LINEAR HOMOGENEOUS DIOPHANTINE EQUATIONS
AND MAGIC LABELINGS OF GRAPHS

RICHARD P. STANLEY

“1. Introduction. Let G be a finite graph allowing loops and multiple edges.
Hence G is 2 pseudograph in the terminology of (10]. We shall denote the set
of vertices of G by V, the set of edges by E, the number |V of vertices by p,
and the number |E| of edges by ¢- Also if an edge e is incident to a vertex v, we
write v € €. Any undefined graph-theoretical terminology used here may be
found in [10]. A magic labeling of G of index r is an assignment L 1B —
(0,1,2 - | of a nonnegative integer L{e) to each edge e of G such that for each
vertex v of G the sum of the labels of all edges incident tovisr (counting each loop
at v once only). In other words,
® >, L =r, for allv & V.

¢ :v€e

For each edge e of G let z, be én' indeterminate and let z be an additional
indeterminate. For each vertex v of G define the homogeneous linear form
@ P,=z—}:z,, v eV,
where the sum is over all e incident to v. Hence by (1) a magic labeling Lot
corresponds to a solution of the system of equations

&) P, =0, v EV,

in nonnegative integers (the value of z is the index of L). Thus the theory of
magic labelings can be put into the more general context of linear homogeneous
diophantine equations. Many of our results will be given in this more general
context and then specialized to magic labelings.

It may happen that there are edges e of G that are always labeled O in any
magic labeling. If this is the case, then these edges may be ignored in so far as
studying magic labelings 1s concerned; so we may assume without loss of gen-
erality that for any edge e of G there is a magic labeling L of G for which L{e) > 0.
We then call ¢ a positive pseudograph. If in a magic labeling L of G every edge
receives a positive label, then we call L a positive magic labeling. If L, and L,
are magic labelings, we define their sum L = L, + L, by L(e) = L,(e) + La(e)
for every edge e of G. Clearly if L, and L, are of index 7, and 7, , then L is
magic of index r, + r, . Now note that every positive pseudograph G possesses
a positive magic labeling L, e.g., for each edge e of G let L, be a magic labeling
positive on e, and let L = > L..
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In general, there appears to be no simple criterion for determining when a
finite pseudograph is positive. However, the following condition, which is a
special casc of Stiemke’s theorem {21], is sometimes useful. A finite pseudograph
G is not positive if and only if there exists a labeling K : V — Z of the vertices
of G by integers such that D _,cy K(v) < 0 and for alle € E, > vwce K@) >0,
with at least one of these ¢ + 1 sums not equal to zero.

Let H;(r) be the number of magic labelings of G of index r, and let H4(r) be
the number of positive magic labelings of index r. Hence Hq(r) < Hgy(r),
Hy(0) = 1, Hg(0) = 0 (unless G has no edges), and Hg(1) is the number of
1-factors of G (counting loops as having degree 1). Our primary purpose is to
prove Theorems 1.1, 1.2, and 1.3 below, which deal with the functions H¢(r)
and Hg(r). Our results, however, will be developed as generally as possible
within the context of linear homogeneous diophantine equations.

Tueorem 1.1, Let G be a finite positive pseudograph with at least one edge.
Then _there exist_polynomials Pg(r), Qq(r), Po(r), and Q¢(r) Such that jor all

nonnegative integers 1, Ho(r) = Pl F (=1 Qs0I and Ho() = PolD)_+

(:T)'QG(T) — 8, (—1)", where &, is the Kroneckerr d_elta and where m = deg PG(T)

{given explicitly by Proposilion 5.2)."

Note that if G has no edges, then H ;(r) = 8,, , which is not of the form Pq(r) +
(—=1)"Qu(r). The reason for this exception to Theorem 1.1 will become clear
in the proof of Corollary 3.10.

TueoreM 1.2. If in the previous theorem the graph obtained by removing all

loops from G is bipartite, then Qa(r) = Q¢(r) = 0.

By Theorem 1.1 we can evaluate H;(r) and H ;(r) when r is a negative integ
The next theorem tells us the significance of these numbers.

TueoreM 1.3. With the hypotheses of Theorem 1.1, we have for all inlege
r# 0, (—1)"He(—r) = He(r), where m = deg Pg(r).

CoroLLARY 1.4. If G (as in_Theorem 1.1) is reqular of dearee d
loops as having dearee 1), then Ho(—1) = H(=2) = - - = topl—b—
‘and (—1)"Ho(r) = Ho(—d — 7).

Proof of Corollary 1.4. 1f G is regular of degree d, then a one-to-one ¢
spondence exists between magic labelings I of G of index r and positive m
labelings L of G of index d + r by defining L(e) = 1 + L(e) foralle €cE
proof now follows from Theorem 1.3.

The Anand-Dumir-Gupta conjecture. Let;_}ol_*,if)wbgu@hg_numher of
mmﬁﬁgﬁmﬁ‘g’ to r in every row and column.. An
Dumir;- and-Cupta [2] éonjecbured that F,(r) is a polynomial in 7 of 'd8
=1 SatSTying 1(~1) = H(~2) = - = H(~n 1) = 0 and H

(-D)""'H,(—n — r). Equivalently, there exist integers ¢. , 0<1i<
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only on 7, such that

B r+n-1+i>.
H.(r) = ZC-'< n—1+2%

o forms of the conjecture are equivalent since the polynomials

depending

rdn— 1 l) L0 <1< (n ” 1> , form a basis over the integers for all

n— 142 2
polynomials f(r) of degree (n — 1)" mapping integers into integers and satisfying
(-1 = f(—=2) = - = f=n+ ) =07 = (=) Hf(=n — 1)) '

Let G be the complete bipartite graph K.. s0 the vertices V of G may be
partitioned into two classes Vi = {vi, =+, vyand Vo = (o, v} such that
there is an edge between every v, and vj . Lf we associate with a magic labeling
[ of G of index r an 7 % n matrix A, where A, is the label of the edge con-

“[{e““cmﬁ*ffiﬁﬂﬁ”vz:ﬂlgr}_ §§“chw 4, onh A ;”iﬁ'ﬁ“é“g'"é‘f“éﬁ‘timé"{}'é'r’y‘rd’iif“"éi‘n'd""
@T\ﬁ\ﬁﬁﬂ Aisr. Conversely ann X n ma fx A of nonnegative integers

m@—fy row and column sum 7 corresponds to a magic labeling of K.. of

index r. Hence Theorem 1.2 and Corollary 1.4 reduce to the Anand-Dumir—

Gupta conjecture except for the statement deg H.(r) = n — 1), which can

be given a simple ad hoc proof (see Proposition 5.2). For some work relating

to this conjecture sec {1, (15}, {18}, and [19]. In particular, in [19], H.(r) is

computed for n < 6 assuming the validity of the Anand-Dumir—Gupta con-

jecture. However, the sketched proof in [19] that H.0r) is a polynomial 1s

invalid.

As a modification of the Anand-Dumir-Gupta conjecture, define H*(r) to
be the number of n X 7 matrices of nonnegative integers with every row and
column sum less CHEM SF-eqaal T 7. Lhis ‘correspoiids ¢ G tohe K
“Lrgh_;one‘“loo"p a&jvoined'to“'g@mb_;igﬁgx. Hoiice by Theorem 1.2, Corollary 1.4,

~and Proposition 5.2, H%(r)isa polynomial in 7 of degree n? satisfying H*(—1) =
H¥(—2) = -+ = H*(—n) =0, H*(ry = (—1y'H*(—n — 1 — 7). For instance,

o - (4 K o )+ ( ?)
and

i :r+9> 2<r+8) (r+7>
14(r) ( 9 + 240 4 + 156\ ¢
r+ 6 r+5> (r+4> (r+3>_
+ ‘280( 9 > + 156( 9 + 24 4 + 9
More generally, if G is any finite pseudograph (not necessarily positive),

let [/%(r) be the number of submagic labelings of G of index r, i.e., the number
of maps E — (0, 1,2, - -} such that the edge sums at each vertex are less that

et

h(ff..,ggﬁﬁl—ct@» r. Then Hx(r) = Hea(r), where G is the Ag;\raph‘(‘)btained'from G
by adding a loop at each vertex (in addition to whatever loops are already there).




610 RICHARD P. STANLEY

Clearly G’ is positive. Hence Theorems 1.1-1.3 may be applied to. H}(r).
Note that H¥(r) is also equal to the number of ways of labeling the vertices
and edges of G with nonnegative integers such that the sum of the label of any
vertex together with the labels of all edges incident to that vertex is r. Some
other aspects of such labelings were considered by Kotzig and Rosa [13].

The Carlitz conjecture. Let S.(r) be the number of symmetric n X n matrices
of nonnegative integers summing tor i every | ow (and hence in every column).
L. Carlitz [5] conjectured that S.(2r) and S.(2r 4 1) are polynomial functions
of the nonnegative integer r. Let G be the graph with n vertices vy, v2, -+, 0,
and exactly one edge between any two vertices (including one loop at each
vertex). Associate with a magic labeling of G an n X n matrix A, where Aiis
the label of the edge between v; and »; . Then Aisann X n symmetric matrix
of nonnegative integers with every row and column sum r, and conversely every
such A corresponds to a magic labeling of G of index r. Hence Theorem 1.1
reduces to the Carlitz conjecture. We also obtain from Corollary 1.4 that
S.(—1) = 8, (—2) = -+ = Sy(—n + 1) = 0, S.(r) = £8.(—n — r). (The
correct sign is (—1) to the power (3), as shown in Section 5.)

Throughout this paper we use N to denote the nonnegative integers and P
the positive integers, N = {0, 1, 2, -~ Jand P = {1,2,3,---}. We shall call
a solution in nonnegative integers to a system of equations such as (3) an
N-solution, while a solution in positive integers is a P-solution. Similarly, a
nonnegative integer combination of vectors o, 8, - - - ,i.e,asumag + b8+ -+,
where a, b, --- & N, will be called an N-combination, while a positive integer
combination will be called a P-combination.

2. The Hilbert syzygy theorem. In this section we prove that for a ﬁr}ite
pseudograph G (which we may assume is positive) there exist polynomlals
Po(r) and Qg (r) such that He(r) = Po(r) + (—1)Qq(r) for all but finitely many

nonnegative integers r. The proof is based on the Hilbert syzygy theorem. A

separate argument is needed to show that then Hg(r) = Pg(r) +(—}_});Qg_52
for all nonnegative integers 1 (cf. Section 3). We shall also show in this section
that if G minus its loops is bipartite, then Qs (r) = 0. ’

Consider the following general situation. Let

P, - ,2) =10
(@ j

P, - ,2)=10
be a system of p homogeneous linear equations with integer coefficients I
unknowns 2, , - -+ , 2z, . Leta' = (ai, -~ ,od), -, af = (ol , o)

finite set of nonzero N-solutions to (4); so each ' is a nonnegative integer,
for each j some a} 7 0. All the N-solutions to (4) form a commutative sem?
& with identity 0 = (0, 0, - - -, 0) under the operation of componentwise &
tion. Let X, , --- , X, be new indeterminates corresponding to the solutt
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.., ', and form the polynomial ring B = K[X,, ---, X,], where K is any
7 We impose on E the structure of a $-graded ring, B = Zae(p R, , by
ofining R. to be the vector space over K spanned by all monomials
xXaXy - Xo° such that a;a* + a0’ + -+ + a,0° = a. Clearly R .Rg C Roys;
“we have indeed defined a ®-grading.
ow define a ®&-graded R-module M as follows. M is a vector space over K
with a basis consisting of all “symbols’ [a], where « is an N-solution to (4).
fi‘he action B X M — M of R on M is uniquely defined by imposing the condition
of K-inearity and the relations XiJa] = [o" + o], a € &, 7 = 1,2, --- , g.
If we define M, to be the (one-dimensional) vector space generated by [o],
where « € @, then it is easily seen that M becomes a $-graded E-module, i.e.,
j{ = Z‘,EQ, M,and R,Ms C M, 5.

We need to know when M is finitely-generated. For this purpose we first
fequire a lemma.

:';LEMMA 2.1 (Hilbert). There are only finitely many mnonzero N-solutions

7 € @, called fundamental solutions, such that if v = « + B, where a, 8 € ¥,
‘then « = 0 or 8 = 0. Every solution « & & is an N-combination of fundamental

solutions.
““For a simple proof of Lemma 2.1 see, e.g., [7; §97].

+:PropositioN 2.2. The following two conditions are equivalent.

(i) The B-module M is finitely-generated.
(i) For every a & ® there exists a positive integer n (depending on a) such that
na is an N-combination of o', o*, -+ , o’.

.Proof. (1) => (ii). Assume M is finitely-generated. Since each element of M
has the form Y k,[a], where the sum ranges over finitely many @ € & and

where k, € K, we may take the generators of M to be [8'], 8%, --- , 8",
where 8° & ®. Lety & ®. Now since M is finitely-generated, for all positive
integers n there must exist j, & {1,2, ---, m} and nonnegative integers
Ciny """ 5 Qgn such that [n'Y] = X;" Tt X:M[Bin] or, equivalently,
() nmy = 8"+ 2 aua’.

1
Since there are only finitely many distinct j, , there is some k & {1, 2, --- , m}

such that j, = k for infinitely many values ny < n, < --- of n. It follows from
Lemma 2.1 or is easily proved directly by induction on g [7; §§152-153] that there
are values n, < n, such that a;,, < a:,, fori =1,2,---,¢g. Hence (n, — n.)y =
2.0 (@i, — @in)e’ s0 (ii) holds.

(i) = (i). Assume that (ii) holds. Let +', v°, --- , v" be the fundamental
solutions to (4), finite in number by Lemma 2.1. Hence by (ii) there are positive
integers n, , g, - , N, such that each n;y’ is an N-combination of the a'’s.

We claim M is generated by all nm, --- n, symbols [D ev'], where 0 <
6 <m;. Lety C ®:507 = any* + axy” + -+ + ax™, a. € N. Define ¢; by
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a, = ¢; (modn;) and 0 < ¢; <n,;. Hencey = Somnbay’ + > ey’ for some
b, © N. Since n;y’ is an N-combination of the o'’s, we have y = D2 1 ¢’ +

™ ey’ for some ¢; € N. Hence [y] = XXy -+ XD er']; so M is
indeed finitely-generated.

Note. It is easily seen (though we have no need for this fact) that M is
generated by one element, viz., [0], if and only if o', -+, & include all the
fundamental solutions to (4).

We are now in a position to invoke the Hilbert syzygy theorem. For our
purposes the following special case is convenient.

2.3. Hilberl syzygy theorem. Let @ be the semigroup of N-solutions to the
system (4) of linear homogeneous equations with integer coefficients. Let
a', - -, @ be nonzero elements of ® satisfying condition (i) of Proposition 2.2.
Let R = K[X,, ---, X,] be the $-graded ring constructed from a', o, a

as before, and let M be the corresponding ®-graded R-module. Then there

exists an exact sequence

(6) 0 M M ' - o>M >M-—>0

where the M’ are free finitely generated &-graded R-modules and all homo-
morphisms are of degree 0, i.e., if M’ = Y .cs M, , then the image of M},
2 < 4 < g,in (6) lies in M.", while the image of M, liesin M, .

Note. The statement that M* is free means the following. M?* is free as an
R-module (ignoring the grading), and M ‘is ®-graded. However, the grading
on M’ may be “shifted”. In other words, the homogeneous generators of M’
need not be of degree 0 but may have any degree « & .

In Hilbert’s original proof [11; Theorem I1I] he considers only N-graded
polynomial rings K{X,, ---, X,] and N-graded R-modules, where also
deg X. = 1. His proof, however, remains valid under the assumptions of
Theorem 2.3. The much simpler proof given in [22; Chapter 111, §13} is also
valid under the assumptions of Theorem 2.3.

We now introduce the basic tool of generating functions. Given the system 4

with N-solution set ®, define the (formal) power series F(z, , ~*- , Ts) in.the
variables z,, - -+, z, by
(7) F(xlr"':xS): leal"'xt:l
a€P
where « = (ay , --+ , @,). Hence F “lists” all elements of @; knowing ¥ s

equivalent to having a list of elements of . We shall use the sym

x = (z1, - ,x)and X7 = z{" -~ 27" S0 that (7) may be rewritten
) Fix) = 2 x".
aEP

oncernil
We n

In this section and the next we shall prove two fundamental results ¢
the form of the generating function F(x) (Theorers 2.5 and 3.9).
for the first of these results one additional concept.

bolic notation s
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A coml)letely _fundamental solution « to (4) Is a nonzero N-

DEFINITION.
ﬁ—{—yforﬁ,'ye ®, then

&\ﬁon—such that for all positive integers n if na =
ko and y—=" (n = k) for some k & N.

By takmg n = 1in the above definition, we see that every completely funda-
ntal solution is a fundamental solution. The converse, however, need not
“iipe true. Lor instance, the equation z, + 2, = 2z; has three fundamental solu-
Stions, « = (2,0, 1),8 = (0,2, 1),y = (1, 1, 1). However, only « and 8 are
mpletely fundamental since 2y = a + .

Lemma 2.4. There are finitely many completely fundamental solutions g,
, 8" to (4). For every solution a € P thereis a posztwe integer n (depending
on a) such that ne is an N-combination of g', 8°, -+ - , 8"

Proof. Since every completely fundamental solution is fundamental, it
follows from Lemma 2.1 that there are finitely many completely fundamental

: <AssumeaE ®. If for somer & Pandsome? = 1,2, --- , h we have o =
;,—3 then na is an N-combination of g, B8, -, B* forn = 1. Hence we may
~assume «a is not a multiple of any 8°. We prove by induction on the number k
:'fof nonzero coordinates of o that for some n > 0, na is an N-combination of
8,6, -+, 8. This is clearly true for k = 0, since then a = 0. Assume that
“for some k satisfying 0 < k < s (with s as in (4)) we have proved that for every
‘& € & with less than k nonzero coordinates there is an n & P for which na' is
an N-combination of 8', 8%, --- , g".
. Suppose now that « & & has k nonzero coordinates. By assumption «a is
not a multiple of any g°. It is easily seen that then there are an n € P and
8,7 € @ such that neither 8 nor v are rational multiples of « and ne = g + v.
Since a, 8, and v are all N-vectors and « has k nonzero coordinates, 8-and y have
at most k£ nonzero coordinates.

Let p/q be the largest rational number (reduced to lowest terms with p € N,
¢ & P) such that every coordinate of § — (p/¢)a is nonnegative. Clearly
p/q exists. Morcover, g8 — pa ¥ 0 since by assumption g is not a rational
multiple of «. Hence by definition of p/q, g8 — pe is a nonzero element of &
with less nonzero coordinates than 8; so g8 — pa has less than k nonzero coordi-
nates. Similarly define p’/q’ with 8 replaced by v in the definition of p/q.
Hence ¢y — p’a has less than k nonzero coordinates.

Now from na = § + v we get (gg'n — pg’ — p'Qa = ¢'(¢8 — pa) + ¢(¢y —
p'a). Since g8 — pa, 'y — p'e, and « are N-vectors with ¢8 — pe 5 0 and

¢ > 0, we have g¢'n — p¢’ — p'q > 0. Since ¢8 — paand ¢'y — p’a have less
than k nonzero coordinates, by the induction hypothesis there exist n, , n, & P
such that n,(¢g8 — pa) and ny(¢’y — p'a) are N-combinations of ', 8%, - - -
Hence nmn,(gg'n — pqg’ — p'q)e is an N-combination of 8', 8%,
proof follows by induction.

We now come to the main result of this section.

, B
-, 8, and the
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TaeoreM 2.5. The generating funciion F(x) defined by (8) is a rational
Junction of the x;'s (in the algebra of formal power series), which when reduced to
lowest terms has denominalor

D(x) = IHI (1 -x)

where B ranges over all complelely fundamental solutions to (4).

Proof. Tt was known since about 1900 that F(x) is a rational function
(cf. Section 3); this will also come out of this proof. Let g', ---, 8" be the com-
pletely fundamental solutions to (4), let R = K{X,, ---, X,] be the ®-graded
polynomial ring corresponding to 8, -, 8", and let M be the corresponding
®-graded R-module. By Proposition 2.2 and Lemma 2.4, M is finitely-generated.
Hence by Theorem 2.3 there is a $-graded exact sequence

9 0 >M M1 - o>M—>M-—0

where the M are free finitely-generated $-graded R-modules. IfNisa &-graded
R-module, let N, denote the homogeneous component of N corresponding to
a & ®. Thus N, has the structure of a vector space over K. Since (9) 1s
&$-graded, ie., the homomorphisms are of degree 0, the exact sequence (9)
induces exact sequences

(10) 0 M o M o > My > M, —0

for each « € &, where the homomorphisms are linear transformations. Since
M and each M°® are finitely-generated, the vector spaces appearing in (10) are
finite-dimensional. Hence by a well-known property of such exact sequences
[21; p. 233]

(i1) dim M. = dim M. — dim M3 + - + (—I)h‘l dim M% .
Multiply (11) by x* and sum on all « & & Since dim M, = 1 foralla € %
we get

(12) F(x) = F'(x) — F*(x) + --- + (— )" F(x)

where F'(X) = 2 ace (dim MHx*. (F(x) may be thought of as the mu'lti-
variable analogue of the Poincaré series of M corresponding to the function

dim (-).) Suppose M * has free homogeneous generators Yi, -, Y; of degrees
', -+, o respectively. Then a K-basis for M consists of all eleme:lts
X .- X*Y:, where Shap + o’ = a Hence FiX) = Dommo " duer=o

S xt = (0 2 /[T (U= %), where ¢ = D4 o & o’

i=1

by (12) the denominator D(x) of F(x) divides [[ 01 — %), 8 completely funda-
mental. £
(1 a-x»

It remains to prove that D(x) cannot be a proper divisor 0
’ B, E 2. _Bllt

If any factor 1 — xf were reducible, then 8 = ng’ for some n > 1 al)

this contradicts the fact that 8 is completely fundamental (or even fundamen
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Hence we must prove that F(x) cannot have a denominator 11 .(1 — x"), where
- 4 ranges OVer & proper subset T'of 8', -+ , 8". Suppose 8 = 8° ¢ T. Now for
any n € P the term x™ must appear in the power serics expansion of F(x).
Hence there is some term X' in the numerator of F(x) with nonzero coeflicient
such that 8 + ZveT a,y = ng, a, € N. Since d is an N-vector and v, ng & &,
we have 3 € ®. Thus by the definition of completely fundamental solution,
Vusing the fact that g and each vy &€ T are completely fundamental, we have

a,y = 0sonB = 4. Hence the coefficient of x* in the numerator of F(x)
is nonzero for all n € P; s0 this numerator is not a polynomial. This completes
the proof.

One may regard the exact sequence (9) as specifying all relations (or syzygies)
holding among the N-solutions to (4). Tor instance, if o, B8, v, & are N-solutions
related by @ + 8 = v + §, then they form a syzygy of the first kind. All such
syzygies are specified by the homomorphism M *  M'. Similarly, relations
among syzygies of the first kind are called syzygies of the second kind and are
specified by M 3 M® etc. Thus the Hilbert syzygy theorem states that this
«chain of syzygies” terminates within h steps.

Applications to magic labelings. In order to apply Theorem 2.5 to magic
labelings we need some information about completely fundamental magic
labelings, i.e., completely fundamental solutions to (3). This information is
based upon the following lemma.

LEmMa 2.6. Let X be an n X n matriz of nonnegative integers such that every
row and column has the same sum. Then X is a sum of permutation matrices.

Lemma 2.6 is a well-known simple consequence of the theorem of Garrett
Birkhoff [4] (see also [17; p. 56]) that the convex hull of the doubly stochastic
matrices consists of the permutation matrices.

, Prorosrrion 2.7. Let G be a finite pseudograph. Then every completely m‘\
\ fundamental magic labeling of G has index 1 or 2. More precisely, if L is‘any |
! magic labeling of G, then 9L is a sum of magic labelings of index 2.

Proof. 1If Lis

e

. ORI /r/)
any magic labeling of G, form the symmetric matrix A indexed /
by the vertices of 7, where A,, is the sum of the labels of all edges between /
 wand v. If L has index r, then every row and column of A sums to r. Hence/
by Lemma 2.6, A is a sum of permutation matrices 7, 4 = 2, = Since 4 is
symmetric, we have A = ), =¥ (* denotes transpose) so 24 = \
i Bach = + «* is a symmetric matrix, and we associate with it a magic labeling ~

Z (= + 7"*)-\‘\.\ 7

! L, of index 2 as follows. For any pair of vertices u and v (including v = v)
lete,, ez, - - - , € be the edges connecting w and v. Define the vector ! = l(,v) = |
(., -+, L), where I, = L{e). Itis obvious that 2! can be written as a sum 4

2 = Z I* of nonnegative integer vectors I” = as, -+, 1) with (= + T s

[T+ --- 4 1% . Now define the magic labeling L, by the condition L, (e;) = 1%,
1 < ¢ < k. (In particular, if only one edge e connects u to v, then L, (e) =

. {z + 7)...) We therefore have 2L = 3" L, as required. /

i
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A proof of Proposition 2.7 can also be based on Petersen’s result [16] that a
regular graph of even degree has a 2-factorization, but care must be given to the
fact that we are taking loops to have degree 1 rather than degree 2 [12; p. 165,
Satz 8].

The reader may be curious as to whether some analogue of Proposition 2.7
holds for fundamental magic labelings. Therefore we remark that it follows
from the results of [12; Chapter XI, §3] that for r & P there exists a finite
pseudograph (or graph) with a fundamental magic labeling of index r if and
only if r = 2 or r is odd.

CoroLLARY 2.8. Let G be a finite pseudograph. Then there exist polynemials
Pa(r) and Qo(r)_such thal for all but finttely many. r- &Ny H glr)y—=Pylr)-=

(D Qaln). —

Proof. Lete, ,e,, --- , e, be the edges of G, and define the formal power
series
(13) ["G(xl y Xay ", Xg Z/) = Z x:hx;“ U x:vyf
L

where the sum ranges over all magic labelings L(e;) = a, of G and where 7 is
the index of L. Tt follows that

(14) I?G(ly ]7 Ty 1! y) = ZHG(T)yr'

Now by Theorem 2.5 and Proposition 2.7, F(z, , - -, %, , y) hasa denominator
of the form [ (1 — =25 - - - 2f*y"), where in each factor s = lors = 2. Hence
Fo(1,1, ---, 1, y) has a denominator of the form (1 — »)*(1 — ¥y e bE N.
By (14) this implies (e.g., by expanding Fs(1, 1, - -+, 1, %) by partial fractipns)
the desired result. o

Observe that if for a given pseudograph G the completely fundamental magic
labelings all have index one, then the proof of Corollary 2.8 would show that

Fe(1,1, --- , 1, y) has a denominator of the form (1 — )" so that Qc(”) = O',

The next result tells us when this phenomenon occurs.

ProrositioN 2.9. Let G be a finite pseudograph. The following Cmdim_’;@

are equivalent.
(i) Every fundamental magic labeling of G has index one.
(ii) Ewvery completely fundamental magic labeling of ¢ has index one. .
(ii1) If G’ is any spanning subgraph of G such that every connected comp
of G’ is a loop, an edge, or a cycle (of length grealer than or equal t0
then every one of these cycles of length greater than or equal to 3 must
even length.

Proof. (1) = (ii). The proof is trivial, since a completely fundamen

magic labeling is fundamental.
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= (i). Assume (). Let L be a fundamental magic labeling of G. By
asition 2.7, 2L = > L', where each L’ is completely fundamental. By
mption, each I/ has index 1;s0 L'(e) = 0 or 1 for every edgee € E. Hence
s'for any L’ appearing in the above sum for 2L, 2L{e) — L'(¢) > 0 for all
E, we have that L(e) — L'(¢) > 0 also. Thus L — L' is a magic labeling.
% T, is fundamental, we must have L, = L/, and so L has index one.
i) = (iii)- Suppose (ii) holds but (iil) fails. Let G’ be ‘gi spanning subgraph
‘such that every component of G’ is a loop, an edge, or a cycle of length
ter than or equal to 3, with C a cycle in G’ of odd length greater than or
1to 3. Define a magic labeling L of G as follows. (a) Li{e) = 0 if e 1s not
se of &', (b) L(e) = 2if eisaloop or edge component of ¢, and (c) L(e) = 1
is in a cycle of G of length greater than or equal to 3. Thus L has index two.
the cycle C does not possess a magic labeling of index one, we cannot
g‘compdse nL into magic labelings of index one for any n € P. Hence L s
pletely fundamental, a contradiction.
iy = (ii). Suppose (iii) holds. Let L be a magic labeling of G of index 2.
t G’ be the spanning subgraph of G whose edges e satisfy L{e) > 0. If
2} = 2, then e is either a loop or a single edge component of G"'. Theremaining
mponents of G have L(e) = 1. Such a component must be a eycle or a path
sibly void) with a loop at each end. Any path with a loop at each end
ssesses a spanning subgraph whose components are loops or single edges.
ce by assumption every cycle in G” of length greater than or equal to 3
45 even length. It is now easy to decompose L into two magic labelings of
déx one. Hence L is not completely fundamental. By Proposition 2.7,
(i) follows. .

CokoLLarY 2.10. If G is a_finite pseudograph satisfying euther of the. three
“(equivalent) conditions of Proposition 2.9,.then Qq(r)-(as defined by Corollary 2.8)
is0:~In particular, Qur)-—=-0-1f-G-minus its loaps 75 bipartite, since a bipartile
graph has no cycles of odd length.

BT

Example. Let G be any spanning subgraph of the wheel W, = C,.. + K,
{10; p. 46], where p is even. Then G has no loops and satisfies the conditions
of Proposition 2.9. Moreover, precisely 2° ' of these spanning subgraphs G
of W, are positive (including W, itself) and many of these positive spanning
subgraphs (such as W, when p > 2) are not bipartite. Hence the first sentence
of Corollary 2.10 is stronger than the second sentence. The spanning subgraphs
G of W, , p even, have the additional interesting property that the graded
module M corresponding to the completely fundamental (or fundamental)
magic labelings is free on one generator [0]. It follows that Hg(r)y = 8, or

Hy(r) = (r "tnm) , where m = deg Pu(r).

We mention that on the other extreme from W,, p even, are the wheels W,
with p odd. Any spanning subgraph G of W, , p odd, possesses no magic




618 RICHARD P. STANLEY

labelings of odd index; so Po(r) = Qqg(r). This is true of any pseudograph
with p odd and with no loops. '
Example. This example shows that unfortunately the conditions of Proposi-
tion 2.9 are not necessary for Qo(r) = 0. Let G, and G be disjoint copies of
the complete 4-graph K, with one edge removed. Let G consist of Gy , G:, and
an edge connecting a vertex of degree two in G, to a vertex of degree two in G, .

Then Ho@) = (7 T 3), but G has a completely fundamental magic labelin
3 g

of index two.

Hilbert functions. Let G be a finite pseudograph and L, , --- , L, a set of
nonzero magic labelings satisfying condition (ii) of Proposition 2.2. Form the
corresponding ring R = K[X,, ---, X,) and the module M as before so M is
finitely generated by Proposition 2.2. We have considered R and M to be
graded by the semigroup @ of all magic labelings, but it is possible to take less
discriminating gradings. Define an N-grading on R by letting each X, be a
homogeneous element whose degree is the index of L, , and define an N-grading
on M by letting [L] be a homogeneous element whose degree is the index of L
for all L & ®. Thus a K-basis for M, , the 7-th homogeneous component of M,
consists of all symbols [L] such that L is magic of index r. Hence dimg M, =
Hy(r). Now dimg M, is by definition the Hilbert function of M; so we see that
H (r) is a Hilbert function.

If each X, has degree one (the classical case considered by Hilbert), then
Hilbert showed that dimg M, agrees with a polynomial for r sufficiently large,
the Hilbert polynomial of M. This is in accordance with Corollary 2.8 and
Corollary 2.10. Since we will prove that Hy(r) is a polynomial for all 7 EN
(when each X, has degree one), we see that Hq(r) is actually the Hilbert poly-

nomial of M. The easy generalization of Hilbert’s result to the case where:
deg X, is an arbitrary positive integer was first observed by Serre (cf. {3; Theorem

11.1)).

3. The Elliott-MacMahon algorithm. We now wish to prove that Holr) =+

Polr) + (—1)'Qe(r) forallr € N. We have shown that the generating functio
Fo(1,1, -+, 1,9) of (14), which we will abbreviate as Fo(y) = Fe(1,1, -+ b
has the form N(y)/(1 — »)°(1 — y*)°, where N(y) is a polynomial in y a0
a, b € N. By well-known properties of rational functions, the statement ths
Holr) = Por) + (—1)Qo(r) for all r € N is then equivalent to deg Fo(y) <?
ie., deg N(y) — a — 2b < 0. (When Qo(r) = 0 we may take b = 0, but b
has no effect on the argument.) K
We know from (2) and (3) that magic labelings of G correspond to N-solut
of a system P, = 0, v € V, of homogeneous linear equations with in
coefficients. The algorithm of Elliott-MacMahon allows the explicit d
tion of the generating function F(X) of (8) corresponding to a system
We shall complete our proofs by an analysis of this algorithm. .
We proceed to describe the Elliott-MacM ahon algorithm or the EM-algorith

etermind:

MAGIC L2
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for short. Elliott [6] defined the algorithm only for one equation P = 0, while
MacMahon [14; §VIII] extended it to finitely many equations and gave several
interesting applications. In particular, MacMahon [14; Paragraph 407] verified
the Anand-Dumir-Gupta conjecture in the case n = 3 by showing

o4 017

Suppose we have a system (4) of linear homogeneous equations with integer
coefficients. For each form P; = Pz, -+, z) of (4) associate a variable A, ,
and for each variable z; associate a new variablez; . Form the “crude generating
function”

(15) F = LIl (1 — NS - A2ig) ™

1

where a.; is the coefficient of 2; in P; (so a.; can be negative). If each factor
of § is formally expanded as a Laurent expansion in the \,’s and if these s
Laurent expansions are formally multiplied, then it is easy to see that the
terms which do not involve any of the \,’s are just the generating function
F(x) of (8). In MacMahon’s notation QF = F(x), where QF denotes those
terms of ¥ free from A/s.

We compute QF as follows. Suppose two factors (1 — 4) and (1 — B) in
the denominator of F involve a variable \; , one to a negative power and one to
a positive power. Apply the identity

i i 1 1
(16) (1—A)(1—B):(1—AB)(1—A+1~B’1)'

This breaks § into three terms. For each of these terms apply the same pro-
cedure whenever possible, i.e., whenever in some term some factor contains a
variable \; with a positive exponent and another factor contains A\; with a
negative exponent. Continue this process until no longer possible, i.e., until &
is expressed in the form

+1
LD P s V(R R ()

where in each term +1/(1 — A)(1 — B) --- (1 — D) each variable \; has
always a nonnegative exponent or nonpositive exponent (the choice depending
on 7).

To see that this process does indeed terminate in (17), i.e., does not continue
indefinitely, define the weight of a term +1/(1 — A)(1 — B) --- (1 — D)
occurring at any stage of the algorithm to be the sum of the absolute values of
the exponents of all \,’s appearing in this term. Now it is easily seen that if a
monomial A has some \; with a nonzero exponent and another monomial B has
\; with a nonzero exponent of the opposite sign, then the weight of 1/(1 — 4)
(1 — B) is strictly greater than the weight of 1/(1 — AB)(1 — A), 1/(1 —

(17)
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AB)(1 — B), and 1/(1 — AB). Hence after each step of the algorithm we have
replaced a term with three terms of smaller weight. Clearly a term of weight 0
cannot be reduced any further—it is free from As. (Of course an irreducible
term may also have positive weight.) Thus the algorithm has a tree-like struc-
ture with each node except endpoints having three successors and with no chain
of length more than the weight of § as expressed in (15). Such a tree must be
finite; so the algorithm indeed terminates. A crude upper bound for the number
of stepsis 1 + 3 + 3° + --- + 3", where w is the weight of & as expressed
in (15), i.e., wis the sum of the absolute values of the coeflicients of the forms
P, -, P, 0of (4).

We can now read off the generating function F(x) directly from (17). In any
term +1/(1 — A)(3 — B) --- (1 — D) retain only those factors 1 — X which
are free from the \/s. Thus F(x) is expressed in the form

+1
(s PO = 2 -ma- v -2
where X, Y, --- , Z are monomials x'z]* - -- =" and each v, & N.
.. The reader who may be mystified by our sketchy deseription will -benefit
considerably by examining the examples worked out by Elliott and MacMahon.
‘The following simple result will be useful in what follows.

Lemma 3.1, Suppose at any stage of the EM-algorithm applied to the system 4

some denominalor has a factor 1 — N\ -+ Nzt -+ xi'. Then for all ©.=
1,2, ---, pwehave Pilay, -+, a) = a; .
Proof. The proof is by induction on the steps of the EM-algorithm. At the
]
beginning we have (15), and I:(0, ---,0, 1,0, ---, 0) = a.; is clear. It
suffices to show that if the lemma holds for the factors 1 — Ay -+ xerx”® and
1 — X' -+ A% then it holds for 1 — A;*™** -+ A ttex o But this follows

from the linearity property P.(a + 8) = Pi(a) + P.(B). )
We now wish to analyze the EM-algorithm in further detail. We first require
some preliminary discussion. In general, standard notation and terminology
from combinatorial topology will be employed; confer, e.g., [8]. We shall also
use, however, some terminology of our own, as follows.
* By a nonnegalive integral polyhedral cone or NIP-cone, for short, in R
a set @ of nonnegative integer vectors in R’ including the origin, such that the
convex hull € of € is a polyhedral cone (in the usual sense) for which every
integer vector in € is in €. Observe that the N-solutions of a system _(4) Of
linear homogeneous equations with integer coefficients form an NIP-cone i R
@ is said to be I-dimensional if the vector space over R spanned by © has dn.neﬂ'
sion ¢ (equivalently, the rank of the free abelian group generated by © 18 B
A boundary face €’ of € consists of the intersection of @ with some boundary
face & of @ of dimension greater than or equal to 0. Thus the origin 18 —alwayf
a boundary face of €, while the null set & is not. If a boundary face @ of €

* we mean
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d-dimensional cone, then €' is a d-dimensional NIP-cone. The boundary

isa
of €, denoted €, consists of the union of all boundary faces of €. 7

A lattice cone £ consists of all N-combinations aa + - + a.d of some
o' of linearly independent vectors with integer coordinates (called

integer vectors for short) such that every integer vector in the convex hull £ of £

setvll; cee

igin £. We then write £ = (a', ---, &'). It is easily seen that the generating

seb {a', -+, '} is uniquely determined by £. In order for a set of integer
yectors o', -+, o' to generate a lattice cone, it is necessary and sufficient that
there exist integer vectors o' oo+, o such that the determinant
o
2
(19) Y= x1.
x

For the absolute value of the above determinant is simply the volume of the
fundamental parallelopiped spanned by the vectors o', a®, -- -, a’. (See a text
on the geometry of numbers for further details.) Note that if S generates a
lattice cone £, then the boundary faces of £ are lattice cones generated by the
subsets of S.

If € is an NIP-cone, we define a triangulation of € to be a finite collection
A = {£;} of lattice cones such that (a) if £. € A, then every boundary face
of £,isin A, (b) if £; and £, are in A, then their intersection £; M £, is a
common boundary face £, of £; and £;, and (¢) U £; = €. Hence the convex
hulls £, of the £.’s form a triangulation of € in the usual sense.

Lemma 3.2. Let T be a triangulation of a (¢ — 1)-dimensional cell @ (so @ 13
homeomor phic to a solid (¢ — 1)-sphere), t > 1. Let [ be the number of (z — 1)-

_ (¢

dimensional simplices in T not contained entirely in ®. Then {5 o 4+
(-7 = 1.

Proof. Let f: be the total number of (¢ — 1)-simplices in T, and let f; be the
total number of (¢ — 1)-simplices in T' contained in 9®. Thus ¢ = fi — fi.
Let x(®) (respectively x(8®)) denote the Euler characteristic of & (respectively
3®). Now @ # ¥ sincet > 1. Thus asis well known x(®) = fi —fa + -+ - +
(~1)"', = Land x(@®) = f{ — fs+ -+ + (=1)"'fi = 1 — (=1)""". Hence
fo—foi4 -+ (=D = (=D - A - (=D = L .

Remark. The assumption in Lemma 3.2 that ¢ > 1 (or equivalently that
® # (f) is not merely a matter of pedantic rigor. We shall see in the proof of
Corollary 3.10 that the failure of the Euler characteristic formula for ¢ = %}
explains the failure of Theorem 1.1 when G has no edges.

Lemma 3.3. Let T' be a rectilinear triangulation of a (¢ — 1)-dimensional
convez polytope ® < R*. For any a € @ let T'(a) & T constst of (a) every stmplex
Sin T' containing « and (b) every boundary face of these simplices 8. Let st (a) =
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Useray 8. Then st (o) is @ t — 1)-cell, te., homeomorphic to a solid (¢ — 1)-
sphere, and T'(@) is a triangulation of st ().

Sketch of proof. Since each § & T is rectilinear, it follows that st () is
star-shaped with respect to a. Since ® is convex, we can “expand” st («) along
the rays from a to construct a homeomorphism between st («) and @. Since
T triangulates @, I'(e) triangulates st (a).

LemMma 3.4. Lel A be a triangulation of a t-dimensional NIP-cone €, ¢ > 1.
If a € @, let f9(a) be the number of i-dimensional laltice cones n A containming «
and not contained entirely in €. Then

(20) 3@ — foa@ + -+ (=D = L.

Proof. First suppose a # (0,0, -+, 0). Let (&, A) denote the triangulation
of the convex hull @ of € obtained by taking the convex hull of each element
of A. Let ® be a cross section of & containing o (e.g., ® can be taken as the
intersection of @ with the hyperplane of all 8 satisfying a-8 = a-a). Then @
is a convex polytope, and A induces a rectilinear triangulation I of ®. Moreover,
an i-dimensional lattice cone in A corresponds to an (¢ — 1)-simplex in T.

Define T'(a) and st () as in Lemma 3.3. Thus by Lemma 3.3, I'(a) triangulates
the cell st (). Now a lattice cone £ & A corresponds to some simplex § € T'(e)
which is not contained in 9 st () if and only if « € £ and £ is not contained in
ae. Hence the number of (i — 1)-dimensional simplices in I'(«) which are not
contained in 9 st (a) is just {%(a). Equation (20) now follows from Lemma 3.2.

Ifa=(0,0---,0), then every £ € A contains a. Let @ be any nondegen-
erate cross section of €, and let T' be the triangulation of ® induced by A. Then
if §9 is the total number of (2 — 1)-simplices in T which are not contained in 4@,
we have /2 = f%(e). Thus Equation (20) for @ = (0,0, ---, 0) also follows
from Lemma 3.2. ‘

LemMa 3.5. Let £ be a lattice cone in R® generated by the vectors a, B, -~ s .
Then

Sxt = 11— x)1 %) - (1= x)

where the sum is over all integer vectors w in the conver hull of £.

Proof. By definition of a lattice cone, the vectors w simply range OVer the
elements a,a + a8 + -+ + a8 of £, a, € N. But

gr:;q(‘rr;%ijl = (Z XXZ x“"’) o
_ zuzx...,“.,,w--.m,s _ wa_

LemMa 3.6. Let A be a triangulalion of a t-dimensional N1P-cone ©, t2
Define F(x) = > . X“, where  ranges over all elements of @. Then

il
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13 . 1
F(x) = -1 [
( ‘Z:;( ) Z(I—x")n-,(l—x")
re for a given value of 1 the inner sum ranges over all i-dimensional laitice cones
= (&, -+, 8) in A which are not contained in 9 C.

Proof. If w € €, then clearly the coefficient of x“ in the right-hand side
"‘(2'1) is 0, since the lattice cones {a; --- , 3) lie in €.
[ow suppose that w & €. Suppose w lies in f9(w) i-dimensional lattice cones
in A which are not contained in d@. Thus using Lemma 3.5, we see that the
oefficient of x° in the right-hand side of (21) is f9(w) — [0 ,(w) + --- +
{=1)"""f3(w). Hence by Lemma 3.4, the coefficient of x* is 1.
“_Weare now ready to reconsider the EM-algorithm. The steps of the algorithm

~are of course not uniquely determined, since at any stage one is free to choose
m any term any two factors 1 — A and 1 — B in applying (16) so long as the

.exponent of some X, is positive in either 4 or B and negative in the other. In

_particular, the algorithm may be performed in accordance with the following
“rule.

.?;‘”(R) Choose any appropriate pair 1 — A and 1 — B and apply the reduction

(16) simultancously to every term for which (1 — A)(1 — B) appears in the

denominator.

©. Use of the rule (R) leads to a simple geometric interpretation of the EM-
algorithm, which we now explain. Suppose that T = +1/(1 — A)(1 — B) ---
{1l — D) is a term appearing at any stage of the EM-algorithm. When we set
ieach \; = 1 in the term T, we get an expression +1/(1 — x*)(1 — x’) --- (1 —
x’). If the vectors a, 8, - - - , 8 happen to generate a lattice cone £, we say that
£ is the lattice cone corresponding to T.

. Lemma 3.7. If T is any term appearing at any stage of the EM-algorithm,
then T corresponds to some latlice cone £.

Proof. The proof is by induction on the steps of the EM-algorithm. At the
beginning of the algorithm we have a single term (15), which clearly corresponds
to the lattice cone @, of all nonnegative integer vectors in R’ (generated by the s
“unit coordinate vectors’’). Suppose now that the term

T = +1/(1 = )1 — B)(1 = C) -+~ (1 — D)

has been obtained corresponding to the lattice cone {a, 8, v, --- , 6). If the
reductionn (16) is applied to T, say to the factors I — A and 1 — B, we obtain
three new terms, viz.,

T, = +1/(1 — A)(1 — AB)1 — C) --- (1 — D)
T, = £1/(1 — AB)1 — B)(1 — C) --- (1 — D)
T, = F1/(1 — AB)Y1 — C) --- (1 — D).

il

Il
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When we set each \; = 1 in these three terms, we obtain 5
+1/(1 — x)(1 = x*)A = x7) --- (1 = Xs)
+1/01 — 1 —H1 —x") - (1 = X)
F1/0 — x*HAQ —x") .- (1 — x°).

d to show that if {e, 8,7, - - - , 8} generates a lattice conae}, thg:l :ot ;lii(;
P T 6} {a + 8,87 -, 6}: and {a + 8,7, 'f ’ (1~9) ol the
_{0‘: N e:l}—eri]e:tary f,act’which can easily be proved directly or from
is an

determinantal identity

B _| B
e ¢

Hence the proof follows by induction.

L 3.8. Suppose at some stage of the EM-algorithm, performed tn ac-
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Hence the £{ are simply the s-dimensional lattice cones of a sub-
of A, viz., the subdivision “induced” by the vector « + 8. (A’ is
anique subdivision of A with the property that the one-dimensional lattice
es in A’ consist of the one-dimensional lattice cones in A together with
- 8).) Thus the £7 together with their boundary faces form a new triangula-
‘A’ of Cq .

milarly, it is easily seen by induction that every term in the new expression
'corresponds to some lattice cone in A’.

’he converse statement in parentheses follows easily from Lemma 3.6,
ough we have no need of this fact, nevertheless it is of use in cutting down
amount of work which needs to be done in carrving out the EM-algorithm
ecific cases.)

We are now ready for our main result connected with the EM-algorithm.

ilngOREM 39. Let Py, P,, ---, P, bea system of homogeneous linear forms
0 inlteger coefficients in the variables 2z, , 2z, , -+ , 2, . Let @ be the NIP-cone
' of all N-solutionsto P, = P, = --- = P, = 0. Then € has a triangulation
to lattice cones.

Moreover, define F(x) = Y, x*, where w ranges over all elements of €. Then

: t—i 1
F(X)= ;(—1) [E(l_xa).“(l_xa)]

phere for each 1 the inner sum ranges over all i-dimensional lattice cones £ =
@, -+, 8) in A which are not contained in 3 @ and where t is the dimensional of €.

Proof. When the crude generating function ¥ of (15) is reduced to (17)
ing the rule (R), we obtain F(x) by picking out the factors of each term
“#1/(1 — A)(A — B) --- (1 — D) free from the \;’s. By Lemma 3.8 these
~factors correspond to a boundary face of some £ € A and hence to some £/ € A,
‘where A is the triangulation of @, obtained at the termination of the EM-
algorithm via Lemma 3.8.

+* Now sinee A is a triangulation of @, , the lattice cones £’ & A obtained as
above together with their boundary faces must form a triangulation A of their
union 'D. Moreover, if « is a generator of one of these £’, then it was obtained
from a factor 1 — x* free from \,'s in the denominator of the reduced form (17)
of . Then by Lemma 3.1, P;(«) = Ofori = 1,2, -- -, p, i.e., ais an N-solution
to the system (4). Since N-combinations of N-solutions are N-solutions, D is

certainly a subset of all N-solutions. But by construction of the EM-algorithm
we obtain F(x) = Y .ce X* at the finish; on the other hand, we can only obtain
nonzero coefficients of the terms x* with « € ©. Hence € = D; so A triangu-
lates @ into lattice cones.

Equation (23).is simply an instance of Lemma 3.6, and so the proof is com-
plete.

We at last return to magic labelings of pseudographs.
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CoroLLARY 3.10. Let G be a finite posilive pseudograph with at least one edge.
If Pg(r) and Qq(r) are as in Corollary 2.8, then He(r) = Pg(r) + (=1)"Qq(r)
for all r & N.

Proof. Lete,, ---,e, be the edges of G, and let Fo(z,, ---, z,, y) be the
generating function given by (13). Theorem 3.9 now allows Fo(z,, --- , 2., %)
to be expressed in the form (23), provided the NIP-cone of magic labelings of G
does not consist only of the zero labeling (accounting for our hypothesis that G is
positive with at least one edge). (This explains the anomaly that if the only
magic labeling of G is the zero labeling, then Hy(r) = 8, , which does not
satisfy Theorem 1.1.) But Fe(y) = Fe(1, ---, 1, y); so from (23) we obtain an
expression for F(y) of the form

(24) 0N S o8 | (el |

i=1

Now in (24) each ¢ > 0 since each vector a, - - - , § appearing in (23) is a nonzero
solution to the system P, = P, = --- = P, = 0, and every nonzero magic
labeling of G has index strictly greater than 0. Thus (24) expresses Fq(y) as a
linear combination of rational functions of degree strictly less than 0; so Fe(y)
has degree strictly less than 0. As remarked at the beginning of this section,
this gives the desired result. (Note that from (18) alone we can conclude
deg Fo(y) < 0, ie., Ho(r) = Pe(ry + (=1)"Qq(r) for all r > 0. However, it
does not seem a priori evident that the 41 terms in (18), corresponding to void
products (1 — X)(1 — Y) --- (1 — Z), cancel out.)

We have therefore completed the proofs of the statements in Theorems 1.1
and 1.2 about He(r). The statements about H(r) then follow trivially from
Theorem 1.3 and the formulas Hg(0) = 1, Hz(0) = 0; so it remains only to
prove Theorem 1.3. .

Conjecture. If A is a triangulation into lattice cones of the NIP-cone € of all
N-solutions to the system (4), it 1s easy to see that every fundamental solution
a to (4) is a generator of some £ € A (otherwise x* would not appear in the
expansion of the right-hand side of (23)). We conjecture that A can be chosen
s0 that every generator of every £ € A is a fundamental solution to (4). The
reader can check that although this conjecture is valid for the equation 21, +
3z, = 6z, , no such triangulation can be obtained via the EM-algorithm. Hence
it appears that a proof of this conjecture (if true) would require new techniques.

One consequence of this conjecture is the following. Suppose the conjecture
is true for the magic labelings of the complete bipartite graph K, (the Anand=
Dumir-Gupta case). (One can show that the conjecture is indeed true here
when n < 3.) Let A be a triangulation into lattice cones of the NIP-cone .e"f
all magic labelings of K,. such that every generator of every lattice cone in A
has index one. Let f; be the number of i-faces of the triangulated convex
polytope (®, T') given by a nondegenerate cross section of (&, X). Then H LD

= y (:) or, equivalently, A’H.(1) = f;. Thus the numbers AiH»(l)

=0
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(assuming' the validity of the conjecture) have a geometric interpretation.
Moreover, the equalities H.(—1) = H(—2) = --- = H(-n + 1) =0 and
() = (—=1)""'H.(—n — r) impose a kind of Dehn-Sommerville relation on
the f.'s [8; Chapter 9]. For reference we record

T T r r
Hy(r +1) = 6 + 10<1> T 19(2) + 12(3) + 3(4)
apd
r r T r anfT
H‘(' 1) =24+ 258<1> + 1468(2) + 4945(3> + 10532( 4) 4 14620(5)

r T r T
+ 13232(6) + 7544(7) + 2464(8) + 352(9>-

4. A reciprocity theorem. Using Theorem 3.9, we will prove a general
dreciprocity theorem’ concerning integer solutions to linear equations. From
this reciprocity theorem, Theorem 1.3 will follow easily.

TurorEM 4.1. Let P,, --- , P, be a system of homogeneous linear forms with
integer coefficients in the variables 2, , -« , 2z, . Suppose that the equations P, =
«oo = P, = 0 have at least one solution in posttive iniegers. Define generating
functions F(x) = F(z,, -+, x.) and F(x) = F(z,, ---,z) by F(x) = >, x°
and F(x) = X5 x°, where w ranges over all solutions fo Py = --- = P,=0
in nonnegative integers while & ranges over all solutions in postitive integers. Then

F(x) and F(x) are rational functions of the x's related by Flz,, <+ ,z.) =
(-1)'F(1 /2y, -+, 1/z,), where t is the dimension of the NIP-cone € of solutions
toP,=--- =P, =01n nonnegative integers.

. Proof. The assumption that there is a positive solution to P=---=P, =0

is equivalent to the statement that the positive solutions consist of the interior
points (nonboundary points) of €. Let A be a triangulation of € into lattice
cones as guaranteed by Theorem 3.9. Then an interior point of € is an interior
point of a unique £ € A not contained in JC. Conversely, if £ & A is not
contained in d€, then an interior point of £ is an interior point of €. Hence

(25) Fx)y = 2 2.¢
, e
where £ ranges over all lattice cones in A not contained in 9C and ¢ ranges over
all points in the interior of £. If £ = {a, -- -, 8), then it is clear that the inner
_ sum in (25) is given by
ateeetd
X

(r—x---(1—-x)
$0

=1

i . Xa+.--+3
(26) F(x) = Z[Z(l_xa) ...(l—xs)]
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where now for each ¢ the inner sum ranges over all i-dimensional lattice cones
o, -+, 6)In A which are not contained in 9C. Comparing (26) with (23),

we obtain the desired result.
The proof of Theorem 1.3 now depends on the following simple lemma, whose

straightforward proof using partial fractions we omib.

Levma 4.2, Let {H@)}, i & Z, be a doubly-infinite sequence of complex
numbers satisfying for all N & Z the recurrence

@n H(N+n)+a,.-1H(N+n—1)+ oo 4 aH(N) =0

where n is a fized nonnegative inieger and oo , a1, 1Ty el are fixed complex
numbers. Define F(y) = S H(r)y and F(y) = Z:’,l H(—r)y". Then F(y)
and F(y) are rational functions of ¥ related by F(y) = —F (1/y)-

Proof of Theorem 1.3. Suppose P and Q are polynomials and H(@r) = P(r) +
(—1)"Q(r). Let Fly) = S S H@Y - Now it is a basic fact from the theory of
linear difference equations with constant coefficients that a sequence H'(r),
r € Z, satisfies a recursion of the form (27) if and only if there are complex
aumbers 8 , -+ , 8. and polynomials Pyr), -+, Pur) such that H'(r) =
Z{ P(r)B; for all r & Z. In particular, H (r) satisfies a recursion of the form
(27), with g, = 1, 82 = -1, Py(r) = P(r), and P,(r) = Q(r). Thus by Lemma

4.2, :

29) 5 H(—ry = ~Fu/i).

The assuraption that G 1s 2 postlive pseudograph implies the existence of &

positive integer solution to (3); so Theorem 4.1 applies to the generating function

Folos, - - Ta, ) of (13). Thus with Fe(@1, -+ » Ta, Y) 88 in Theorem 4.1,
) (1 11

(29) FG(Ily"',zaay):(—l)p(;:)"'y;:—‘lr&)'

1If we let Foly) = Z; Hg(r)y'_and Foly) = >3 Ha(My' then F_'a(y) i

Fo(l, -+, 1, y) and Fe(®) = Fo(l, --- , 1, ). Hence by 29), Foly) =

(—1)'Fs(1/y)- Comparing with (28) gives

(30) o) = (=D T H(=), r>0.

Theorem 1.1 now implies that (30) also holds for 7 <

seen that deg Pg(r) =t — 1 (see the proof of Proposition 5.2); s0 the proof 13

complete.

A remark on magic hypercubes.
... X n (d times) d-dimensional hypercubes of nonnegative Integers |
to r on all dn®™* “lines”. 1f follows from Theorem 3.9 that we can write

Let H,.(r) denote the number of 7 X ﬂ'x
5 summing

@31) Hal) = }: P.0",

0. Finally, it 18 easily ~

MAGIC LA

where { is a p-th root of unity for .
is a polynomial in r {depending o1
It now follows from Theorem 4.1 ar
1.4 follows from Theorem 1.3, tha
Hy(—m — 1) = (= 1) " Hy(r).
Gupta and Nath {9], who compu
possible value of p in (31) (as a
though of course by Theorem 1.2

5. Miscellaneous. We have ¢
1.1-1.3. If, however, one wishes t
graph G, it is convenient to be ab
one needs only compute Hq(r) f
Theorems 1.2 and 1.3 and Corolla
of Hy(r) that need to be compt
provided later. We begin with z
equations.”

ProrosiTioN 5.1. Let (4) be
integer coefficients possessing a sol
of the NIP-cone € of all N-solution
je,t =8 — p wheresis the nw

Proof. By elementary linear
tions to (4) has dimension « (witk
N-solution is a rational solution,
and let 8 be any rational solutic
vector. For sufficiently large 7
(1/m)(na — ) so t > x, and th
The hypothesis in Proposition
For instance, the equation z; +
‘Remark. Let M be the B =
a, -+, o of nonzero N-solutic
finitely-generated). Then it is
the Krull dimension of the rin;
which annihilates M, is equal
solutions to (4). In particular,
we have dim (M) = «.
If a pseudograph G is not cc
Hy(r) = Hg()H.,(r). Hence
the next proposition.

Prorosition 5.2. Let G b
P vertices and q > 1 edges. The

deg Po(n) = {9
¢



Y

¢ all +-dimensional lattice Coneg
. Comparing (26) with (23)

- following simple lemma, whoge
omit.

y-infinile sequence of compley

coo - a(N) = 0

1y, any are fized compleg
= 2.7 H(=n)y". Then F(y)
N = —F(Q1/y).

olynomials and H(r) = P(r) 4
a basic fact from the theory of
icients that a sequence H'(r),
and only if there are complex

+, P.r) such that H'(r) =
iatisfies a recursion of the form
2,(r) = Q(r). Thus by Lemma

/Y.

'‘aph implies the existence of a
wplies to the generating function
-, Zo, y) as in Theqrem 4.1,

2.7 Ho(r)y', then Fo(y) =
y). Hence by (29), Fo(y) =

-7), r > 0.

or r < 0. Finally, it is easily
roposition 5.2); so the proof is

anote the number of n X n X
nonnegative integers summing
m 3.9 that we can write

the next, proposition. ..

MAGIC LABELINGS OF GRAPHS 629

where { is & p-th root of unity for some positive integer p and where each P «{(r)
sa polynomial in r (depending on d and n). Hence H,.(—r) can be defined.
1t now follows from Theorem 4.1 and Lemma 4.2, in the same way that Corollary
1.4 follows from Theorem 1.3, that Hyo(—1) = 0, r = 1,2, --- , n — 1, and
Ha(—n — 1) = (=1)""'Hy(r). When d = 3 this establishes a conjecture of
Gupta and Nath [9], who compute Hs(r). The problem of finding the least
possible value of p in (31) (as a function of d and n) appears very difficult,
though of course by Theorem 1.2 we know p = 1 when d = 2.

5. Miscellaneous. We have succeeded in our aim of proving Theorems
1.1-1.3. If, however, one wishes to compute P¢(r) and Qq(r) for a given pseudo-
graph @, it is convenient to be able to determine deg P¢ and deg Q¢ , since then
one needs only compute H «(r) for sufficiently many values of r. Note that
Theorems 1.2 and 1.3 and Corollary 1.4 frequently reduce the number of values
of Ho(r) that need to be computed. An example of such a computation is
provided later. We begin with a simple result concerning linear homogeneous
equations.

ProrosiTiON 5.1. Let (4) be a system of linear homogeneous equaiions with
integer coefficients possessing a solution in positive integers. Then the dimension t
of the NIP-cone € of all N-solutions to (4) is equal to the corank « of the system “@),
ie.,t = s — p, where s is the number of variables and p is the rank of 4).

Proof. By elementary linear algebra the vector space V of all rational solu-
tions to (4) has dimension « (without any hypothesis on positivity). Since every
N-solution is a rational solution, we have ¢t < «. Let « be a P-solution to (4),
and let 8 be any rational solution. For some integer m # 0, mf8 is an integer
vector. For sufficiently large n € P, na — mg is an N-vector v. Thus 8 =
(1/m)(na — ) so { > «, and the proof is complete.

The hypothesis in Proposition 5.1 that (4) has a P-solution cannot be removed.
For instance, the equation z; + z, = 0 has corank « = 1 but { = 0.

Remark. Let M be the R = K[X,, --- , X /J-module corresponding to a set
', ---, o of nonzero N-solutions to (4) satisfying Proposition 2.2 (ii) (so M is
finitely-generated). Then it is not hard to see that the dimension of M, i.e.,
the Krull dimension of the ring R/Ann(M), where Ann(M) is the ideal of R
which annihilates M, is equal to the dimension ¢ of the NIP-cone of all N-
solutions to (4). In particular, if (4) has a P-solution, then by Proposition 5.1
we have dim (M) = «

If a pseudograph G is not connected, say G = K + L, then it is clear that
Ho(r) = Hg(r)H,(r). Hence we consider only connected pseudographs in

ProrosiTion 5.2. Let G be a finite connected positive pseudograph with

' p vertices and ¢ > 1 edges. Then

if G 1s bipartite

_
\ deg Polt) = {q pt1
{

\ qg— 7P if G is not bipartite.

/
| /

\\ e et TSR
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Moreover, deg Qq(r) < deg Pq(r).

Proof. By, e.g., partial fractions, deg Pg is one less than the highest order to
which 1 is a pole of the rational function Fe(y) = > % Ha(r)y". From Equation
(24) we get deg Py = t — 1, where ¢ 1s the dimension of the NIP-cone € of all
magic labelings of G. Now by Proposition 5.1, ¢ is equal to the dimension of
the vector space V¢ of all rational solutions to (3). Following Stewart [20},
we call an element of Vg, a semi-magic labeling of G.

Stewart [20; Corollary 2.4] has shown that if G is not bipartite, then dim Ve =
g — p + 1. (Although Stewart does not allow loops and multiple edges, his
proof does not depend on this fact.) Thus when G is not bipartite, deg Pg =
dim Vg — 1 = q¢ — p. Suppose G is bipartite, say with every edge connecting
a vertexin V, toonein V,, where V,U V, = V, VNV, = . It 1is evident
that the positivity of G implies |V, = |V3|, say V1 = {vy, -+, v} and Vp =
{v;, ---,v.}. Let G’ be the pseudograph obtained from G by adding a loop
e, at v, . Then G is not bipartite; so by Stewart’s result dim Vg. = ¢ — p + 2,
where ¢ is the number of edges of G (so G’ has ¢ + 1 edges). Suppose S is a
semi-magic labeling of G’ of index 7. Now 3. 8(e) = ... S(¢') = nr, where
e ranges over all ¢ © E incident to some v € V, and € ranges over all ¢ € E
incident to some v’ & V.. But every edge except the loop e, is incident to some
v E V,andsomev’ € V,. Thus0 = 3. 8(e) — 2. S() = Sleo)- Therefore
dim Vg = dim Vg ;sodeg Pg = dim Ve — 1 =¢ —p + 1.

Finally, if deg Q¢ > deg P , then for sufficiently large r of the appropriate

parity H () would be negative, which is absurd. '

That deg Py = deg Qo is possible follows, for example, from taking G to be an
odd cyele. Here Pg(r) = Qq¢(r) = 1/2. A further example is the yvheel W,
p odd, discussed after Corollary 2.10.

Problem. TFind a better upper bound (in terms of the structure of G) on
deg Qq(r) than the one given in Proposition 5.2. In view of the second example
following Corollary 2.10, it seems unlikely that a simple explicit expression for
deg Qq(r) exists.

Ezample. In the Anand-Dumir-Gupta conjecture, G 1is bipartite Wlt}l
p=2,q=n" Hencedeg H(r) = ¢ —p+ 1= n — 1)° In the'Cﬂ;I‘h’t{z

conjecture, G is not bipartite and p = n, ¢ = (n ; 1). Hence deg Pe(r). =
q— p = g) (There is a misprint in (5], where Carlitz makes a conjectu!‘e
n+1

equivalent to deg Pq(r) = ( 2 )) o

Example. We illustrate the application of our results to computing 2 SI’""‘?c
example. Let T.(r) be the number of 4 X 4 matrices of nonnegative integers
summing to r in every row and column, with zero trace. This corresponds ¥
taking G to be the complete bipartite graph K, with a matching (1-facf<01f)
removed. (G is also isomorphic to the 1-skeleton of a cube.) By Theorem —-2
il?f(r) 15a poly Homlﬁal . Since p = S8and ¢ = 12, by PW

o e

ve
5.2 wehet?_

MAGIC
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g .T(r) = ¢ — p + 1 =35 Since G is regular of degree 3, by Corollary 1.4
e5(;1‘1‘«;,(6)7"4(—1) = Ty(—2) = 0and T,(r) = —T,(—3 — r). m&xr,seljso
(0) = 1. Thus if we know the value T',(1), we then know T(r) for —4 <
< 1, and these six values determine 7'(r) uniquely. Now T.(1) is easily
;puted to be 9 (the number of permutations without fixed points on 4 objects),
“from which we quickly obtain

o - () ) 1Y ()

We list some additional functions Ho(r) which we have computed in terms
the generating function Fo(r) = >.2 Ho(r)y'.
a) The Petersen graph [10; Figure 9.6]:

Fo@) = L+ y+ 6" + 4" + v)/(L — »)°Q + ).
(b) The product C5 X K, (first graph on the cover of {10]):
P = (U Oy G 6 /0 — g,

;(c) The 1-skeleton of the octahedron:

Foly) = (L+ 2y + 65" + 24° + 4)/(1 — 1)L + y).

'.‘(d) The 4 X 4 checkerboard (the vertices of G are the squares, and edges
connect two squares with a line in common so p = 16, ¢ = 24):

CFoly) = (L+ 2y + 131" + 2129 + 1315° + 265° + 4/(L — )"

Is there an a priors theoretical reason why the numerator is divisible by (1 + y)*?
=.(e) A triangle with two loops at each vertex (corresponds to 3 X 3 symmetric
matrices with line sums less than or equal to r):

Fely) = (1 + 8y + 159" + 84" + 4)/(1 — y)’(1 + p).
" (f) The wheel W, - Fo(y) = (I + 4y® + 2% /(1 = ¥
(g) The wheel W, : Foly) = (1 + 124 + 21y + 4%/ — yP)°.
(h) The wheel Wy : Fo(y) = (1 + 24y° + 92y" + 64y° + 6°)/(1 — ¥

In general, if ( is positive, then the degree of the rational function Fa(y) is
—m,; where m is the least positive integer for which a positive magic labeling of
G of index m exists. The leading coeflicient of the numerator of F (y) (reduced
to lowest terms) is then equal to the number /7 o{m) of positive magic labelings

of index m.  For example, if G is the wheel W3ie1, then the numerator of Fq(y)
has degree 2¢ and leading coefficient 25 — 2. - '

It

Addendum. 1 am grateful to K. Baclawski for calling my attention to the
work of Eugtne Ehrhart, which is closely related to the results of this paper.
The following papers in particular are significant.
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1. Introduction. Let (x,), n
contained in [0, 1). Denote by
The sequence {z,) is called uni
asN — o forall0 <z < 1. (In
of fractional parts {z.} is u.d.)

D%

a.
®
-

i

sup

0<z <1
Another equivalent condition is

de

Sx(h) =

for allkh € Z — {0}. (For the p1
g theorem due to Erdés and
version of the sufficient part of ti

THEOREM A. For any inleger
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The best constants ¢, and ¢, so

reiter, unpublished). Much large

The purpose of this paper is t

and to point out their connecti
prove the following theorem.

TueoreM 1. Let F(z) be nond:
and let G(z) satisfy a Lipschitz cor
|G(:

forall0 < z,y < 1. Suppose that
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