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_ K. \[AGIC LABELINGS OF GRAPHS, SYMMETRIC
A1 <t <y MAGIC SQUARES, SYSTEMS OF PARAMETERS,

O<i< AND COHEN-MACAULAY RINGS -
M2 RICHARD P. STANLEY '

Y74 '
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1. Introduction. A COR
Let ' be a finite graph allowing loops and multiple edges, so that I' is a

7 to yleld the trap csexdograph in the terminology of [5]. Let £ = E(T) denotc the'set o cder
o

I e 3.
§ 1 e

Lo o I and N the set of nou-negative integers. A magic labeling of T of ndex r
P revxo:;y glven. jsan assignment L : E — N of a non-negative integer L(e) 'to each edge e of-
is another minimal’ > . .

~ “such that for éach vertex v of T, the sum of the libels of all edges inci v
is r (counting éach 1oop &t » once only). We will assume that ‘we have'chdsen
gy B ome fixed ordefing e, , ¢, , -+ , ¢, of the edges of T'; and we will identify the
b= 115 22w + v S magic labeling L with the vector & = (a,, s, -- - , a)) € NY, where a, = Le).
Let #+(r) denote the number of magic labelings of I' of index r. Tt may happen
that there are edges ¢ of T that are slways labeled 0 in any magic labeling. If
these edges are removed, we obtain a pseudograph A satisfying the two condi-
tons: () He(r) = Ha(r) for all r € N, and (i) some magic labeling L of A
satisfies L(e) > O forevery edge e of A. We calla pseudograph A satisfying (ii) a
pasttive pseudograph. By (i) and (ii), in studying thke function Hp(r) it suffices
te 2ssume that T is positive. A magic labeling L of T satisfying L(e) > 0 for
all edges ¢ € E(I) is called a positive magic labeling. Any undefined graph
theary terminology used in this paper may be found in any textbook on graph
theory, e.g., [5]. ‘
In [14] the following two theorems were proved.

i < lvl(t)"

for t = 0 because of

K, 1950. ,
and apaces of continuous TuEOREM 1.1. [14, Thm. 1.1). Let T be a finite pseudograph. Then either
: Hr(r) = 6,, (the Kronecker delta), or else there exist polynomials P (r) and Qr(r)

such t/zaizf{“‘r\grk)_hf Pr(r) + (—=1)'Qr(r) for all r & N.

TuEOREM 1.2 [14, Prop. 5.2]. Let;I‘r be a finite bbsitiue pseudograph with at
least one edge. Then, deg Pr(r) = q — p + b, where q ts the number of edges of T,

P the number of vertices, and b the number of connected components which are
bipartite.

normed {inear spaces, Tra

ms,”” pp. 261-289 it Appre
»rk, 1970.
ces, Duke Math. J. 8(1941
haracterization of minimal p

For reasons which will become clear shortly, we define the dimension of r,
denoted dim T, by dim I' = 1 + deg Pr(r). In [14, p. 630]. the problem was
naised of obtaining a reasonable upper bound on deg Qr(r). It is trivial that
deg Qr(r) < deg Pr(r), and [14, Cor. 2.10] gives a condition for Q.(r) = 0.
Empirical evidence suggests that if T'is a “typical”’ pseudograph, then deg Q¢ (r)
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will be considerably smaller than deg Pr(r). In this paper we will give a rigoroug
justification of this empirical fact. We will give an upper bound for deg Qr(n)
which we believe to be the best possible “theoretical” upper bound. (The degree
of Qr(r) may be smaller than this upper bound because of “accidents” in the
structure of I'. See Example 3.2 for an illustration of what we mean by the
term “accident.”) The upper bound we obtain depends on analyzing a certain
commutative ring R" associated with T. We will try to provide a reasonable
amount of ring-theoretic background for the reader unfamiliar with commutative
algebra.

When T is the complete graph on n vertices with one loop at each vertex,
H(r) is the number S,(») of = X n symmetric matrices of non-negative integers
such that every row (and therefore every column) sums to . Using a combina-
torial argument whose basic idea was kindly supplied to this writer by Danicl
Kleitman, we can transform our bound on deg Qr(r), which depends in a rather
complicated way on the structure of T, into an explicit integer. We obtain the
result that S.(r) = P.(r) + (—1)'Q.(r), where

deg P.(r) = (g) arlld deg Q.(r) < (n _2- 1) -1

if n is odd, while

aex 0.0 < ("5 ) -1

if n is even. We conjecture that equality holds for all n. This conjecture i
true forn < 5.

LIt is more convenient to work with the generating function Fr(\) =
2 .-0" Hr(r)\" than with the function H r(r) itself. Using the fact that the
ring R" is a Cohen-Macaulay ring (which follows from a result of M. Hochstf’.r)v
we are able to obtain information on the coefficients of certain polym;)r:lf”]‘i
associated with Fr(A). Forinstance, we are able to show that F(A\)(1 — )*)"is8
polynomial with non-negative integer coefficients, where d = dim T.

2. Some ring theory background. Let T be a finite pseudograph with cds® -

setE =E) = {z,, 25, -, z,}. Regard the z.’s as independent indete
mmates and let R denote the polynomial ring R = C[z,, - - - , z,], where C denO;""i
‘the complex numbers. (We could use any infinite field in place of C, b“t. of
efiniteness w  will use C.) Let R" denote the subring of R generated b
,monomials’z, %! vv5.z,%Y, where @ = (o, ¢ -+ , a,) is & magic labeling of I-
short we write x* = z,* --- 2,°*.- Thus since the sum a + 8 of tw0
labelings « and 8 of T is also magic, it follows that the monomials x*, Whe
is a magic labeling of T, form a vector space basis for R'.
We want to investigate the structure of the ring R'. .
certain relevant facts from commutative ring theory. Most of these facts
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0 1nown and can be found in a number of references, of which [1], {31, [9], [11],
wl“‘l’;‘] [17), arc a sample. Results which we shall need which can be found in,
12l [r'ef;,rpnces we will merely state without proof; a few results which do not

i o

: icitly appear in these references we will prove. We shall restrict our attention
’ "pha‘ in kinds of rings which we call “G-algebras”, though some of our results
: loﬂ‘.rtT‘ebras are actually valid for more general classes of rings.: T}PKQ_ 3?.:,%
! .,nn('l':;fwn analogy between the theory of G-algebras and the_theory. of g;‘éal g
f«“ - 5%

Thus many of the references which we shall give for resul

#

irelevant ideal A, + A, + .- of a G-algebra 4 = Ao + A, + A, + i
“.r;eql" by “homogeneous ideal”, etc., the theorems and their proofs remain
“ides A s

We proceed to define the concept of a G-al'g.e.bra. By a yrade(? ring, we méar} ’g b
commutative ring A vizh identity whose additive group has a-duect.sgm‘,glgcom-_ ‘
position A = Ao —f— Al + -+« such that A,‘A,‘ C. Ai{-i . Ifin a_dd!-t’;lon AO;; ‘a'
field k£, so that A is a k-algebra, and if 4 is 'ﬁmtely~genera§:ed as a yk-g.lge_sébrg ‘
(so that A is Noetherian), then we say that 4 is a G—algrebra. -We can makethe
ring R" defined above into a G-algebra by deﬁnlng R, to be tl‘le yectqr Vspac?
spanned by all monomials x* such that « is a magic labeling of n_;gegh_r..’“ , *
Ifd =40+ A+ --- is a G-algebra, we say that an element ¢ of 4 is Ig_omof

geneous if z & A, for some r € N ; and we say that z hgs degree r,
written deg x = r. In particular, deg 0 is arbitrary. An ideal I of Als said to be
homogeneous if it is generated by homogeneous elements of A. The pé’smnptiqn
that a (r-algebra is finitely-generated implies that each 4, is a finite-dimensional
vector space over k = A, . The Hilbert function H, : N — N of A is defined by
H,(r) = dim, 4, . Thus for the G-algebra structure we have defined on R", we
have Hpo(r) = Hp(r), the number of magic labelings of T of index r.

If 4 is a (-algebra, the Poincaré series F4(\) is a formal power series wit'h
integral coefficients in the variable X defined by F,(\) = Z,_o' H,n)\. Ttis
well-known that #,()) is a rational function of A [1, Thm. 11.1] {13, Cor. 4.3].
I T'is a finite positive pseudograph, we abbreviate Fer(A) to Fr(\). It follows
from Theorem 1.1 that Fr(\) has the form

We(\)
(I =N+ N

where d, s & N and where W()\) is a polynomial in X with integral coefficients
satisfying (a) W (1) 5 0 and (b) Wr(—1) #0ifs > 0. Thusd = 1 + deg Pr(r)
=dm 7, ands = 1 + deg Qr(r) (where we set the degree of the polynomial
0to be — 1). We call s the subdimension of I, denoted s = sdm T. -

A fundamental result of commutative algebra {1, Thm. 11.14] [3, Thm. 2.3]
(12, p. IT1-7, Thm. 1] {13, Thm. 5.5] states the following
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ProrosiTioN 2.1. Let A be a G-algebra.
are finite and equal:

(i) The length of a longest chain of prime ideals of A,

(i) The mazimum number of elements of A (which can be chosen to be homo.
geneous) which are algebraically independent over k = Ay, and

(iii) the order to which A = 1is g pole of the Poincaré series F A(A).

Then the following three numbers

The integer defined by Proposition 2.1 is known as the Krull dimension of A4
and is denoted dim 4. (The Krull dimension “dim” is not to be confused with
the vector space dimension “dim,”.) There follows immediately from Proposi-
tion 2.1 and our observations about F(\) the next result:

COROLLARY 2.2, Let I' be a finite pseudograph. Then dim RT
Thus if T is positive with at least one edge, then dim RT
notation of Theorem 1.2.

= dim T
=qg—p+b+1,inthe

Corollary 2.2 of course explains our reason for the notation “dim I''. We now
come to another basic result in commutative algebra [12, p. III-11] [13, §6].

ProprosiTION 2.3. Let A be G-algebra, and let 6, ,
elements of A of positive degree. The following five
) d= dim 4 and dim A/(g, , - - , 82) = 0.

- (i) d = dim 4 and dim, 4/(8,, --- ,0,) < o (recall that dim, denotes dimen-

sion as a vector space over k, not Krull dimension),

(iii) For any subset {6, ---, 8.} of {8, » o0, 0a), dim A/(8,, , -
dim 4 —j;anddim 4 = 4.

(iv) 6,,6,,---, 8, are algebraically independent over k and A is a finilely-
generated module over the polynomial subring k[6, , - - - |, 8.).

(v) 6,,86,, --. » 04 are algebraically independent over k and Avis integral over
the ml_)rihg B =kfg,, ---, 04] (i.e., every element of A satisfies a monic polynomial
with coefficients in B). :

s+, 84 be homogeneous
conditions are equivalent:

,0;,) =

Aset, 02,---,6;0f homogeneous elements of positive degree satisfying any
one of the above five
of parameters (hs.0.p.) for A. Every G-algebra A possesses an h.s.0.p. (e.&
{1, p. 69, Ex. 19] [12, p. HI-20, Thm. 2] (13, Thm. 5.4])). Ifg,, --- , 6. beleng to
some h.s.0.p., we call 8, v ©°°, 0; a partial h.s.o.p. If 6 belongs to some h.s.0.p-+
then we call 6 a parameter. A necessary and sufficient condition that a st

SRR A , 8, oFHdinbgenebus elements of A of positive degree be a partial h.s.0.p-
© isthatdim A/(6,,---,0) = dim 4 — ; (e-g., [12, p. I1I-11, Prop. 6)).

ROPOSITION 2.4. Let A
Mt’} deg 0( = €;.

be a G-algebra, and let 6, y o+, B4 be an h.5.0.p
Then the Poincaré seriés F,(A) can be written in the

R = V) ST a-,

=1

where V,(\) is a polynomial in \ with integer coefficients.
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Proof. By Proposition 2.3, 4 is a finitely-generated (graded) module over

lynomial ring k{8, , -- -, 8,]. The proof now follows from [1, Thm 11.1)
or [13, Thm. 4.2].

If B is a prime ideal of a G-algebra A4, define the height of B (sometimes called
the rank of ), denoted At B, to be the length of the longest chain of prime i xdea.ls
of A whose maximum element is B. (Equivalently, ht P = dim A, h
15 the localization of A at . ). Thus it B = 0if and on]y 1f 13 am

cof A. If Iisany ideal of A, define ht I = inf ht P, where' thg 1n
over all prime ideals P of A Whlch are minimal with respect to con al

Let [ be a homogeneous ideal of a G-algebra A. Besides k¢ I, we :
consider two other numerical invariants of I. Define quo I, the quotwnt /
of [,byquo I = dim B — dim R/I. Also define par I to be the cardma
the largest partial h.s.o.p. contained in I.

Let I be a homogeneous ideal of a G-algebra A T,

PrOPOSITION 2.5.
Ml <quol = par [l

Proof. Theinequality ht I < quo [ is well-known and easy"to prove. 'N y:
let B be a prime ideal contammg I such that dim R/P = dim R/F (such B
exists since the primes in R/I are just the images of primes in R contaln g'T).
Then dim B/l + ht B = dim R/P + ht B < dim R (see [12, p. III-21]) and
WP > htI. Thusdim R > dim R/I + ht I, which is equivalent to htI <&quo T.

Suppose 6., -- -, 6, is a partial h.s.0.p. contained in I. By Proposmon 2.3,
dim A/(8, , -- 0) = dim 4 — 7, so a fortior: diim A/I < dim 4 =5 Thus
parl<quo[ S

It remains to show par I > quo I. If quo I = O there is nothmg to prove.
Now suppose that quo I > 1and par I = 0. Thus for all homogeneous z € I,
dim 4/(z) = dim 4. This means each homogeneous z € I is contained in a
prime ideal B of A, necessarily minimal, such that quo B = 0. Since a Noetherian
ring contains onlv finitely many minimal primes (e.g., {9, Thm. 88]), we have
that the set I, of homogeneous elements of I is contained in a set union BV
B,V - U, of primeideals B, , B, - --, B, . A straightforward modification
of an argument in [9, Thm. 81] or (13, Lemma 5.1] shows that then I, is contained
insome B, . Namely, we argue by induction on j. For every 1 We may assume
LOB U - UP, U --- U P, , where the notation $B. means that P, is
omitted. Plck ¥y € Libutnotin B, U --- UR, U ... U B, . The desired
result is trivial for j = 1. Forj > 2, let a = deg y, and b=degyys - - ¥,

and set y = y,° + (ypy, - - - ¥:)*. Then y € I, but y lies in none of the P.’s,
a contradiction. Thus I, C B, for some . Since [ is homogeneous, I C B, .
Thus quo I = o, contradicting the assumption that quo 7 > 1. Hence if

quo I > 1, then par I > 1.

The proof now proceeds by induction on quo I. By the above paragraph
We are done if quo I = 1. Assume quo I > 1. By the above, I contains a
homogeneous parameter 6. Let § = R /(8) and J = I/(6). By Proposition 2.3,
dim § = dim B — 1. Moreover S/J=R/I,soquoJ = dim § — dim S/J =
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dimR — dim R/I — 1 = quo{ — 1. By induction we may assume J containg
a partial h.s.o.p. of cardinality quo I — 1. Lifting these parameters back to J
and adjoining 6, we obtain a partial h.s.o.p. in I of cardinality quo I. Hence
par I > quo I, and the proof is complete.

Note. We will only need the equality quo I = par I of Proposition 2.5, but
we have added the inequality involving ht I for the sake of completeness. Also
for the sake of completeness we include the next proposition.

ProrosiTioN 2.6. Let A be a G-algebra, and suppose that A is also an integral
domain. Let I be a homogeneous ideal of A. Then ht I = quo I = par I.

Proof. By Proposition 2.5, it suffices to show that ht I = quo I. Now any
integral domain B which is a finitely-generated algebra over a field I has the
property that all maximal chains of prime ideals have length equal to dim B
(e.g., [12, Cor. 2, p. I1I-24]). Hence ht B + dim A/P = dim 4 for every prime
ideal Bof A. Thusht I = inf (it B) = inf (dim R — dim R/B) = dim R — sup
dim R/P = dim R — dim R/I = quo I, where the inf’s and sup’s are over all
primes minimal over I. This completes the proof. :

We need some information on the degrees of the elements of a system of
parameters for a G-algebra A. We will prove a somewhat stronger result (Propo-

_sition 2.9) than we need for the time being, since we will require such a result
in Section 5. An even stronger result can be proved, but Proposition 2.9 is
adequate for our purposes. Proposition 2.9 may be regarded as an elaboration
of the well-known fact (see, c.g., [1, p. 69, Ex. 16]) that if & is infinite and 4 is
generated by A,, then A possesses an h.s.o.p. 8,, - - - , 8, such that eachdeg 6,. =1
We first require two lemmas.

LEMMA 27. LetAbea G-algebra, and let I - J be homogeneous ideals. Lel
A/I and let J denote the zma(/e of J in B. Then par J = par J — par .

3 LE -
L Proof.:g‘ Using Proposition 2.5 and the 1dent1ty B/J = A/J, we have par J =
dim B — dim B/J = (dim A — par I) — dim 4/J = (dim A — dim 4/J) —
par I = par J — par I. This completes the proof. '

LEMMA 28. Letk be an infinite field, and let V be a finite-dimensional vedSO'
space over k. If 8;, ---, 8. are subsets of V whose set-union is V, then some
contams a baszs jor V.

Proo} .- Letri= dlm V. We can find an infinite sequence vy , Vs, "
_ of V such that . any r of them form a basis for V, since choosing .+1 ¢
v. B2 R 2 have been chosen merely involves avoiding the zeroes of finit
many pOlynoxma.ls with coefficients in k. Then one of the S. must contal“
of the v,’s (in fact, infinitelv many of them), so the proof is complete.

14

ProrosiTioNn 29. Let A be a G-algebra such that k (= A,) s inﬁnit&r
1S (jene

I,, -, 1, be a sequence of homogeneous ideals of A such that each 1.1
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4 that
eneous elements all of the same degree, say d; . I‘urtherlmto - ajsuf;li Jh.a
by s for2 < i < s, Letd, =1, + 1, + - +I.~I;{an et p. = parJ, .
iy d”l[ possesses a partial h.s.o.p. 8., 8, , --- | 8, such ¢
Then -

= . < )
d(’g Opioier = dPg 09:’«:*‘2 == deg 0::-' = dly 1 S 7'__ $

here by convention py = 0.
w

-90f. The proof is by induction on P. . The theorem is tr:ivxalligor,
bro o me the theorem for p, < p, say, and suppose we are ( ea g
Now et A A generated by j:h“‘

. e ie - g K cs e d. ."""T'De
%, where for some 7 < j; ;: is an< elemzn;, of I, of degree :
‘ ’[,"— +Ii+2+"'+ my] .m_ . . _ ‘-LE~>
A'W-"t clailm that par K,. = par J,, , j <Sm<s LetRB h- z:/I:;I.{ L:thhJ-
»image of J ., in B. Since K,, C I, by‘Lemma 2.7 we hav _po 'f'his“ ar J
the ‘qmr 7 ’ But every element of J.. is nilpotent, so parJ,. = 0. 1S prov a8
N p‘ m . - .
thp\'f)l:'ulnc.t J be the least integer for which par K; > 0, amfi suppo;e_ fgh%;K;;lS~
er;vrated by homogeneous elements Yo, Y2, -, Y, , all of degree P10 W

flaim that some linear combination §, =

s ; a: € k, is & parameter,
Otherwise each such 4, belongs to a minimal Rri{ne 1de43}l B _of AN?;ttxgging
r B = 0. Since there are only finitely many n}lmx.nal,pmnom lil z:) cherian
pi by Lemma 2.8 some minimal prime P sz'),tlsfylr'lg par 331 = ::Ktalﬂcn.s:i;
;)lasgx; for the vector space spanned by the yi;s. lSd.nce Pisan ideal, weg K - ,
icti ar K; > 0. This proves the claim. ) ) RIS .
c”;tertag'i‘zg/?gl) where 8, is the element constructed in the prevll]oqs parag;a/i)h
Since 6, is homogeneous, C becomes a G-algebra by lettmlgz C, ;_)e the ilmage o }
Let I denote the image in C of an idealf[gf A. hTtl}ll(;r; K, ,(r;;;)éct;;:ﬂ;’ j‘_), .
is a4 sequence of homogeneous ideals o suc i (re oy,
. drzft(;d by homogeneous elements all of degree d; (respectlvely, d.).JN—IO?
g“;;? K. =R, +Lin+ - +1,j<i < s. Letting 7 = (4, an(.i ! —tim;
J(ilv Lémr'na 2.7: we have par K, = par I_{ P = 1, 1 < zhshs.t d]:y a_th: 1(111‘3;1((:73 "
hvpothesis, C possesses a parti_al h.s.o.p. 4,, 2o, 0, suc ‘t_ade gﬁ,' 5
= deg a.vx =d, anddeg Opisisr = deg Opisez = +ov = g,.,'o Oann_d
t<'s. Lifting 6, , - - -, 8,. back to homogeneous elements 02, ---, ,:rhis and
ad?oirlling 8, , we obtain our desired partial h.s.o.p. 6, , 6, , --- , 0., . It
pletes the proof, .

CoroLLARY 2.10. Let A be a G-algebra where &k = A, 78 infinite, and'l.et bee i(;
homogeneous ideal of A. Let par I = p, qnd suppose t[’,mtt:.h; g(/ize g, ) ;nd, by
@ homogeneous set of generators for I (as an ideal of A)i etai;;.g g partia‘,l’h_s.n‘p,
N be the least common multiple of e, , - -+ | e, . Then- cm]t[

b, -, 8,0f cardinality p, such that each 8, is of degree N

{) I : l f 1 ] I 1 N/ei I l’
700’- et be t eal o ene!ated y t ee emelltS y, . et =
Il he ld g
1/1 1 d(‘"()' ¢ 1‘he ]mage Of I mn A/[[ . I hell ever \ ele"le[lt; Of 1 18 llllp()tellt, S0
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parI = 0. It follows from Lemma 2.7 that par I, = par I. The proof now
follows from the case s = 1 of Proposition 2.9.

3. The formal subdimension of I'.  We are now ready to resume our discus-
sion of magic labelings. :

Definition. Let T be a finite pseudograph, and let RT be the ring defined in
the previous section. Let I' be the ideal of R T generated by all monomials x*,
where « is a magic labeling of T of odd index (i.e., x* € R ;T for some odd integer
j, where R" = R," + R," + --- is the grading defined in the previous section).
The formal subdimension of T, denoted fsd T, is defined by

(2) fsd T = dim ' — par I".

TaeoreM 3.1. Let T be a finite pseudograph. Then sdm T' < fsd T

Proof. Let s = par I1'. By Corollary 2.10, we can find a partial h.s.o.p.
0,,0,, -, 0, of R' such that each 8, has degree equal to the least common

multiple of the degrees of the generatdrs of I". By assumption these generators
all have odd degree, so each 8, has odd degree N. Extend 6, ---, 0, toan h.s.0.p.

8,,---,0,,whered = dim I'. Lete, = deg 8, fors + 1< { < d. By Proposi-
_tion 2.4, we have
3 _ Fr() = 2 He(N

Lt d

il

H (1 - )‘”)1

t=g+1

Ve)/d = 3"
where Vr(i) € Z]A) Then since N is odd, we have by (3)
T sdmI‘Sd—-s=dimI‘—parIri

3

' Thxs ;;oﬁ;pleteé t:ﬁe proof.
.. We believe that Theorem 3.1 provides the best possible “theoretical” uppef
bound for sdm T' (and hence for deg Qr(r), since I + deg Qur(r) = sdm T) In

'6§he§ words, if I satisfies sdm I' < fsd T, this is because of very special properti
of T, which cannot be explained in a general way.. Thus we believe that 8

“typical’! pseudograph T satisfies sdm T' = fsd T'. Of course we are speaking .

heuristically when we use the term “typical”.

why: this strict inequality is due to “accidental”” properties of I. Leb T be W%
pseudograph (actually a graph) of Figure 1. Define the magic labelings

o =(1,1,1,0,0,2,0,0,1,1,1), o= (1,0,0,0,1,0,1,0,050

o*=(,1,0,1,0,0,01,0,01), o =(,1,01,00100 1,0

o = (1,0,0,0,1,0,0,1,0,0,1).
\] .

@”}""Ple 3.2 We give an example where sdm I'.< fsd T, and we explsid

I
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FIGURE 1

Then a minimal set of generators for R" (as an '
algebra over C) consists of 4, , ¥z, -+ , Ys . Theideal I T in the deﬁmtlon ‘of
fsd T is generated by y2 , ¥s , Yu, Us - It is easy to check that dim ' = 4 and
par [ * — 3. Hence fsd T = 1, so we would expect Fr(\) to have a snmple pofe'
at A = —1. However, in fact Fr()) is analytic at A = —1. To see this, note
that all relations among the generators y, , --- , ¥s are consequences of yays =
yys - Hence since deg y. = 2 and deg y» = degy; = deg y, = degys = 1,
we have

1 ¢
For convenience set y; = x°

1=\ 1
1 - N1 =Ny A-=N

It is merely an ‘“‘accident” that the relatlon between y, , ¥s ; Ye s y, , giving rise
toa factor 1 — A’ in the numerator, cancels the factor 1 — A* in the denominator
coming from the generator y, . There is no ‘“‘theoretical”’ reason why . should
be related to ¥a , ¥a , ¥ , ¥s in this way; indeed, y, is algebraically independent

of o, Ys ) Yu s Ys -

There is another way to view the above example. ‘h.s.o.p. for R" can be
taken to be 8, = Y1, 02.= Y2, 83 = Y3, 00 = Ys + Ys - %ow By Proposition 2.3,
“R™isa f ﬁmtelv—genemted module over the polynormal ring C[6, , 0., 05, 64].
In fact, R" is a free module with generators 1 and y, . (For the significance of
R" being free, see Proposition 4.1.) Thus we get

1+x 1

Ta-Ma =N a-n"

)\degl )\degu‘
o) = 4

ITa-

el

de¢ 8;
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Again, it is an “accident” that the factor 1 + X in the numerator, coming from
the module generators 1 and y, , cancels the factor 1 — A\* coming from the
parameter 0, .

Remark. The reader familiar with [14] may wish to know its relationship to
the present paper. Although stated differently, Proposition 2.7 of [14] asserts
essentially that if J is the ideal of R" generated by all monomials x” where a is
magic of index two, then par J = dim I. It then follows immediately from
Proposition 2.4 of this paper that Fr(\) has the form (1). In [14], Proposition
2.4 of this paper has been replaced by Theorem 2.5.

Theorem 3.1 gives us a bound for sdm T, but it is not very satisfactory since
it leaves open the problem of computing fsd I'. We would like a purely com-
binatorial description of fsd T in terms of the structure of T. Such a description
is provided by the next result.

TueoreM 3.3. Let T be a finite pseudograph. Then fsd T = max (dim 4},
where A ranges over all posilive spanning sub-pseudographs of T which do not
possess a magic labeling of odd index.

Note. The assumption in Theorem 3.3 that A is positive is clearly unneces-
sary, since any finite pseudograph A has the same dimension as its maximal
spanning positive sub-pseudograph. The advantage of dealing only with
positive A is that dim A (= dim R?) can then be calculated by Corollary 2.2.

" Proof. By Proposition 2.5 and the definition (2) of fsd T, we have
o fd T = dim T — quo I" = dim R*/I".
Set
_ ST = R'/I'.

By Proposition 2.1, it follows that fsd T is the maximum number of (homo
geneous) elements of S T which are algebraically independent over C. Now S
is gerierated by monomials x°, where o is'a magic labeling of T. ThusfsdT L”‘
equal to the largest integer A for which there exist h magic labelings a. L . o
of T such that x*, ---, x** are algebraically independent over Cin 8" No¥
g, x** will be algebraically independent in S if and only if the following
. two conditions are satisfied: :

=@y ,=ec @y are non-negative integers, the monomial x
liein I, Equivalently, if « is a magic labeling of T, let supp

edges'of T'onl which ais positive and let T' = \J:-." supp a: -
panning subgraph of T' with edge'set T. Then A has no mag

arog o varad dw
« denote the

Let A denot®
ic labe

of odd index.
(ii) The vectors o, , - - -
Thus fsd T is the largest integer & obtained as follows: A s 2 positive span
subgraph of I' which does not possess a magic labeling of odd‘ index, d"m
a,, - -+ , o, are magic labelings of A for which &, , « - -, @ aTC linearly indepeti®®

, a, are linearly independent over Q. sing
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. I -
, a, are linecarly independent over Q if and only if x™,--- x

Butay, - ’ £ arc

for which x*
over & y mdepcndent in R%. The largest A

ale mb:lll: (lmil(’pendent in R* is just dim 4, so the proof follows
‘!‘pbruc‘

gences and Cohen-Macaulayrings. We know from Theorem 3.1 that
-seq

- ! ‘where
4 4 fnite pseudograph, then Fr(A) = Wc(A)/(1 — MN°(1 +g\) where

- dl::mn about the generating function. F.-()\), we need to

—sequences and Cohen-Macaulay - rmgs iIf A s
ghcor\ o ? hS(i?logeneous elements 8, , 8, , ---, 8, 0f A is sald to be
,,quence4ose uence if the following two condltlons are satisfied:

,ze)o u’f‘he 1d(fzal 4, , 6,, , 8.) is not all of A. Eqmvalently, deg
i 2
for | <If11 << 71 < r, then 6, is not a zero-divisor modulo the ideal (0, r 2,

([l‘l)o well-known facts concerning homogeneous A-sequences are the fol
E o ermutation of a homogeneous 4-sequence is a homogeneous A-
N homogeneous A-sequence is a partial h.s.o.p. If is not tme however
:::te::srlyl 5.0.p. is a homogeneous A-sequence; and this fact; leads to ‘the

pmposxtlon

ProprosiTioN 4.1. Let A bea G-algebra andlet 8, , --- , 6, be an h 5.0. p say

ithdeg 8. = e, . Let B = A/(8,, ---, 0;), endowed thh the na{ur "‘gu:?twnt
;[rlading;g’ ('B, is the image'of A,). The folloumg four conditions dre - equi valent:
Q) 8,, -+, 84 is an A-sequence,

il) every h.s.o.p. of A is an A-sequence, o ‘
(33 A z'sya free module over the polynomial ring k[6, , --- , 0] (recall f;o}r)n
Proposttion 2.3 thai A is always a finitely-generated module over k[6, , - -- , 8,]).

(v P = B/ TTa =3,

If A satisfies any of the equivalent conditions of I?roposition 4:1, thendbg

definition 4 is a Cohen-Macaulay G-algebra. The various u;ghcahc;::lgsse (; :
iti in the literature. e equ

t e Proposition 4.1 all can be found in t e. e eq .
(;)) I;?dv (ii) agpears, e.g., in [12, p. IV-20, Thm. 2]. Condition (11.1) is ment-logegd
in [7, p. 1036] and [13, Prop. 6.8]. Finally condition (iv) appears in [13, Cor. 6.9]
and [15, Cor. 3.2]. _

TlEe next result is a special case of a theorem ﬁrIs{t p;l'o;re(,i by I\l/{.iSch;cn};s;t;ir

in {10, p. 52]. Hochster’s resu -

(6, Thm. 1°]. Another proof appears in {10, : S Jesult s genera
ized i i d known properties of Cohen-Mae y
ized in [8]. By using Theorem 4.2 an op 3 e
rings we could have simplified the proofs of Proposmoo 2.5 and Pr0o0s1§110n 1.6
in the case 4 = RT (see, e.g., [11, (16.B)], but we felt it best to avoid the re a-
tivelv deep Theorem 4.2 whenever possible.

THEoREM 4.2. Let T be a finite pseudograph. Then R is Cohen-Macaulay.
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CoroLLARY 4.3. Let T be a finite pseudograph, and suppose that 6, , - - - | 6,
is an h.s.o.p. for R" with e, = deg 6, . Then the coefficients of the polynomial
Ve(A) = Fr(\) H,-_l‘ (1 — X°') are non-negalive.

Proof. LetB = R"/(8,,---,6,). By Theorem 4.2 and Proposition 4.1 (iv).

Vi) = Fs(\) = Y (dimc B ))\ This proves the corollary.

Corollary 4.3 expresses the coeflicients of V+()) as dimensions of vector spaces.
It would be desirable to obtain a more combinatorial interpretation of the
coefficients (expressed directly in terms of T'), but we have been unable to do so.

Corollary 4.3 raises the question of what integers e, , e, , --- , 4 can be the
degrees of the elements of an h.s.o.p. of RY, where T'is a pseudograph. A partial
answer to this question may be deduced from Proposition 2.9 and is the subject L
of the next three propositions. o 'ROPOSITION 4.7. Lel T
: in Proposition 4.6.
spanning subgraph:
par J " if and onl;

 that deg 6, = 14f 1 -
ently, the power ser
integer coefficients.
T, we know from The.

nteger coefficients.)

of. LetI, = J"and
ince par / = dim I
position 4.6 raises the
es the condition fsd I

Prorosition 4.4. Let T be a finiite pseudograph, andletd = dim I'. Then R'
possesses an h.s.o.p. 8,,60,, ---, 6, wheredeg 8, = 2for 1 < ¢ < d. Consequently
the power series Fr(\)(1 — X is a polynomial with non-negative inleger cocfi-

cients. - By mimicking the

now follows from
m ple 48 Let I be
ollary 4.5, the coeffi

Proof. Let I be the ideal of R" generated by all monomials x* ,where a is a
magic labeling of T of index two. It is an immediate consequence of [14, Prop.
2.7] that par I = dim I The proof now follows from Proposition 2.9 after
settmgs—l I, =1 '

PROPOSITION' 4.5. Let T be a finite pseudograph with dim I' = d, and suppose
that every magw labeling of T is a sum of magic labelings of index one. Then R'
possesses an h.5.0.p. 8, ,6,, --- , 0, wheredeg 8, = 1for 1 <7 < d. Consequently
the power series Fr(\) (1 — )\)‘ is a polynomaal with non-negative inieger coefficients.

- . Proof. Let J" be the ideal of R .generated by all monomials x°, where « is a
magi'c‘labeling of index one. By the assumption on T', JT is the entire irrelevant
“ideal R," + R," + --- ,so par J* = dim I. The proof now follows from
Proposition 2.9 (or in fact directly from [1, Ex. 16, p. 69]) after setting s = 1.
I =J
In [14 Prop 2.9] a necessary and sufficient condition is given for I' to satisfy
the condition of Proposition 4.5. A suffizient condition is that I' minus its loops
be bipartite.. Two special cases include: (a) T is the complete bipartite graph
' K... Then dim T' = (n — 1)* 4+ 1 and H(r) is the number of n X n matrices
' i negatlve integers such that every row and column sum is equal to r.
"K.}"with a loop adjoined to each vertex.: Then dim T = n’° + 18°¢
H; r(r) is the number of n X n matrices of non—nega,txve integers such that ever¥
row and column sum is at most r.

. _ dand
PROPOSITION 46. Let T be a ﬁm'te pseudograph satisfying dim T' = d am

cal
fsd T =:f. Let J" be the ideal of R" generated by all monomials x*, ’U«/le’[" 7:’;’”'
a magic labeling of index one. Assume that{ = dim I' — par J " (or equit®® :

par J* = par I*, with I" as in (2)). Then R® possesses an h.s.op. 65 "
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Fr(M)(1 — 2)® = 1 4+ 2*. One also can find an h.s.o.p. @1, 02, v3 such that
degsox =dege,= 2,degy; = 3. Indeed, Fr(A)(1 — A)*(1 —\*) =14 A% + N,
in accordance with Corollary 4.3. Moreover, fsd I' = 1, so by Theorem 3. 1

r()\)(l — A{1 — 2*)? is a polynomial. In fact, this polynomial equals 1 —
A+ A" Thus R" does not possess an h.s.0.p. ¢, , ¥ , ¥, such that deg ¢, = 1
deg ¥, = deg ¥y = 2. In fact, I' has no magic labeling of index one.

In general it is difficult to tell whether a sequence 6, , - - - , 6, of homogeneous
elements of R" (T' a finite pseudograph) is a partial h.s.o.p. Theorem 4.2
however, allows us answer this question when the 6,’s are monomials.

3

ProposITION 4.9. Let T be a Jinite pseudograph, and let a; , ap , - - -
magic labelings of T'. The following two conditions are equivalent:

(@) x*, x**, ---, x** 4s a partial h.s.o.p. of R',

(i) If a s a magic labeling of T',if 1 < i < j < s,andif a — a; and & — q;
are magic (i.e., have non-negative entries), then a — a; — a; is magic.

Proof. (i) = (ii). Assume (i). By Theorem 4.2, x*, x**, --- , x*' is an
R"-sequence. Hence if ¢ = j, x**, x°’ is an R"-sequence. By definition this
means that if x*'X = x*'Y, where X, Y € R", then X = x*‘Z for some Z € R".
It is easily seen that we can take X, ¥, Z to be monomials. Thus the condition
becomes: if a; + B = «; + v for some magic labelings 8 and v, then 8 = «, + 8
for some magic labeling 6. This is clearly cquivalent to (ii).

(i) = (i) Suppose that (i) fails. For convenience write y; = x°*. Thus for
some t > 2, y, is a zero-divisor modulo (y,, -+, y._;). (We can assume 7 # 1
since R" is dn integral domain so each y; is not a zero-divisor.) Thus there isa
relation

(4), - . de = lel + ?jzXz + -+ yi—lXi—l ’

where X, , X;,---, X, YE R "and Y & Wi, ,¥i-1). NowYisa lix\(?ar
combination of monomials, so one of these monomials x® must appear \\?th
non-zero coefficient and satisfy x* & (y,, --+ , y:_1). Since the monomials
x* € R form a basis for R, we obtain y,x* = y,x” for some j < 1. Thus
a; + B = a; + ybut 8 = &, + 5. Hence (ii) fails, and the proof is complete-

. CoroLLARY 4.10. Let T be a f nite pseudograph Suppose T possesses §
pairwise edge-disjoint spanning subgraphs Ty , --- , T, such that each T, has 8
magic labeling of odd mdex (E. g the T'\’s could be dzsyomt 1-factors of T-) Then
fsd T < dlm I‘ — s

, a, be

00f. ’Let a; be .8 magic labeling of I, of odd index. Since the I'.'s 8
edge-disjoint, the labehngs &, -, a, clearly satisfy condition (ii) of P TOP"S‘t'Io'l
49. Hence x™, x°', --- , x** is a partial h.s.o.p. of R*. Since each X’ €
we have par I" > 5. Since fsd T' = dim T' — par I, the proof follows.

CoroLLARY 4.11,
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ic labeling of odd index. Thus the

£ Po(r) # Qr(r), then T has a magic : '
proo/ 3Iof (l}orollary 4.10 holds with s = 1,80 fsd ' < dim I' — 1. Since
‘ypo;hz‘:)‘ dimT — land deg Qr(r) < fsd T ~ 1, the proof follows

deg Pr

i i like an awkward
tric magic squares. Theorem 3.3 may seem ;
s. tstyom:P;ly to Spe(:lﬁc graphs but we w111 now nge an example of its use

dim A, = (") +1.

,Pa., Q4. , Fu. are abbreviated S,. , P. , Q.. , F respectlvely o
The fu:tcet(liogtsxtHuAnn[lfl ;) 6?0] 8.(r) is equal to the number'of n X'n symmetnc -
As tpo ées of non-negative iutegers such that every row (and hence svery celumn) 4
ma o Such a matrix is called a symmetric magic square. - S.(r) a.lso ‘has 8
graph- -theoretic interpretation—it is the number of regula,r pseudographs

Some examples of the generating function F,(\) are:

1

F',(X) = 1 Y B \'E . e “
1 C
Fy,(\) = a=
: 14+ XN+ N
BRIy
1 4+ 42 + 10N° 4 42° +
0 === va+n
Vs(\)

B =TT v
where |
Vi) = 1 4 21\ 4 22207 + 1082\° + 31332 + 5722)°

: 1z
+ 7013\° + 5722\ 4 3133)° 4 1082\° 4 222\"° + 21N'" + A"

The formulas for F; and F, are duc to L. Carlitz [2]. We calculated F; with the
aid of a computer. By Theorem 5.5 below, it is only necessary to comput;
S5(r) for 1 < r < 6 in order to completely determine F5(»). We compute
85(r) for 1 < r < 8, using the last two values a.(sl ?.4]check Methods for com-
uting S,(1) and S,.(2) for any n appear in [2] an .

' Recgall t(h;.t a I-fac(lo)r of a pseudograph T is a spanning subgraph I of T’ such
that each vertex of T lies on exactly one edge of I''. Moreover, a 1-factorization
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of T'is a collection T, , T, --- , T'n of 1-factors of T such that each edge of T
appears in exactly one T, .

LEmMA 5.1. For any n > 1, the graph A, has a 1-factorization.

- Proof. Let K, denote A, with its loops removed. A simple result of graph
theory (e.g., [5, Thm. 9.1]) states that when n is even, K, has a 1-factorization.

Assume n is even, and suppose I'; , -+ , T,_; is a 1-factorization of K, .
Let T, be the spanning subgraph of A, whose edges are the loops of A, . Then
T,, -, Ta, I'.is a 1-factorization of A, .

Now assume 7 is odd, and let v be a vertex of K., . Choose a 1-factorization
of K.., . If we remove v from K.., and replace each edge from v to any other
vertex w by a loop at w, then we obtain a 1-factorization of A,. This completes
the proof.

I am grateful to Daniel Kleitman for providing me with the main idea for the
proof of the next lemma.

LEmyA 5.2. Let n be a positive even integer, and let A be a positive spanning
subgraph of A, which does not contain a 1-factor. Then‘the number q(8) of edges
of A satisfies

o8) < ("; 1) 41

n —

Note. The bound ( 9

and let the edges of A consist of the loop at v and all edges of A. not adjacent
4o v and which are not loops. It is easily seen that A is positive, contains no
1-factor, and satisfies :

1) + 1 is best possible. Let v be a vertex of A,

. a = ("3 +1

" Proof of lemma. Suppoée Ais a positive spanning subgraph of A.
which does not contain a 1-factor. We wish to show A is missing at Jeast

(1)-5)-1-m

factor, by a theorem of Tutte [16] [5, Thm. 9.4] there is a subset )
#of A”5uch that the graph @ obtained from A" by femoving S and all edges 1nC%5
"to S has at least |8} + 1 odd components (i.e., components with an odd pum®
of vertices). Sincen is even, this means @must have at least |S | 4 2 compone®

Case 1. |8] >2andn > 10. Then@ has at most n — 2 vertices and 8¢ le
4 components. Thus it must be missing at least 3(n—5)+3=3n"
Since n > 10, we have 3n — 12 > 2n — 2, as desired.

Case 2. |S| = landn > 8. Then Q hasn — 1 vertices an

4

(n even) ;
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pents. 1t is casy to see that when n > 8, Q will be missing at least 2n — 2
oss (0 has exactly two components @, and @, with one vertex each, and
comp(’“e“t Q, with n — 3 vertices. Thereare2(n — 3) + 1 =2n — 5
missing which would be connections among the @.’s. Thus if A is missing
op — 2 edges, there are at most two unaccounted for edges missing

s unt

N ow. let 8 be a subgraph of A, obtained by choosing two distinct vertices v;
o v, 800 2 set V of n — 3 vertices disjoint from v, and v, , and removing the
w — 3) T 1 edges which connect eachv;toVortov;. Wg need to ‘show that :
o edges are removed from 6 so that the resulting graph A is posi
s has a 1-factor. The condition that 6 minus two edges e, and ¢, be positi
o5 that neither e, nor e, can be a loop at v, or v, . Now 8 restric ed to i
an v, and v, is isomorphic.to A._, . By Lemma 5.1, A.-s has a
{-{actorization. Hence if remove two edges from A._, (in fact, n — 3 edges),
\,_; retains a l-factor. This l-factor, together with the loops at v, and v, , form '

any tW

Case 3. S = andn > 8. ThusaA (= Q) has at least two odd components. .
If it has more than two components, then it will immediately be missing.gt
least 2n — 2 edges unless exactly two components have one vertex and one
component has the remaining n — 2 vertices. In this case, 2n — 3 edges are
missing which would connect the three components. Hence no other edges can
be missing, but in this case the loops form a 1-factor. - Tt

Hence assume A has exactly two components. Then these components must
be odd, from which it follows immediately that A will be missing at least 2n — 2
edges unless one component consists of a single vertex v. In this case, there are
n — 1 edges missing which would connect v to the remaining component. Let
8 consist of A, with all edges incident to » removed except for the loop at ».
We wish to show that if n — 1 edges are removed from 8 so that the resulting
graph A is positive, then A has a 1-factor. Clearly the positivity of A implies
that we cannot remove the loop at v. The subgraph of 6 obtained by removing v
is isomorphic to A._, , which by Lemma 5.1 has a 1-factorization. Hence if any
n — 1 edges are removed from A,_., a l-factor remains. This 1-factor, together
with the loop at v, yields the desired 1-factor of A.

Case 4. Small values of n not covered by the preceding cases. Simple modifica-
tions of the above arguments, or independent ad hoc arguments, will eliminate
the remaining possibilities. We leave the details to the reader, so the proof of
the lemma is complete.

TuroreM 5.3. We have

(n ; 1) , m odd,
fsd A, =

l(n—.2) n even
2/ . )
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Proof. First assume n is odd. By Lemma 5.1, A, has'a 1-factorization,
Thus by Corollary 4.10,

fsd A, < dim A, — n = (";1>

On the other hand, let A be the subgraph obtained from A, by removing all
loops, so A =X K, . Clearly A is positive and since n is odd, possesses no magic
labelings of odd index. By Theorem 3.3,

fsd A, > dim A = (" 5 1)~

Thus

fsd A, = (n ; 1)-

Now assume n is even. Let A be-as in the note following the statement of
Lemma 5.2. Then again by Theorem 3.3,

fod A, > dim A = (";2)

Now let A be any positive spanning subgraph of A, (n even) which does not
have a magic labeling of odd index, so a fortiori A does not have a 1-factor. By
Theorem 3.3, it suffices to show that

dim_f&_g(n;2>.

Let b bé; the number of bipartite components of A.
“ Case 1. b = 0. Now by Lefnma 5.2, the number g(4) of edges of 4 satisfies
q(a) < (” ) ) 1.
Thus by Corollary 2.2, ' | |

dimAsq(A)e'n+ls(";2),

m.

17 If any of the bipartite dnﬁiponents of A consists of ats
. en
ly 88
ponen“-

vertex, then dim A = 0. ' Thus we may assume each bipartite compon
has at least two vertices, so b < n/2. Now A can be written unique

disjoint union A; + A, , where A, is bipartitc and A, hasno bipartite com :
Let p; (respectively ¢,) denote the number of vertices (respectively edges) ©
fori = 1or2. Thus p, + p. = n. Now any positive bipartite pSCUd.Og:;g
with at least one edge has a 1-factor, since every magic labeling of a bIP3
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magic labelings of index one (see [14, Prop. 2.9]). Thus 4,

A, has a I-fg
4 A has no 1-factor. Since A,, hasa 1-factorization, we obtain

1 is the sum of
pas 10 |-factor since

(Pe) Since A, is bipartite with no multiple edges, ¢, < p.°/4. Since b > 1,
2

> 2. It follows from the conditions

Z 2, P2 Z 07 P + P2 = ny 'ql .<_ p12/_4, q: S (22) .

that ‘g + ¢

Hence
4+ @-—n+tbF+1< . :
n—2 n n — L
. _ (A4 B 9
H"( 2 ) .“+2+15_( 2 ) >4

Since the case n = 2 is trivial, the proof is complete. AL

dim A = @t

sllowing the sta

Remark. It should be noted that our proof of Theorem 53d1d iiotftisejthe
fact that B is a Cohen-Macaulay ring (Theorem 4.2). Although the proof did
use Corollary 4.10 (and therefore Proposition 4.9), we only used the implication
(ii) = (i) of Proposition 4.9. This implication requires only the refatively easy
fact that a homogeneous R T_sequence is an h.s.o.p. Itis the implication (i) = (ii)
that requires the fact that R" is Cohen-Macaulay. I

Note that for 1 < n < 5, fsd A, = sdm A Tt seems plausible that fsd A. =
«dm A, for all n, but we have no idea how to prove this fact.

Let f = fsd A. as given by Theorem 5.3, let

. (n even) wh
ynot have a 1

(4) of edges of A d=dimA, =1+ (g) ,

and let
mm=(i&@ﬂu—W0+v.

r=0
We know that V.(A) is a polynomial with integer coefficients, we would like to
show that these coefficients are non-negative. In view of Propositions 4.6 and
47, it suffices to show that fsd A, = maxs (dim A), where A ranges over all
positive spanning subgraphs of A, which do not contain a 1-factor. However,
this result was actually shown in the proof of Theorem 5.3. The point is that
in Lemma 5.2, A is merely assumed not to contain a 1-factor, rather than the
stronger fact of having no magic labeling of odd index. Thus we have shown:

ProposiTioN 5.4. Let d = dim A, , f = fsd Aq . Then R* ppsgesses an
h.s.0.p. 8, , 8., - , 0s Such that deg 0; = 1if1 <i<d— fand deg 8; = 2 i
d—-f+1<1<d Consequently, V.(\) has non-negaltive coeffictents. -
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In conclusion, we collect together all our results which pertain to the function
S.(r), in particular Corollary 2.2, Theorem 5.3, Proposition 5.4, [34, Cor. 1.4],

and [14, Lemma 4.2], to obtain the following result.
Berlin, 1965.
THEOREM 5.5. Let n > 1, and let S.(r) be the number of n X n symmetric

matrices of non-negative inlegers such that every row (and hence every column)

sums tor. Let
n .
d = (2>+1

n—1
( 2), n odd

& Jersey, 1960.
and

HUSETTS 02139

(n_2> n even
2 /7 -

Let V() = (O ,m0” Sa(rNN(A — N1 4 N, Then V.(2) is a polynomial with
integer coeffictents satisfying the following additional properties:
(i) degV.(\) =d +f—n.
(i) ATVL(A/A) = V).
(iii) V.(0) = 1, so by (ii) V.(\) zs monic.
(iv) the coefficients of V.(\) are non-negative.

We remark that property (iv) can be improved by examining the structure
of the ring R** in more detail. For instance, it follows from [15, Thm. 5.19]
that R** is a Gorenstein ring. (Property (ii) is a consequence of this fact, but
actually’ (ii) was used to prove that R** is Gorenstein.) From this one can
deduce that if 0 < i< d+f— n,then the coefficient of A in V() is positive:
It is possible to obtain better information about the coefficients (see [15) for
some relevant techniques), but we do not pursue this here.
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May 20: PROBLEM: If a compound structure S(N) is obtained by splitting a set into parts each part
getting stricture N, show that the exponential generating function of S(N), S(N)(x) equals exp(N(x)),
where N(x) is the exponential generating function of the structure $N$.

May 22: PROBLEM: Verify that the ring of formal power series is an integral domain. What is its
quotient field?

PROBLEM: Prove that D(\sum f_n(z))=\sum D(f_n(z)) for a sequence of formal power series.
May 24: Stanley Chapter 4: #5.

PROBLEM: Without getting your hands dirty with calculus prove that (A) exp(x)*exp(-x)=1 and (B)
log(exp(z))=z inside the ring of formal power series.

May 27: MEMORIAL DAY.
May 29: Stanley Chapter 4: 10

May 31: Stanley Chapter 4: 15

————————— TENTH WEEK -------eeeeeeee
June 3: Stanley Chapter 4: 27,28.a
June 5: Stanley Chapter 4: 29

June 6: Stanley Chapter 4: 30

June 7: Stanley Chapter 4: 32,33

LAST MIDTERM DUE Tuesday June 11 by 5:00pm.

A4 g 28 P22 199



