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Using Minkowski integration, we define the secondary polyhedron of a vector
configuration . and study its behavior under the matroidal operations of duality,
deletion, and contraction. A main tool is the identification of the regular polyhedral
subdivisions of & with the cells in the dual chamber complex. As an application we
construct a non-regular triangulation of a cyclic polytope.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Given a spanning set .o/ = {a, .., a,} of non-zero vectors in RY we are
interested in the (n — d)-dimensional secondary polyhedron 2(A4) whose
faces correspond to the regular polyhedral subdivisions of the (d—1)-
dimensional spherical polytope P(«#) =pos(HZ)NS‘"! The spherical
polytope is thought of as a (d— 1)-polytope in the usual affine sense when-
ever pos(s/) is a pointed cone, and in this case (/) is bounded and is
normally equivalent to the secondary polytope defined in [5] (see also
[2,3,6,8]). On the other hand, if pos(«/) = R? then 2() is unbounded
and its vertices correspond to the regular triangulations of the (d—1)-
sphere with vertices on the rays of /. Our approach extends the work of
Oda and Park [ 10], who have constructed the normal fan of X(s/) by
means of linear transforms.
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Each a,e .o/ gives rise to two minors. The minor by deletion of a; is the
configuration &/ \q,= {ay,..a,_,, ;115 a,}) in R The minor by con-
Iraction of a, is the configuration /a;={n,(a,), .., (a1 ), ma(a, ), ...,
n,(a,)} in R ' where T, R >R is any epimorphism with kernel
span(a,). It is our objective to relate the secondary polyhedron 2(A) of o7
to the secondary polyhedra 2(/\a;) and Z(o//a;) obtained by deletion
and contraction of any a;e s/,

In Section2 we use an integral representation as in [3] to define
2(s/), we discuss its combinatorial interpretation in terms of polyhedral
subdivisions, and we give formulas for its. vertices and the extreme rays
of its recession cone. We use this integral representation to give a
description of 2(s\a;) as a facet of 2(s7). Section 3 is concerned with the
behavior of the secondary polyhedron X(s/ ) under duality and under
minors by contraction. We show that the boundary complex of 2(f) is
antiisomorphic to the chamber complex of a linear transform # of <7, and
we show that X(.o//a,) either is a Minkowski summand of Z(</ ) or can be
obtained from one by removing a single facet. In Section 4 we answer a
question raised by Kapranov and Voevodsky [8] by presenting an
example of a non-regular triangulation of a cyclic polytope.

2. THE SECONDARY POLYHEDRON AND DELETIONS

Let o/ ={a,,..,a,} be a set of n non-zero vectors spanning R? The
polyhedral cone pos(./ ) is the image of the non-negative orthant
R% =pos({e,, .., e,}) in n-space under the linear map 7: e, a,. The fiber
of a point x € pos(.«7) is the polyhedron

' (x)={(4,, .., 2)ER" 1 hia + - +2,a,=x} (2.1)

consisting of all positive representations of x with respect to .. Note that
each k-face of the spherical polytope P(s/)= pos(s/ )N S? Vs of the form
FAS9! where Fis a (k+ L)-face of pos(s#). We define the secondary
polyhedron of o/ to be the Minkowski integral

() :=LW) 7~ (x) di 2.2)

with respect to the rotation invariant probability measure on the unit
sphere S~ ! This means that (&) is the set of all points J presy ¥(x) dx in
R”, where y: P(/)—> R" is a measurable function such that oy is the
identity (see [37).
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We will now derive a description of the recession cone and the face
lattice of Z(.r ). A circuit of o s any non-zero vector of the form

d+ 1
C,:= Z (—1) det(avl, @y Ay, e a,,..) €y (2.3)

i=1

where v is a (4 + 1)-subset of {1,2, ., n}. We call C, a positive circyit if
C,eR"

Given any basis 7 = {a,, .., a.,} of o, we define L., to be the unique
linear functional op RY with L, ila,)=6, (Kronecker delta). For
X€pos(e/) let 2 denote the set of all bases ¢ of ./ with X € pos(t). The

recession cone.

Lemma 2.1. (@) The zero Siber w=1(0) equals the positive hull of all
positive circuits C, of o.
(b) Forall xe Pos(.) we have . ~Y(x) = r - Y0) + conv{3? | L. .(x)- e,
[te,}.

Note that pos(.e7) is pointed if and only if 7~ 40)={0}. Since the
integral in (2.2) is additive with respect to the Minkowski sum in
Lemma 2.1(b), we get the following result.

CoroLLarY 22. T he Secondary polyhedron 3 (A) has the recession cone
= N0). Thus 2(A)is a polytope if and only if pos(.o#) is pointed.

A subdivision of 2 is a collection 1 of subsets of o such that the

-1

P(<) into spherical polytopes pos(a)n S
subdivision into simplicial cones (respectively, spherical simplices). Given
polyhedral subdivisions I, and I1,, we say 11, refines 11,, written
i, <11, if every face of 7, is a subset of some face of I,

in direction  if the linear functiona] <Y,-> attains a finite minimum over

Q. In this case y defines a proper face Q¥ .= {regi<y, y>< ¥, 0>},
having an inwarg pointing normal . We call Y eR" feasible if () is
bounded in direction Y. By Corollary 2.2, the cone of feasible vectors is the
polar of 7~'(0). Note also that V=(y,, .., ¥.) is feasible if and only if
o, .., 0, —1) does not lie in

POS{(ala %), (az’ 'ﬁz), ey (ana 1,0,,)} S Rd+ 1' (24)

In this case the projection of the “bottom” faces of the polyhedron in (2.4)
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onto the first 4 coordinates defines a subdivision 1I(y) of . This method

of obtaimng subdivisiong 8oes back to Walkup ang Wets [127 we call a
subdivision 77 regular if it ariges in this way. If I7 is 4 regular subdivision,

F ) = {c//eR”lH(t//)=17} (2.5)

divisions, ordered by refinement, Here the maximal cells of ., correspond
to regular triangulations of o7, ,

in the plane cap have non-regular subdivisions. Foy €Xample, /7= { {1,2},
{1,4}, {2, 3,4}) is a flon-regular subdivisjop of o/ = {al,az,a3, a,} =
UL 1), (1,0), (1, ~1.(~1,0)} cR>

Every triangulation 4 of <7 gives rise to g pPiecewise linear section
V4 pos(ef) - R” via Y4(x) =37, L., (x) €., whenever XEted If 445 4
regular triangulation of o/, then any vector € F_(4) satisfies T (x) =
{yd(x)} for all points » in the interjor of P(«/). By [3, Proposition 1.2],
integration over P(o/) yields the following result, ~

ProposiTion 23. For any regular triangulation 4 the vector b=
J',,( wyYalX)dx is g vertex of X(ot), and all vertices qre of this form. T, he
inner normal cone of X(of) ar b4 equals F,(4).

We now prove the following direct geometric description for the
secondary polyhedron by deletion (A \a,).

THEOREM 2.5, The face x () of the secondary polyhedron iy, the
direction of the ith unis vector is a facet, which, is a transilate of the Secondary
poly/zedron 2(A\a,) by deletion.
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Proof. The (d— 1)-polyhedron 2(A\a,) is defined ag f,,(d\ai) 0, \(x) dx,
where

0,—: (2,1, ey X’i—l’ /?'i-i-l""i /ln)Hi'lal + T
+'li-lai—l +}“i+1at+1 + - +’{nan' (2.6)

Each fiber 07 '(x) in R of a point *EPOS(/\a,) is a subger of 7~ 1(x)
via the jip coordinate inclusion of Rr-1 in R~ More Precisely,
Hi‘l(x)=7r“(x)ef is the face of n (x) on which the ;¢p coordinate
function jg Zero and hepce Mminimal. Thjs face is a facet if x Jies in the:
interior of Pos(s/\a,). This implies

07100 dv= [

Pl \ay)

T (X)% dx = (f

]P(M \a;)

If q, is Contained in pos(«/\a,), then the right-hand integral equals Z(sz)
and we are done. Let ys NOwW assume that a, ¢ pos(.o/ \@;). Pick a suﬂiciently
generic point x pos(s¥) \pos(.o/ \a,). Then there exists 5 unique simplicial
(@~ 1)-cone pos(a,, ..., .-,) which Spans a facet of Pos(«Z\a,) and such
that X € pos(a,, s - @, ); say, )c=/4,»a,-+/zjlajI + - +‘ufd<lafd»l’ where
“eR" and He=0 for k¢ {i, j,, s Ja_1}. The point u gives the unique
minimum of the j¢p coordinate functiop € over ™! (x), je. T (x)e = {u}.
We have showp that the face n N (x)% is g vertex of n-Y(x) for almost
all YEP(A)\P(s/\q,), Thus fP(d)\Pw\an T X)) dx s 4 point, which
completes the proof of Theorem 251

3. DUALITY AND CONTRACTIONS

5'_1: Biaizo}‘ (3'1)

i=1

The cocircuir Space of of is the d-dimensiona] subspace 2() of R”
Spanned by the vectors

D, =% det(q,, ., Qs a;) e, (3.2)
i=1
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called cocircyirs of .o/, where A ranges over all (d— 1)-subsets of {1, .., n}.
Equivalently,

D(oAt) = {(d(a,), - Pla,)) e R"4: R SR any linear functional}. (3.3)

A spanning subset 2 — {by, .., b,} of R~ s called a linear transform of
o provided %(M)z@(éf?). This is equivalent to @(%):%(,@) and thus to
</ being a lipear transform of #. Ip this case the oriented matrojds
associated with o and # are dual. It we define 1, = {i —a,€pos(sZ)},
then it is consequence of oriented matroid duality that the sets [, and
1, partition {1 .., n}. Thus, for example, pos(.e7) is pointed (ie., 1,=3)
if and only if pos(#)=R"—4 Ug=1{L,.., n}). See [4,9, 11].

The champer complex I'(s7) of of is defined to be the coarsest polyhedra]
complex that covers Pos(.e) and that refines a]l triangulations of . Given
X0 € pos(.e/), the unique (relatively open) cell of (o) containing x, is

I, Xo) =) {rel int Pos |’ S o/, x,erel int pos /') (34)

For the special case pos(s7) = R", Theorem 3.1 leads to ap association
between polytopes with hormal vectors in .o and cells in 4. This Statement
can also be inferred from [9, Theorem 5A2].

THEOREM 3.1 Let o/ «R? gpg BR" 4 po linear Iransforms of eqch

For the proof of Theorem 3.1 we will need the following lemma.

LEmMma 32, Given any subset ¢ {1, .., n}, then o€ ll(y) if and only if
2 Wb erelint pos{bklk¢a}.

Proof.  The cone pos{(a, ¢,)|ie 0} is a bottom face of pos{(a,, y,), .y
(@s, )} cR4+1 g and only if there js 3 linear functional #: RS R such
that ¢(a,) + Y:=0for ico and #a;)+ 1, >0 for i¢o. This is equivalent to
the existence of 3 vector ue@(ﬂ):‘f(ﬁ) With v, 44, =0 for ieo and
V;i+4¥,>0 for i¢o. In this case, 37, w,-b,:Zm (Ve +4,)b,, which
completes the proof. 1

Proof of Theorem 3.1. Consider the linear map B:R" - R"~4
Y3 ¥:b.. Fix a feasible vector Yy eR”™ 1t lies in Z,I) for some



(B, By)) = M relintpos{bk!k¢a}. (3.5)
veI(y)

We now define 3 map from the boundary complex of the secondary
polyhedron 2(H) to the chamber complex I'(#) by

() > 1@, By)) (3.6)

This map g well-defined apng order-reversing because if L) < 3o )
then 1I(y) refines (), by Theorem 24, and in this case 1'%, By')) <
(4, B(y)) by (3.5). By Lemma 3.2, the assignment (2, x)f——»Z(Jz/)"’, for
any ¥ such that B(y) = x, defines the inverse to (3.6). 1

a vector ¢ e R” that induces a Convex piecewise linear function 84=g8, ,
over the fan defining 4 (see [2] for the affine case). The function &4 18 the
Support function of 5 polyhedron Q4 with normal fan 4. Recalling that

ProposiTion 33, The Junction 2484, the sum taken over gy regular
triangulations of B, is the Support function of a polyhedron Q normally
equivalent 1o the secondary polyhedyron 2(). In Jact, Q is the Minkowsk;

sum 3y Q,.

The summands of (o) in Proposition 3.3 may be taken to be
Qi=f,n " (x) dx, where ¢ jg the maximal cejj of IsZ)n§a-1
corresponding to the regular triangulation 4 of . In fact, the regular



Again, let o7 _ {ay, .., a,} be a Spanning subget of RY and let
B = {5,, e b} o RA-d € a linear transform of . We assume that a; is
neither a loop nor a coloop of o, which means that none of the a; and
none of the 5, are zero. The following lemma is 4 straightforwarq analogue
to the matroida] duality of deletion and contraction,

Lemma 34 Deletion ang contraction are dyq) in the sense that

(i) A/a, is a lineqgr ransform of B\b, and
(i) o7 \a; is a lineqr Iransform of B/b,.

We have identified the normal fan of 2() with the chamber complex
1(%). Using Lemma 34, we can therefore identify the normal fan of
2(/a,) with the chamber complex I'(# \&;), and similarly the normal fan
of Xt \a,) with [ (%/b,). Thus our problem is redyced to describing the
behavior of the chamber complex under deletion and contraction, Using
this point of View we now describe the relationship of the secondary
polyhedron by contraction 2(A/a,) to ().

We say a point q, is €xtreme in of if ai¢pos(.xzi\a,-). We note that a; is
extreme in o/ if and only if b, is not extreme in 4. Every convex
polyhedron O can be written uniquely as 5 minima] intersection of
halfspaces in its affine hull, each of which then defines a facet. IfQisa
convex polyhedron and Fis a facet of O, then we say Q" results from Q
by removing F if @' js the intersection of all halfspaces i the minima]
representation of O except the one corresponding to F

THEOREM 3.5 Let o and # pe as above. If a; is extreme in A, then
2(A/a,) is a Minkowski Summand of X(.of )- If a; is nor extreme in of | they
2(H/a,) is unbounded and i obtained from 4 Minkowsk; Summand of 3(of)
by removing the fucer With inner normgqj e;.

Proof. we consider the chamber complex /(% \b,). If a, is extreme in
</, then since b is not extreme In 4, regular triangulationg of #\b, are just
those regular triangulations of # that do not involve b; as a vertex. Thus
by Proposition 3.3

Z(ﬂ)=2(%'/af)+ZQ4, (3.7)

the summation over those regular triangulations of that do contain b,.
On the other hand, if a, is not extreme in o7, then since b; is extreme in

A, all regular triangulations of # must contain b;. In this case, let

R=3,0,, where the sum here js over all regular triangulations 4 of %
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such that.th'e Complex 4\p, triangulateg B\b,. (By A\b, is Mmeant the com-
plex Consisting of 4y simpliceg that do not contain 4.
agam, R js 4 Minkows; Summand of (),

facet witp inner hormal e, whey, these Polyhedra gare considered ip the
origing] embedding in R 1

4. A NON-REGULAR TRIANGULATION OF A Cycric PoLyTtopg

In this section we apply our duality results to triangulationg of the cyclic
8-polytope (8, 12) with 12 vertices, In particular, we show that (8, 12)
admits 3 non-regular triangulation; this proves conjecture of Kapranoy
and Voevodsky [8, Remark 351

Let o7 - {a,, a,, s Ay} <R, Where 4, : = (1,442 %) for = L2, 12
The cyclic polytope (8, 12) is defined ag conv(.o). It winl here be iden-
tified with the spherica] 8~polytope P() or with its positive hul] pos(./).
A linear transform of o7 jg given by 7 {b,, b,, b} cR3, where

) 0 —165 990 —2772 4620 — 4950 3465 — 1540 396 —45
0 -1 0 45 —240 630 —1008 1050 —729 315 —3g0 9
0 o0 I 9 36 g4 126 126 84  _3¢ 9 —1

If we replace the vectors b,, b,, bs, b, b0, and by, by their nhegatives,
then we obtain a pointed cone jp 3-space, which can pe epresented by the
2-dimensionai affine configuration depicted in Fig 1. This diagram g an
affine Gale diagram [117 of (8, 12). (See also [2, Fig. 2.

By Theorem 3.1, the maximal cells of chamber complex I(%#) are in one-
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FIGURe |

of the simplicia] cones pos({s,, by, b, }), where ik ranges over the triples
in the foHowing list:

123 125 137 34 145 157 s 1511 178
1710 1712 1910 1915 11112 2311 345 545 349
35U 367 369 3,4 389 3911 31110 54 569
361l 589 sy sy 789 7811 71011 919y,

(4.1)

The regular triangulation 4, of C(8, 12) corresponding to the region
(%, x,) has as its maxima] simplices the complements of aJf triples in
(4.1), that is, the 35 maximal simplices of 4, are 4567891011 12,
346789 1011 12, 245689 1011 12, e We now replace the five
underlined triples in (4.1) by

2511 4511 5711 5911 51112, (4.2)

The new collection of complementary sets defines a simplicial 8-bajj 4,
which is obtained from 4, by a bistellar operation (see [27) on {5 11 Yo
{1,2, 3, 4,6,7,8 9, 10, 12}, This bistellar operation can be carried out
gcometrically for the triangulation 4o of C(8, 12) because ({1, 3,68, 10},
{2,4,7,9, 12}) is a Radon partition of C(8, 12). For, we can see in Fig. 1
that (—, t. =, +,0, —, -+, -0, +) is a signed cocircuit of and
hence is 2 signed circuit of oA,

Proposrrion 4.1. The triangulation 4, of C(8, 12) is noy regular.

Proof. If the triangulation 4 1 Were regular, then there would exist g



vector x, in the interior of all simpliciaj cones pos({54,, by, b)), Where /j
fanges over 4y triples jp (4.2) and all non-underlipeg triples ip (4.1).

.45 can be seep jp Fig. 1, the intersection of these simplicia] Cones
(or sphericai triangies) is empty. Thig shows that 4, is a non-regujar
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