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Constructions and Complexity
of Secondary Polytopes

Louss J. BILLERA,* PauL FiLLIMAN,” AND BERND STURMFELS

Department of Mathematics, Cornell University, Ithaca. New York 14853

The secondary polytope 2(./} of a configuration ./ of n points in affine (¢ — 1)-
space is an (n —d)-polytope whose vertices correspond to regular triangulations of
conv(.«/). In this article we present three constructions of 2(./) and appiy them to
study various geometric, combinatorial, and computational properties of secondary
polytopes. The first construction is due to Gel'fand, Kapranov, and Zelevinsky,
who used it to describe the face lattice of Z(.«/). We introduce the universal
polytope #(«/)= A, R", a combinatorial object depending only on the oriented
matroid of .«/. The secondary X(.</) can be obtained as the image of #(./) under
a canonical linear map onto R”. The third construction is based upon Gale
transforms or oriented matroid duality. It is used to analyze the complexity of
computing X(.o/) and to give bounds in terms of n and d for the number of faces
of 2(s). ¢ 1990 Academic Press, Inc.

1. INTRODUCTION AND POLYHEDRAL PRELIMINARIES

In their recent work on generalized hypergeometric functions and
discriminants, Gel'fand, Kapranov, and Zelevinsky {10, 11] introduced the
secondary polytope X(o/) of an affine point configuration &/, where the
vertices of X(«/) are in one-to-one correspondence with the regular
triangulations of the “primary polytope” P=conv(.</). In spite of its
algebraic origin as the Newton polytope of the principal .«/-determinant
(for &/ = Z9), this polytope is of independent interest for combinatorial
convexity. A special case which has received much attention in
combinatorics [14-167 and theoretical computer science [21], as well as
topology [231, is the associahedron, which is the secondary poiytope of a
convex n-gon.

It is the objective of the present paper to provide a self-contained and
comprehensive study of secondary polytopes. We shall give three alter-
native descriptions of 2'(./). Section 2 is expository, giving the original
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construction due to Gel'fand, Kapranov, and Zelevinsky, including essen-
tially the proof that they give in [11]. This proof is direct and analytic,
providing vertex coordinates for the secondary polytope and a complete
description of the facial structure of 2'(.«/).

In Section 3 we express the secondary polytope X(.«/} as the projection
of the wniversal polvtope %(.«/) which is a certain polytope contained the
exterior algebra A« R This approach is based on the techniques used in
[97] and it has the important advantage that it scparates the combinatorial
and metrical properties of (he secondary polytope in a systematic way.

In Section 4 we give a geometric description of 3(.«/) using Gale trans-
Jorms. Compared to the two previous treatments, this point of view is the
most constructive one because it leads to an algorithm for computing all
regular triangulations of .7 and therefore all vertices of (o). We illustrate
the effectiveness of the Gale transform approach with a complete descrip-
tion of the secondary of the cyclic 4-polytope with § vertices.

Section 5 deals with the computational complexity of secondary
polytopes. We give a bound in terms of # and d for the number of faces of
2(7), and we show that our bound is sharp for the class of Lawrence
polytopes [1]. In particular, we will see that () is a zonotope whenever
«/ is the vertex set of a Lawrence polytope.

Throughout this paper o/ = la,, a,, .., a,} denotes a subset of R¥ which
spans an afline hyperplane. A triangulation of o/ is a triangulation of the
(d—1 )-polytope P := conv(./) with vertices in .o/, We identify R” with the
vector space R of real valued functions on ./, Given a fixed triangulation
4 of o/, then every y e R” induces a unique piecewise linear function 8.4
on the polytope P. More precisely, this function is defined by assigning

8y, 4\a;) =, for vertices a; of 4 and by the requirement that &y.4 be an
affine function on each simplex of 4. Consider the set

CA A):={ye R": g, ,is a convex function, and
8y.4(a,) <y, whenever g, is not a vertex of 4},

It is easy to check that €/, 4) is a closed polyhedral cone and that the
collection

F(A) ={6(A. A): 4 s a triangulation of o}

covers R". We call this collection the secondary fan of
will be justified in the proof of Theorem 1.3.

In the following we recall some general facts about convex polytopes and
polyhedral fans. By a complex we mean a family of polyhedra. the intersec-
tion of any two of which is a face of each and is itself in the family. A fan
in R is a complex of polyhedral cones that covers R”. At times, we will
specify a fan by giving a subcomplex containing at least its maximal cells.

/. This terminology
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This is the case, for example, with the collection # (/) defined above. The
normal cone of a polytope Q < R” at a point pe @ is defined as

;.AQ.. pr=1{reR" (e.p>< v,y forall ye Q)

where (-, -> denotes the standard scalar product in R”. The normal fan of
Q. denoted . 1 (Q), is the collection of cones . 1 (Q. p) where pe Q.

Lemma 1.1 The normal cone .4°(Q, p) of a \,S\.:eﬁm Q at peQ \N\S.
non-emplty interior if and only if p is a vertex :,\,Q. More nERE:.T the
codimension of ANQ, p) equals the dimension of the largest face of Q
containing p.

A polyhedral fan .# in R" is said to be strongly wc\‘:%.:\ if there exists
a polytope @ < R" such that .# =.1'(Q). Suppose that Q._w an :-vo_v;omxﬂ
containing the origin of R” in its interior. Then the collection o.m polyhedra
cones which are obtained as positive hulls of all facets & Q is called the
interior point fan of Q. The following proposition summarizes some known
facts about strongly polytopal fans and Minkowski sums of polytopes Ao.m
[22. 12]). In (2) the intersection F ~F' of two polyhedral fans is

understood as the fan of all intersections of cones from .# and #'

PROPOSITION 1.2, (1} A fan F is strongly polvtopal if and only if :‘ is
the interior point fan of a polvtope Q. In that case F is the normal Jan
AAQ*)Y of the polar polyiope to Q.

(2)  The intersection of strongly polvtopal ,\.::.,4 n::q,ﬁesw.n 10 the
Minkowski addition of polytopes, ie, 1 (Q+Q')=.1 (@) 1(Q)

(3)  For two strongly polytopal fans F = A AQV and m\l = f ,.AQ .. 4:,0
have F < F' (ie. F' refines F) if and only if O0<Q (ie, iQ is a
Minkowski summand of Q' for some i>0).

(4) A strongly polviopal fan F = .1 (Q) determines Q :W:Q:l.ﬁ ,AE‘ 10
homothety) if and only if Q is indecomposable (i.c., P < Q implies P= 4Q for
some 2> 0).

’

( ac is a ¢ y 0 arrangement.
{5) The normal fan of a zonotope is a central hyperplane ary g

'
For examples of fans which are not strongly polytopal see ﬁ.m, p. 119,
Fig. 3; 19, p. 857. Using the language of polyhedral fans. the existence of
a secondary polytope can be expressed as follows.

THEOREM 1.3 (Gel'fand, Kapranov, and Zelevinsky). The wS.E:&%iw:
F(A) of any affine point configuration ./ is strongly ﬁc\.:c\uz\“ dé is,
there exists a secondary polytope Q = X(.+/) in R” whose normal fan .§ (Q)

equals .# (/).
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Proposition 1.2 (4) tells us that we cannot expect the secondary polytope
2() to be unique (up to homothety) because it may be decomposable
into non-trivial Minkowskj summands (sce Corollary 4.4). In particular,
2(o) is highly decomposable when .o/ consists of n points in convex
position in the affine plane (ie., d=3). In [16] (see also [15]) Lee gave
a geometric construction of the associahedron X(.«/), which is a simple
(n — 3)-dimensional polytope with n(n—3)/2 facets and (1/(n— N
vertices (the Catalan number). It follows from the results in [22] that the
associahedron has ("37) degrees of freedom in choosing a secondary
polytope for the n-gon,

We note that Lee also constructed secondary polytopes in the case
n<d+2 (see [15] and Proposition 2.2). Around the same time, Haiman

associahedron as a geometric cell complex, although he did not address
whether it could be realized as a convex polytope.

An interesting application of the associahedron to theoretical computer
science has recently been given by Sleator, Tarjan, and Thurston [21].

binary trees with nodes by proving that the diameter of the
associahedron equals 27 — 10, for large n. From Fig. 4 in [21] we can see

that the secondary polytope of a hexagon is a simple 3-polytope with 14
vertices, 21 edges, and 9 facets.

2. THE ANALYTIC CONSTRUCTION AND THE FACE LATTICE
OF THE SECONDARY

The foliowing analytic description of the secondary polytope is the
original one due to Gel'fand, Kapranov, and Zelevinsky [10, 117, We
include it here for completeness. Let

Q:=conv{g,: Adisa triangulation of .o/ ). (2.1)
where

n

$,=Y AM {vol(t): te 4 and N.mlv e, (2.2)

i=1

In this formula e, denotes the ith standard basis vector of R", and vol(r)

denotes the volume of the {d~1)-simplex convia, a,. .., a,, .

First Proof of Theorem 1.3 (Gel'fand, Kapranov, and Zelevinsky),
Since both collections Flod )= {F(, A} and .1 (Q) = 1100 6,)) cover
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R", and since .17(Q) is a fan, it will suffice to prove the mzo_:m_uoz
ﬁ.o\ AYS . 4 (Q. ¢,). Note that this will also show that the collection

F(.«/) defines a polyhedral fan. . .
Mlﬁv.\\ €6 %v. Then g, , is a piecewise linear convex function whose

graph contains or lies below the point (a,.¥,)e R“*' for i=1, .., n. This
implies that

Lo (V) <gy 4 (¥) (2.3)

for all xe P=conv(.«/) and for all other triangulations A4’ of .«/. Conse-
quently,

for all triangulations 4’ of .«/. We evaluate the integral on the left hand side
as follows:

J

Yxer

go ) de<| g, (v)d (24)
P

xE

Il

S [ guatvde

red "VE

8y 4(x) dx
P

Ye

Y vol(z)- (“barycenter of the simplex t”)

Ted

[
g
<
=
D

Since the same formula holds for 4, Eq. S.f.::v:mm <y, &.;.v < <Y, sk_‘.v
for all triangulations 4’ of .«/. But this is precisely the condition that y is
contained in .A'(Q, ¢,), which is the normal fan at @, of the convex hull

of the ¢,'s. |

A triangulation 4 of . is said to be regular m.m there exists a function on
P that is piecewise linear and strictly convex §.§ respect to \_.. A>. o.o:wwx
piecewisc linear function over a triangulation A is said wo be srrictly :‘%m..«
if it is given by a different linear function on each wa::m.: oo_._ of ﬂuv ] _M
condition is equivalent to %(.«/, 4) having non-empty .58.:3. Distinc
regular triangulations must have distinct cones, since a point in the ::Mcoﬂ
of one cone (coming from a strictly convex function over the oo:amv_ﬁ_u: ing
triangulation) cannot belong to any other cone. Thus, we get the following
corollary from Theorem 1.3.
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COROLLARY 2.1.  The vertices of the secondary polytope Q = 3(.o/ ) are in
one-1o-one correspondence with the regular triangulations of .o .

Suppose one knows all the vectors #.,. but not the actual triangulations
4. Then any regular triangulation 4 of .o/ is uniquely determined by the
vector ¢ ;. To reconstruct 4 from the set of vectors ¢, first note that

(o, 4)= D mﬁom"&‘_\&;‘w *

R O8]

where K* denotes the cone polar to K. A d-tuple 1= (1, ... 1,4) defines a
facet of A if and only if there is a Yeb(o/, 4) with , =0 for J€T1 and
Y,21 for j¢ . One may determine the existence of such a ¢ by linear
programming. We will see in Example 2.4 that a triangulation A may not
be determined by its vector ¢4 if it is not regular.

Let us first summarize a few positive results concerning the regularity of
triangulations. The lexicographic triangulations of </ constructed in [2] are
easily seen to be regular. These triangulations have the important property
that they depend only on the oriented matroid [3] of .«&/ and not its
specific realization. It is shown in [2] that all triangulations of a convex
n-gon are lexicographic, and consequently all triangulations are regular if
</ is a planar affine point configuration in convex position. If .« is not in
convex position, then there exist non-regular triangulations (cf. Fig. 1).
Using Gale diagram techniques, Lee [17] has recently proved that all
triangulations of point sets with small “codimension™ are regular.

PROPOSITION 2.2 (Lee). If n<d+2, then all triangulations of .« are
regular.

A polvhedral subdivision IT of ./ is a collection of subsets of o/, called
faces of 17, such that the set of polytopes {conv(t)|te 7! is a polyhedral
complex that covers P = conv(.o/). As with triangulations, we call J7 regular
if there is a function on P that is strictly convex and piecewise linear with
respect to I1. Given two polyhedral subdivisions 11, and 1T, of </, we say
I, refines I1,, written [7, < 1., if every face of [7, is a subset of some face
of 71,. Consider the poset #(./) of all regular polyhedral subdivisions of
./, ordered by refinement.

THEOREM 2.3, For any configuration o, the poset #(./) is a lattice
which is E:%@EQQ\E. to the face lattice of the secondary polviope X(./)

Proof. I we define

6o/ 1T) 1= {1} € R™: there is a piecewise linear convex function g
over IT with gla,y =y, for a,ete 11, gla,) <, otherwise !,
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then the proof of Theorem 1.3 given above also shows that % (.«/, N:._m the
normal cone to a face of the secondary polytope O = MA.‘s:. ::m defines a
map IT— 6 (/. 1) from A(.«/) to .1 (Q) (considered as its _E:mm of faces).
To construct the inverse, let F be a face of Q and define T(F) to be the
set of all regular triangulations 4 of ./ such that ¢ e F. roﬁﬁtj. be the
finest regular subdivision of .« refined by cach de EU. We Ac_E_:A:_E
(., [1(F))=.1(Q. F). The inclusion ¢ (.«/, [I{(F))c .1 .AQ, ﬁ.v Is straight-
forward. To see that €(.«/, II(F))2.1(Q, F), take y € 3_::4; (Q, F). Then
¢ induces a convex function g over P, piecewise linear with respect to a
regular subdivision IT" of P. Now for Ae T(F) we have .::: Bua=8
because g, , has the same integral as g and g, ,>g This equality is
equivalent to IT'< 4. On the other hand, if 4¢ T(F), &y must rm<w a
larger integral than g, implying that /1"4£ 4. So II'<II(F) showing
e¢ (., II(F)). .
/ Zoﬂn :EM m,va regular IT and IT’', we have 6(.«/, :.vm.m\;b\, IT') if and
only if [71<XII', and so the map [T+ % (.«/, IT) and its inverse are both
order preserving. |

The poset of all polyhedral subdivisions of .« is in general not polytopal.
In fact. it may have maximal chains of unequal length. See [15] a.Oa an
example. A 2-dimensional example can be made using the configuration in

the following example.

ExamrrLe 24, Let ' ={a,,.,a,} =R’ where a,=(4,0,0), a, =
(0,4,0), a:=1(0,0,4), a,=(2, 1, 1), as=(1,2,1), ag=(1,1,2). We will
describe two distinct triangulations A, and 4, of ./ such that

() &;. H&.:, and

(2) both A, and 4, are not regular.

First note that assertion (1) implies assertion (2). For, suppose (1 _ holds
and A, is regular. Then ¢, =4, is a vertex of Z(.«), maa A, 1s also
regular. But then Corollary 2.1 implies 4, =4,. Consider the two
triangulations

Ay = {125,134, 145, 236, 256, 346, 456}

and

I

{124,136, 146, 235, 245,356, 456}

of .o/ which are depicted in Fig. 1.
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2

FiG. 1. Two non-regular triangulations 4, and .1, with by =¢,
2 Bl A2

Writing [4jk ] for the absolute value of the determinant det(a,, a,, a,), we
compute B

$a=([125]+[134] + [145))e, +([125]+ [236] + [256])e,
+([134] 4+ [236] + [346])e,
+([134]+ [145] + [346] + [456])e,
+([1257+ [145] + [256] + [456])¢,
+([236] +[256] + [346] + [456])e,
=36e; + 36¢, + 36, + 28e, + 28e, + 28¢,
=d,=([124]+[136] + [146])e, + ([124] + [2357+ [2457)e,
+([136]+ [235]+ [356])e,
+([1247+[146] + [245]+ [456])e,
+([235]+ [2457 + [356]+ [4567)e,
+([136]+ [146] + [356] + [456])e,.

In Emm example m:m secondary X(.«/) is a 3-dimensional polytope, and
the point @4, = b4, is contained in the relative interior of a facet of 2(.o).

3. THE UNIVERSAL PoLytorE

Ioam. we construct the secondary polytope Q = 3(.«/) as a projection of
a certain higher-dimensional polytope. The universal polytope (o) of the
pomt configuration .o will be defined as the convex hull in Na R of a set
of d-vectors associated with triangulations of P=conv.«. ﬁmn universal
polytope \.S.QC depends only on the oriented matroid [37 of the point
configuration .«/, and not on the specific embedding.
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Let A be the nxd matrix whose ith row contains the homogeneous
coordinates of a,. Without loss of generality we may assume

1 a, o dy g

loasy o a,y,

A=

toa,, A

We denote by » the exterior product of the columns of A, so 1 is a simple
(or decomposable) d-vector in A, R". If {e,, .., e,} is the standard basis of
R”, then the d-vectors

e.=¢

A

A s Ae

Al it

1A A< A <

AeA(n, d): s < Ag<ny, (3.2)

form an orthonormal basis of A, R"”. We associate to any triangulation 4
of .« the d-vector
@y =Y sign{y,e;> e, (3.3)

de

which is called the projection form of A. The factor sign{y, ¢; ) is just the
orientation of the simplex conv{a, , .., a;,}. Note that this orientation can
also be defined intrinsically: The simplicial complex 4 is an orientable
manifold with boundary, and hence each of its facets A has a unique orien-
tation sign ,(4) in 4 (up to a global sign change). We have sign (i) =
sign<#, ;> which shows that (3.3) depends only on the triangulation 4
and not on the specific coordinates = A, A.

The projection forms in (3.3) have been used to solve various
isoperimetric problems, including maximizing the volume of projections of
the regular simplex [9]. We define the universal polvtope U(.«/) of .o/ as

#(L):=convig,e/\ R"| 4 is a triangulation of .o/ !, (3.4)

o

Some basic properties of #(.«/) are:

(a) The oriented matroid of .« determines the universal polytope
#(«7), and conversely.

{(b) Every triangulation of ./ (including the non-regular ones)
corresponds to a unique vertex of #(./).

(c) If the points of ./ are in general position, then the dimension of
U(./) equals (" ,").

2

Property (a) follows directly from the definitions. This contrasts with the
secondary polytope Z{./) which may depend on the embedding of .o/,
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Property (b) can be proved by noting that if 4 and 4’ are distinct
triangulations of .o/, then

Coppid="3 signine > =|4n4)< =<, 0, (35)
LS FE
The proof of (¢} will be postponed until we discuss bistellar operations. As
an application of (c), consider the case where .o/ is the vertex set of a
collvex pentagon. Then (b) implies #(.o/) has 5 vertices, and by (c) its
dimension is (3)=4. Hence the universal polytope (o) of a convex
pentagon is a 4-simplex. Note that the secondary polytope S(.o/) of a
convex pentagon is again a convex pentagon.
For the purpose of this paper the most important property of the univer-
sal polytope is the existence of a canonical projection onto the secondary
polytope. Consider the linear map

4\ R >R
! . (3.6)
P> Y e Jo) e, nye,.

i=1

where “ " denotes left interior multiplication, the adjoint to the linear
operator given by “ A, defined by the relation <a A b, c>=La,b ¢ for
ab.ce N, R of appropriate degree.

A d-vector ne A, R" is said to be simple if it can be written as a wedge
product of vectors in R”, ie, n=x, A A X, The set of d-vectors
obtained from all .possible bases of a fixed d-subspace of B" form a line
through the origin in A4 R" This correspondence between d-subspaces and
simple d-vectors is the classical Pliicker embedding of the Grassmannian.
Using this, we can give a geometric interpretation of the operations A
and |. If n and ¢ are simple, and the corresponding subspaces . and M
satisfy LM =0, then '~ @ represents the subspace L® M. Also if
L'+ M=R" then 1o corresponds to L1 ~ M [8, Chap. 0].

Now suppose ¢ =e,. If ied, then (e, [e,) n e;=e¢;, and ¢,(e,)=
<e;.n> is a Pliicker coordinate of n-1fi¢ i thene, |e, =0 and $.(e;)=0.
For a vertex ¢, of the universal polytope, (e, [¢,) A e, thus eliminates all
terms in ¢, except those corresponding to the link of a, in 4. The inner
product {(e; Jp,) A e, 1> gives the volume of this link in the realization
of .« since Ce;omdy=det A, the maximal minor of A with rows in ;.
Consequently, #o;)=¢,. This discussion proves the following result,

THEOREM 3.1, The secondary polytope X(.o/)c R" is the image of the
universal polytope (o) c Ao R under the projection @.

We next prove a key property of the map in (3.6).
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PROPOSITION 3.2, The Sollowing diagram of linear maps conmutes:

> E: ‘f:Liiv E:

d+1

/ o
Cy / ’
het
where e=e¢ + .- 4o,
Proof. It is enough to check the result on a basis vector ¢ €Ny, R
By (3.6), we obtain

&TV.T.:VH M Ce Je, te; In) A e e,

i€
For i€y, the coefficient of e, is

e Je, e, Jnyned>= M Aﬁ;w:,?f_i Al (3.7)

tieul/#i}

Since ie g\ j in (3.7), this reduces to

2 Kedenny=<e e, n>— e Je,nd.
liepli#i}
However, (e |e,.n>=0, since ¢ is a column of 1, and (e, Je,,n>=
(—=1)*<y Je,, e,> Hence

Hele)=(=1)""F ne,eye=(=1)""y Je,.
f=1

which proves the theorem. ||

This theorem can be interpreted as showing that ¢ takes d-boundaries to
the circuit space of the oriented matroid of 1.

Next we will prove that the affine hull of 2(.o7) is orthogonal to the
column space of A. We first need a description of bistellar operations in
terms of exterior algebra.

LemMma 33, If 4 and A differ by« bistellar operation on H=

convia . then

e

Cr—@py=+te | Oy

Proof.  The bistellar operation on # consists in replacing o -8 with
ca - fi. where {a, i} is the unique partition of (the vertex set of) t such that

link x=¢7p and link = cx (3.8)

607 R
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(see [20, Definition (2.2)]). In the forms ¢, and ¢ ., the join operation “.”
of complexes is represented by “A™, and the boundary operation by “e J".
Thus

Pa=@a=Y signin e, A e, Jey)de, a (e, Jey)

jep

- M signdn, (e, | ) negde, Je,) a Cp- (3.9)

re

mm:o.o a permutation of the indices in # will not change the signs of the
terms in (3.9), we may assume i<j forall iex and for all je . In this case

eldey=e nle Jep)+ (=D (e Jo.)a ¢y

i

Yoo, (e, ley)+ (—1)# Y (e, Je,) A ey (3.10)

Jef iex

Comparing (3.9) with (3.10), we see it suffices to show that
Signdn, e, A (¢, Jey)> = —sign(y, (=" (e, Je,yneyd,  (301)

for all .N.mQ and for all je f. But this follows from Cramer’s rule, since
{o, B} is the unique Radon partition of u. |

. In :ﬁ. following lemma, we shall determine aff(%(.«/)) precisely when .of
1s generic. This will also give a proof of (c).

ProposITiON 3.4. If & is a point configuration in general position, then
aff(% (7)) is a translare of Ayet.

Proof. Let L = span{¢p, - Pal @4, 04 € U(A)} be the subspace
parallel to aff(%(.«)) through the origin. We shall show that L= A e

Aae*cL: The space Aae* is spanned by Aae* =span{e Je, [ue
\:.F d+1)}. Since .« is in general position, for each e An, d+ :\ there
exist two triangulations 4 and 4’ of conv -« which differ by a bistellar
operation on {a,,, .. a,,. 1 From Lemma 33, ¢ de,=+(p,~¢,) and
thus ¢ Je, e L. . .

LeAye': Let 4 and A be any two triangulation of P = cony &/, and
let o=@, —¢,. Then

Mod=<n o>~ e, =vol(P)—vol(P)=0, (3.12)

Recall that e is a column of A and so n=n, A ¢ for some No€ Ny | R™
Substituting in (3.12) gives

O=<ngneod>= 1y e Jod. (3.13)
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Since .« is in general position, both 4 and A4” will remain triangulations for
small perturbations of .o/, and so (3.13) holds in an open neighborhood of
Ho 0N G(d—1,n). It follows that e | ¢ =0 (see. ¢.g. [9, Theorem 1]). The
proof follows since ¢ | =0 if and only if peNe' 1

COROLLARY 3.5, For .o/ in general position, the spuce aff(E(.</)) is

orthogonal to the column space of A, the coordinate marriv of .

Proof.  Since the map ¢ which takes #(.&/} to 2(.o/) is linear, aff(X(.«/))
is parallel to

span{gie Je, )| e A(n d+ 1)} <span!y | e leAln d+ 1)) (3.14)

by Propositions 3.2 and 3.4. It was shown in [24] that the vector y | e, in
(3.14) is an elementary vector of the linear subspace #" < R”, and that
all elementary vectors of 5 have this form (up to scaling). In order to
complete the proof, it suffices to observe that n le, is orthogonal to #,
which follows immedately from the geometric interpretation of « | |

For arbitrary ./, the conclusion of Corollary 3.5 follows dircctly from
the convex function point of view of Section 2 by observing that each of the
cones 6(.«/, 4) contains all y induced by afline functions on P. These are
precisely the elements of the column space of A. That this is the largest
subspace contained in these cones follows from the fact that if a function
and its negative are both convex, then it must be affine. This general form
of Corollary 3.5 will also be a direct conclusion of the construction in the
next section.

The lexicographic triangulations considered in [2] have the property
that they will be vertices of the image of ¢4 for any embedding of the set .o/
having the same oriented matroid. The set of all such “intrinsic™ triangula-
tions may be worth further study.

Finally, it is shown in [10] that the edges of the secondary correspond
to triangulations which differ by an operation they call a perestroika. We
note that these are precisely the “stellar exchange” operations of
Pachner [20].

4. THE CONSTRUCTION USING GALE TRANSFORMS

This section gives a self-contained geometric construction of the
sccondary polytope. We identify (R)* = RY with the space of affine func-
tions on the set .«/. The linear transformation R - R” defined by the nx d
matrix A, having rows a,, a,. ..., a,, takes affine functions to their values
on .«/. The image of A is a d-dimensional linear subspace which is clearly
contained in the cone (., A) for each triangulation 4 of .o/,
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Pick an (n — d) x d matrix B, with columns h,, by, ... b, such that

0— R R e v (4.1)
is an exact sequence of R-linear maps. The vector configuration
B=1{b. b,, .., b} is called a Gale transform of ./ (cf. [13, 18, 25]). Note
that the oriented matroid of .# is dual to the oriented matroid of .

LEMMA 4.1, The convex hull of B contains the origin 0eR" “ in its
interior,

Proof. There exists a linear function on R which is strictly positive
on /. Let A=(4,,...4,) with 4;>0 be the corresponding element of
Im(A)=Ker(B). Then b+ A b, s a positive combination of the
h/s giving the zero vector in R” ¢ ]

Fix a triangulation 4 of .o/, and consider the closed convex polyhedral
cone

A, )= () posih o honb. |, (4.2)

Bl o

e d
where “pos” stands for the positive hull and 7* is the complementary index
set to the facet r= (7, 1,, .., t)of 4 e, turt*= L2, .., n).

LEMMA 42, The map B induces :_._..,w%;.:‘:\wc,:.:.c:
o
(A, 4)= Ker(B)® 6" (.«7, 4)

into a d-dimensional linear subspace and an (n — d)-dimensional pointed cone.

Proof. 1t follows directly from the definition that the cone €'(., 4) is
pointed, which means it contains no non-trivial linear subspace. We need to
show that a vector y e R” is contained in 6(.«/, 4) if and only if its image
By e R” "“ is contained in %'(.o/, A4). First observe that

By = M_ Vb€ pos{b .., brgoihs B (4.3)
if and only if
Vo=yi= =y, =0
and
Viez0 4,20, .., ¥ 20 (4.4)

for some vector ' e ¥ + Ker(B). The piecewise linear function £y induced
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by ¢ is convex if and only if for each e 4 there exists a global affine func-
tion, with value vector 4, e Im(A) = Ker(B), such that V' =y — i satisfies
(4.4). Therefore, y € 6(.«, A) is equivalent to (4.3) holding for all € 4, and
hence equivalent to By € 4'(.«/, A4). |

We define the poinied secondary fan F'(.«/) to be the collection of cones
(7, 4)in B" ¢ where 4 ranges over all tiangulations of /. By Lemma
4.2, #'(«/) is strongly polytopal if and only if the secondary fan .# () is
strongly polytopal. More precisely, if Q'<R" ¢ is a polytope with
A(QY=F (/). then 0B Q' cR" is a polytope with 4 (0® Q') = ().
This means that the secondary polytopes of .« are exactly the polytopes in
R" 7 with normal fan & (/).

For each basis u of 4 we define the cone

Co=pos{h, . b, ..b, )

Hn
Lemma 4.3, Let xe R" < be such that x is not contained in the boundary

of any of the C,. Then the set of d-tuples Q= {u*|xe C,.} is a regular
triangulation of ..

Proof.  Pick a preimage y € R” of v under B, and let 4 be any regular
triangulation of .o/ such that yeb (o, A). It suffices to show that A =Q,.

Consider any index tuple 7 = {t;. T3, ... 14). Then 1 is contained in the
triangulation A if and only if {4.4) holds. But (4.4) is equivalent to (4.3)
and therefore to xe (... Hence re4 if and only if t*eQ . which
completes the proof. ||

Lemma 4.3 implies that cach full-dimensional polyhedral cone of the

form (), .o, €, i5 4 maximal cell of % (). and conversely. In other words,
# (o) is the multi-intersection in “ of all cones C,, where p ranges
over bases of # Note that, by roid ¢ Y. the bases of # are

pre v the complements of basis of ..

Second Proof of Theorem 1.3. Let i be any basis of #, u* the com-

plementary basis of .o/, and ¢>0 a sufficiently small real number. Define
the convex polytope

) £-h

[ e

P, :=conv(h, b

a b R R 5:1.

We define .Z, to be the interior point fan of P, with respect to the origin,
which is contained in the interior of P, by Lemma 4.1. By Proposition 1.2

(1), #, is the normal fan of the polar polytope P*.

All facets of .#, are unions of cones C,, for bases u’ of .4, which means,

by Lemma 4.3, that #'(.«/) is a refinement of the fan .#,. By the choice of
&, convih, b

! e

ww b, .} isafacet of P, and hence C, is a maximal cone

faoaf
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in Z,. The pointed secondary fan can therefore be written as the inter-
section
Fld= ) #.

1t basis of 4
Proposition 1.2 (2} now implies that

FUA) - () (Pr = Y PE) (4.5)

4 basis of 4 ji basis of .4

We have proved that the Minkowski sum 2. Pr s a secondary
polytope. |

Actually, Proposition 1.2 implies that the P¥s in (4.5) can be replaced
by arbitrary homothetic images ¢, P* This describes the degrees of
freedom in choosing a secondary polytope.

COROLLARY 4.4. A polytope is a secondary polytope of .o/ if and only if
itis a translate of ¥ W PXER 4 for some choice of positive numbers .

We close this section by describing the secondary of the cyclic 4-polytope
P with 8 vertices .o/ = {(1, 4, i?, *, iYeR% i=1,2, .. 8}. By Gale’s even-
ness criterion ([ 13, 261), the facets of P=conv(.«/) are the following:

1234 1238 1245 1256 1267 1278 1348 1458 1568 1678
2345 2356 2367 2378 3456 3467 3478 4567 4578 5678,

Let Z=1{b, b, .., by} < R be a Gale transform of /. We will represent
# by an affine Gale diagram as in [25]. The resulting planar diagram is
given in [25, Fig. 17 and in Fig. 2 below. We think of Fig. 2 as the
northern hemisphere of a configuration on the 2-sphere. The points
1,3,5,7 are contained in the northern hemisphere, while the points
2,4,6,8 are contained in the southern hemisphere. However, - these four
southern points are represented on the northern hemisphere by their
antipodal points 2, 4, 6, §.

Now consider the pointed secondary fan .#'(./) in R*. which is the
multi-intersection of all cones posib., b, b}, where | Si<j<k<8. The
resulting cell decomposition of the northern hemisphere is depicted in
Fig. 2, while the cell decomposition of the southern hemisphere is obtained
by symmetry. Altogether we get a polyhedral subdivision of the 2-sphere
with 40 faces, 64 edges, and 26 vertices. Nine of the vertices (denoted 1, 3,
5.7, a b, ¢, d e)are contained in the northern hemisphere, nine vertices
(including 2, 4. 6, 8} are in the southern hemisphere, and eight vertices
(denoted /, g, h, i, j. k. |, m} are on the equator, which is the line at infinity
for the affine diagram in Fig. 2. Eight vertices are 7-valent, and 18 vertices
are 4-valent.
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o

1

k \_ !

FiG. 2. Affine diagram of the secondary fan of the cyclic 4-polytope with 8 vertices.

These 40 faces are the maximal cells of the pointed secondary fan ‘@wﬁﬁ..v
and hence they correspond to the regular triangulations of :6. cyclic
polytope P. Note that there are 32 triangular faces m:.a 8 quadrilateral
faces. We can use (4.2) to read off the regular triangulations 4 of w corre-
sponding to the regions in Figure 2. Here are :z.o nx.mBEnm.. Oozm_a.ﬂ the
triangular region with vertices 3, 5, . This region is the intersection of

the positive bases

567 378 358 356 237 235 178 158 156 123

on the sphere. The corresponding triangulation 45 <, of P consists of all
4-simplices with complementary index sets, ie..
Ay = {12348, 12456, 12467. 12478, 14568, 14678,
23456, 23467, 23478, 45678 }.

» 1s the vertex triangulation of P which is obtained by joining vertex 4

4y

with all facets in its antistar. This can also been seen from the fact that 4

is contained in the region in question. . . .
Let us now move to the adjacent region with vertices a, 3, 5. Crossing

the line 35 corresponds (o performing the bistellar operation supported on
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FiG6. 3. Secondary polytope of the cyclic 4-polytope with § vertices.

the complementary index set 124678, The resulting regular triangulation of
the cyclic polytope P equals

As5..= {12348, 12456, 12468, 12678, 14568, 23456,
23467, 23478, 24678, 45678 b

The index sets involved in this bistellar operation are underlined in each
case. In this manner we can easily construct all 40 regular triangulations
of P.

The cell decomposition F'(&/) is polar to the secondary polytope 2(.«)
of the cyclic 4-polytope with 8 vertices. This shows that Z(.«) is a
3-polytope with 40 vertices, 64 edges and 26 facets. Eight of the facets are
heptagons and 18 of the facets are quadrilaterals; 32 of the 40 vertices are
3-valent {corresponding to regular triangulations which admit three
bistellar switches), while eight vertices are 4-valent (corresponding to
regular triangulations with four possible bistellar switches). A Schiegel
diagram of X(.«7} is shown in Fig. 3.

5. ON THE COMPLEXITY OF SECONDARY POLYTOPES

In this section we determine upper and lower bounds for the number
of faces of the secondary polytope X(7), and we discuss an optimal
algorithm for computing its vertices and face lattice from the input data
o <R Qur complexity bounds are sharp when .o/ is the vertex set of a
generic Lawrence polytope [1].
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Here the main idea is a reduction to the well-understood case of
hyperplane arrangements. As is customary, any (finite) arrangement of
hyperplanes # in R” is naturally identified with its polyhedral cell complex
whose D-cells are the connected components of R”\({) .#). An arrange-
ment .# is said to be central if all hyperplanes pass through the origin in
R”. In this case it is convenient to identify antipodal regions and to think
of # as an arrangement in projective (D — 1 )-space. A hyperplane arrange-
ment in affine or projective D-space is called simple if every vertex is
incident to precisely D hyperplanes.

For a comprehensive study of hyperplane arrangements from an
enumerative point of view we refer to the monograph [27]. The following
formulas due to Buck [4] follows as a special case from Zaslavsky’s results
(see [27. Sect. SEY).

PROPOSITION 5.1 (Buck). (1) The number of K-cells in a simple
arrangement X of N hyperplanes in projective D-space equals f,(# )=
S5 G B ) =0(DP AN,

(2)  The number of bounded K-cells in a simple arrangement #° of N
hyperplanes in affine D-space equals 24 A Y= (D + 1))(N+ K — DYWL ).

As in the previous section, let B =1{b, b,, .., b,)cR" “ be a Gale
transform of the given affine point set .o/ = {a;,a;, .., a,} « R% The k-faces
of the secondary polytope X(.«/) are in one-to-one correspondence with the
(n—d—k)-cells of its normal fan, the pointed secondary fan #(.</) in
R"“ (in this section we omit the “prime”). In Lemma 4.3 we saw that
F (/) can be obtained as the multi-intersection of all simplicial cones
C,=posi{b, b, .., b,. .}- where u ranges over all bases of 4.

Now let #, denote the central arrangement in R” ¢ consisting of all
hyperplanes which are spanned by subsets of 2 of rank # — d — 1. If o7 and
hence 4 are in general position, then the number N of hyperplanes in .#,
s N=(, % ), otherwise we have N < (, %.1) Let 7, denote the

zonotope which is the Minkowski sum of the N unit line segments
perpendicular to the N hyperplanes in A,

Lemma 52 (1) The arrangement Ay refines the pointed secondary fun
F(A) e, F(L)<H,.
(2) The secondary polviope 3(./) is a Minkowski summand of the
conotope 7, ie, 2(/)< D,

(3} If B= — 2B, then equality holds in hoth (1) and (2).

Proof. Every linearly independent (nn—d— 1)-element subset 1hyye e
b., ..} of # defines a linear form /,(x) = det(h,, ... b, , ,x)onR" < By
definition. .#, is the arrangement consisting of the hyperplanes {/,(x) =0 L
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Given any basis u of 4, then the cone C, is the intersection of n —d
supporting half-spaces of the form {14x)=0}. Each maximal cell of the
pointed secondary fan # (./) is an intersection of C,’s and can therefore be
written as the intersection of half-spaces |/,(v) =0} This praves claim (1).

Statement (2) follows directly from Pro 1.2. To see nt (3),
::F.:E_nmo:om:c_.zﬂa_uc_:F_E::

N\ 1 " -
() ix £L(x)20) =" () {x] +c

lor si

maximal region of #

¥
C, of bases A of 4, which proves.(3)

We remark that the converse of (3) does not hold. By adding one
suitable vector to the centrally symmetric set .# in Example 5.6, we can
obtain a Gale transform # of a 5-polytope P=conv(.«/) with 9 vertices
such that P is not a Lawrence polytope (defined below) but its secondary
polytope equals the zonotope ¥ 5 = Fy=2().

By combining Proposition 5.1 with Lemma 5.2 we shall obtain the
desired upper bounds for the face numbers of secondary polytopes. We
abbreviate K:=n—d—1—k, N:e=(, %), and D:=n—d—1. The
number of k-faces of (/) equals the number of (K + 1)-cells of F (),
and, by Lemma 5.2 (1), this number is bounded above by the number of
(K+ 1)-cells of .#),. Since #, is a central arrangement of at most N hyper-
planes in R”*', the number of its (K + 1)-cells is bounded above by twice
the number of K-cells of a simple arrangement of N hyperplanes in projec-
tive D-space. This number is given in Proposition 5.1, and we conclude the
following.

THEOREM 5.3.  The number of k-dimensional faces of the secondary
polytope X(A)cR"“ of an affine point set o = {ay. a5 a,} c RY
satisfies the inequality

i Lin—d-1)2) (ny ne—d—1—2j i
PARTA I Eg mod ) = tn d 1y
Sl E () o ot 4 1)

i=0

If we regard the input dimension o as a constant, then we get a singly
exponential lower bound already in the case = 3. If .7 is the vertex set of
a convex n-gon, then by [16] the number of vertices of the associahedron
2(o/) equals (1/(n—1))¥ })=Q(n" *). Here our singly exponential
upper bound O(n'" 27 s only off by the square in the exponent.
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We will next describe a construction which gives a tight lower bound
when the dimension r:=n—d of the secondary polytope is no:maﬁwa
fixed. Let .« = {a,, ay, ... a,,,} = R’ be an afline (¢ — 1 )-dimensional point
set, and suppose that r is a constant. Now Theorem 5.3 can .Un rephrased
as a polynomial upper bound in d for the size of the face lattice of Z(.o/).

COROLLARY 5.4.  The number of fuces of the secondary polviope (/) <
R” is bounded above by c(r)-dV ', where ¢(r) is a constant which depends
onr.

ed a Lawre

A (d— 1 kpolytope P =conv(.e ) with ¢+ r vertices 1s ¢
form F=R", e, If

y symmetric Giale |
g=1h. b, h

polvrope 1 1t |
d+r=2s is even (s 3 : . :
some vector configuration | by, ba. oo B, ) (See [1] for de ). We call P
tion, the confliguration [ b, b,

polviope il, in a :
is in generic position in R’. Here we mean by “generic” that the coor-
dinates of these s vectors are algebraically independent over the rational
numbers. Note, conversely, that a generic spanning vector configuration
{by, by, ... b} €R" defines a gencric Lawrence polytope E, &anmmo.z
2s —r—1 with 2s vertices. Hence there exist (d— 1)-dimensional generic
Lawrence polytopes with d + r vertices, whenever d+ r is even and r <d.

d 8] ¢l (> vd .
LeMMA 55 Let o ={da,,dyy vy, ,} =R be the vertex set of a
generic Lawrence polytope, and let 2s =r +d. Then the secondary polvtope
2(A) R is a zonotope with

r—1-=2
r—1-2j k
r r—1 (:23)

A, S\» r—1 -k r

r

Lir -1)2] A ,L
’-

Sl Z(L)=2- )

=0

—2.5-

k-dimensional faces for k=0,1, .., r-2. The number of facets of X(.<7)
equals
. A N Y
foasem=2x (K

—1
i—0 r

s 1
—2.. G2 1
r—1

Proof. The Gale transform of ./ is a centrally symmetric <mo~o~.o.o:-
figuration A = {h,, b,, .., b, —b,, —b,, .., —b,} =R’ in generic position.
By Lemma 5.2 (3). the secondary fan # () equals the hyperplane
arrangement % ,, and the secondary polytope X(.«/) equals the zonotope
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Z 4. We need to compute the number f,(.# ) which ig equal to the number

of (r—k)-cells of the central r-dimensional arrangement %, Let #
a.o:o.m the induced arrangement in projective (r — 1)-space. In ,M‘Em Eo_.no.w
tive (r—I)-space we select hyperplane not containing any vertex of .
to be “at infinity.” !

Let U/r, 5) be the number of i-cells in a simple arrangement of ()
:wnnﬁn._m:nm in projective (r — 1)-dimensional space. If the mﬂ;:mmam:”‘,ﬂ
were simple, then \.Lk.inm.c.\ & 1(r,s). However, ,»w\: is not w::v_w
unless r=s, which is a trivial case, .

Suppose for the moment that r <s. Then the vectors by, .., b, do not
correspond to simple vertices of A, However, since # was c:omms to be
generic all other vertices of H#, are simple. If we perturb the arrangement
\.v. slightly, so that jt becomes simple, then we create additional bounded
regions around each vertex b,. The number of hyperplanes passing through
each b, equals ( ). Let V(r, s) denote the number of bounded i-cells in an
arrangement of (1 1) :N@QEm:am in affine (r — 1)-dimensional space. The
process .Om perturbing #, to a simple arrangement creates V,(r, s) new
.Ta::@:mno:m_ regions around each vertex b, for j=1,2, «o F—1. This
implies that

Tz, =2.U, ns) =25V, (rs)  for k=01, r-2

mOH, N.Ho. we have to discount the vertex b, (which itself is a bounded
0-dimensional region), and we get

L) =2-Unlr5) =25 [Vy(r. ) - 1.

Since V,(s, 5) = 0, these two formulas are also valid in the special case r = .
From Proposition 5.1 we find that

Q.?,:H:TM_E GCrd Yr—=1-2
i=0 Pl =2 N r—1
and
itrsh= el (T 0
A”\NV+~+_‘\ ~ r

This completes the proof of Lemma 5.5, ]

H.o illustrate the formula in Lemma 5.5, we consider the smallest non-
trivial example of a 4-dimensional Lawrence polytope.

.mx?e:,rm 56. Let of = {q,, 9y ay} < R° be the set of vertices of a
Prism over a tetrahedron, conv(.e/)= 4, x 4,. This 4-polytope is a generic
Lawrence polytope because its Gale transform equals .4 — {hi by by b,
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—by, —by, —by. ~b,} =R, where the vectors by, by, by, by are in general
position (see [25, Fig. 4]). (In this edasy example there is no difference
between “general position™ and “generic position™.) The secondary
polytope is a 3-dimensional zonotope with 6 zones. We can write

A xA)=2,= {4, b xbheR:0<i, <1, | <i<j<4),

where b, x b, denotes the ordinary cross product of vectors in 3-space. We
compute the face numbers of X(A4, x 4,) by specializing r=3 and s=4 in
Lemma 5.5. The secondary polytope X(A4, x 4,) has 24 vertices, 36 edges,
and 14 facets. In particular, there are 24 regular triangulations of the prism
over the tetrahedron.

With the same argument we can easily compute the fivector of the
secondary polytope of 4, x 4, (the prism over the d-simplex) for any d. It
is an important open problem to determine the secondary polytopes of
general products of simplices [ 10, Sect. 7. Remark (d)].

In Example 5.6 we can see that the face numbers of 2(4,x4,) are
smaller than the face numbers of the secondary polytope of the cyclic
4-polytope with 8 vertices (determined in Section 4). However, when r is
fixed and d— oo then the secondary polytopes of generic Lawrence
polytopes have the maximum number of faces,

THEOREM 5.7. Let FA(d) denote the maximum number of faces of a
secondary polviope (/)= R’ as o ranges over all (d + r)-element sets in
R There exist constants ¢i(r) and ¢(r) (depending on the dimension) such
that ¢\(r)-d" "V F(d)<cy(r)-d"- T

Proof. The upper bound was proved in Corollary 5.4. The lower bound
is clear for r=1 and r=2; for r=23, we use Lemma 5.5. First observe that
there exist generic Lawrence polytopes for fixed r and d— oo whenever
d+r is even. Consider the term corresponding to j=0 in the sums of
Lemma 5.5. This term equals

1) 2
A:W.__ ' r—1

r—1 k

and hence it is bounded below by ¢{r,k)-d" ' All other terms in this
sum are of lower order in d The negative correction term can casily be
bounded above by ¢'(r, k). v 2, Hence the number of k-faces is bounded

below by ¢"(r,k)-d"" ' Here ¢ ¢, ¢ are constants depending on r
and £. |

From this analysis we also get an optimal algorithm for computing the
face lattice of the secondary polytope X(.o/} (when its dimension r is
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regarded as 3 constant). We refer to the book of Edelsbrunner [6] for a
precise notion of geometric algorithms and their complexity. In particular,
in (6, Chap. 771 we find the following result due to Edelsbrunner,
O'Rourke, and Scide [7]

ProPOSITION 5.8 (Edelsbrunner, O’Rourke, and Seidel). The tace lattice
of an affine arrangement ¥ of N hvperplanes in R” can be computed in
O(N”) time.

As a result we get that the face lattice of a central arrangement ¢ of N
hyperplanes in R* can be computed ip O(N" ') time. As can be seen from
[6, Chap. 77, this algorithm also generates a test point in (he relative
interior of each cel] of  at the same cost.

In order to compute the face lattice of the secondary polytope (), we
proceed as follows. We first compute a Gale transform # for .oz, This can
be done in Ofc(r)-d?) time. Then we Compute the arrangement H,, which
requires oy 1= Oc'(r)-d" ') time. Finally, we need to identify
k-cells of H, which correspond to the same k-cell of #(o/). We now
sketch a method for performing this identification in time O(c"(r)-dr- 17,
All details {e.g., efficient data structures, etc.) will be omitted here.

For every {r — 1)-cell (or subfacet) F of #, we need to decide whether
F should be removed. To do 80, consider all linearly independent
(r—1)-element subsets {b,,, b, )} of B.If Fis not contained ip any
pos{b,,, .., b, .}, then we remove F, otherwise we keep it. The time
required for each of the o(d' 17 containment tests depends only on the
dimension r, We conclude this section by stating our main computational
result.

CoroLLARY 59, T, he face lattice of the secondary polytope 5 (&) R
of an m\\m:m point set of = {a,, a,, .. g, .} <R can be computed in optimql
Od" 'Y time, when r is regarded as a constany.
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