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ABSTRACT 

We study the vertices and facets of the polytopes of partitions of numbers. The partition polytope 

nP  is the convex hull of the set of incidence vectors of all partitions 1 22 ... nn x x nx= + + + . We 

show that the sequence 1 2, , ..., ,...nP P P  can be treated as an embedded chain. Dynamics of 

behavior of the vertices of nP , as n increases, is established. Some sufficient and some necessary 

conditions for a point of nP  to be its vertex are proved. Representation of the partition polytope 

as a polytope on a partial algebra − which is a generalization of the group polyhedron in the 

group theoretic approach to the integer linear programming − allows to prove subadditive 

characterization of the non-trivial facets of nP . These facets 0
1

n

i i
i

p x p
=

≥∑  correspond to extreme 

rays of the cone of subadditive functions :{1,2,..., }p n → \  with additional requirements 

0 np p=  and i n i np p p−+ = , 1 i n≤ < . The trivial facets are explicitly indicated. We also show 

how all vertices and facets of the polytopes of constrained partitions − in which some numbers 

are forbidden to participate − can be obtained from those of the polytope nP . All vertices and 

facets of nP  for 8n ≤  and 6n ≤ , respectively, are presented. 
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1. INTRODUCTION 

 Any representation of a positive integer number n as a sum of positive integers 

 1 2   ... ,  , >0,   1, ... ,  k i in n n n n n i k= + + + ∈ =] , 

is called a partition of n. For centuries the partitions of numbers were a subject of thorough 

investigations [1]. In this paper the set of unordered partitions of n is studied from the polyhedral 

point of view. Each partition is associated with its incidence vector 1  ( ,  ... ,  ) n
nx x x= ∈] ; the 

component ,  1,  ... ,  ix i n= , is the number of times the item i appears in the partition. The object 

of our interest is the polytope n
nP ⊂ \ , which is the convex hull of the set 

 { }1 2| 2 ... , , 0, 1, ... ,n
n n i iT x x x nx n x x i n= ∈ + + + = ∈ ≥ =] ]  (1) 

of incidence vectors of all unordered partitions of n: n nP convT= . We call nP  the polytope of 

unordered partitions of n. This definition guarantees that Tn is the set of all integer points of nP . 

So one can study nP  in effort to describe the set of unordered partitions of n. 

 In section 2 of the paper a relation between the partition polytopes for different numbers n 

is established. It is shown that the polytope nP  is of dimension 1n −  and that the sequence 

1 2 3, , , ...P P P  can be treated as an embedded chain. Dynamics of behavior of the vertices of nP , 

as n increases, is established. Some sufficient and some necessary conditions for a point to be a 

vertex of nP  are proposed. All vertices of nP , for n � 8, are established with the aid of these 

conditions. They are listed in Appendix 1. 

In section 3 the faces of maximal dimension of the partition polytope are described. Since 

1ndim P n= − , an inequality  

 0
1

n

i i
i

p x p
=

≥∑  (2) 
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defines a facet of nP  if it is valid for nP  and is satisfied as equality by some 1n −  affinely 

independent points of nP . According to another definition, (2) is a facet if it is valid for nP  and 

cannot be expressed as a sum of two other valid inequalities, unless each is a positive multiple of 

(2) plus a scalar multiple of equation (1). We divide all facets into two classes. The facets of the 

first class, which we call trivial, are explicitly listed: they are all coordinate hyperplanes of n
\ , 

except 1 0x = . As to the non-trivial facets, we prove their subadditive characterization, which 

allows us to finally describe them as certain solutions of a system of equations and inequalities. 

The algebraic technique of subadditive characterization of the facets of polyhedra on 

algebraic structures was originally proposed in the group theoretic approach to integer linear 

programming [4, 5]. According to this approach, a relaxation of the original integer linear 

programming problem is reduced to a linear minimization problem over the master group 

polyhedron  

 0 0
, 0

( , ) { ( ( ),  ,  0) | ( ) , ( ) , ( ) 0
g G g

P G g conv x x g g G g gx g g x g x g
∈ ≠

= = ∈ ≠ = ∈ ≥∑ ] } (3) 

of all solutions of an equation on a finite abelian group G with some 0g G∈  as the right-hand 

side. More precisely, this reduction produces a group polyhedron 0( , ),  P H g H G⊆ , that is (3) 

with g G∈  substituted by g H∈ . Details of this reduction can be easily found [7, 11]. The 

hierarchy of valid, subadditive and minimal inequalities related to this polyhedron was 

constructed [5, 6]. An inequality 

 0
, 0

( ) ( ) ( )
g G g

p g x g p g
∈ ≠

≥∑  (4) 

is called valid for 0( , )P G g  if it is satisfied by all the points of 0( , )P G g . A valid inequality (4) 

is called minimal if any other inequality 0
, 0

( ) ( ) ( )
g G g

r g x g r g
∈ ≠

≥∑  satisfying 0( )r g  ≥ 0( )p g  and 

( )r g  ≤ ( )p g , g ∈ G, where at least one of these constraints is strict, is not valid for 0( , )P G g . 
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Definition of subadditive inequalities is based on the notion of a subadditive function. Let �+  

denote the addition operation in G. �A function p : :p G → \  is called �+ -subadditive if 

1(p g �+ 2g ) ≤ 1( )p g + 2( )p g , for all 1g , 2g  ∈ G. An inequality (4) is called �+ -subadditive if 

p(g), g ∈ G, are the values of some subadditive function on G. Subadditive functions on G, as 

well as subadditive inequalities for the polyhedron 0( , )P G g , form polyhedral cones. Hence one 

can talk about their extreme rays. Subadditive characterization of the polyhedron 0( , )P G g  in the 

group theoretic approach asserts that its non-trivial facets are exactly those extreme subadditive 

inequalities that are minimal [5]. This description was extended to polyhedra on certain Abelian 

semigroups and additive systems (finite sets closed in respect to one everywhere defined binary 

algebraic operation) [2, 3, 8]. The author generalized these results for the case of polyhedra on 

partial algebras [12]. The notion of partial algebra is referred to as it is defined in [9]. An algebra 

is an arbitrary nonempty set together with some algebraic operations of arbitrary arity defined on 

it. In a partial algebra operations can be defined on the basic set only partially. 

We show that the partition polytope nP  can be represented as a polytope on a partial 

algebra with one operation. So, essentially, subadditive characterization of the non-trivial facets 

of nP  follows from [12]. Since this work is not easily available we reproduce its main results 

here, though in the form applicable to our case. Some theorems and proofs are close to those in 

[8], but the main results are substantially new. Such are Theorem 10 that describes the trivial 

facets and Theorem 7 that describes the minimal valid inequalities and is crucial for the final 

description of the non-trivial facets in Theorem 13. The list of all non-trivial facets of nP , for 

n � 6, obtained by the use of Theorem 13 is presented in Appendix 2. 

In section 4 the polytopes of constrained partitions, in which some numbers are forbidden 

to appear, are considered. We show that, similar to the case of group polyhedra, these polytopes 
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are just certain cuts of the master partition polytope nP  and that their facets are provided by the 

facets of nP . 

2. POLYTOPES OF PARTITIONS AND THEIR VERTICES 

Theorem 1. Affine dimension of the polytope nP  is equal to n − 1. 

Proof.  One can easily check that 1P  is the point 1x =1 in \ , and 2P  is the closed line segment 

in 2
\  with the endpoints (2, 0) and (0, 1) corresponding to partitions 2 = 1+1 and 2 = 2. So the 

theorem is true for 1P  and 2P : dim 1P  = 0 and dim 2P  = 1. For a given n > 1, the point 

-1(0 ,  1)ne = , with coordinates  0,  1 1,  1i ne i n e= ≤ ≤ − = , is a single vertex of nP  with 0nx > . 

Hence nP  is the convex hull of e  and all integer points of the set 
1

1
1

1

{ | }
n

n
n i

i

Q x ix n
−

−
− +

=
= ∈ =∑\ . 

Equation 
1

1

n

i
i

ix n
−

=
=∑  is equivalent to 

1

1
2

1
n

i
i

x ix n
−

=
′ + = −∑ , where 1 1 1x x′ = − . Therefore, 1nQ −  

translated by −1 along the axis x1 contains 1nP − . By induction on n, we have 

dim nP  = dim 1nP − +1, which proves the theorem. 

As can be seen from the proof, the polytope nP  is a pyramid with the point -1(0 ,  1)n  as the 

apex. The base of the pyramid lies in the hyperplane 0nx =  and contains the polytope 1nP −  

translated by 1 along the axis x1 and embedded into n
\ . If we identify 1nP −  with its image under 

the translation �M : 1 2 1( , , ... ,  )nx x x − 1 2 1( 1, , ... ,  ,0)nx x x −+6  we can consider 1nP −  to be a part 

of nP . With this convention, the partition polytopes constitute an embedded chain 

1 2 ... ...nP P P⊂ ⊂ ⊂ ⊂ . 

The vertices 1 2( , , ... ,  )nx x x x=  of nP  with 1x > 0 and 0nx =  are inherited from 1nP − . 

Indeed, -1
1 ( )xϕ  is a vertex of 1nP −  since it cannot be a convex combination of any 
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1 2
1, , , m

ny y y T −… ∈  unless the same is true for x and 1 2
1 1 1( ), ( ), , ( )m

ny y y Tϕ ϕ ϕ… ∈ . A similar 

relation holds for the vertices of nP  with the first coordinate ix > 0, for 2
2

n
i  ≤ ≤   

: they are 

inherited by nP  from n iP −  via translation : :n i n
iϕ − →\ \  

1 2 1 2 -1 1( , , , ) ( , , , , 1, , , ,0 )i
n i i i i n ix x x x x x x x x− + −… … + …6 . Since every nx T∈ , except -1(0 ,1)n , 

has ix > 0 for some i, 1
2

n
i  ≤ ≤   

, we obtain 

Theorem 2. All vertices of nP , except -1(0 ,1)n , are the iM -images of vertices of some 

preceding polytopes n iP − , i = 1, 2, … , 
2

n 
  

:  if -1(0 ,1)nx ≠  is a vertex of nP  and mini j= , for 

which jx > 0, then ( )ix y= M  for some vertex y of n iP − . 

On the other hand, some vertices of 1nP −  do not remain vertices of nP  since they are 

captured by the convex hull of some other vertices. Such is the vertex (1, 1, 0) of 3P : 1(1,1, 0)ϕ = 

(2, 1, 0, 0) is the half-sum of (0, 2, 0, 0) and (4, 0, 0, 0) and is not a vertex of 4P . The corollary 

below shows that finally this is the destiny of almost all vertices of the partition polytopes and 

elucidates how soon this happens. 

Next two theorems give two suff icient and two necessary conditions for a point nx T∈  to 

be a vertex of nP . These conditions proved to be rather strong: they were successfully used to 

check all partitions of n, up to n = 8, for being vertices of nP , see Appendix 1. 

Theorem 3. (i) Let 1 2{ , , , }ki i i…  be a set of integers, 1 ji n≤ ≤ , j = 1, 2, … , k, such that the 

equation 1 1 2 2 k ki x i x i x n+ + … + = , jx +∈] , has one or two solutions. Then for each solution 

1 2, , , ka a a… , the point 1 2( , , ... ,  )nx x x x= , with i ix a= , for 1 2{ , , ... , }ki i i i∈ , and 0ix = , for 

1 2{ , , ... , }ki i i i∉ , is a vertex of nP . 
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 (ii) Let 1 = 1 2 ki i i< < …< � n be an increasing sequence of integers. Define kn = n, 

ki
x = k

k

n

i

 
 
 

; 1kn − =
kk i kn x i− , 

1

1

1
k

k
i

k

n
x

i−
−

−

 
=  

 
; … ; 

21 2 2in n x i= − , 
1

1
1

1
i

n
x x

i

 
= =  

 
= 1n ; and ix = 0, 

for 1 2, , , ki i i i≠ … . Then, 1 2( , , ... ,  )nx x x x=  is a vertex of nP . 

Proof. To prove (i), it is sufficient to notice that if an integer point nx P∈  is not a vertex then 

there are at least two other integer points 1 2, ny y P∈  such that 1 2 0i iy y= =  whenever 0ix = . To 

prove (ii), suppose x is not a vertex of nP . Then, 1 2
1 2 ... m

mx y y yλ λ λ= + + +  for some integer 

points 1 2, , , m
ny y y P… ∈  with 1 2, , , 0mλ λ λ… > , 1 2 mλ λ λ+ + … + = 1. Then, for all j = 1, 2, … , 

m, subsequently hold 
kk

j
iiy x= , 

11 kk

j
iiy x

−−
= , … , 

11

j
iiy x= . So all 1 2, , , my y y… = x, and x is a 

vertex. 

Theorem 4. Every vertex x of nP  satisfies the following relations: 

(i) iix k<  for all i and k such that 1 i k n≤ < ≤ , i divides k, and 0kx > , 

(ii) iix m k< −  for all triples of indices i, k, m such that k m< , i divides m k− , and 

, 0k mx x > . 

Proof. To prove (i), note that if i
k

x
i

≥  then x  is the half-sum of points 1y  and 2y  with 

coordinates 1
i i

k
y x

i
= − , 1 1k ky x= + , 2

i i
k

y x
i

= + , 2 1k ky x= − , and 1 2
j j jy y x= = , for all ,j i k≠ , 

and both 1y  and 2y  belong to nP . 

 For (ii), if i
m k

x
i

−≥  then x is the half-sum of points 1y  and 2y  with coordinates 

1
i i

m k
y x

i

−= + , 1 1k ky x= + , 1 1m my x= − , 2
i i

m k
y x

i

−= − , 2 1k ky x= − , 2 1m my x= + , and 

1 2
j j jy y x= = , for all , ,j i k m≠ , and both 1y  and 2y  belong to nP . 
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Corollary.  All vertices of nP , except -1( ,0 )nn , do not remain vertices of 2nP , and 2nP  is the 

first polytope, for which this happens. 

Proof. Let 1
1 2( , , ... ,  ) ( ,0 )n

nx x x x n −= ≠  be a vertex of nP . Then, kx > 0 for some k > 1, and  

1 ( )n xϕ = 1 2( , , , ,0 )n
nx n x x+ …  violates necessary condition (i) of Theorem 4. Hence 1( ,0 )nn −  is 

the only vertex of nP  that is still a vertex of 2nP . To conclude the proof, note that 

1 1
1 (0 ,1)n nϕ − − = 2 1( 1,0 ,1,0 )n nn − −−  is a vertex of 2 1nP − . 

3. FACETS OF PARTITION POLYTOPES 

 Let us consider the partial algebra �,N= +& �with the basic set N = {1, 2, ... , n} and 

partial operation �+  on N defined by 

i �+  j = {i + j, if i + j ≤ n; and not defined, if  i + j > n}, i, j ∈ N. 

Successively applying operation �+  to the elements of N and already built subexpressions, one 

can recursively construct a variety of formal expressions E on 
�

, such as E = (((1 �+ 5) �+ 4) �+  

(3 �+ 1)). Each formal expression E can be associated with its incidence vector t(E) ∈ n
\ , with 

the components it  equal to the number of times i ∈ N occurs in E. Continuing the example above 

for n = 7, we have t(E) = (2, 0, 1, 1, 1, 0, 0). Some formal expressions can be successfully 

evaluated, finally yielding certain elements v(E) ∈ N. For the others, evaluation stumbles at one 

of the steps on an indefiniteness. This is the case in our example: (1 �+ 5) �+ 4 = 6 �+ 4 is undefined 

for n = 7. Both computability of an expression E and the value of v(E) depend only on the 

incidence vector t(E), hence we can regard operation �+  as commutative and associative. 

Let ( , )T n&  be the set of the incidence vectors of those expressions E, for which 

v(E) = n. We define the polyhedron ( , )P n&  on the partial algebra 
�

 as the convex hull of 

( , )T n& . It is obvious that ( , )T n& = nT  and  ( , )P n& = nP . 
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 Henceforth, we denote the inequality (2) by the ( 1)n + -dimensional vector 0( ; )p p = 

0( ; , )ip p i N∈ . As for the group case, an inequality 0( ; )p p  is called valid for the polytope nP  if 

it is valid for all t∈ ( , )T n& . All inequalities valid for nP  form a cone in 1n+
\ , which we denote 

by ( )nV P . 

 A function :p N → \  is called �+ -subadditive if p(i �+ j) ≤ p(i) + p(j), for all i, j ∈ N 

such that i �+ j is defined. In other words, p is a �+ -subadditive function if 

 p(i + j) ≤ p(i) + p(j), i, j ∈ N, i + j ≤ n. (5) 

In the following we simply call such functions subadditive and write ip  instead of p(i).  

Subadditive functions on N form a cone in n
\ , denote it by ( )S N . 

Lemma 1. If p∈ ( )S N  and E is an expression on �  with the incidence vector t = t(E) and 

the value v(E) = m ∈ N, then 
1

n

i i m
i

p t p
=

≥∑ . 

Proof. The statement follows from subadditivity of p: 
1

n

i i
i

p t
=

≥∑
1

( )
n

i
i

p it
=

≥∑
1

( )
n

i
i

p it
=

=∑ mp . 

Lemma 1 implies that for each subadditive function p and each 0p ≤ np , an inequality 

0( ; )p p  is valid for nP . We call such inequalities subadditive. Subadditive inequalities form a 

cone in 1n+
\ , denote it by ( )nS P . Next theorem is an immediate consequence of Lemma 1. 

Theorem 5. ( )nS P ⊆ ( )nV P . 

As for the group case, we call an inequality 0( ; )p p ∈ ( )nV P  minimal valid inequality if 

its coefficients ip  cannot be decreased and the right-hand side 0p  increased without violating its 

validity for nP . Let ( )nM P  be the set of all minimal valid inequalities for nP . 
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Lemma 2. If 0( ; )p p ∈ ( )nM P  and E  is an expression on �  with the incidence vector 

t = t(E) and the value v(E) = m ∈ N, then 
1

n

i i m
i

p t p
=

≥∑ . 

Proof. On the contrary, suppose that for some minimal valid inequality 0( ; )p p  there exists an 

expression E such that 
1

n

i i m
i

p t p
=

<∑ . Define a new inequality 0( ; )p q  by setting i iq p= , for 

i ≠ m, and mq =
1

n

i i
i

p t
=
∑ . If we show that 0( ; )p q  is a valid inequality, this would contradict 

minimality of 0( ; )p p  and complete the proof. Suppose the opposite: 0( ; )p q  is not valid, i.e. 

there exists an incidence vector nu T∈ , for which 0
1

n

i i
i

q u p
=

<∑ . Then, 1mu ≥  since q differs from 

p only in the m-th component. Let us take an expression corresponding to the incidence vector u 

and substitute each item m in it by the expression E. We will obtain a new expression with some 

incidence vector nw T∈ . Let tN  be the set of those indices i, for which it > 0. The coordinates of 

w are: i iw u= , for i ≠ m and i ∉ tN ; i m i iw u t u= + , for i ∈ tN ; mw  = 0. The following 

calculation shows that 0
1

n

i i
i

p w p
=

<∑ : 

0
1

n

i i
i

p q u
=

> ∑ =
,t

i i m m
i N N i m

q u q u
∈ − ≠

+∑ +
t

i i
i N

q u
∈
∑ =

,t

i i
i N N i m

p u
∈ − ≠

∑ +
t

m i i
i N

u p t
∈
∑ +

t

i i
i N

p u
∈
∑ = 

=
,t

i i
i N N i m

p u
∈ − ≠

∑ + ( )
t

i m i i
i N

p u t u
∈

+∑ =
,t

i i
i N N i m

p w
∈ − ≠

∑ +
t

i i
i N

p w
∈
∑ =

1

n

i i
i

p w
=
∑ . 

However, this contradicts validity of 0( ; )p p . Therefore, inequality 0( ; )p q  is valid and lemma is 

proved. 

Lemma 2 implies the following theorem. 

Theorem 6.  ( ) ( )n nM P S P⊆ . 
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Theorem 7. An inequality 0( ; )p p , valid for nP , is minimal if and only if it satisfies the 

following conditions: 

(i) 0 np p= , 

(ii) i n i np p p−+ = , 1 ≤ i ≤ 
2

n 
  

. 

Proof. At first, let 0( ; )p p  be a minimal valid inequality for nP . Its validity for the point 

1(0 ,1)n− ∈ nT  implies 0 np p≤ . However, by Lemma 2, the inequality ( ; )np p  is valid. Therefore, 

0 np p<  could not be the case, as it would contradict minimality of 0( ; )p p , and (i) is proved. 

To prove (ii), notice that, by Theorem 6, minimality of 0( ; )p p  implies its subadditivity. 

In particular, i n i np p p−+ ≥ , for all i < n. Suppose k n k np p p−+ >  for some k < n. Then either 

(1) 
2

n
k ≠ , and we can assume that 

2

n
k > , or (2) 

2

n
k =  for an even n. We show further that in 

each case an inequality 0( ; ) ( )np q V P∈  can be constructed in such way that i iq p≤ , for all i, and 

some i iq p< . This will contradict to minimality of 0( ; )p p  and prove condition (ii). 

Consider the case (1) first. Define a function q by setting k n n kq p p −= −  and i iq p= , 

i k≠ . Suppose 0( ; ) ( )np q V P∉ . Then 0
1

n

i i
i

q t p
=

<∑  for some t∈ nT . Since q and p differ only in 

their k-th components and 1kt >  is impossible, then 1kt = . Let E be an expression with the 

incidence vector t. Then �
1E E k= + , where 1E  is some expression with the value 

n

i
i k

it n k
≠

= −∑ . 

By Lemma 1 and condition (i), 0
1

n

i i
i

p q t
=

> ∑ = i i k
i k

q t q
≠

+∑ = i i n n k
i k

p t p p −
≠

+ − ≥∑  

n k n n kp p p− −+ − =  0np p= , which is absurd. 
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In the case (2) we define q by 
2
n

k
p

q =  and i iq p= , i k≠ . Now, if  0
1

n

i i
i

q t p
=

<∑  for some 

t∈ nT , then either 1kt =  or 2kt = . If 1kt =  then we obtain a contradiction in the same way as in 

case (1): 0
1

n

i i
i

p q t
=

> ∑ = i i k
i k

q t q
≠

+∑ =
2
n

i i
i k

p
p t

≠
+ ≥∑ 02

n
k n

p
p p p+ > = . If 2kt = , we again have 

0
1

n

i i
i

p q t
=

> ∑ = 2 kq = 0np p= . So, 0( ; ) ( )np q V P∈  in each possible case, and (ii) is proved. 

Now we have to prove that if a valid inequality ( ; )np p  satisfies (ii) then it is minimal. 

Suppose the opposite: ( ; ) ( )n np p M P∉ . Then there exists a valid inequality 0( ; )r r  such that 

0 nr p≥  and i ir p≤ , i ∈ N, where at least one constraint is strict. In the case 0 nr p>  we have 

1 1nr r −+ ≤ 1 1np p −+ = np < 0r . If 0r = np , then k kr p<  for some k � n, and we have either 

k n kr r −+ < k n kp p −+ = np = 0r  for some k < n, or n nr p< = 0r  for k = n. In all cases we obtain a 

contradiction with validity of the inequality 0( ; )r r  for the incidence vector t, with k n kt t −=  = 1 

and all other coordinates zero, or for the incidence vector 1(0 ,1)n− . This ends the proof. 

Let us define an equality 
1

n

i i
i

p x
=
∑ = 0p  to be a valid equality for nP  if it holds for all 

t ∈ nT . Without loss of strictness we can use the same notation 0( ; )p p  for a valid equality. 

Denote the set of all equalities valid for nP  by ( )nW P . Obviously, ( )nW P ⊆ ( )nV P . In fact, the 

inclusion is more strict. 

Theorem 8. ( )nW P ⊆ ( )nM P . 

Proof. We know that nP  lies in the hyperplane 1 22 ... nx x nx n+ + + =  and ndim P = n − 1. 

Hence any valid equality 0( ; )p p  defines the same hyperplane, i.e. 0( ; )p p = ( ;1,2,..., )n nλ , 

0λ ≠ . Since ( ;1,2,..., )n n  satisfies conditions (i) and (ii) of Theorem 7, 0( ; )p p ∈ ( )nM P . 
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Thus, we have the following chain of inclusions: 

 ( )nW P ⊆ ( )nM P ⊆ ( )nS P ⊆ ( )nV P . (6) 

Recall some basic facts from the polyhedral theory [10]. For arbitrary cone kK ⊂ \ , 

denote by lin.space K the maximal linear space contained in K. A cone K is said to be a pointed 

cone if lin.space K is zero. A point x ∈ K is said to define an extreme ray of a pointed cone K, if 

the equality x = 1 21
2 ( )x x+ , for some 1x , 2x ∈ K, implies i

ix xλ= , iλ  > 0, i = 1, 2; in fact, 1
2  

can be omitted here. Any pointed polyhedral cone K has a finite set of extreme rays, which we 

denote by Ext K. If a cone K is not pointed then it can be factorized by lin.space K, i.e. two points 

v1, v2 ∈ K can be considered as different if and only if 1 2v v− ∉ lin.space K. The general situation 

is that the factor-cone K by lin.space K is a pointed cone, and the original cone K is generated by 

nonnegative combinations of the extreme rays of the factor-cone plus linear combinations of a 

basis of lin.space K [10, 8]. Extreme rays of the factor-cone are defined by the points x ∈ K such 

that an equality x = 1 21
2 ( )x x+ , for 1x , 2x ∈ K, implies i i

ix x lλ= + , for some iλ ≥ 0 and il ∈ 

lin.space K, i = 1,2. If we set K = ( )nV P  then, according to the second definition of a facet, 

0( ; )p p  defines a facet of nP  if and only if it is an extreme ray of the factor-cone ( )nV P  by 

lin.space ( )nV P . 

Theorem 9.  The cones ( )nV P  and ( )nS P  have the common maximal linear space: 

lin.space ( )nV P = lin.space ( )nS P = ( )nW P . 

Proof. Equality lin.space ( )nV P = ( )nW P  is obvious. The rest of the statement follows from 

(6). 

Let nV , nS  and nM  be, respectively, the pointed factor-cones of ( )nV P  and ( )nS P  and 

the factor-set of ( )nM P  by ( )nW P . Inclusions 
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 nM ⊆ nS ⊆ nV  (7) 

follow from (6). 

The inequalities ( 1;0 )nλ −  and (0; )ieλ , i ∈ N, where λ > 0 and ie  is the vector with 

components i
ie = 1 and i

je = 0, for j � i, are trivially valid for nP . We call them trivial valid 

inequaliti es. Next theorem shows that almost all i nequaliti es of the second type are the facets of 

nP . We call them trivial facets. 

Theorem 10. The inequaliti es 0ix ≥ , 2 ≤ i ≤ n, are facets of the polytope nP , for n ≥ 2. 

Proof. Let us fix n ≥ 2, and i, 2 ≤ i ≤ n. Since dim nP = 1n − , the facets of nP  have dimension 

n − 2 and contain n − 1 aff ine-independent points of nP . If we find such points in the hyperplane 

ix = 0 theorem will be proved. 

As was shown in the first part, the intersection of the polytope iP  with the hyperplane 

ix = 0 contains translated polytope 1iP− , whose dimension is i − 2. Let us take i − 1 aff ine-

independent points 1 2 1= ( , , , )j j jj
it t t t −… , 1,2,..., 1j i= − , of 1iP− , including the vertex 

2( 1,  0 )ii −− . Then, i − 1 points 1
1 ( )n i jtϕ − + = 1

1 2 1( 1, , , ,0 )j j j n i
it n i t t − +
−+ − + …  are aff ine-

independent, belong to nP  and have last 1n i− +  coordinates zero. 

Every pass from 1kP −  to kP , i k n< ≤ , is accompanied by emergence of a new point – the 

vertex ku = -1(0 ,1)k  of kP , which lies in the hyperplane ix = 0 of k
\ . These points provide the 

rest n i−  points 1 ( )n k kuϕ − = 2( , 0 , ,1,0 )k n kn k − −− … ∈ nP , i k n< ≤ . Indeed, all the n points 

1
1 ( )n i jtϕ − + , 1,2, ... , 1j i= − , and 1 ( )n k kuϕ − , i k n< ≤ , belong to nP  and to the hyperplane ix = 0, 

and are aff ine-independent. Theorem is proved. 
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To finish with the trivial valid inequalities, note that ( 1;0 )n−  is not a facet since the 

corresponding hyperplane does not contain any t ∈ nT . Neither is the hyperplane 1x = 0 since for 

any incidence vector t, 1t = 0 implies 1nt − = 0, and the n−2 components remained are not 

sufficient to construct n−1 affine-independent points of nP . 

 Now we are on the last lap to prove the subadditive characterization of the non-trivial 

facets. 

Theorem 11. Every nontrivial valid inequality, which is extreme in nV , is a minimal valid 

inequality. 

Proof. Suppose that some extreme in nV  valid inequality 0( ; )p p  is not minimal. Then, there 

exist 0δ ≥ 0 and iδ ≤ 0, i ∈ N, such that not all of them are equal to zero and 0 0( ; )p pδ δ+ +  is a 

valid inequality. Then, 0 0( ; )p pδ δ− −  is also a valid inequality and 0( ; )p p = 

1
0 02 ( ; )p pδ δ+ + + 1

0 02 ( ; )p pδ δ− − . Extremality of 0( ; )p p  implies 0 0( ; )p pδ δ− − = 

0( ; )p pλ + l, for some λ ≥ 0 and l ∈ ( )nW P , which is equivalent to 0(1 )( ; )p pλ− = 0( ; )δ δ + l. 

The fact that not all 0δ  and iδ  are equal to zero implies 1λ ≠ , hence 0( ; )p p = 0
1

( ; )
1

δ δ
λ−

+ 

1

1
l

λ−
. Assumption λ < 1 contradicts to validity of 0( ; )p p , since 0δ ≥ 0, iδ ≤ 0, i ∈ N, and all 

t ∈ nT  are nonnegative. Therefore, λ > 1 and 0( ; )p p = 0 ( 1,0 )
1

nδ
λ

− −
−

+ 
1

(0, )
1

n
ii

i

e
δ

λ= −∑ + 
1

l

λ−
, 

which is a representation of 0( ; )p p  as a nonnegative combination of the trivial valid 

inequalities. Therefore, 0( ; )p p  can be extreme only in the case that it is one of these trivial valid 

inequalities. Theorem is proved. 
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Lemma 3. If a minimal valid for nP  inequality ( ; )np p  is a sum of two valid inequalities 

1 1
0( ; )r r  and 2 2

0( ; )r r , then both 1 1
0( ; )r r  and 2 2

0( ; )r r  are minimal valid inequalities. 

Proof. Suppose, on the contrary, that for example 1 1
0( ; )r r  is not minimal. Then there exists a 

valid inequality 3 3
0( ; )r r  satisfying 3

0r ≥ 1
0r  and 3

ir ≤ 1
ir , for all i, and at least one of these 

conditions is strict. Inequality ( 3
0r + 2

0r ; 3r + 2r ) is valid, but np = 1
0r + 2

0r ≤ 3
0r + 2

0r  and 

ip = 1
ir + 2

ir ≥ 3
ir + 2

ir , for all i. Since one of the restrictions is strict this contradicts to minimality 

of (p0; p) and proves lemma. 

Theorem 12. The set of non-trivial extreme valid inequalities for the polytope nP  is the set of 

minimal valid inequalities extreme in the cone of subadditive inequalities nS : 

( )nExt V = ( )n nExt S M∩ . 

Proof. Let 0( ; )p p  be a non-trivial inequality extreme in nV . By Theorem 11, 0( ; )p p ∈ nM  

and, by (7), 0( ; )p p ∈ nS . Together with inclusion nS ⊆ nV  this implies that 0( ; )p p  is extreme in 

nS . Conversely, let 0( ; )p p ∈ ( )n nExt S M∩  and suppose that 0( ; )p p  is not extreme in nV . Then 

it can be expressed as a half-sum of two valid inequalities: 0( ; )p p = 1 11
02 ( ; )r r + 2 21

02 ( ; )r r . It 

follows from Lemma 3 and (7) that both 1 1
0( ; )r r  and 2 2

0( ; )r r  belong to nM  and, therefore, to 

nS , which contradicts extremality of 0( ; )p p  in nS  and completes the proof. 

So we proved that every non-trivial facet of nP  is generated by an extreme ray of the 

factor-cone of subadditive functions by the line (1,2, ... , )nλ , λ ∈\ . Let us call a subadditivity 

inequality (5) active for a subadditive function p if p turns it into equality. The factor-cone is of 

dimension n−1, hence for any its extreme ray there exist some n−2 linearly independent active 

inequalities (5). Theorems 12 and 7 indicate that for each non-trivial facet the minimality 

conditions (ii) give a part of order n/2 of linearly independent active inequalities. We cannot say 



 19 

how to augment this subsystem to obtain a system of n−2 linearly independent active inequalities 

that provides a non-trivial facet, but we can specify the facets a little more. 

Lemma 4. Every non-trivial facet ( ; )np p  of nP  is equivalent in the factor-cone nV  to some 

facet ( ; )nq q  with iq ≥ 0, 1 i n≤ ≤ , and at least one jq = 0, for j not dividing n, 2 ≤ j ≤ n−1. 

Proof. Let ( ; )np p  be a non-trivial facet and m ∈ N be an index such that mp

m
= min i

i N

p

i∈
. Then 

the inequality ( ; )np p − ( ;1,2,..., )mp
n n

m
 can serve as the facet ( ; )nq q . Indeed, ( ; )nq q  is 

equivalent to ( ; )np p , 0mq =  and inequalities iq ≥ 0 hold. Since ( ; ) ( )n np p Ext S∈ , ( ; )np p  is 

not equivalent to ( ;1,2,..., )n n  and, by Lemma 1, 1m ≠ ; thus 1q > 0. By Theorem 7, minimality of 

( ; )np p , and therefore of ( ; )nq q , implies 1 1 0n nq q q −= + > . Inequalities 0jq > , for j dividing n, 

follow from subadditivity of ( ; )nq q , 0nq >  and Lemma 1. 

 Next theorem summarizes all that we know about the non-trivial facets of nP  for n > 2. It 

was successfully used to construct all facets of nP  for small n, see Appendix 2. 

Theorem 13. An inequality ( ; )np p  is a non-trivial facet of the partition polytope nP  if and 

only if its coefficient vector p turns into equalities n−2 linearly independent rows of the system 

i n i np p p−+ = , 1 ≤ i ≤ 
2

n 
  

, 

i j i jp p p ++ ≥ , 1 ≤ i, j < n, i + j ≤ n 

and is non-collinear to the vector (1,2,..., )n . The facets can be supposed to have nonnegative 

coefficients with some jp = 0, for j not dividing n, and ip > 0, for all i dividing n. 

4. POLYTOPES OF CONSTRAINED PARTITIONS 

 Let M be a subset of N, |M| = m, and consider the polytope ( )nP M  of the incidence 

vectors of the partitions of n 
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 , , 0i i i
i M

ix n x x
∈

= ∈ ≥∑ ] , (8) 

in which only the numbers i ∈M are allowed to appear. Partitions of this kind are often studied 

[1]. We show further that the theory developed in the previous part can be applied to this case. 

This extension follows from the relation between the master group polyhedron (3) and the 

particular polyhedra defined by (3) but with summation by g∈H, H G⊂ . In fact, the parallel 

between the partition polytopes and the group polyhedra is unexpectedly so straight that we could 

make only slight changes in the Gomory's reasoning [5]. 

Let E(M) be the (n − m)-dimensional subspace in n
\ , in which ix = 0 for all i M∉ .  

Theorem 14.  ( )nP M  is a face of nP  and is equal to ( )nP E M∩ . 

Proof. We prove first that ( ) ( )n nP M P E M= ∩ . Any point ( )nt P M∈  lies in E(M). Since t 

satisfies (8), it satisfies (1) and belongs to nP . Hence ( ) ( )n nP M P E M⊆ ∩ . Conversely, let a 

point t belong to ( )nP E M∩ . Since nt P∈ , it is a convex combination of some vertices it  of nP : 

t = i
i

i

tλ∑ , with iλ ≥ 0. Since t ∈ E(M), its j-th coordinate jt = 0, for j M∉ . So the same is true 

for the j-th coordinates of each it , and it ∈ E(M). However, since all it  satisfy (1) and lie in 

E(M) they satisfy (8), and each it ∈ ( )nP M . Thus, t is a convex combination of the vertices of 

( )nP M  and belongs to ( )nP M . So, ( ) ( )n nP E M P M∩ ⊆  and, in fact, the equality holds. 

 Now recall that the inequaliti es 0ix ≥ , i M∉ , 1i ≠ , are facets of nP . Furthermore, since 

the hyperplane 1 0x =  contains the vertex 1(0 ,1)n−  and 1 0x ≥  is valid for nP , 1 0x =  defines a 

face of nP , though it is not a facet. So ( )nP M  is the intersection of some facets and/or a face of 

nP  and, in its turn, is a face of nP . Theorem is proved. 
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 The next theorem clarifies connection between the vertices and facets of the partition 

polytope nP  and those of the polytopes of constrained partitions ( )nP M . 

Theorem 15. (i) Every vertex of ( )nP M  is a vertex of nP . A vertex of nP  is a vertex of 

( )nP M  if and only if it belongs to the subspace E(M). 

(ii) An inequality 0( ; )q q  with q an m-vector provides a facet of ( )nP M  if and only if 

there exists a facet 0( ; )p p  of nP  with i ip q= , for all i ∈ M, and 0 0p q= . 

Proof. Both statements follow from the fact that ( )nP M  is a face of nP . All vertices of a face 

of a polytope are those vertices of the polytope that belong to this face. The facets of a face of a 

polytope are given by some facets of the polytope. 

Theorem 15 states that each facet of ( )nP M  can be obtained by taking some facet 0( ; )p p  

of nP  and simply omitting the components ip , for i M∉ . After this is done for all facets of nP , 

all facets of ( )nP M  will be obtained plus some valid but superfluous inequalities. 

5. CONCLUSION 

 Studying the set of partitions of numbers as a polytope allowed to clear up its general 

structure. Each polytope nP  is a pyramid. Its base and apex are located in adjacent layers of the 

integer lattice, hence nP  has no strictly interior points. Each nP  contains in its base translated 

polytopes of partitions of all numbers lesser than n. Due to emergence of new vertices, 

subsequent polytopes of the sequence 1P , 2P , … , nP , … gradually almost completely capture 

the preceding polytopes. We proposed rather strong sufficient and necessary conditions for a 

partition to be a vertex of the polytope. Though we cannot answer the question which vertices of 

the preceding polytopes still remain the vertices of nP , and which of them and when cease to be. 

Another problem of interest is to estimate how the number of vertices of nP  grows in comparison 

to the total number of partitions. 
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 While the vertices of nP  form a kind of basis in the set of all partitions, the facets of nP  

can be used, for example, to solve optimization problems on partitions. In principle, they can be 

found by the cutting plane methods of the integer linear programming theory, but our aim was to 

obtain them beforehand. The algebraic approach used enabled us to connect the non-trivial facets 

with extreme rays of certain subcone of subadditive functions relative to the partial addition on 

the set {1, 2, ... , n}. The general problem of obtaining description of extreme rays of the cones of 

various subadditive functions appears to be of great importance, some results on this account 

were obtained in [13]. This problem is far from being easy but the auxiliary minimality 

conditions make it much simpler in our particular case. 

 The results of the paper can be used for computer calculation of the vertices and facets of 

the partition polytopes. Additional information on the relations between the coordinates of the 

vertices and the coefficients of the facets would be helpful. 

APPENDIX 1. Vertices of the polytopes of partitions nP  for n ≤≤ 8. 

The table below demonstrates embeddings 1 2 8...P P P⊂ ⊂ ⊂ . The columns 1 2 8, ,...,x x x  

contain all integer points of 8P . The parts of the table surrounded by the bold lines serve to 

provide the lists of integer points of preceding polytopes nP , n < 8. The only thing to be done is 

to substitute the values in the 1x -column by those from the column 1x -for- nP  considered. In the 

last column we indicate for each point whether it is or is not a vertex of nP , and confirm this by 

the relevant theorem. 

For example the row 6 provides four points 5
8(3,1,1,0 ) P∈ , 4

7(2,1,1,0 ) P∈ , 

3
6(1,1,1,0 ) P∈ , 5(0,1,1,0,0) P∈ . By Theorem 3, condition (ii) [or condition (i)], the last point is a 

vertex of nP  as it is induced by the sequence of indices 1, 2, 3. Condition (ii) of Theorem 4 

implies that the other three points are not vertices of the corresponding polytopes. 
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1x  for nP   Points in nP  Vertex ? 

7P  6P  5P  4P  3P  2P  1P   1x  2x  3x  4x  5x  6x  7x  8x    

7 6 5 4 3 2 1 1P  8 0 0 0 0 0 0 0 Yes, n��� 2 Th. 3 (ii) 

5 4 3 2 1 0   2P  6 1 0 0 0 0 0 0 
Yes, 2 �� n��3 Th. 3 (ii) 
No, n��� 4 Th. 4 (i) 

4 3 2 1 0     3P  5 0 1 0 0 0 0 0 
Yes, 3 �� n��5 Th. 3 (ii) 
No, n��� 6 Th. 4 (i) 

3 2 1 0        4 2 0 0 0 0 0 0 
Yes, 4 �� n �5 Th. 3 (ii) 
No, n �� 6 Th. 4 (i) 

3 2 1 0       4P  4 0 0 1 0 0 0 0 
Yes, 4 �� n �5 Th. 3 (ii) 
No, n �� 8 Th. 4 (i) 

2 1 0          3 1 1 0 0 0 0 0 
Yes, n = 5 Th. 3 (ii) 
No, n �� 6 Th. 4 (ii) 

2 1 0         5P  3 0 0 0 1 0 0 0 
Yes, 5 �� n �� 9 Th. 3 (ii) 
No, n �� 10 Th. 4 (i) 

1 0            2 3 0 0 0 0 0 0 
Yes, n = 6, 7 Th. 3 (ii) 
No, n �� 8 Th. 4 (i) 

1 0            2 1 0 1 0 0 0 0 
Yes, n = 6, 7 Th. 3 (ii) 
No, n �� 8 Th. 4 (i) 

1 0            2 0 2 0 0 0 0 0 
Yes, 6 �� n �� 8 Th. 3 (ii) 
No, n �� 9 Th. 4 (i) 

1 0           6P  2 0 0 0 0 1 0 0 
Yes, 6 �� n �� 11 Th. 3 (ii) 
No, n �� 12 Th. 4 (i) 

0        1 2 1 0 0 0 0 0 
Yes, n = 7 Th. 3 (i) 
No, n �� 8 Th. 4 (ii) 

0              1 1 0 0 1 0 0 0 
Yes, n = 7, 8 Th. 3 (ii) 
No, n �� 9 Th. 4 (i) 

0              1 0 1 1 0 0 0 0 
Yes, n = 7 Th. 3 (ii) 
No, n �� 8 Th. 4 (ii) 

0             7P  1 0 0 0 0 0 1 0 
Yes, 7 �� n �13 Th. 3 (ii) 
No, n �� 14 Th. 4 (i) 

                0 4 0 0 0 0 0 0 
Yes, n = 8, 9 Th. 3 (ii) 
No, n �� 10 Th. 4 (i) 

                0 2 0 1 0 0 0 0 No, n �� 8 Th. 4 (i) 
                0 1 2 0 0 0 0 0 Yes, n = 8, 9 Th. 3 (ii) 
                0 1 0 0 0 1 0 0 Yes, n = 8, 9 Th. 3 (ii) 
                0 0 1 0 1 0 0 0 Yes, 8 �� n �10 Th. 3 (ii) 
                0 0 0 2 0 0 0 0 Yes, 8 �� n �11 Th. 3 (ii) 

              8P   0 0 0 0 0 0 0 1 Yes, 8 �� n �� 15 Th. 3 (ii) 
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APPENDIX 2. Non-trivial facets of the polytopes of partitions nP  for n ≤≤ 6. 

nP  Non-trivial facets 
Active 

inequalities 
Vertices on facet 

1P  = point (1) No No No 

2P  = segment, endpoints: 

(2, 0), (0,1) 
No No No 

3P  = triangle, vertices: 

(3, 0, 0), (1, 1, 0), (0, 0, 1) 
1 3 1x x+ =  1p + 2p ≥ 3p  (1, 1, 0) 

(0, 0, 1) 

4P  = pyramid, vertices: 

(0, 0, 0, 1), (4, 0, 0, 0), 
(0, 2, 0, 0), (1, 0, 1, 0) 

12x + 2x + 42x = 2 1p + 3p ≥ 4p  

22 p ≥ 4p  

(1, 0, 1, 0) 
(0, 2, 0, 0) 
(0, 0, 0, 1) 

1x + 22x + 4x + 52x = 2 
1p + 4p ≥ 5p  

2p + 3p ≥ 5p  

12 p ≥ 2p  

(1, 0, 0, 1, 0) 
(0, 1, 1, 0, 0) 
(2, 0, 1, 0, 0) 
(0, 0, 0, 0, 1) 

5P  

1x + 3x + 5x = 1 
1p + 4p ≥ 5p  

2p + 3p ≥ 5p  

1p + 2p ≥ 3p  

(1, 0, 0, 1, 0) 
(0, 1, 1, 0, 0) 
(1, 2, 0, 0, 0) 
(0, 0, 0, 0, 1) 

1x + 22x + 3x + 5x + 62x = 2 

1p + 5p ≥ 6p  

2p + 4p ≥ 6p  

32 p ≥ 6p  

12 p ≥ 2p  

(1, 0, 0, 0, 1, 0) 
(0, 1, 0, 1, 0, 0) 
(0, 0, 2, 0, 0, 0) 
(0, 0, 0, 0, 0, 1) 
(2, 0, 0, 1, 0, 0) 

6P  

16x + 22x + 33x + 44x + 66x = 6 

1p + 5p ≥ 6p  

2p + 4p ≥ 6p  

32 p ≥ 6p  

22 p ≥ 4p  

(1, 0, 0, 0, 1, 0) 
(0, 1, 0, 1, 0, 0) 
(0, 0, 2, 0, 0, 0) 
(0, 0, 0, 0, 0, 1) 
(0, 3, 0, 0, 0, 0) 
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