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ABSTRACT
We study the vertices and facets of the polytopes of partitions of numbers. The partition polytope

P, is the convex hull of the set of incidence vectors of all partitions n=x +2x, +... +nx,. We
show that the sequence R, P,,...,R,,... can be treated as an embedded chain. Dynamics of
behavior of the vertices of P,, as nincreases, is established. Some sufficient and some necessary
conditions for a point of B, to be its vertex are proved. Representation of the partition polytope

as a polytope on a partial algebra — which is a generalization of the group polyhedron in the

group theoretic approach to the integer linear programming — alows to prove subadditive

n
characterization of the non-trivial facets of PB,. These facets z P % = Py correspond to extreme
i=1

rays of the cone of subadditive functions p:{12,..,n} -~ R with additional requirements
Po=P, ad p + P, = Py, 1<i<n. Thetrivia facets are explicitly indicated. We also show
how all vertices and facets of the polytopes of constrained partitions — in which some numbers

are forbidden to participate — can be obtained from those of the polytope B,. All vertices and

facetsof B, for n<8 and n< 6, respectively, are presented.



1. INTRODUCTION
Any representation of a positive integer number n as a sum of positive integers
n=m+n+ ... +n, n 0z, n>0,i = 1., K,
is caled a partition of n. For centuries the partitions of numbers were a subject of thorough

investigations [1]. In this paper the set of unordered partitions of n is studied from the polyhedral
point of view. Each partition is associated with its incidence vector x = (X, ..., X,)JZ"; the

component x, i =1, ..., n, isthe number of times the item i appears in the partition. The object
of our interest is the polytope P, O R", which isthe convex hull of the set
T, :{XDZ” | X + 2% +...+nx,=n,% 0Z, % 20,i =1, n} (1)

of incidence vectors of al unordered partitions of n: B, =convT,,. We call B, the polytope of
unordered partitions of n. This definition guarantees that T, is the set of al integer points of B;.
So one can study B, in effort to describe the set of unordered partitions of n.

In section 2 of the paper arelation between the partition polytopes for different numbersn

Is established. It is shown that the polytope P, is of dimension n—-1 and that the sequence
R, P, B, ... can be treated as an embedded chain. Dynamics of behavior of the vertices of P,

as n increases, is established. Some sufficient and some necessary conditions for a point to be a
vertex of B, are proposed. All vertices of B,, for n < 8, are established with the aid of these
conditions. They arelisted in Appendix 1.

In section 3 the faces of maximal dimension of the partition polytope are described. Since

dimP, =n-1, aninequality

> P% 2P 2



defines a facet of P, if it is valid for B, and is satisfied as equality by some n-1 affinely
independent points of B,. According to another definition, (2) is afacet if it isvalid for B, and

cannot be expressed as a sum of two other valid inequalities, unless each is a positive multiple of

(2) plus a scalar multiple of equation (1). We divide al facets into two classes. The facets of the

first class, which we call trivia, are explicitly listed: they are all coordinate hyperplanes of R",

except x =0. As to the non-trivial facets, we prove their subadditive characterization, which

allows us to finally describe them as certain solutions of a system of equations and inequalities.
The algebraic technique of subadditive characterization of the facets of polyhedra on
algebraic structures was originally proposed in the group theoretic approach to integer linear
programming [4, 5]. According to this approach, a relaxation of the original integer linear
programming problem is reduced to a linear minimization problem over the master group

polyhedron

P(G,go) =conv{x=(x(9), 900G, g#0)| > 9x(9)=0o. X(9)0Z,x(9)=0}  (3)
gG,g#0

of all solutions of an equation on a finite abelian group G with some g, UG as the right-hand
side. More precisaly, this reduction produces a group polyhedron P(H,gy), H O G, that is (3)
with g0G substituted by gH . Details of this reduction can be easily found [7, 11]. The

hierarchy of valid, subadditive and minima inequalities related to this polyhedron was

constructed [5, 6]. Aninequality

S p(9)x(9) 2 P(do) (4

gG,g#0

is called valid for P(G,g,) if it is satisfied by all the points of P(G,g,). A valid inequality (4)

is caled minimal if any other inequality Z r(g)x(g9) =2r(gy) satisfying r(gy) = p(gy) and
g0G,g#0

r(g) < p(9), g0G, where at least one of these constraints is strict, is not valid for P(G, gg) .



Definition of subadditive inequalities is based on the notion of a subadditive function. Let +

denote the addition operation in G. A function p: p:G - R is called + -subadditive if

p(g + 9») < p(gy)+ p(gy), for al g, g, 0G. An inequality (4) is called +-subadditive if

p(9), g 0 G, are the values of some subadditive function on G. Subadditive functions on G, as

well as subadditive inequalities for the polyhedron P(G, g,), form polyhedral cones. Hence one
can talk about their extreme rays. Subadditive characterization of the polyhedron P(G, g,) inthe

group theoretic approach asserts that its non-trivial facets are exactly those extreme subadditive
inequalities that are minimal [5]. This description was extended to polyhedra on certain Abelian
semigroups and additive systems (finite sets closed in respect to one everywhere defined binary
algebraic operation) [2, 3, 8]. The author generalized these results for the case of polyhedra on
partial algebras[12]. The notion of partial algebrais referred to asit isdefined in [9]. An agebra
is an arbitrary nonempty set together with some algebraic operations of arbitrary arity defined on
it. In apartial algebra operations can be defined on the basic set only partialy.

We show that the partition polytope B, can be represented as a polytope on a partial

algebra with one operation. So, essentialy, subadditive characterization of the non-trivia facets

of B, follows from [12]. Since this work is not easily available we reproduce its main results

here, though in the form applicable to our case. Some theorems and proofs are close to those in
[8], but the main results are substantially new. Such are Theorem 10 that describes the trivial
facets and Theorem 7 that describes the minimal valid inequalities and is crucia for the final
description of the non-trivial facets in Theorem 13. The list of all non-trivial facets of B,, for
n < 6, obtained by the use of Theorem 13 is presented in Appendix 2.

In section 4 the polytopes of constrained partitions, in which some numbers are forbidden

to appear, are considered. We show that, similar to the case of group polyhedra, these polytopes



are just certain cuts of the master partition polytope B, and that their facets are provided by the

facetsof B,.

2. POLYTOPESOF PARTITIONSAND THEIR VERTICES

Theorem 1. Affinedimension of the polytope B, isequal ton —1.

Proof. One can easily check that B isthe point x,=1in R, and P, isthe closed line segment

in R? with the endpoints (2, 0) and (0, 1) corresponding to partitions 2 = 1+1 and 2 = 2. So the

theorem is true for B and P,: dmPR = 0 and dmP, = 1. For a given n>1, the point

e= (0", 1), with coordinates € = 0, 1<i<n-1, e, =1, isasingle vertex of P, with x, >0.

n-1
Hence B, isthe convex hull of e and all integer points of the set Q,; ={xORT?| Zixi =n}.
i=1

n-1 n-1
Equation Zixi =n is equivdent to xi+Zixi =n-1, where x =x -1. Therefore, Q,;
1=1 =2

trandated by -1 adong the axis x; contains B,;. By induction on n, we have
dimPB, =dimP,_; +1, which proves the theorem.

As can be seen from the proof, the polytope P, is apyramid with the point (O“‘l, 1) asthe
apex. The base of the pyramid lies in the hyperplane x, =0 and contains the polytope B,_;
translated by 1 along the axis x; and embedded into R". If we identify P,; with itsimage under
the translation ¢;: (X, X9, ... , Xh—1) > (X% +1 X5, ..., X,-1,0) we can consider B,_; to be a part
of B,. With this convention, the partition polytopes constitute an embedded chain

RORD..OPRDO...
The vertices x=(%, X, ... , X;) Of B, with x>0 and x,=0 are inherited from B,_;.

Indeed, ¢;(x) is a vertex of P,_; since it cannot be a convex combination of any



yhy2, ...,y 0T, unlessthe sameis true for x and ¢, (YY), d1(y?), ..., ¢1(y™ OT,. A similar

relation holds for the vertices of B, with the first coordinate x>0, for 2<i< %E they are

inherited by P, from P via  trandation ¢ R L RM:
(X Xy e s Xy ) > (X, X0y oevy Xig, % +in+1,...,xn_i,0i). Since every x0T, except (0”'1,1),

has x >0 for somei, 1<i < %E we obtain

Theorem 2. All vertices of B,, except (0"1,2), are the @; -images of vertices of some
precaling polytopes B,_;,i =1, 2, ..., @E if x#z(0,1 isavertex of B, and i =min j, for

which x;>0,then x=¢;(y) for somevertexy of B,;.

On the other hand, some vertices of B,.; do nd remain vertices of B, since they are
cagptured by the cnvex hull of some other vertices. Such is the vertex (1,1,0) of B;: ¢,(1,10)=
(2,1,0,0) is the half-sum of (0, 2, 0, ) and (4,0, 0, 0) and is not a vertex of P,. The crollary

below shows that finaly this is the destiny of amost all vertices of the partition pdytopes and
elucidates how soonthis happens.

Next two theorems give two sufficient and two necessary condtions for apoint xOT, to
be avertex of B,. These condtions proved to be rather strong: they were successully used to
chedk al partitions of n, upto n =8, for being vertices of B,, seeAppendix 1.

Theorem 3. (i) Let {i},ip,..., i} be aset of integers, 1<i; <n, j=1,2,..., k, such that the
equation ipxq +ipX +... +igx =n, x;0Z,, has one or two solutions. Then for ead solution
a&,8,..., 8, the point x=(x, Xy, ..., X,), With x =g, for i{iy,ip,...,iy}, and x =0, for

i O{iy,ip, ..., iy}, isavertex of B.



(i) Let 1=i;<i,<...<ig=n be an increasing sequence of integers. Define n =n,

_hLo : _thea B iy =ML _
%S00 M= ~X o X, S0 05 M=Np =X, %=X =G==n; and =0,
Ok C k-1 C O1C

for i Ziy,is,....0 . Then, X=(x, Xy, ..., X,) isavertex of B,.
Proof. To prove (i), it is sufficient to notice that if an integer point X P, is not a vertex then
there are at least two other integer points y',y? 0P, suchthat y' = y? =0 whenever x =0. To
prove (i), suppose x is not a vertex of P,. Then, x=Ay' +A,y? + ...+ A .y™ for some integer
points y',y?, ..., y"OP, with A, Ay, ..., A, >0, A+ A, +...+A =1 Then foralj=1,2, ...,
m, subsequently hold yi"k =%, yi"k_l =%, e yii =x.Sodl yLy%...,y"=x and xisa
vertex.
Theorem 4. Every vertex x of B, satisfiesthe following relations:

(i) ix <k fordliandksuchthat 1<i<k<n,idividesk, and x>0,

(i) ix <m=k for all triples of indices i, k, m such that k<m, i divides m-k, and

Xs ¥m >0.

Proof. To prove (i), note that if x 25 then x is the half-sum of points y* and y2 with
[

coordinates yilzxi—fk, Vi =X +1, y2 =X S Vi =% —1,and yj =y?=x;, foral j#ik,
i |

and both y* and y? belongto P,.

m-—k

For (ii), if x = then x is the half-sum of points y' and y? with coordinates

-k -k
VxS =Xl Yh =l W Ex T XL Yh=xn+L, and

Y} :yjzzxj,forall j#i,k,m,andboth y' and y? belongto P,.



Corollary. Al vertices of P,, except (n,0™), do not remain vertices of P, and P, is the
first polytope, for which this happens.

Proof. Let X=(X, Xy, ..., X,) #(n,0"™") be avertex of P,. Then, x>0 for some k > 1, and
()= (% +N,%,...,%,,0") violates necessary condition (i) of Theorem 4. Hence (n,0"™Y) is
the only vertex of B, that is still a vertex of P,,. To conclude the proof, note that
o 10" 11 =(n-1,0"2,1,0"?) isavertex of Py, ;.

3. FACETSOF PARTITION POLYTOPES

Let us consider the partial algebra N :<N,;> with the basicset N = {1, 2, ..., n} and

partial operation + on N defined by

i +j={i+j, if i+j<n and notdefined, if i+j>n}, i,jON.
Successively applying operation + to the elements of N and already built subexpressions, one
can recursively construct a variety of formal expressions E on N, such as E = (((11 5) 14) +

(31 1)). Each formal expression E can be associated with its incidence vector t(E) O R", with
the components t; equal to the number of timesi [ N occurs in E. Continuing the example above
forn=7, wehave t(E) = (2, 0, 1, 1, 1, O, 0). Some formal expressions can be successfully
evauated, finally yielding certain elements v(E) [J N. For the others, evaluation stumbles at one
of the steps on an indefiniteness. This is the case in our example: (13- 5) %4 =6%4isundefined
for n = 7. Both computability of an expression E and the value of V(E) depend only on the
incidence vector t(E), hence we can regard operation + as commutative and associative.

Let T(N,n) be the set of the incidence vectors of those expressions E, for which
V(E) = n. We define the polyhedron P(A/,n) on the partial algebra A/ as the convex hull of

T(N,n). Itisobviousthat T(A,n)=T, and P(N,n)=P,.

10



Henceforth, we denote the inequality (2) by the (n+1)-dimensiona vector (pg;p)=
(po; B, 1 N) . Asfor the group case, an inequality (pg; p) iscalled valid for the polytope B, if
itisvalid for all tOT(N,n). All inequaitiesvalid for B, form aconein R™ which we denote
by V (R,).

A function p:N - R is cadled + -subadditive if p(iij) < p(i) + p@), for al i,jON
such that i J:j isdefined. In other words, pisa + -subadditive function if

p(i+j))<p@)+p@G), i,jON, i+j<n. (5)

In the following we simply call such functions subadditive and write p, instead of p(i).

Subadditive functions on N form aconein R", denoteit by S(N).

Lemmal. If pOS(N) and E is an expression on N with the incidence vector t = t(E) and

n
the value v(E) = m O N, then Z Pt = Py
Eil

n n n
Proof. The statement follows from subadditivity of p: z pt = z p(it) = p(Ziti) = Pry-
1=1 =1 =1

Lemma 1 implies that for each subadditive function p and each py< p,, an inequality
(pg; p) isvalid for B,. We call such inequalities subadditive. Subadditive inequalities form a
conein R™, denoteit by S(P,). Next theorem is an immediate consequence of Lemma 1.
Theorem5. S(R,)OV(R,).

As for the group case, we call an inequality (pg; p) DV(Pn) minimal valid inequality if
its coefficients p; cannot be decreased and the right-hand side p, increased without violating its

validity for B,.Let M (P,) bethe set of all minimal valid inequalities for P,.

11



Lemma2. If (py; p)OM(R,) and E is an expression on A with the incidence vector
n

t = t(E) and the value v(E) = m O N, then Z Pt = ppy-
<

Proof. On the contrary, suppose that for some minimal valid inequality (pg; p) there exists an

n
expression E such that z pt < py,. Define a new inequality (pg;q) by setting g = p;, for
i=1

n
i Zm, and qm:Z pit . If we show that (py;q) is a vaid inequality, this would contradict
i=1

minimality of (py; p) and complete the proof. Suppose the opposite: (py;a) is not vaid, i.e.
n

there exists an incidence vector uJT,, for which z QU < pg. Then, u,, =1 since q differsfrom
&

p only in the m-th component. Let us take an expression corresponding to the incidence vector u
and substitute each item min it by the expression E. We will obtain a new expression with some

incidence vector wlT,. Let N; be the set of thoseindicesi, for which t; > 0. The coordinates of

wae w=u, fori#mandiON,; w=uy+u, for iON;; w, = 0. The following

n
calculation shows that z PW < Pp:
=

n
Po>DGU= > GUFOUnt Y Gu= Y PlitUy Y P+ pu=
i=1 iON-N;,izm i iON-N;,i#m iN, iON,
n
= ) put) pugditu)= Y pwE D pw =) pw.
iON-N;,i#m iON, iON-N;,i#m iON, i=1

However, this contradicts validity of (py; p) . Therefore, inequality (pg;q) isvalid and lemmais

proved.

Lemma 2 implies the following theorem.

Theorem6. M (R,)0S(R,).

12



Theorem 7. An inequality (pg; p), valid for B,, is minima if and only if it satisfies the
following conditions:

(i) Po = Pn

() Pt =p 1Sis go
Proof. At first, let (py; p) be a minimal valid inequality for B,. Its validity for the point
() OT,, implies py < p,. However, by Lemma 2, theinequality (p,; p) isvaid. Therefore,
Po < P, could not be the case, asit would contradict minimality of (pgy; p), and (i) is proved.

To prove (ii), notice that, by Theorem 6, minimality of (py; p) implies its subadditivity.

In particular, p; + p,-; = p,, for al i < n. Suppose p, + p,_x > p, for some k < n. Then either
Q) kig, and we can assume that k>g, or (2) k:g for an even n. We show further that in

each case an inequality (pg;q) OV (B,) can be constructed in such way that g; < p;, for al i, and
some ¢ < p; . Thiswill contradict to minimality of (py; p) and prove condition (ii).

Consider the case (1) first. Define a function q by setting g, = p,— pP,-x ad g =p,,
n

i k. Suppose (pg;d) IV (R,). Then Zqiti < pp for some tOT,. Since q and p differ only in
&

their k-th components and t, >1 is impossible, then t, =1. Let E be an expression with the

n
incidence vector t. Then E = E +k, where E; is some expression with the value z it =n-k.
i#k

n
By Lemma 1 and condition (i), py> Zqiti :Zqiti +0 = Z Pt + P~ Pk =
&

izk iZzk

Pr-k t P~ Pnk = Pn = Po, Which is absurd.

13



n
In the case (2) we define g by g, =% and g = p;, i ZK. Now, if Zqiti < p, for some

=1

tOT,,, then either t, =1 or t, =2. If t, =1 then we obtain a contradiction in the same way as in

n
case (1): p0>Zqiti :Zqiti +qk:Z pit; +%2 pk+%> Ph=Pp- If t, =2, we again have

i=1 iZk F2
n

Po > Zqiti =20,= P, = Pg- So, (pg; @) IV (R,) ineach possible case, and (ii) is proved.
&

Now we have to prove that if a valid inequality (p,; p) satisfies (ii) then it is minimal.
Suppose the opposite: (p,; P)IIM(B,). Then there exists a valid inequality (ry;r) such that
b2 P, and r; < p, i 0N, where at least one constraint is strict. In the case ry > p, we have
L+ S Pt Pot= Pr<fo. If rg=p,. then r, <p, for some k<n, and we have either
N -k < Py + Pk = Pr=To for some k< n, or r, < p,=r, for k=n. In &l cases we obtain a
contradiction with validity of the inequaity (ry;r) for the incidence vector t, with t, =t,, =1

and all other coordinates zero, or for the incidence vector (0"1,1). This ends the proof.
n
Let us define an equality z P % =P to be a valid equality for B, if it holds for all
i=1

t 0T, . Without loss of strictness we can use the same notation (pg; p) for a valid equality.
Denote the set of all equalities valid for B, by W(PR,). Obviously, W(R,) OV (R,). In fact, the

inclusion is more strict.

Theorem8. W(R,)OM (R,).
Proof. We know that B, lies in the hyperplane x +2x, +...+nx,=n and dmP,=n-1.
Hence any valid equality (pg; p) defines the same hyperplane, i.e. (pg; p)=A(N;12,...,n),

A#0. Since (M1,2,...,n) satisfies conditions (i) and (i) of Theorem 7, (py; p) OM (R,).

14



Thus, we have the following chain of inclusions:

W(R,)OM (R,)OS(R,) OV (R,). (6)

Recall some basic facts from the polyhedral theory [10]. For arbitrary cone K [I RK,
denote by lin.space K the maximal linear space contained in K. A cone K is said to be a pointed

coneif lin.space K is zero. A point x [ K is said to define an extreme ray of a pointed cone K, if
the equaity x = 5 (x" +x), for some x', x*O K, implies X =Ax, A >0,i=1,2; infact, %

can be omitted here. Any pointed polyhedral cone K has a finite set of extreme rays, which we
denote by Ext K. If aconeK is not pointed then it can be factorized by lin.space K, i.e. two points

vi, V2 [J K can be considered as different if and only if v —v, [ lin.space K. The general situation

is that the factor-cone K by lin.space K is a pointed cone, and the origina cone K is generated by
nonnegative combinations of the extreme rays of the factor-cone plus linear combinations of a

basis of lin.space K [10, 8]. Extreme rays of the factor-cone are defined by the points x [J K such
that an equality x = %, (x'+x%), for x*, x* 0K, implies X = A, x+!', for some A2 0and I'0
lin.space K, i =1,2. If we set K =V (P,) then, according to the second definition of a facet,
(pg; p) defines a facet of B, if and only if it is an extreme ray of the factor-cone V(Pn) by
lin.space V (R,).

Theorem9. TheconesV (R,) and S(R,) have the common maximal linear space:

lin.space V (R, ) = lin.space S(R,)=W(R,).
Proof. Equality lin.spaceV (R,)=W(R,) is obvious. The rest of the statement follows from

(6).

Let V,,, S, and M, be, respectively, the pointed factor-cones of V (B,) and S(R,) and

the factor-set of M (R,) by W(R,). Inclusions

15



M,O0S, 0V, (7)
follow from (6).

The inequalities A(-10") and A(0;€'), i ON, where A>0 and € is the vector with
components e{z 1 and eij=0, for j #i, are trividly valid for B,. We cdl them trivial valid

inequaliti es. Next theorem shows that ailmost all i nequaliti es of the second type are the facds of

B,. We cdl them trivial faces.
Theorem 10. Theinequalities x; 20, 2<i < n, arefacds of the paytope B,, forn= 2.
Proof. Letusfixn=2,andi, 2<i<n. SincedimPB,=n-1, the facds of B, have dimension
n—2 and contain n — 1 affine-independent points of B,. If we find such pdntsin the hyperplane
X = 0 theorem will be proved.

As was down in the first part, the intersedion d the paytope B with the hyperplane

X =0 contains translated pdytope R_;, whose dimension is i —2. Let us take i —1 affine-
independent points tj=(t1j,tzj,...,tij_1), j=12,..,i-1, of BR_, including the vertex
(-1, 072). Then, i-1 pdnts ¢ "th)=@/ +n-i+1t),...,t1,,0"*) ae dfine
independent, belong to B, and hevelast n—i+1 coordinates zero.

Every passfrom B_; to R, i <k<n, isacompanied by emergence of anew point —the
vertex u¥=(0%1,1) of R, which liesin the hyperplane x = 0 of R¥. These paints provide the
rest n-i pants ¢ *UK)=(n-k,02,...,,0"*)0OP,, i<k<n. Indeed, al the n points

oy, j=1,2,...,i-1, and ¢ K(UX), i <k<n, belong to P, and to the hyperplane x =0,

and are dfine-independent. Theorem is proved.

16



To finish with the trivial valid inequalities, note that (-1;0") is not a facet since the
corresponding hyperplane does not contain any t [JT,,. Neither is the hyperplane x,= 0 since for
any incidence vector t, t;=0 implies t,;=0, and the n-2 components remained are not
sufficient to construct n—1 affine-independent points of P,.

Now we are on the last lap to prove the subadditive characterization of the non-trivia
facets.

Theorem 11. Every nontrivial valid inequality, which is extreme in V,,, is a minimal valid
inequality.

Proof. Suppose that some extreme in V,, valid inequality (pg; p) is not minimal. Then, there
exist p=0and ,<0, i 0N, such that not all of them are equal to zero and (py +9Jy; p+9) isa
valid inequality. Then, (py—90p;p—9) is aso a valid inequality and (pg;p)=
Y5(po+00; p+0) + (o —0; p—0). Extremaity of (py;p) implies (py—Jp; p—9)=

A(pg; p) + 1, for some A= 0 and | OW (PR,), which is equivalent to (1-A)(pg; p)= (8p;9) + .

The fact that not all o, and J; are equal to zero implies A #1, hence (py; p):l_%(do;éﬁ

ﬁl . Assumption A < 1 contradicts to validity of (pg; p), since 5520, §,<0,i ON, and al

-0, ANoY i I
tOT, aive. Therefore, A>1 and (pg; p)=—2(-1,0")+ Y ——(0,€)+ —,
L, ae nonnegative. Therefore and (pg; P) 1_)‘( 10" z }\( ) -2

=1
which is a representation of (py; p) as a nonnegative combination of the trivial valid

inequalities. Therefore, (py; p) can be extreme only in the case that it is one of thesetrivial valid

inequalities. Theorem is proved.

17



Lemma3. If aminimal valid for B, inequality (p,;p) is asum of two valid inequalities
(r5;rh) and (rd;r?), thenboth (r3;rY) and (r&;r?) are minimal valid inequalities.

Proof. Suppose, on the contrary, that for example (r&;rl) is not minimal. Then there exists a
valid inequality (r3;r3) satisfying r$=rd and ri<r!, for al i, and at least one of these
conditions is strict. Inequality (r3+rZ; r3+r?) is vaid, but p,=ri+ré<rd+rZ and
p=rl+r?=r3+r2 for al i. Since one of the restrictions is strict this contradicts to minimality

of (po; p) and proves lemma.

Theorem 12. The set of non-trivial extreme valid inequalities for the polytope B, is the set of
minimal valid inequalities extreme in the cone of subadditive inequalities S;:
EXt(Vy) = EXt(S,) n M.

Proof. Let (py; p) be a non-trivial inequality extreme in V,,. By Theorem 11, (py; p)OM,
and, by (7), (pg; P) U S, . Together with inclusion §,0V,, thisimpliesthat (py; p) isextremein
S, . Conversdly, let (pg; p) U EXt(S,) n M,, and suppose that (py; p) isnot extremein V, . Then
it can be expressed as a half-sum of two valid inequalities: (pg; p)=%(3;r") + % (i&ir?) . It
follows from Lemma 3 and (7) that both (r3;r) and (r¢;r®) belong to M, and, therefore, to
S, which contradicts extremality of (py; p) in S, and completes the proof.

So we proved that every non-trivia facet of P, is generated by an extreme ray of the

factor-cone of subadditive functions by the line A(4,2,...,n), AOR. Let us call a subadditivity

inequality (5) active for a subadditive function p if p turns it into equality. The factor-cone is of
dimension n—1, hence for any its extreme ray there exist some n-2 linearly independent active
inequalities (5). Theorems 12 and 7 indicate that for each non-trivia facet the minimality

conditions (ii) give a part of order n/2 of linearly independent active inequalities. We cannot say
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how to augment this subsystem to obtain a system of n—2 linearly independent active inequalities
that provides anon-trivial facet, but we can specify the facets alittle more.

Lemmad4. Every non-trivial facet (p,; p) of P, isequivalent in the factor-cone V,, to some

facet (g,;0) with =0, 1<i<n, and at least one q;=0, for j not dividingn, 2<j < n-1.

Proof. Let (p,;p) beanon-trivial facet and m [ N be an index such that p—n:“:nai’\?ﬂ. Then
i |

the inequality (pn;p)—%(n;],z,...,n) can serve as the facet (q,;q). Indeed, (q,;q) is

equivalent to (p,; P), gy, =0 and inequalities g;= 0 hold. Since (p,; p) UEX(S,), (pPy; P) IS
not equivalent to (n;1,2,...,n) and, by Lemmal, m#1; thus ¢ > 0. By Theorem 7, minimality of
(Pn; P) , and therefore of (ay,;q) , implies ¢, =¢; +d,4 >0. Inequaities g; >0, for j dividing n,
follow from subadditivity of (q,;q), g, >0 and Lemma 1.

Next theorem summarizes al that we know about the non-trivial facets of B, forn> 2. It
was successfully used to construct all facets of B, for small n, see Appendix 2.
Theorem 13. An inequality (p,; p) is a non-trivial facet of the partition polytope B, if and

only if its coefficient vector p turnsinto equalities n—2 linearly independent rows of the system
. [hC
Pt Poi = Pn, lsis BE

P+ P2 Py 1<i,j<n, i+j<n
and is non-collinear to the vector (1,2,...,n). The facets can be supposed to have nonnegative
coefficients with some p; =0, for j not dividing n, and p; >0, for al i dividing n.

4. POLYTOPESOF CONSTRAINED PARTITIONS

Let M be a subset of N, [M| = m, and consider the polytope B,(M) of the incidence

vectors of the partitions of n
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Zixi:n,xiDZ,xizo, (8)

i
in which orly the numbers i [OIM are dlowed to appea. Partitions of this kind are often studied
[1]. We show further that the theory developed in the previous part can be gplied to this case.
This extension follows from the relation between the master group pdyhedron (3) and the
particular polyhedra defined by (3) but with summation by gilH, H 0O G. In fad, the paralée
between the partition pdytopes and the group pdyhedrais unexpededly so straight that we could

make only glight changes in the Gomory's reasoning [5].

Let E(M) be the (n — m)-dimensional subspacein R", inwhich x=0foral iOM .
Theorem 14. B,(M) isafaceof B, andisequal to B, n E(M).
Proof. We prove first that B,(M)=B,n E(M). Any point tOOB,(M) lies in E(M). Since t
satisfies (8), it satisfies (1) and belongs to B,. Hence B,(M) O B, n E(M). Conversely, let a
point t belongto B, n E(M). Since tJR,, it isa mnvex combination d some vertices t' of P,:

t :z}\iti , with A; 2 0. Sincet U E(M), itsj-th coordinate t; =0, for jLJM . So the sameistrue
i

for the j-th coordinates of eat t', and t'O E(M). However, since dl t! satisfy (1) and lie in
E(M) they satisfy (8), and ead 'O B,(M). Thus, t is a cnvex combination d the vertices of
P,(M) and kelongsto B,(M). So, B, n E(M) O B,(M) and, infad, the equality holds.

Now recdl that theinegualities x, =0, iOM , i 21, are facds of B,. Furthermore, since
the hyperplane x =0 contains the vertex (O“‘l,l) and X =0 isvalid for B,, x, =0 defines a
faceof B,, thouwh it isnot afacd. So B,(M) istheintersedion d some facds and/or afaceof

B, and,initsturn, isafaceof B,. Theorem is proved.
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The next theorem clarifies connection between the vertices and facets of the partition

polytope P, and those of the polytopes of constrained partitions B,(M) .
Theorem 15. (i) Every vertex of B,(M) is a vertex of B,. A vertex of B, is a vertex of
B,(M) if and only if it belongs to the subspace E(M).

(i) An inequality (gq9;q) with g an m-vector provides a facet of B,(M) if and only if
there existsafacet (pg; p) of B, with p. =¢q;, forall i O M, and py =q,.
Proof. Both statements follow from the fact that P,(M) isaface of B,. All vertices of aface

of a polytope are those vertices of the polytope that belong to this face. The facets of aface of a
polytope are given by some facets of the polytope.

Theorem 15 states that each facet of P,(M) can be obtained by taking some facet (py; p)
of B, and simply omitting the components p;, for i M . After thisis done for all facets of B,,
al facetsof B,(M) will be obtained plus some valid but superfluous inequalities.

5. CONCLUSION
Studying the set of partitions of numbers as a polytope allowed to clear up its general

structure. Each polytope P, is a pyramid. Its base and apex are located in adjacent layers of the
integer lattice, hence B, has no strictly interior points. Each B, contains in its base translated

polytopes of partitions of all numbers lesser than n. Due to emergence of new vertices,

subsequent polytopes of the sequence B, P, ..., B,, ... gradually amost completely capture

the preceding polytopes. We proposed rather strong sufficient and necessary conditions for a
partition to be a vertex of the polytope. Though we cannot answer the question which vertices of

the preceding polytopes still remain the vertices of B,, and which of them and when cease to be.
Another problem of interest is to estimate how the number of vertices of B, growsin comparison

to the total number of partitions.
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While the vertices of B, form a kind of basis in the set of all partitions, the facets of B,

can be used, for example, to solve optimization problems on partitions. In principle, they can be
found by the cutting plane methods of the integer linear programming theory, but our aim was to
obtain them beforehand. The algebraic approach used enabled us to connect the non-trivial facets
with extreme rays of certain subcone of subadditive functions relative to the partial addition on
theset {1, 2, ..., n}. The general problem of obtaining description of extreme rays of the cones of
various subadditive functions appears to be of great importance, some results on this account
were obtained in [13]. This problem is far from being easy but the auxiliary minimality
conditions make it much simpler in our particular case.

The results of the paper can be used for computer calculation of the vertices and facets of
the partition polytopes. Additiona information on the relations between the coordinates of the
vertices and the coefficients of the facets would be helpful.

APPENDIX 1. Verticesof the polytopes of partitions B, for n < 8.

The table below demonstrates embeddings B, O P, O... O B;. The columns X, X,,..., Xg
contain all integer points of R;. The parts of the table surrounded by the bold lines serve to
provide the lists of integer points of preceding polytopes F,, n < 8. The only thing to be done is
to substitute the values in the x -column by those from the column x -for- B, considered. In the
last column we indicate for each point whether it is or is not avertex of B,, and confirm this by

the relevant theorem.

For example the row 6 provides four points (311.,0°)0R, (211,0Y0PR,

(1,1,1,0%) 0 R, (0,1,1,0,0)OR;. By Theorem 3, condition (ii) [or condition (i)], the last point isa
vertex of P, as it is induced by the sequence of indices 1, 2, 3. Condition (ii) of Theorem 4

implies that the other three points are not vertices of the corresponding polytopes.
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X for P, Pointsin B, Vertex ?
RIRIRBIRIRBIRIR X | X% | X | %5 | X6 | %7 | %
7l6|5|4|3|2|1|R|8|o|lo|lo|o|O|O]OfYesn=2 Th. 3 (ii)

P Yes, 2<n<3  Th. 3(ii)

5143|210 | 6/1]0]0]0f0f[0f0No n=4 Th. 4 ()
P Yes, 3=n=<5 Th. 3(ii)

Yes, 4<n<5 Th. 3 (ii)

3f2]1]o0 412)0{0fofo[0]|0]|No n=6 Th. 4)
P Yes, 4<n<5 Th. 3(ii)

3l2]1fo »]40(0[1[0]0|0f[0]No =8 Th. 4 (i
Yes, n=5 Th. 3 (i)

2110 3/1/1]/0/0[0|0[0]|No n=6 Th. 4 ii)
P Yes, 5=n=<9 Th. 3(ii)

2|10 ]3]0/ 0j0|1f0f0f0fNg ns10  Th4()
Yes, n=6,7 Th. 3 (ii)

1|0 213/0(0/0[0|0[0]|No n=s Th. 4)
Yes, n=6,7 Th. 3 (ii)

1]0 2/110/1)/0/0f{010]No n=8 Th. 4 (i)
Yes, 6<n<8 Th.3(ii)

110 2101210101010 f0)Ng n=9 Th. 4 (i)
P Yes, 6=n=<11 Th. 3(ii)

110 61201010101 11010|No n=12  Th4()
Yes, n=7 Th. 3 (i)

0 11211)/010]0/0f0|Ng, n=8 Th. 4 (ii)
Yes, n=7,8 Th. 3 (ii)

0 11170107170/ 010]No n=9 Th. 4 (j)
Yes, n=7 Th. 3 (ii)

0 1101111101010 f0fNg n=g Th. 4 (ii)
P Yes, 7=<n=<13 Th. 3(ii)

0 7]1]10[0]010101110)No n=14  Th4()
Yes, n=8,9 Th. 3 (i)

014/0/010/010/0|No n=10  Th4()
ol2/o[1]/0][0][0[0][No n=8 Th. 4 (i)
o/1/2/o0/olo[0]0]Yesn=89 Th 3(i)
0[{1/{0|0[{0|1|/0|0]|Yes,n=8,9 Th. 3 (ii)
olol1]/0|/12]0[0]0]Yes 8<n<10 Th.3(ii)
ololo|2]|ofo][o]o0fYes8=<n<1i1 Th. 3(ii)
RRlo|lOo|0O|0O|O|O0|0O]|1]Yes 8=n=<15 Th.3(ii)
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APPENDIX 2. Non-trivial facets of the polytopes of partitions B, for n <6.

(2 Non-trivial facets : AC“YE‘T Vertices on facet
inequalities
R = point (1) No No No
P, = segment, endpoints: NG NG No
(2,0), (0,1)
P, =triangle, vertices: = (1,1,0
X =1 +p,= v
(3.0.0) (1.1,0),(0,0,1) | * @ Pt P2=Ps (,0, 1)
P, = pyramid, vertices: DL+ Ps2 Py (1,0,1,0
(0,0,0, 1), (4,0,0,0), 2%t X+ 2%4= 2 20,3 D (0,2,0,0)
(0,2,0,0), (1,0, 1,0) 2= 4 (0,0,0,1)
P+ Ps= Ps (1,0,0,1,0)
0,1,1,0,0
X+ 2Xo+ Xy +2X%5= 2 P+ P3= Ps 22 010 0;
R 2P Py (0,0,0,0, 1)
> DL+ s Ps (1,0,0,1,0)
0,1,1,0,0
KXl P2 Ps=Ps Elzooo;
Pt P22 ps (0,0,0,0, 1)
p.|.+ pS2 p6 (1’ O’ Oa Oa 1! 0)
+ D> (0,1,0,1,0,0)
X+ 2%+ X + X + 2% = 2 52 >p4 e (0,0,2,0,0,0)
P3=Pe (0,0,0,0,0, 1)
P 2p2 Py (2,0,0,1,0,0)
6 P+ Ps= Pg (14,0,0,0,1,0)
+ D> (0,1,0,1,0,0)
6%+ 2%, + X5+ 4X, + 6Xs = 6 52 >p4 Pe (0,0,2,0,0,0)
P3=Pe (0,0,0,0,0, 1)
2P, py (0,3,0,0,0,0)
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