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A Monotonicity Property of h-vectors and h*-vectors
RicHARD P. STANLEY

Dedicated to Bernt Lindstrom on his 60th birthday

If A is a Cohen-Macaulay simplicial complex of dimension d —1 and A’ is a Cohen-
Macaulay subcomplex of A of dimension e — 1, such that no e + 1 vertices of A' form a face of
A, then we show that h(A') < h(4), where h denotes the A-vector. In particular, h(A’) < h(A)
if A and A’ are Cohen—Macaulay of the same dimension. Using similar techniques we obtain a
class of Gorenstein complexes A, the A-vector of which is unimodal. Most of these results were
obtained earlier by Kalai in a somewhat more complicated way. We then use our methods to
give an analogous monotonicity property of Ehrhart polynomials of lattice polytopes (and more
general objects). Our results on Ehrhart polynomials may be regarded as ‘lattice analogues’ of
the well known monotonicity results concerning intrinsic volumes or quermassintegrals.

1. INTRODUCTION

Let A be a finite (abstract) simplicial complex of dimension d—1 with f
i-dimensional faces (or i-faces, for short). (For undefined terminology, see, e.g. [12,
Ch. IT] or [13]). The f-vector of A is given by f(A)=(f, ..., fi—1), with the
understanding that £, =1 unless A =. It is often more convenient to deal not with
the f-vector itself, but rather with the h-vector h(A) = (h, . . . , hy), defined by

d d
;)f.-_l(x — 1) = g_o hax?=. 1)

(Sometimes we write h(A) = (hq, . .., hy) even though dimA=e—1<d - 1. In this
case, of course, we have h_,,='--=h,=0.) For instance, if A is a Cohen—Maculay
complex [12, Ch. II, Def. 3.1] then h;=0 (and in fact A(A) can be completely
characterized in an elegant way). In Section 2 we will investigate properties of the
f-vector {or h-vector) of certain subcomplexes of A. Most of our results here have also
been obtained by Kalai [7], although our proofs are somewhat simpler. Our primary
reason for including Section 2 is that we use similar techniques in Section 3 to prove a
result for which Kalai’s methods seem inapplicable. Section 3 is devoted primarily to
answering a question raised by Hibi and the present author concerning the Ehrhart
polynomial of a convex lattice polytope (or more generally, certain lattice polyhedral
complexes): namely, if 2 c P are two such polytopes, then 2*(2) < h*(P), where h*
denotes the h*-vector. I am grateful to T. Hibi for pointing out an error in the original
formulation of Theorems 2.1 and 3.3.

2. SucompLExES OF COoHEN—MAcAauLAY COMPLEXES

Let A be a (finite) Cohen—Macaulay (d — 1)-dimensional simplicial complex over an
infinite field K. Let K{A] denote the face ring (or Staniey—Reisner) ring of A over K
(see, e.g., [12, Ch. II] for definitions). Since X is infinite, there exists a homogeneous
system of parameters (h.s.0.p.) 8, . . ., 8, of degree one (50 8, . . ., 8, € K[A],). Let
R=R,=K[A)/(6y, ..., 04). R inherits a grading R=R; DR, D - - - from K[A], and
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the statement that A is Cohen—Macaulay is equivalent to the formula
dimg R; =h;, for all §,

where A(A) = (hy, ..., hy). Thus R;=0foralli>d,so R=R,®R, ®---®R,.

THEOREM 2.1. Let A’ be a subcomplex of A, i.e. a simplicial complex which is a
subset of A. Let e —1=dim A’ <dim A=d — 1. Assume that A and A' are Cohen—
Macaulay, and that no set of e + 1 vertices of A' forms a face of A. (This last condition
automatically holds if d = e. )} Then h(A') < h(A) (co-ordinate-wise <).

ProOF, Let the vertices of A be xy,...,x,. If Fe A, write x" =[I, rx; € K[A).
Let I be the ideal of K[A] generated by all monomials x*, where F ¢ A’. Clearly,
K[A']=K[A]/L ‘ :

Now recall the condition [10, Remark on p. 150; 3, p. 66] (see [16, Prop. 4.2] for a
proof) for a sequence 6,, ..., 8, of homogeneous elements of K[A] of degree one to
be an h.s.o.p.: namely, the restriction of 8,, ..., 6, to each face F of A must span a
vector space of dimension #F. From this it follows easily that when X is infinite (as we
are assuming) we can find an h.s.o.p. 64,..., 8, of K[A] of degree one with the
following property: each of 6,,,,..., 6, is a linear combination of vertices not
contained in A’. In other words, the images of 6,.,,, ..., 8, in K[A’] are all zero. Let
us call such an h.s.0.p. special.

. Identify the special h.s.o.p. 8={8,, ..., 8,} = K[A], with its image in K[A'] (or,
alternatively, think of K[A'] as a K[A]-module). Since 8, . . ., 8, is special, it follows
that 8;, ..., 6. is an h.s.o0.p. for K[A'], and that

K[A/(Oy, ..., 8,)=K[A'})/(6,..., 8.)
Now we have a degree-preserving surjection
R:=K[A)/(6) & R':=K[A')/(6)=R/L

Since A and A’ are Cohen—Macaulay we have dimg R; = h;(A) and dimg R = A,(A").
The surjection f: R;— R; shows that h,(A) = h,(4"), as desired. a

Note. Theorem 2.1, in the special case that dim A=dim A, weis also proved by
G. Kalai (unpublished) as part of his theory of algebraic shifting. Adin [1, Thm 6.5]
has also proved this special case, using the same method as ours.

Now suppose that A is a nonacyclic Gorenstein complex over the field K. (See [12,
Ch. II, Thm 5.1] for some characterizations of such complexes. One characterization is
that A is Cohen—-Macaulay over K and an orientable pseudomanifold over K.) Let
dim A=d — 1. The Dehn-Sommerville equations for A assert that h; = h,_; for all i,
where h(A) =(hy,...,hy). A is said to satisfy the Generalized Lower Bound
Conjecture (GLBC) if h(A) is unimodal, i.e. Ag<h, <+ < hpp) (50 bl = Ayappe =
+++=h,). It was shown in [11] (see [3] and [13] for a survey) that if A is the boundary
complex of a simplicial convex polytope, then A satisfies the GLBC. In fact, a
complete characterization, known as the g-condition or McMullen’s conditions of such
A was obtained. We will establish that certain nonacyclic Gorenstein complexes, more
general than boundary complexes of simplicial polytopes, also satisfy the GLBC (but
we are unable to show that they satisfy the g-condition). A very similar result was
earlier obtained by Kalai [7, §8] using algebraic shifting.
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Lemma 2.2. Let A be a nonacyclic Gorenstein complex of dimension d —1 with
vertex set V over a field K. Let A' be a Cohen—Macaulay subcomplex of A. Let
0., ..., 8, be a special (as defined in the proof of Theorem 2.1) h.s.o.p. of K[A] of
degree 1, and set R = K[A]/(6,, ..., 60,)=Ry® -+ - ® R,. Suppose that there exists an
element w € R, (called a Lefschetz element) wzth the following property for all
0<i<[d/2], the map 0w ¥: R,— R,_; given by multiplication by w"* is a bijection.
Then the h-vector h(A') = (hy, . . ., hy) satisfies:

hiahd—il for Osis[d/Z],

R Z Riapje1 =+ - = hy.

Proor. The condition on @ implies that w: R;,— R,,, is surjective for i =[d/2].
Hence if S=R/woR=S5,BS5D---, then §;=0 for i>[d/2]. As in the proof of
Theorem 2.1, we have a surjective degree-preserving map

f:S—=>K[A']/(6y, ..., 64, 0):=S".

Thus §; =0 for i >[d/2]. If we set R’ =K[A'}/(6,, ..., 6,), then dimk R; = h(A"),
since 6y, ..., 0, is special. Since §; =0 for i >[d/2], 1t follows that w: R;—R;,, is
surjective for i = [d/2). Thus A;,(A") = h;,,(A") for i =[d/2].

Now fix i >[d/2], and set T=R/0*“ * R=T,® T,®---. Since w* ¥:R,>R,_; is
surjective, we have 7,_,=0. As in the previous paragraph, we have a surjective
degree-preserving map

g: T—>K[A')(Oy, ..., B0, 0 F):=T".

Thus T,_,=0; so the map w?~%: R!~> R, (with R’ as above) is surjective.
Hence h(A)=h,_(A"). O

Note. It follows from [11] that if A is the boundary complex of a simplicial
d-polytope, then A satisfies all the hypotheses of Lemma 2.2. It remains open at
present whether a Lefschetz element w exists for arbitrary triangulations of spheres
(or, more generally, nonacyclic Gorenstein complexes) for a suitable choice (or
possibly every choice) of h.s.o.p. 8, ..., 8, of degree one when char K =0. (When
char K # 0 then w does not exist for certam choices of A and 64, ..., 8;.)

Recall that a (d — 1)-dimensional pseudomanifold with boundary is a pure (d —1)-
dimensional simplicial complex A such that every (d — 2)-face is contained in exactly
one or two facets, and which satisfies a certain connectivity property which is automatic
when A is Cohen—Macaulay [4, Prop. 11.7]. The boundary 6A of A is the subcomplex
of A generated by all (d —2)-faces contained in exactly one facet. A result equivalent
to the following lemma, in the case when A triangulates a ball, appears in [9, Thm 2].

Lemma 2.3.  Let A be a (d — 1)-dimensional Cohen—Macaulay pseudomanifold with
nonempty boundary. Let h(A) = (hy, hy, ..., hy). Then

h(aA)=(h0—-hd, h0+hl hd_hd 1,h0+h +h2 hd_h'd “‘hd_z,...,ho"hd).

Proor. Since A is Cohen-Macaulay and a pseudomanifold with boundary, it
follows easily that

0, ifFedA
(1) if Fe A—3A,

where ¥ denoteé the reduced Euler characteristic and 1k, the link in A. Hence, by the

2 )= {0
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Lemma 2.2. Let A be a nonacyclic Gorenstein complex of dimension d —1 with
vertex set V over a field K. Let A" be a Cohen—Macaulay subcomplex of A. Let
8,, ..., 64 be a special (as defined in the proof of Theorem 2.1) h.s.o.p. of K{A] of
degree 1, and set R = K[A]/(6,, ..., 0,)=Ro® - - - D R,. Suppose that there exists an
element w € R, (called a Lefschctz element) wzth the following property for all
0<i=<[d/2], the map w? ¥: R,(— R,_; given by multiplication by w? % is a bijection.
Then the h-vector h(A").= (hy, . . ., hy) satisfies:

hiahd—il for Osls[d/Z],

htan) = Bapj«12 -+ - = hy.

Proor. The condition on w implies that w: R;— R, is surjective for i =[d/2].
Hence if S=R/wR=S5,D 5, D---, then §;=0 for i>[d/2]. As in the proof of
Theorem 2.1, we have a surjective degree-preserving map

f:S—=K[A'])/(8, ..., 84, w):=§".

Thus §; =0 for i >[d/2]. If we set R'=K[A'}/(8,, ..., 6,), then dimg R; = h,(A"),
since 6y, ..., 8, is special. Since S; =0 for i >[d/2], it follows that w: R;— R],, is
surjective for i=[d/2). Thus h;(A’ )>h,+,(A ) for i >[d/2]

Now fix i =[d/2], and set T=R/w“ *R=T,® T, ®---. Since w" % R—R,_;is
surjective, we have T;_,=0. As in the previous paragraph we have a surjective
degree-preserving map

g: T K[A'}(By, ..., 0, 0F):=T".

Thus T%_,=0; so the map @’ % R/~>R,_, (with R’ as above) is surjective.
Hence h(A)Y=h,_(A"). O

Note. It follows from [11] that if A is the boundary complex of a simplicial
d-polytope, then A satisfies all the hypotheses of Lemma 2.2. It remains open at
present whether a Lefschetz element « exists for arbitrary triangulations of spheres
(or, more generally, nonacyclic Gorenstein complexes) for a suitable choice (or
possibly every choice) of h.s.o.p. 8, ..., 8, of degree one when char K =0. {(When
char K # 0 then @ does not exist for certain choices of A and 84, ..., 6,.)

Recall that a (d — 1)-dimensional pseudomanifold with boundary is a pure (d —1)-
dimensional simplicial complex A such that every (d — 2)-face is contained in exactly
one or two facets, and which satisfies a certain connectivity property which is automatic
when A is Cohen—Macaulay [4, Prop. 11.7]. The boundary 34 of A is the subcomplex
of A generated by all (d —2)-faces contained in exactly one facet. A result equivalent
to the following lemma, in the case when A triangulates a ball, appears in [9, Thm 2].

Lemma 2.3, Let A be a (d — 1)-dimensional Cohen—Macaulay pseudomanifold with
nonempty boundary. Let h(A) = (hy, hy, . . ., hy). Then
h(aA)=(hu_hd, h0+hl_hd h’d -1 ho‘*"h +h2 hd hd-—l‘hd—z.’-"}ho—“hd)'
Proor. Since A is Cohen-Macaulay and a pseudomanifold with boundary, it

follows easily that

0, fFedA
(1) i FeA—BA,
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2k, ) ={
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We call A*(P) := (kE, . .., h}) the h*-vector of @. (In fact, we have k=0, but for a
generalization to be discussed below this need not be the case.) In a discussion with T.
Hibi the following question arose: If 2 is an L-polytope contained in &, then is
h*(2) < h*(P) (i.e. A} (2) < h{(P) for all i)? We will give an affirmative answer to this
question with an argument analogous to that used to prove Theorem 2.1.

First let us mention some work related to the monotonicity of h*-vectors. A well
known result of Hadwiger [6] asserts that every continuous and additive functional on
convex bodies in R™ which is invariant under Tigid motions is a linear combination of
m +1 functionals V,,...,V, known as intrinsic volumes (or, with a different
normalization, the guermassintegrals of Minkowski). The intrinsic volumes have the
property of monotonicity, i.e. if X' c X then V(X') < V,(X). From this it follows that
the V;’s are also non-negative, i.e. V;(X)>0. An analogous result was proved by Betke
and Kneser [2] for enumerating lattice points rather than computing volumes. Namely,
every additive and unimodular invariant functional on L-polytopes (where L is a fixed
lattice in R™) is a linear combination of the m + 1 functionals G, . . . , G, defined
by

i(P, n)=2, G (P
j=0

In other words, the G, ;’s are just the coefficients of the Ehrhart polynomial. But the

G /'s have the defect that they are neither monotone nor non-negative. On the other

hand, A},...,h% is a different basis for the vector space A spanned by

Gro, -, GLm, the elements i} of which are monotone (and hence non-negative).

(Non-negativity had been proved earlier by the present author and then by Betke and

McMulten.) However, the elements h}, unlike G, ;, lack the property of being

homogeneous, i.c. it is false that for n =0, h}(n®) =n*h}(P) for some fixed k =0.

Since the G, ’s are the unique (up to scalar multiplication) homogeneous basis of A, it
*33> >f ows that no basis can be both homogeneous and monotone (or even non-negative).
- ntrast this. situation with the intrinsic volumes, which are both homogeneous and

monotone. For some further background information, see the interesting survey in [S].

Our argument which establishes the monotonicity of the hA*-vector of L-polytopes

actually applies to a more general situation, which we now discuss. (We could work in

the even greater generality of Yuzvinsky’s theory of Cohen—Macaulay rings of sections

[17], thereby unifying Theorems 2.1 and 3.3, but for the sake of simplicity we will not -

do s0.) An L-polyhedral complex I in R is a finite collection of L-polytopes in R™

satisfying: (a) if # e I then every face of isin I'; and (b) if ?, 2e I'then N2 isa

common face (possibly empty) of # and 2. The body |I'| of I is defined by

1=\ 2.
Pel’
A subset & of R™ which equals [I'| for some L-polyhedral complex I' is called an
L-polyhedron. If £ is an L-polyhedron, then define, for integers n =0,

&, n)=#nZNL), itn=1; -
(%, 0)=1.
Then i(%, n) is a polynomial for n =1, but not necessarily at n=0. (The ‘correct’
value of (%, 0) which makes it a polynomial for all n=0 is x(%), the Euler
characteristic of Z.) We call i(Z, n) the Ehrhart function of £. As in (2), we define )
the h*-vector ~*(Z) = (hs, ..., hi) by o
h+hix+---+hix?

21 (1-x)" , ZﬂC Q} ) %;-ZS<
[@]

>

C
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where 'd —1=dim . (We may define dim &, for instance, as max{dim #: Pe I},
where I'is a polyhedral complex with body #.)

An L-polyhedron & (or any polyhedron) is said to be Cohen—Macaulay if some
(equivalently, every) triangulation of Z defines a Cohen—Macaulay simplicial complex.
Equivalently, if dim & =d — 1 then

H(Z)=H(% Z-p)=0, i<d-1,

for all pe%, where H{(%) denotes the ith reduced homology group of ¥ and
H(%, Z — p) the ith local homology group of & at p (over the ground field K).

Given an L-polyhedral complex I' in R™, define a K-algebra K[I'] as follows. A
K-basis Br of K{I'] consists of 1 together with all monomials u®v® =uf' .- ui?®,
where ae L, b is a positive integer and a/b € |I'). Multiplication of monomials is
defined by: ‘

Lot - eud {u"*cv"“’, if a/b € ? and c/d € P for some P e I’
~ Lo, otherwise.

One easily checks that this indeed defines an algebra with basis B the key point is
that the convexity of the polytopes P eI ensures that multiplication in K[I'] is
associative.

Define a grading on K[I'] by setting degu“u® =b. From the deﬁnmon of K[IT it
follows that the Hilbert function H(K[I], ») is given by

H(K[I], n)=i(Z, n),
where & = |I'|. Hence
F(K[I), x):= >, H(K[I], n)x"

n=()
_hy+- - +hix?
(1-xy

where dim I'=d — 1, and where 2*(Z)=(hg, ..., h}). One easily sees that K[I'] is
semi-standard, i.e. integral over the subalgebra generated by K[A],. (In fact, K[I'] is
integral over the subalgebra generated by {u“v: a is a veriex of some ? e I'}.) Hence if
K is infinite then K[I'] possesses an h.s.0.p. 0,, .. ., 8, of degree 1. Moreover, if K[I]
is Cohen—Macaulay, then the ring Ryr=K[I')/(6,,..., 6,) has the grading Ry=
Ro® - ®R,, where dimy R, =h. The following result is essentially the same as [15,
Lemma 4.6].

Lemma 3.1. Let I' be an L-polyhedral complex. If |\I'| is a Cohen—Macaulay
polyhedron, then the algebra K[I'| defined above is Cohen—Macaulay. O

CoroLLary 3.2. Let I' be an L—polyhed?dl complex. If Z:=|I'| is a Cohen—
Macaulay polyhedron, then h*(%) = 0. O

We come to the main result of this section.

TuEOREM 3.3. Let & and ¥ be Cohen—-Macaulay L-polyhedra in R™, with ¥ c Z.
Let dim % =e — 1, and suppose that % is contained in an affine subspace of R™ of
dimension e ~ 1. (This last condition automatically holds if % is convex.) Then

h*(¥) < h™(Z).
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Proor. It is easy to see that there exists an L-polyhedral complex I" with the
following two properties: (a) |I'| = &; (b) there is a subcomplex A of I'with |A] = ¥. It
is also easy to check that the vector space surjection f: K[I'|— K[A] defined by setting
f(1)=1and for b>0, '

uv®, ifa/lbed,
0, ifa/lbe¥’

is actually a (degree-preserving) algebra homomorphism. The proofs now proceeds as
in that of Theorem 2.1 Let dim&Z=d—1 and dim% =e—1. As in the proof of
Theorem 2.1, we can find as h.s.o.p. 6 ={8,, ..., 6,} of degree 1 for K[I'] such that
the images of 8,.1, ..., 8, in K[A] are ail 0. Hence

K[A]/(Blr LI ed)= K[A]/(el: ce e Be)'

Then f induces a surjection f:Rr—R,, where Rp=K[I'[/0K[I] and R,=
K[A]/0K[A]. Thus we have a vector space surjection (Rp);— (R,);. By the Cohen-
Macaulay hypothesis, we have dimg{(Rp);=h{(¥) and dimg(R,),=h}(¥), so
hH (V)< h}(Z) as desired. . a

fueety={

Suppose now that the integral polyhedron & is nonacyclic Gorenstein; i.e. any
triangulation of & defines a nonacyclic Gorenstein simplicial complex. Then the
h*-vector A*(Z)=(hy, ..., h}) satisfies the Dehn-Sommerville equations, i.e.
ki =h}_. It is natural to ask, in analogy with the situation for Corollary 2.4, whether
h*(%) satisfies the GLBC, i.e. h§ <h{<---<h[;,. The following example shows
that, unfortunately, this question has a negative answer, even when Z is the boundary
of a simplex. '

ExampLe 3.4. Let 2 be the boundary of the 6-simplex in R® with vertices
0,0,0,0,0,0), (0,0,0,0,0,1), (0,0,0,0,1,0),(0,0,0,1,0,0), (0,0,1,0,0,0),
0,3,2,2,2,2) and (1,0,0,0,0,0). Then 2*(&)=(1,1,2,1,2,1,1), which fails to
satisfy the GLBC.
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