between fractional and integer solutions introduced in Sub-
section 2.2.3 - moreover it concerns a characterizing property of perfectness
which may therefore be related to the complexity of perfectness test, as ex-
plained before. The notions could of course be useful for a much wider range
of problems in the practice of combinatorial optimization.

Let us define STRONG FRACTIONAL KERNELS (SFK) to be the prob-
lem of finding a strong fractional kernel in an undirected graph, and KER-
NELS IN PERFECT GRAPHS (KPGQ) is the problem of finding a kernel in a
perfect graph (see Section 2.2.3). The former is more general: a polynomial
algorithm for SFK implies a polynomial algorithm for KPG using Aharoni
and Holzman’s method and G‘rdtschel, Lovdsz, Schrijver’s algorithm [64].
The algorithmic solutions of these are based on an algorithm of Scarf [96]
to a more general problem on matrices that we will denote by SCARF. The
precise definition and details of these are beyond the scope of this paper; yet
we will state some results that are not difficult to check by readers who know
the details. We think these are important open problems on the borderline of
graph theory, complexity theory and polyhedral combinatorics; at the same
time at the border of polynomial solvability and completeness (see 3.2.3).
Therefore, we wish to explain the phenomena related to their complexity, in
more details.
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Fact 3.3 SCARF, SFK, KPG € PPA.

Proof. (Sketch) Let us define the vertices of a Huge Graph to be the sets
of m linearly independent columns of an m x m input matrix, (m € IN). The
problem of finding a basis with the wished properties can be formulated as
the problem of finding a vertex of degree 1 different from an initial vertex
in this Huge graph. This problem contains SFK according to Aharoni and
Holzman [2], and SFK contains KPG using [2] and a polynomial algorithm for
finding a maximum clique in a perfect graph [64]. (A formal proof matched
with a corresponding treatment of Scarf’s algorithm is worked out in [103].
) O

Scarf’s algorithm is of the same spirit as Lemke’s algorithm for the linear
complementarity problem P-LPMC.

Note that again, like in Lemke’s or Thomason’s algorithm, Scarf’s al-
gorithm finds a degree 1 vertex in a given component of the Huge graph
(which, for problems in PPA in general, is PSPACE-hard). A reduction
from P-LPMC or SMITH to these problems looks hopeful.

Problem 16 Are SCARF, SFK, KPG PPA-complete ¢? Are they at least
PPAD-hard ?

Poljak [90], and Cameron, Edmonds [17], [18] provide further nice exam-
ples of total problems among others a rich collection of problems in the class
PPA. For those that look difficult why aren’t there new completeness results
? No PPA-complete problem has been exhibited although it is a syntactic
class. Problems similar to Problem 16 could be asked for all of them, and
actually for many more problems in combinatorial optimization.

The missing attention turned towards these questions comes from the
ignorance of the existence of complete problems that provide the possibility
of proving negative results.

Besides putting light to some aspects of the complexity of problems Pa-
padimitrou and his coauthors’ results put various combinatorial algorithms
into a few number of boxes according to ‘proof styles’. The phenomena
pointed out by these procedures deserve further attention from Combinato-
rial Optimizers, as well as the related complexity classes. The latter could
enlarge their possibilities of proving new negative results by proving com-
pleteness (or hardness) in the new complexity classes.
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3.2.5 Beyond NP

In 3.2.3 it was explained that a trivially existing object may be difficult to
find. In this section we provide a tool for showing that a given problem L is
not likely to be in NP at all. This consists essentially in showing a reduction
f:¥* — ¥* computable in polynomial time, such that x € K if and only
if f(xr) € ¥*\ L, where K is an N'P-complete problem. Then L € NP
would imply K €coNP, and since K is N'P-complete, this can hold only if
NP=coNP.

This is useful, since many of the problems studied in combinatorial opti-
mization are neither trivially in NP nor in coNP. For some problems one of
the two belongings can be proved, but is far from being trivial (for instance
perfectness). We must be prepared to assume the disaster to renounce to
both types of necessary and sufficient conditions, and to have an evidence
for this ! Fortunately for perfectness this is not the case, even if the coNP
certificate is not trivial to prove. I will either skip this section or collect exam-
ples: Ageev, Kostochka, Szigeti: nontrivial caract for T-joins. Open problems and maybe
co-completeness results for list colorings.

In order to prove that L is neither in NP nor in coNP we have to
show two reductions, one for L the other for its complementary problem
L := ¥*\ L. This helps in excluding some kinds of ‘nice’ conjectures that one
should not expect to be true. Another reason for introducing these notions
here is to complete our explanations on search problems and to realize that
one should be somewhat careful with the relation of decision an optimization
problems.

Let IP (Integer Programming) denote the problem of deciding for a given
m X n integer matrix A, integer vectors b € Z™, c € Z", and k € Z, whether

k< max{c'z:x € Q}, where Q := {z € R": Ax < b} .

EXACTIP is the problem of deciding whether k¥ = max{c'z : € Q}
holds. Let OPTIP be the corresponding optimization problem, that is, the
problem of finding the mazimum, or even v € Q) with maximum objective
value c¢''x.

The following discussion is a variant of results in [88]. We choose in-
teger programming as an example, instead of satisfiability or the travelling
salesman, and this is not a big difference. However, with this example we
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would like to inspire sharpenings of the results we are stating: prove DP- or
FpN P_completeness results for more particular problems !

OPTIP is not at all equal to any natural search problem FIP that searches
after a certificate for the decision problem IPe€ NP. While FIPe FNP,
already the problem of finding only the value of OPTIP clearly includes the
problem of deciding whether a given number w is equal to the optimum, that
is at least a particular case of EXACTIP; despite its polynomial equivalence
to the TSP the decision problem EXACTIP is neither trivially in NP nor
trivially in coNP | Probably it is in neither of them, (and also not if & is
optimum), as the following results suggest:

The language L C ¥* is said to be in DP if there exist L; € NP and
Ly € NP such that L = Ly N Ly. L € DP is said to be DP-complete, if any
language in DP can be reduced to it.

The following straightforward statement unveils what one should actually
do for proving DP-completeness:

Fact 3.4 Let L be a language. Then L € DP if and only if L € DP.
Moreover, L is DP-complete if and only if L € DP, and there exists two
reductions f,qg : ¥* — ¥* both computable in polynomial time, and two
NP-complete problems Ly and Ly such that x € Ly if and only if f(x) € L
and x € Ly if and only if g(x) € X*\ L; if L is DP-complete, then L € NP
if and only if NP=coNP.

Applying this, one can easily get:
Fact 3.5 [88] EXACTIP is DP-complete.

We also introduce the first class of the polynomial hierarchy because of its
seemingly frequent occurrence in integer optimization, where problems like
OPTIP find their place: PN is the class of problems solvable in polynomial
time extending the usual operations by calls of an arbitrary AP-complete
problem N; FPNF is the family of search problems that can be solved in
polynomial time using also the oracle N as operation. (Clearly, the definition
does not depend on the choice of N. Don’t convuse FP with F'P, recall that
the latter is the search problem defined by a P-relation.)

Obviously, DP C PVNP.

Fact 3.6 [88] OPTIP is FPNT-complete.
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A similar claim to Fact 3.4 holds for FPY?. Did any combinatorial opti-
mizer ever care of providing two reductions for NP-hard problems, one for
each of L or L corresponding to the ‘NP-part’ of the reduction?

If such results are proved for a problem, it is not advisable to look for N/P-
characterizations. The same kind of negative result may hold for Problem 13:

Problem 17 Prove or disprove that the following problem is DP-complete:
Given an m X n integer matriz A, an integer vector b € Z", @ := {x € R" :
Az < b}, is the Chudtal rank of Q@ at most one.

We hope the readers will find more examples of DP completeness or
PP A-completeness (or LS-completeness) results, etc., or in lack of these, get
encouragement for finding polynomial algorithms for their favorit problems.
To reach this latter goal for testing the integrality of polyhedra one may
need to use similar methods to those mentioned or referred in the previous
sections.
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