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We present a siructure theorem for vector partition functions. The proof rests on
a formula due to Peter McMullen for counting lattice points in rational convex
polytopes. ¢ 1995 Academic Press

INnTRODUCTION

Let A=(a,,...a,) bea dx n-matrix of rank 4 with entries in N, the set
of non-negative integers. The corresponding vector partition Junction
$s N> N is defined as foliows: ¢ ,(u) is the number of non-negative
integer vectors 4=(A1. ., 2,)€N" such that 4 A=la + - + A4, =u
Equivalently, the function ¢4 is defined by the formal power series:
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Vector partition functions appear in many areas of mathematics and Its
applications, including representation theory [9], commutative algebra
[ 14]. approximation theory [4] and statistics [S].

It was shown by Blakley [2] that there exists a finite decomposition of
N7 such that ¢ 4 18 a polynomial of degree n —d on each piece. Here we
describe such u decomposition explicitly and we analyze how the polyno-
mials differ from piece to piece. Our construction uses the geometric
decomposition into chambers studied by Alekseevskaya, Gelfand and
Zelevinsky in [1]. Within each chamber we give a formula which refines
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the results by Dahmen and Micchelli in [4,§3]. The oEo.o:é of ::,fu

note is to provide polyvhedral tools for the efficient computation of <an.mo_

partition functions, with a view towards applications, such as the sampling

algorithms in [6]. _

EXAMPLE (n=6, d=3). Consider the vector partition function
¢, N* >N, (4, v w)o #{AeN® A A=(u, v, w)'}

associated with the ratrix
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In this instance the value of ¢, does not a%ama on the UQ.B:S:o:r of
(u, v, w), so we may assume that u>v=w. Also, ifu+v+w= _%oa Nﬁﬂr mm
¢ (u, v, w)=0, so we shall assume that ¥+ v+ w=0mod 2. Given thes
assumptions, we distinguish two cases:

Case 1. uzv+w. Then

¢ (u, v, w)

2 3
oW uw W

2t%
1 +0v/2+2w/3 ifu=0mod?2and v =0nod 2,
i + < 1240/2+5w/12 fu=s1mod2and v=1mod?2,

1/2 +3v/8 + 13w/24 otherwise.

Case 2. u<v+w. We set
W= —1?/8 F uv/d + uw/4 —03/8 + viw/d — w8
+ut /48 — uv/16 — /16 + /16 4+ urw/8 + /16
— 0¥ /48 — 02w/16 4+ 1w/ 16 —w?/16.
Then

¢ (u, v, w)

fu=0mod?2and v=0n10d2,
ifu=1mod2and v=1 mod?2,

1 +u/6+v/3+w/2
=y +<1/2+u/6+v/3+w/4
1/2 +u/6 +50/24 + 3w/8 otherwise.
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. Already this simple example illustrates the main feature of vector parti-
tion functions, which is the interplay of a structure of convex polyhedra (as
seen In the distinction of cases 1 and 2) with a structure of finite abelian

groups (as seen in the “mod”-subcases).

In order to deal with the general case, we introduce some notation.
Let pos(d)={3"_, 2;a;,eR": 2, .., 2,20}. For ac[n]:= {1,..,n} we
consider the submatrix 4, :=(q,: i€ o), the polyhedral cone pos(A,), and
the abelian group ZA4, spanned by the the columns of A,. We may assume
without loss of generality that A is surjective over Z, that is, ZA =Z This
implies that the semigroup NA := pos(4) " Z A is saturated. why w wht's t:»*w.

The surjectivity assumption does not hold for the 3 x 6-matrix in our

example. In order to apply the results below to such a case, one must
choose a rational 3 x 3-matrix B which defines an isomorphism from Z A
onto Z* and then use the formula ¢ ,(u) = ¢ ,.,(Bu).

A subset o of [n] is a basis if #(a)=rank(A,) =d. The chamber complex
is the polyhedral subdivision of the cone pos(A) which is defined as the
common refinement of the simplicial cones pos(A.,). where ¢ runs over all

bases. Each chamber C (meaning: maximal cell in the chamber complex)
is indexed by the set 4(C)= {oc[n]: C < pos(A,)}. For each o€ 4(C),
the group ZA, has finite index in Z9 write G,:=Z%ZA, for the
group of residue classes. We say that ¢ is non-trivial if G, #{0}. For
ue pos(A) "N, let [u], denote the image of u in G,.

In the small example above there are 12 chambers; they are grouped into
two equivalence classes with respect to the Sy-symmetry. The following
theorem is our main result.

THEOREM 1. For each chamber C there exists a polynomial P of degree
n—d in u=(u,, .. u,), and Jor each non-trivial o e A(C) there exists a
polynomial @, of degree # (o) —d in u and a function Q,:G,\{0} > Q such
that, for all ue NA N C,

¢ du)=Pl)+ ) {Q,([u],) O u):ced(C) and [u],, #0}.

Moreover, the “corrector polynomials” Q,, satisfy the linear partial differen-
tial equations

o m) )
Y o, M@!q =0 fordll jeo such that a\{j} ¢ 4(C).
[ ;
Remarks. (1) Therem 1 provides a generalization of the theory of

denwmerants (the d=1 case) which can be found in Comtet’s book [3,
§26]. A nice MAPLE package for computing denumerants has been
implemented by P. Lisonék [10].
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Another important special case occurs when the matrix 4 is

] “ (2) )
r vof hed. unimodular, which means that G, = {0} for each basis o. In this case ¢, is

/ § A ) « . . . . . . .
) mog Abd wfor instance, in the problem of counting non-negative integer matrices with

+t a polynomial function on each chamber [4, Corollary 3.1]. This happens,

Stvuctune prescribed row and column sums; see [5] for a mnsmnm_ sufvey and see
[13] fer the computational state of the art. =~ Ge+ s

(3) The main point of our formula is the “additive decoupling” of the
correction term, which generalizes Theorem C in [3, §2.6]. The Rmc_ﬂm. of
Dahmen and Micchelli in [4, §3] generalize a (somewhat weaker) classical
theorem of Bell [3,§2.6, Thm. B]. The computational advantage of the
additive decoupling is explained on page 114 in [3].

Y

THE PROOF

We shall use notation which is standard in the theory of toric <m1mcomh
see e.g. [7]. Let N be a lattice of rank m, M = Hom(N, Z) its dual lattice,
and Ng and M, the corresponding Sso:m._ vector spaces. Suppose we are
given a complete simplicial fan X in N having » rays, S.E.:.o:-.NSo “m:_on
points b, .., b, on these rays. (The b, need not be primitive in N!) We
identify the cones of X with subsets of {b,, ... b,}. For each ._ <!l<mand
each cone t={b,,, .., b}, we let H denote the group 77 of Eﬁomoq.é_cma
functions on t modulo the subgroup of those functions on T which are
restrictions from M = Hom(N, Z.). Wc say that t is non-trivial if H,# {0}.

Consider any convex polytope of the form

. P,={xeMy:{x, by <yfori=1,..n}, (2)

where y = (y, ..., 7,) ranges over the set C(Z) of NE vectors in Z” such that
the normal fan of P, is coarser or equal to Z. It is well known that there
exists a poynomial function F=F(y) on QM.V of aomnow m such .ﬁ:m:
#(P,n M) = F(y) provided that P, is integral, i.e., all vertices of P, lie in
N M. For a toric proof of this fact see e.g. [8,§5]. In general, however, the
.r polytope P, is not integral, since the fan X' is not assumed to be smooth.
b . . e . . w.ng
The following proposition characterizes the difference between #( P,
and the polynomial F(y) in the general case. If ye Z”, then we write [v1.
e .ip\Sv for the image of the function t — Z, b;+— y, in the group H..

PROPOSITION 2. For every non-trivial cone 1€ X there exists a hc@:&:.ﬁ\
R, of degree m— #(t) in the variables y=(y,..,y,) and a function
w,: H\{0} > Q such that #(P,nM)~F(y)=2 ??;ZL “R(y):tel
and [y], #0} for all ye C(X). Moreover, the polynomial R, depends only on
those variables y; for which T {b,} € X.

hl
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We shall use the following theorem of McMulien. If Fis a face of a
polytope P M, then w(P, F) denotes the cone in N normal to F at P, Let
<2 denote the set of all pairs (7, L) where 7 is a cone in N and L is an affine
subspace of M o which is a translate of 7+,

THEOREM 3 (McMullen [11]). There exists a Junction 6: % - Q such
that 0(t, Ly=0(, L + m) for all me M and

#(PAM)= M O(v(P, F), aff(F)) . Vol(F) for every polytope P in M.

F face of P

Here “Vol™ denotes he standard volume form on the affine span aff( F) of the
Jface F.

Proof.  This is a special case of Theorem 3 in [11], provided one passes
from simple valuations to general valuations using the technique in §3 of

[11]. |

COROLLARY 4. Jf P, is an integral polytope then the number of lattice
points in P, equals

F(y)=3 0(r, 4. Vol(P}), (3)

rel
where P denotes the Jace of P, supported by t.

Proof. If P, is integral then aff{P}) is a lattice translate of the linear

subspace 7. Therefore 0z, aff(P7))=6(z, %), and the claim follows
directly from Theorem 3. 1

We remark that formula (3) is a valid presentation for the polynomial
function F(y) throughout the cone C(Z), not just for those special values
of y for which P is integral.

Proof of Proposition 2. Let 1 be a cone in X and let F, be the
corresponding face of P,. As y runs over C(X), the volume of F, varies as
a polynomial in y of degree dim(F,)=m — # (7). We set R (y):= Vol(F,,).
This function is independent of a support parameter y, if the hyperplane
(x.h;» =3, does not intersect the face F, for general 7- The latter condition
is equivalent to t U {h,} not being a cone of X Hence R, has the property
asserted in the second part of Proposition 2.

Consider any other vector e C(X) and corresponding face F.of P
Note that aff( F)y={yeM Vber: <3h,> =y}, and similarly for F
This implies

e

J

3

[y].=0[y],<3ueM: Vbet:y, =y +<u, b>
<3JueM: mEN\uﬂ_v =afl{(F,) +u.
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We can therefore define a function w, : H\{0} — Q by setting
w([y]:) =0z, afl(F,}) — O(z, t*).

Proposition 2 now follows immediately from Theorem 3 and Corollary 4. |

Proof of Theorem 1. We shall use representation 8&.55:2 as in
[12,§5]. Let B=(b,,...b,) be an integer (n—d) x n-matrix whose row
space (over Z) equals the kernel of 4. In other words, we construct a short
exact sequence of abelian groups

0— Zn < B, 70 A, 74,

We set m=n—d and M =7Z""¢ and we consider the wo_.xﬁov.a P, in (2),
for an arbitrary ye Z”. The map x+y — B’ x defines a bijection between
the lattice points in P, and the set of elements 1€ N” such that 4 -1 =4 - y.
Therefore we have

Pu(A-y)=#(P,nM). (4)

We now fix a chamber C and we consider those vectors y € N” such that
A -y lies in the interior of C. This determines the normal fan X of P, as
follows:

Z={{b., . by} 1 [nI\{1}, .. T4} €4(C)}.

Let us now fix e 4(C) and set t:=[n]\o. In order to derive the mam
vmn%om Theorem 1 from Proposition 2, it mcaoo.m to show that there .Qcma
a group isomorphism J between H, and G,, which Hw_gm.m class [y],in H,
to the class of {«], in G,, where u:= A -y. Indeed, in view of (4), we can
then simply define P(u) :=F(y), Q. ([u],) :=w([y].), and Q,(u) =R (y)
to get the desired formula for ¢ ,(u). (Note Emﬂ #(o)—d=m— #(1).)
To define the group isomorphism J, we consider the short exact sequence

0— 27— 2" 25 27— 0,

where / and 7 are the obvious coordinate inclusion and projection
respectively. We have

H_=coker(n-B') and G, = coker(A-i).

Consider any element of G,, given by a representative .:mNa. We ao.msn
6(u) to be n(y), where y is any preimage of v under 4. This defines a unique
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.»E:EE of H, because y is well-defined up to im(B') =ker(A4). We have the
equivalences

uelA, < uhasa preimage 7 under 4 such that 7(7)=0
<y —7jeker(4d)=im(B')
for some j e Z” such that n(7)=0

AHVNNAYV =n(B'. L.w for some L.mNzl&.

This shows that u is zero in G, if and only if n(y)=0d(u) is zero in H._.
Therefore the group homomorphism § is injective. But it is also surjective:
if veZ’, then choose any weZ, consider v+weZ" and define y=—
A(v+w). Then S(u) and v represent the same element of H_.. This
completes the proof of the first part of Theorem 1.

To prove the second part we note that an element JE o satisfies
a\{/} ¢ 4(C) if and only if tu {b,} ¢ Z. For such an index J» we apply the
operator J/0y, to the polynomial

R(y)=Q,(A4-y).

The result is zero, by Proposition 2, and consequently 3¢_ 14, (00,/0u)=0,
as required. ||
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