Lecture #4: Polynomial Functions

Order polynomials and Ehrhart polynomials

10:30 – 11:30 a.m. August 20, 1996

Polynomial Functions

Lemma: Let P be a poset with n elements and, for $m \ge 0$, let $\Omega(P,m)$ be the number of order-preserving maps $P \rightarrow [m]$. Then

$$\sum_{m \ge 0} \Omega(P, m) x^m = \frac{\sum_{S \subseteq [n-1]} \beta(S) x^{|S|+1}}{(1-x)^{n+1}}.$$

Example: Let $P = \bigwedge$. Then $\sum_{m \ge 0} \Omega(P,m) x^m = \frac{x + 3x^2 + x^3}{(1-x)^5}$

$$= x + 8x^2 + 31x^3 + 85x^4 + \cdots$$

Theorem: Let $n \ge 0$ and $f : \mathbb{N} \to \mathbb{C}$. Then

$$\sum_{m \ge 0} f(m) x^m = \frac{p(x)}{(1-x)^{n+1}}$$

for some $p(x) \in \mathbb{C}[x]$ if and only if f(m) is a polynomial function of m of degree at most n (exactly n if and only if $p(1) \neq 0$).

Stanley's Reciprocity Theorem for Order Polynomials

Corollary: The function $\Omega(P, m)$, $m \ge 0$, is a polynomial function of m.

Example: Let
$$P = 1$$
. Then

$$\Omega(P,m) = \frac{1}{12}m + \frac{7}{24}m^2 + \frac{5}{12}m^3 + \frac{5}{24}m^4.$$

Theorem: Let P be a poset with n elements. Let $\Omega(P,m)$ be the number of order-preserving maps $P \to [m]$, and let $\overline{\Omega}(P,m)$ be the number of strict order-preserving maps $P \to [m]$. Then the polynomials $\Omega(P,m)$ and $\overline{\Omega}(P,m)$ satisfy

$$\overline{\Omega}(P,m) = (-1)^n \Omega(P,-m).$$

Example: Let $P = \sum_{n=1}^{\infty} .$ Then $\overline{\Omega}(P,m) = -\frac{1}{12}m + \frac{7}{24}m^2 - \frac{5}{12}m^3 + \frac{5}{24}m^4.$ Check that $\overline{\Omega}(P,2) = 1.$

Rational Generating Functions

Theorem: Let $n \ge 1$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ with $\alpha_n \ne 0$. Then $\sum_{m\ge 0} f(m)x^m = \frac{p(x)}{q(x)}$, where $q(x) = 1 + \alpha_1 x + \cdots + \alpha_n x^n$ and p(x) has degree less than n, if and only if $f(m+n) + \alpha_1 f(m+n-1) + \cdots + \alpha_n f(m) = 0$, for all $m \ge 0$, if and only if $f(m) = \sum_{i=1}^k p_i(m)\gamma_i^m$, where $1 + \alpha_1 x + \cdots + \alpha_n x^n = \prod_{i=1}^k (1 - \gamma_i x)^{n_i}$, and $p_i(m)$ has degree less than n_i .

Proposition: Let $n \ge 1$ and $\alpha_1, \ldots, \alpha_n \in \mathbf{C}$ with $\alpha_n \ne 0$. Suppose $f : \mathbf{Z} \rightarrow \mathbf{C}$ satisfies

 $f(m+n) + \alpha_1 f(m+n-1) + \cdots + \alpha_n f(m) = 0$, for all $m \in \mathbb{Z}$. So $F(x) = \sum_{m \ge 0} f(m) x^m$ is a rational function. Then

$$\sum_{m\geq 1} f(-m)x^m = -F(1/x).$$

4

Proof of the Reciprocity Result

Proof: Let F(x) = p(x)/q(x), where $q(x) = 1 + \alpha_1 x + \cdots + \alpha_n x^n$. Multiplication by q(x) is a linear transformation on the C-vector space of Laurent series. So the hypothesis on f,

$$q(x)\sum_{m\in\mathbf{Z}}f(m)x^m=0,$$

implies that

$$q(x) \sum_{m \ge 1} f(-m) x^{-m} = -q(x) \sum_{m \ge 0} f(m) x^m \\ = -p(x).$$

Substitution of 1/x for x yields

$$\sum_{m \ge 1} f(-m)x^m = -\frac{p(1/x)}{q(1/x)} = -F(1/x).$$

5

Ehrhart Polynomials

Theorem: Let \mathcal{P} be a *d*-polytope in \mathbb{R}^n with integer vertices. Let $i(\mathcal{P}, m)$ be the number of integer points in $m\mathcal{P}$, and let $\overline{i}(\mathcal{P}, m)$ be the number of integer points in the (relative) interior of $m\mathcal{P}$. Then $i(\mathcal{P}, m)$ and $\overline{i}(\mathcal{P}, m)$ are polynomial functions of m of degree d that satisfy $i(\mathcal{P}, 0) = 1$ and $\overline{i}(\mathcal{P}, m) = (-1)^d i(\mathcal{P}, -m)$.

Example: Let $\mathcal{P} = [0,1]^n$ be the unit cube in \mathbb{R}^n , so d = n. Then the Ehrhart polynomials are $i(\mathcal{P},m) = (m+1)^n$ and $\overline{i}(\mathcal{P},m) = (m-1)^n$.

Proposition: Let \mathcal{P} be an *n*-polytope in \mathbb{R}^n with integer vertices. Then the leading coefficient of the Ehrhart polynomial $i(\mathcal{P}, m)$ is the volume of \mathcal{P} .

Use the fact that $i(\mathcal{P}, 0) = 1$ and reciprocity for Ehrhart polynomials to express the volume of \mathcal{P} as a function of any n of the numbers $i(\mathcal{P}, 1), i(\mathcal{P}, 2), \ldots, \bar{i}(\mathcal{P}, 1), \bar{i}(\mathcal{P}, 2), \ldots$ Pick's formula for n = 2, Reeve's for n = 3, and Macdonald's for $n \ge 4$

Corollary: If $\mathcal{P} \subset \mathbf{R}^2$ is a 2-polytope with integer vertices, then the volume $v(\mathcal{P})$ of \mathcal{P} is

$$v(\mathcal{P}) = \frac{1}{2} \left(i(\mathcal{P}, 1) + \overline{i}(\mathcal{P}, 1) - 2 \right).$$

Proof: Evaluate $i(\mathcal{P}, m) = v(\mathcal{P})m^2 + ?m + 1$ at m = 1 and m = -1 to obtain the equations:

$$i(\mathcal{P}, 1) = v(\mathcal{P}) + ? + 1$$
, and
 $\bar{i}(\mathcal{P}, 1) = v(\mathcal{P}) - ? + 1$.

Corollary: If $\mathcal{P} \subset \mathbf{R}^3$ is a 3-polytope with integer vertices, then the volume $v(\mathcal{P})$ of \mathcal{P} is

$$v(\mathcal{P}) = \frac{1}{6} \left(i(\mathcal{P}, 2) - 3i(\mathcal{P}, 1) - \overline{i}(\mathcal{P}, 1) + 3 \right).$$

If $\mathcal{P} \subset \mathbf{R}^n$ is an n-polytope with integer vertices, then the volume $v(\mathcal{P})$ of \mathcal{P} is

$$v(\mathcal{P}) = \frac{1}{n!} \left((-1)^n + \sum_{k=1}^n \binom{n}{k} (-1)^{n-k} i(\mathcal{P}, k) \right).$$

7

References

I.G. Macdonald, The volume of a lattice polyhedron.

Richard Stanley, Enumerative Combinatorics.

Richard Stanley, Ordered Structures and Partitions.