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Abstract

Stanley, R.P., On the Hilbert function of a graded Cohen-Macaulay domain, Journal of Pure
and Applied Algebra 73 (1991) 307-314.

A condition is obtained on the Hilbert function of a graded Cohen—Macaulay domain
R=R,®R,®--- over a field R, = K when R is integral over the subaigebra generated by R,.
A result of Eisenbud and Harris leads to a stronger condition when char K=0 and R is
generated as a K-algebra by R,. An application is given to the Ehrhart polynomial of an

integral convex polytope. .

Introduction

By a graded algebra over a field K, we mean here a commutative K-algebra R
with identity, together with a vector space direct sum decomposition R = -0 Ris
such that:
finitely-generated as a K-algebra. R is standard if R is generated as a K-algebra by
R,, and semistandard if R is integral over the subalgebra K[R,] of R generated by
R,. The Hilbert function H(R,-) of R is defined by H(R, i) = dimyR,, for i =0,
while the Hilbert series is given by

(@) RR,CR,,;, (b) R,=K (ie., R is connected), and (c) R is

F(R, )=, H(R, )"

i=0

There has been considerable recent interest in the connections between the
behavior of H(R, i) and the structure of R. In particular, Hilbert functions of the
following classes of standard graded algebras have been completely characterized:
(a) arbitrary [11. Theorem 2.2] (essentially a result of Macaulay), (b) Cohen-

*Partially supported by NSF grant #DMS 8401376.




Macaulay, or more generally, of fixed depth and Krull dimension [11, Corollaries
3.10 and 3.11] (again essentially due to Macaulay), (c) complete intersections [11,
Corollary 3.4] (again Macaulay, and also independently, Grébner), and (d)
reduced (i.e., no nonzero nilpotents) [1]. Partial results have been achieved for
ﬂoqo:mﬁm: rings [11, Theorem 4.1; 9]. One class of rings conspicuously absent
from the above list is the (integral) domains. Some results in this direction are
due to Roberts and Roitman [10]. In particular, they obtain [10, Theorem 4.5] a
strong restriction on the Hilbert function of a standard graded domain of Krull
dimension one, viz., if the function AH(R, i):= H(R, i)~ H(R, i — 1) starts to
decrease strictly, then it strictly decreases until reaching 0. Moreover, they show
{10, p. 103], based on an idea of A. Geramita, that for any d =0 there does not
exist a graded domain R of Krull dimension d and Hilbert series

1+2A+A%+A°

FR,\)= A=A . \ (1)

(They assume that R is standard, but their proof does not use this fact.)
Moreover, there do exist reduced Cohen—-Macaulay standard graded algebras R
with this Hilbert series when d = 1.

Our main result (Theorem 2.1) will be a condition on the Hilbert function (or
Hilbert series) of a semistandard Cohen—Macaulay domain R. We point out how
further results follow from work of Eisenbud and Harris [2] related to Castel-
nuovo theory when R is standard and char K = 0. Finally in Section 4 we give an
application to the Ehrhart polynomial of a convex polytope.

2. Semistandard Cohen-Macaulay domains

Let R be a semistandard graded K-algebra of Krull dimension d. Let K[R,] be
the subalgebra of R generated by R, so K[R,] is a standard graded K-algebra.
Since R is integral over K[R,] it follows that R is a finitely-generated K[R,]-
module. Hence by well-known properties of Hilbert series we have

hy+ R A+ +h AN

F(R, A= ,
(R, ) (1-A)7°
for certain integers A, . . . , h, satisfying ¥, h, # 0 and h +0. We call the vector
h(RY:=(h,, ..., h,) the h-vector of R.

Theorem 2.1. Suppose R is a semistandard graded Cohen—Macaulay domain with
h(RYy=(hy,...,h,). Then
hy+h, +o o sh +h vt (2)

§ -t

forall 0 =i=s.

Proof. Let 2(R) denote the canonical module of R (see [4]), which exists since R
is Cohen—Macaulay. 2(R) has the structure Q2(R)= Q(R) D RR), D--- of a
finitely-generated graded R-module with Hilbert series

hy+h_ A+ + b’
a-»

F(Q(R), ) = 3)

(See the proof of Theorem 4.4 of [11]. The integer g of [11, equation (12)] may
be chosen arbitrarily by shifting the grading of 0(R); we choose g so that 3)
above is valid.) Pick an element 07 u € £2(R),. Since R is a domain, 2(R) is a
torsion-free R-module. (In fact, (R) is isomorphic to an ideal of R [4, Corollary
6.7).) Hence as R-modules we have uR = R.

We now use the following result from [8, Exercise 14(2) on p. 103] (in the
special case I=R.,). Let 0— A— B— C—0 be an exact sequence of graded
R-modules, with R,A# A, R,B#B, R, C#C. (If A, B, C are finitely-gener-
ated, then these last conditions are equivalent to A #0, B#0, C#0.) Assume
depth B > depth C. Then depth A = 1+ depth C.

Apply this result to the exact sequence

0— uR— 2(R)— 2(R)/uR—0. 4)

Since R #0, we always have uUR=R#0 and (2(R)#0. Thus if 2(R)/uR+#0,
then

depth uR =1+ depth 2(R)/uR .
i

Now depthuR=d since uR=R and R is Cohen-Macaulay. Hence either
Q(R) = uR, or depth 2(R)/uR=d—1. But since 2(R) is isomorphic to a
nonzero ideal of the domain R, it follows that dim 2(R)/uR <dimR=d.
Therefore, we have

Q(R)=uR, or dim(R)/uR = depth Q(R)/uR=d—1. )

In the latter case we have that 2(R)/uR is Cohen-Macaulay of Krull dimension
d-1.

Note. (5) can also be obtained from the long exact sequence of some depth-
sensitive functor such as local cohomology (with respect to the ideal R, =
R, ®R,® - of R), applied to the short exact sequence (4).

If Q(R) = uR, then (R) = R so R is Gorenstein. In this case we have h; = h,_;
[11, Theorem 4.1], so (2) holds with equality. Hence assume 2(R)/uR #0. We
may tensor the R-module M = Q(R)/uR with an infinite extension field of K
without altering the Cohen—Macaulay property, the Krull dimension, or the
Hilbert series. Thus assume that K is infinite. Let R'= R/(Ann M), where
Ann M = (x € R: xM =0}. Since K is infinite, the subalgebra K[R;] of R’
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generated by R has a homogeneous system of parameters (h.s.0.p.) 0;,...,6,_,
of degree one. Since R is integral over K[R,], it follows that 8,,...,0,_, is an
h.s.o.p. for R". Any h.s.o.p. for R/(Ann M) is an h.s.o.p. for M,s0 6, ..
is an h.s.o.p. for M.

Let N= M/(6M + ---+6,_,M). Since M is Cohen—Macaulay we have [11,
Corollary 3.2]

84y

FM, 3) = e

m AH |>anme..v

F(N, A)
(i- >vm|_ .

Thus the polynomial F(N, A) =}, k;A" has nonnegative coefficients. But

F(M, A) = F(2(R), \) — F(uR, \)
R kAt ) hg A4 RN
- (- (1= ;
sy
kgt kAt kAT X
- AH _ \/vnl» ‘

An easy computation shows that
ky=(h,+h_y+-h,_ )= (hgt hyt -+ h),
and the proof follows. 0O

Note. The module M = £2(R)/uR has the interesting property that it is a ‘Goren-
stein module’ in the sense that 2(M) = M, where (M) is the canonical Boac_m,.
of M as defined, e.g., in [12, equation (15)].

3. Some further results

For the sake of completeness we mention the following easy and io:-x:ows.
result. Geometrically, it asserts when R is standard that an irreducible @no_o.ocﬁ
variety of dimension zero over an algebraically closed field consists of a single
point.

Proposition 3.1. Let R be a graded domain of Krull dimension one over an
algebraically closed field K. Then R is isomorphic to the monoid algebra Nﬂ:. of
some (additive) submonoid I of N={0,1,2,.. Y. In other words, R is 150"
morphic to a graded subalgebra of the polynomial ring K[x] (with the standard
grading deg x = 1), i.e., a subalgebra generated (or spanned) by monomials. In
particular, if R is semistandard, then R= K[x].

Proof. It clearly suffices to show that H(R, i{)=0 or 1 for every i =0. Suppose
H(R,i)=2. Let u,v €R, be linearly independent. Since dimR=1, u and v
satisfy a nontrivial homogeneous polynomial equation P(u,v)=0. Since K is
algebraically closed, P(u,v) factors into linear factors au + Bv. Since R is a
domain, at least one of these factors must be zero, contradicting the linear
independence of u andv. O

Of course Proposition 3.1 fails for K nonalgebraically closed, e.g., R = R[x, y]/
(x*+y).

Now assume R has Krull dimension at least two. If L is a purely transcendental
extension field of L, then R®, L will be a graded L-algebra which preserves such
properties of K as being standard, semistandard, Cohen—Macaulay, and a do-
main, as well as the Hilbert function, depth, and Krull dimension. (For all these
properties except being a domain, L can be any extension field of K.) Thus in the
proof of Corollary 3.3 below it is valid to replace K by a purely transcendental
extension field.

Insofar as Hilbert functions of standard graded domains R of Krull dimension
at least two are concerned, Bertini’s theorem from algebraic geometry (see [15, p.
68] and also [3, Chapter II, Theorem 8.18 and Remark 8.18.1]) tells us that we
may assume dim R = 2. For completeness we state a weak form of this result in
the following algebraic form.

Proposition 3.2. Let R be a standard graded domain of Krull dimension at least
three over an infinite field K. Then there exists a parameter 0 of degree one (i.e.,
6 E R, and dim R/§R =dimf R — 1) such that if S=R/OR, then S/HS) is a
domain. Here

H%(S)={xE 8:x8" =0 for some n=1},
the Oth local cohomology module of S (with respect to the irrelevant ideal §,). O

Corollary 3.3. Let R be a standard Cohen—-Macaulay graded domain of Krull
dimension d =2. Then the h-vector h(R) is the h-vector of a standard Cohen—
Macaulay graded domain of Krull dimension two.

Proof. Extend the field K by a purely transcendental extension field if necessary.
By Proposition 3.2 there is a regular sequence 6,,...,6, ,€ R, for which
R/(B,R+---+ 6, ,R) is a standard Cohen-Macaulay graded domain of Krull
dimension two. But for any graded algebra A, if # € A, is a non-zero-divisor, then
F(A/0A, A)=(1—- A")F(A, A). Hence R and R/(6,R+---+86, ,R) have the
Same h-vector, as desired. [J

Finally we mention how a result of Eisenbud and Harris leads to some results
related to Theorem 2.1 when R is standard and char K = 0.



Proposition 3.4. Let R be a standard graded Cohen—Macaulay domain of Krull enerated by all monomials
dimension d =2 over a field K of characteristic 0. Let h(R) = (hy, hy,...,h,), " g

where h,#0. Let m=0 and n=1, with m + n<s. Then

1
kﬂ...k:Q» with b=1 and w?:....n;va.

Posrt Py + -+ hy oy =hy+hy+---th, . In fact, Ry as a K-vector space has a basis consisting of these monomials together
with 1. Define a grading on Ry by setting deg x7' - - x%y® = b. Thus the Hilbert

Proof. The quantity h(n) of [2, Chapter 3] is equal, in our notation, to function H(Rg, j) is equal to the number of points a € @ satisfying ja €Z”, or in

h,+ -+ -+ h,. Moreover, the degree d in [2] is our Ay, + - - - + k. Corollary 3.5 of

s
[2] asserts that : other word

hy(m + n) = min(d, h,(m) + hp(n) — 1), H(R,, j)=#(j?NZ").
Then H(R, j) is a polynomial function of j of degree d, known as the Ehrhart
t&vse::.& of @ and denoted (2, j). For an introduction to Ehrhart polyno-
mials, see [13, pp. 235-241]. N

since deg H(R,, j) = d it follows that dim R, = d + 1. Moreover, it 1s easy to
sec that R, is normal, so by a theorem of Hochster [7] R, is Cohen—Macaulay.
Trivially R, is a domain. Finally, the subalgebra K[(Rg),] contains the mono-
mials x3' - - - airy for which (a;, ..., a,) is a vertex of #. It then follows easily
from the convexity of % that R, is integral over K[(Rs),].- Hence R, is
semistandard. Thus from Theorem 2.1 we obtain the following proposition:

S0 in our notation,

ho+---+h,  =minthg+---+h, hg+ - +h, +h +-+h)S

m

since h, = 1. This is easily seen to be equivalent to the desired result. O

For instance, if n =1 in Proposition 3.4, we obtain h, <h,for 1=i=<s—1.In
particular, if R is Gorenstein (so h, = h,_;) and s =35, then A(R) is unimodal. It is
not . known whether A(R) is unimodal for any standard Cohen—Macaulay (ot
Gorenstein) graded domain R (see [14, Conjecture 4(a)], [S, Conjecture 1.5]). If ,
R is just assumed to be standard Gorenstein (but not a domain), then A(R) need
not be unimodal {11, p. 70]. If R is assumed to be a semistandard Gorenstein
graded domain, then again #(R) need not be unimodal, as shown by the example

Proposition 4.1. Let P be a convex d-polytope in R" with integer vertices. Let
i(P, j) denote its Ehrhart polynomial, and write

S i@, = AT 2L ©)
jz0 AH - >v
R=Kly, x,x;y, X\X3), X2X3Y, kmkukuzﬁ
where h,#0. (Since i(®, j) is a polynomial for all j we have s = d.) Then
(with the grading given by deg x1x2x8y® = b), where h(R)=(1,0,1). A related
conjecture of Hibi [5, Conjecture 1.4] states that ho<h, =<---=hy; and
h,<h,_, for all 0=<i=[s/2], when R is a standard Cohen-Macaulay graded
domain. We also do not know whether Proposition 3.4 continues to hold for
arbitrary fields K. It would be interesting to investigate to what extent the
techniques of [2] can be used to obtain additional results about Hilbert functions

of standard graded domains.

hy+hy+--+hsh +h_ + -+h,_,
forall0<i=<s. O

The algebra R, need not be standard, ¢.g., when 2 is the simplex with vertices
(0,0,0), (1,1,0), (1,0,1), (0,1, 1). For this example R, is just the ring R
mentioned at the end of Section 3, so h(R) = (hy, ..., h,)=(1,0,1).

In {6, Theorem 1] Hibi obtains the additional inequality
4. An example: The Ehrhart polynomial

ho+h +--+h,  =h,+h, N R o I

In this section we will give a combinatorially interesting example of a semistan-
dard Cohen—Macaulay graded domain. Let P be a d-dimensional convex poly-
tope in R” with integer vertices. Let R, be the subalgebra of

O0<i=<4d, where (h,....,h,) is given by (6) (and where we set h,, =h =
“**=h,=0). Such an inequality exists because one can describe an explicit ideal
I'of R, for which I = 2(R) and then apply an argument to R /I similar to what

Klxy, oooxx, cooox oyl was done in the proof of Theorem 2.1 to {2(R)/uR.

nt n
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