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1 Introduction

Given a set P of n points in the plane, we say that a
triangle 7 1s empty if the intersection 7N P contains
only the three vertices of 7. A triangulation of P is
aset of empty triangles with disjoint interiors whose
union covers the convex hull of P. A set P usually
admits many triangulations; a minimum-weight tri-
angulation (MW'T) is one in which the sum of edge
lengths 1s minimum. No general, polynomial-time
algorithm for MWTs is known.

Keil [4] and Dickerson [3] have independently sug-
gested an approach to identify edges that are possi-
ble in some MW'T and certain in any MWT. Start
with all edges that join two points in P. Edges
of the convex hull of P are certain in any MWT.
Any possible non-hull edge e must be incident on
two empty triangles whose edges are also possible;
If these triangles form a convex quadrilateral, then
¢ must be the shorter diagonal (otherwise, a diago-
nal swap would reduce total edge length). We call
such a pair of triangles a certificate for e.

IZdges with no certificate are not in any MWT,
neither can they take part in any certificate. On the
other hand, if an edge ¢ is possible (has a certificate)
and crosses no possible edge, then e is certain to be
in every MWT. This video shows our implementa-
tion of an algorithm that searches for a certificate
for every edge and the resulting possible and certain
edges for some examples.

2 Implementation

To search for a certificate for an edge e, we examine
all pairs of empty triangles, one on each side of e. If
no certificate is found, then e is impossible and any
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certificate that used e must be discarded. Our im-
plementation identifies possible and certain edges in
O(n?) space and O(n*) worst-case time. On an SGI
Indy, 250 points take 25 seconds and 1000 take half
an hour; observed time is proportional to n3 logn.

Around each point, we sort the points radially. To
scan empty triangles left of edge e, suppose that the
k points left of e appear in ccw order py,pa, ..., pk
around the first endpoint of e. Around the second
endpoint they appear in order p, (1), Po(2); - - - » Po(k)
for some permutation o. Each maximum of a prefix
of o corresponds to an empty triangle; all empty
triangles can be found by scanning both orders in
O(n) time. (If ¢ is a random permutation, then we
expect O(logn) prefix maxima, which could explain
our implementation’s observed running time.)

For each side of each edge, therefore, storing
two pointers into radially-sorted lists indicates the
empty triangle being scanned. If we encounter a
potential certificate, we stop scanning; if an edge
of the certificate is later found to be impossible, we
can resume. Inspecting all pairs of empty trian-
gles adjacent to e takes O(n?) worst-case time. The
constants in the scan are small and there is no need
to store a potentially cubic number of triangles as
in [3]. If an edge e is found to have no certificate,
then we can check whether the adjacent empty tri-
angles participate in any certificates that are now
invalid. To speed future scans, we delete impossible
edges from the radially-sorted lists. At the end, a
final scan identifies the certain edges.

Input points are scaled to 20 bit positive integers
so that all of the arithmetic can be performed cor-
rectly in 53-bit double precision. Colinearities and
equal lengths are handled.

3 Examples

Both Keil and Dickerson observed that for small ex-
amples the certain edges formed a connected graph,
if not a triangulation. A weaker conjecture would
be that the vertices and certain edges bound polyg-
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Figure 1: Examples with 40, 250 and 1000 points

onal regions that have a constant number of holes.
If this were true, then the MW'T computation could
be completed in polynomial time by dynamic pro-
gramming [5]. Using this implementation on its own
and as a user macro in [PE has allowed us to con-
struct point sets where the polygonal regions have
linearly many holes.

Iirst, note that by placing points on a circle so
that any 60° sector contains at least three points,
we can 1solate a point in the center. Bose, Devroye,
and Evans [2] show that this configuration occurs
with a small, but constant, probability, so one can
expect that the graph of certain edges for uniformly
distributed points has a linear number of connected
components. Since their constant of proportionality
is less than 1075, one need not expect to observe
this behavior on the screen.
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Figure 2: The complement of the certain edges can
have many holes.

One can place this wheel configuration at the ver-
tices of a hexagonal lattice and adjust it so that the
graph of the certain edges consists of 1solated ver-
tices and isolated 18-gons (which look like hexagons
in figure 2, but each side contain two points as
well). This construction can tile the plane, form-

ing a polygonal region with 2n/19 — o(n) holes.

4 Future research

Does knowledge of the possible and certain edges
help in designing gadgets to show that MWT is NP-
hard? Our attempts to do so have been frustrated
by a natural extension of light triangulations [1] that
use only possible edges. Or can other criteria reduce
the number of possible edges?

Several optimizations could be applied to speed
up the algorithm by constant factors. For example,
we consider the edges from longest to shortest since
long ones are unlikely to have certificates. If one
could bound from above the length of the longest
edge in an MW'T, time and memory spent on longer
edges could be recovered. Since memory is the bot-
tleneck, we have not tried ideas that involve more
storage per segment, such as precomputing all line
equations. Starting with the subset of edges that
miss a f-skeleton is also a good idea.
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