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Abstract. One of the most classical problems of mathematics is to solve sys-
tems of polynomial equations in several unknowns. Today, polynomial models
are ubiquitous and widely applied across the sciences. They arise in robot-
ics, coding theory, optimization, mathematical biology, computer vision, game
theory, statistics, machine learning, control theory, and numerous other areas.
The set of solutions to a system of polynomial equations is an algebraic variety,
the basic object of algebraic geometry. The algorithmic study of algebraic vari-
eties is the central theme of computational algebraic geometry. Exciting recent
developments in symbolic algebra and numerical software for geometric calcu-

lations have revolutionized the field, making formerly inaccessible problems
tractable, and providing fertile ground for experimentation and conjecture.

The first half of this book furnishes an introduction and represents a
snapshot of the state of the art regarding systems of polynomial equations.

Afficionados of the well-known text books by Cox, Little, and O’Shea will find

familiar themes in the first five chapters: polynomials in one variable, Gröbner
bases of zero-dimensional ideals, Newton polytopes and Bernstein’s Theorem,

multidimensional resultants, and primary decomposition.

The second half of this book explores polynomial equations from a variety
of novel and perhaps unexpected angles. Interdisciplinary connections are in-

troduced, highlights of current research are discussed, and the author’s hopes

for future algorithms are outlined. The topics in these chapters include com-
putation of Nash equilibria in game theory, semidefinite programming and the

real Nullstellensatz, the algebraic geometry of statistical models, the piecewise-

linear geometry of valuations and amoebas, and the Ehrenpreis-Palamodov
theorem on linear partial differential equations with constant coefficients.

Throughout the text, there are many hands-on examples and exercises,
including short but complete sessions in the software systems maple, matlab,

Macaulay 2, Singular, PHC, and SOStools. These examples will be particularly

useful for readers with zero background in algebraic geometry or commutative
algebra. Within minutes, anyone can learn how to type in polynomial equa-

tions and actually see some meaningful results on the computer screen.
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Preface

This book grew out of the notes for ten lectures given by the author at the
CBMS Conference at Texas A & M University, College Station, during the week of
May 20-24, 2002. Paulo Lima Filho, J. Maurice Rojas and Hal Schenck did a fantas-
tic job of organizing this conference and taking care of more than 80 participants,
many of them graduate students working in a wide range of mathematical fields.
We were fortunate to be able to listen to the excellent invited lectures delivered by
the following twelve leading experts: Saugata Basu, Eduardo Cattani, Karin Gater-
mann, Craig Huneke, Tien-Yien Li, Gregorio Malajovich, Pablo Parrilo∗, Maurice
Rojas, Frank Sottile, Mike Stillman∗, Thorsten Theobald, and Jan Verschelde∗.

Systems of polynomial equations are for everyone: from graduate students
in computer science, engineering, or economics to experts in algebraic geometry.
This book aims to provide a bridge between mathematical levels and to expose as
many facets of the subject as possible. It covers a wide spectrum of mathematical
techniques and algorithms, both symbolic and numerical. There are two chapters
on applications. The one about statistics is motivated by the author’s current
research interests, and the one about economics (Nash equilibria) recognizes Dave
Bayer’s role in the making of the movie A Beautiful Mind. (Many thanks, Dave,
for introducing me to the stars at their kick-off party in NYC on March 16, 2001).

At the end of each chapter there are about ten exercises. These exercises
vary greatly in their difficulty. Some are straightforward applications of material
presented in the text while other “exercises” are quite hard and ought to be renamed
“suggested research directions”. The reader may decide for herself which is which.

We had an inspiring software session at the CBMS conference, and the joy of
computing is reflected in this book as well. Sprinkled throughout the text, the
reader finds short computer sessions involving polynomial equations. These involve
the commercial packages maple and matlab as well as the freely available packages
Singular, Macaulay 2, PHC, and SOStools. Developers of the last three programs
spoke at the CBMS conference. Their names are marked with a star above.

Software is necessarily ephemeral. While the mathematics of solving polynomial
systems continues to live for centuries, the computer code presented in this book
will become obsolete much sooner. I tested it all in May 2002, and it worked well at
that time, even on our departmental computer system at UC Berkeley. And if you
would like to find out more, each of these programs has excellent documentation.

I am grateful to the students in my graduate course Math 275: Topics in Ap-
plied Mathematics for listening to my ten lectures at home in Berkeley while I
first assembled them in the spring of 2002. Their spontaneous comments proved
to be extremely valuable for improving my performance later on in Texas. After
the CBMS conference, the following people provided very helpful comments on my
manuscript: John Dalbec, Jesus De Loera, Mike Develin, Alicia Dickenstein, Ian
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Dinwoodie, Bahman Engheta, Stephen Fulling, Karin Gatermann, Raymond Hem-
mecke, Serkan Hoşten, Robert Lewis, Gregorio Malajovich, Pablo Parrilo, Francisco
Santos, Frank Sottile, Seth Sullivant, Caleb Walther, and Dongsheng Wu.

Special thanks go to Amit Khetan and Ruchira Datta for helping me while
in Texas and for contributing to Sections 4.5 and 6.2 respectively. Ruchira also
assisted me in the hard work of preparing the final version of this book. It was her
help that made the rapid completion of this project possible.

Last but not least, I wish to dedicate this book to the best team of all: my
daughter Nina, my son Pascal, and my wife Hyungsook. A million thanks for being
patient with your papa and putting up with his crazy early-morning work hours.

Bernd Sturmfels
Berkeley, June 2002



CHAPTER 1

Polynomials in One Variable

The study of systems of polynomial equations in many variables requires a good
understanding of what can be said about one polynomial equation in one variable.
The purpose of this chapter is to provide some basic tools for this problem. We
shall consider the problem of how to compute and how to represent the zeros of a
general polynomial of degree d in one variable x:

(1.1) p(x) = adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0.

1.1. The Fundamental Theorem of Algebra

We begin by assuming that the coefficients ai lie in the field Q of rational
numbers, with ad 6= 0, where the variable x ranges over the field C of complex
numbers. Our starting point is the fact that C is algebraically closed.

Theorem 1.1. (Fundamental Theorem of Algebra) The polynomial p(x)
has d roots, counting multiplicities, in the field C of complex numbers.

If the degree d is four or less, then the roots are functions of the coefficients
which can be expressed in terms of radicals. Here is how we can produce these
familiar expressions in the computer algebra system maple. Readers more familiar
with mathematica, or reduce, or other systems will find it equally easy to perform
computations in those computer algebra systems.
> solve( a2 * x^2 + a1 * x + a0, x );

2 1/2 2 1/2
-a1 + (a1 - 4 a2 a0) -a1 - (a1 - 4 a2 a0)

1/2 ------------------------, 1/2 ------------------------
a2 a2

The following expression is one of the three roots of the general cubic:
> lprint( solve( a3 * x^3 + a2 * x^2 + a1 * x + a0, x )[1] );

1/6/a3*(36*a1*a2*a3-108*a0*a3^2-8*a2^3+12*3^(1/2)*(4*a1^3*a3
-a1^2*a2^2-18*a1*a2*a3*a0+27*a0^2*a3^2+4*a0*a2^3)^(1/2)*a3)
^(1/3)+2/3*(-3*a1*a3+a2^2)/a3/(36*a1*a2*a3-108*a0*a3^2-8*a2^3
+12*3^(1/2)*(4*a1^3*a3-a1^2*a2^2-18*a1*a2*a3*a0+27*a0^2*a3^2
+4*a0*a2^3)^(1/2)*a3)^(1/3)-1/3*a2/a3

The polynomial p(x) has d distinct roots if and only if its discriminant is
nonzero. The discriminant of p(x) is the product of the squares of all pairwise
differences of the roots of p(x). Can you spot the discriminant of the cubic equation
in the previous maple output? The discriminant can always be expressed as a
polynomial in the coefficients a0, a1, . . . , ad. More precisely, it can be computed

1



2 1. POLYNOMIALS IN ONE VARIABLE

from the resultant (denoted Resx and discussed in Chapter 4) of the polynomial
p(x) and its first derivative p′(x) as follows:

discrx(p(x)) =
1
ad
· Resx(p(x), p′(x)).

This is an irreducible polynomial in the coefficients a0, a1, . . . , ad. It follows from
Sylvester’s matrix formula for the resultant that the discriminant is a homogeneous
polynomial of degree 2d− 2. Here is the discriminant of a quartic:
> f := a4 * x^4 + a3 * x^3 + a2 * x^2 + a1 * x + a0 :
> lprint(resultant(f,diff(f,x),x)/a4);

-192*a4^2*a0^2*a3*a1-6*a4*a0*a3^2*a1^2+144*a4*a0^2*a2*a3^2
+144*a4^2*a0*a2*a1^2+18*a4*a3*a1^3*a2+a2^2*a3^2*a1^2
-4*a2^3*a3^2*a0+256*a4^3*a0^3-27*a4^2*a1^4-128*a4^2*a0^2*a2^2
-4*a3^3*a1^3+16*a4*a2^4*a0-4*a4*a2^3*a1^2-27*a3^4*a0^2
-80*a4*a3*a1*a2^2*a0+18*a3^3*a1*a2*a0

This sextic is the determinant of the following 7× 7-matrix divided by a4:
> with(linalg):
> sylvester(f,diff(f,x),x);

[ a4 a3 a2 a1 a0 0 0 ]
[ ]
[ 0 a4 a3 a2 a1 a0 0 ]
[ ]
[ 0 0 a4 a3 a2 a1 a0]
[ ]
[4 a4 3 a3 2 a2 a1 0 0 0 ]
[ ]
[ 0 4 a4 3 a3 2 a2 a1 0 0 ]
[ ]
[ 0 0 4 a4 3 a3 2 a2 a1 0 ]
[ ]
[ 0 0 0 4 a4 3 a3 2 a2 a1]

Galois theory tells us that there is no general formula which expresses the roots
of p(x) in radicals if d ≥ 5. For specific instances with d not too big, say d ≤ 10, it
is possible to compute the Galois group of p(x) over Q. Occasionally, one is lucky
and the Galois group is solvable, in which case maple has a chance of finding the
solution of p(x) = 0 in terms of radicals.
> f := x^6 + 3*x^5 + 6*x^4 + 7*x^3 + 5*x^2 + 2*x + 1:
> galois(f);

"6T11", {"[2^3]S(3)", "2 wr S(3)", "2S_4(6)"}, "-", 48,

{"(2 4 6)(1 3 5)", "(1 5)(2 4)", "(3 6)"}

> solve(f,x)[1];
1/2 1/3

1/12 (-6 (108 + 12 69 )
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1/2 2/3 1/2 1/2 1/3 1/2
+ 6 I (3 (108 + 12 69 ) + 8 69 + 8 (108 + 12 69 ) )

/ 1/2 1/3
+ 72 ) / (108 + 12 69 )

/

The number 48 is the order of the Galois group and its name is "6T11". Of course,
the user now has to consult help(galois) in order to learn more.

1.2. Numerical Root Finding

In symbolic computation, we frequently consider a polynomial problem as
solved if it has been reduced to finding the roots of one polynomial in one vari-
able. Naturally, the latter problem can still be very interesting and challenging
from the perspective of numerical analysis, especially if d gets very large or if the
ai are given by floating point approximations. In the problems studied in this
book, however, the ai are usually exact rational numbers with reasonably small nu-
merators and denominators, and the degree d rarely exceeds 100. For numerically
solving univariate polynomials in this range, it has been the author’s experience
that maple does reasonably well and matlab has no difficulty whatsoever.
> Digits := 6:
> f := x^200 - x^157 + 8 * x^101 - 23 * x^61 + 1:
> fsolve(f,x);

.950624, 1.01796

This polynomial has only two real roots. To list the complex roots, we say:
> fsolve(f,x,complex);

-1.02820-.0686972 I, -1.02820+.0686972 I, -1.01767-.0190398 I,
-1.01767+.0190398 I, -1.01745-.118366 I, -1.01745 + .118366 I,
-1.00698-.204423 I, -1.00698+.204423 I, -1.00028 - .160348 I,
-1.00028+.160348 I, -.996734-.252681 I, -.996734 + .252681 I,
-.970912-.299748 I, -.970912+.299748 I, -.964269 - .336097 I,
ETC...ETC..

Our polynomial p(x) is represented in matlab as the row vector of its coefficients
[ad ad−1 . . . a2 a1 a0]. For instance, the following two commands compute the three
roots of the dense cubic p(x) = 31x3 + 23x2 + 19x+ 11.
>> p = [31 23 19 11];
>> roots(p)
ans =
-0.0486 + 0.7402i
-0.0486 - 0.7402i
-0.6448

Representing the sparse polynomial p(x) = x200−x157+8x101−23x61+1 considered
above requires introducing lots of zero coefficients:
>> p=[1 zeros(1,42) -1 zeros(1,55) 8 zeros(1,39) -23 zeros(1,60) 1]
>> roots(p)
ans =
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-1.0282 + 0.0687i
-1.0282 - 0.0687i
-1.0177 + 0.0190i
-1.0177 - 0.0190i
-1.0174 + 0.1184i
-1.0174 - 0.1184i

ETC...ETC..

We note that convenient facilities are available for calling matlab inside of maple
and for calling maple inside of matlab. We encourage our readers to experiment
with the passage of data between these two programs.

Some numerical methods for solving a univariate polynomial equation p(x) = 0
work by reducing this problem to computing the eigenvalues of the companion ma-
trix of p(x), which is defined as follows. Let V denote the quotient of the polynomial
ring modulo the ideal 〈p(x)〉 generated by the polynomial p(x). The resulting quo-
tient ring V = Q[x]/〈p(x)〉 is a d-dimensional Q-vector space. Multiplication by
the variable x defines a linear map from this vector space to itself.

(1.2) Timesx : V → V , f(x) 7→ x · f(x).

The companion matrix is the d × d-matrix which represents the endomorphism
Timesx with respect to the distinguished monomial basis {1, x, x2, . . . , xd−1} of
V . Explicitly, the companion matrix of p(x) looks like this:

(1.3) Timesx =


0 0 · · · 0 −a0/ad

1 0 · · · 0 −a1/ad

0 1 · · · 0 −a2/ad

...
...

. . .
...

...
0 0 . . . 1 −ad−1/ad


Proposition 1.2. The zeros of p(x) are the eigenvalues of the matrix Timesx.

Proof. Suppose that f(x) is a polynomial in C[x] whose image in V ⊗ C =
C[x]/〈p(x)〉 is an eigenvector of (1.2) with eigenvalue λ. Then x ·f(x) = λ ·f(x) in
the quotient ring, which means that (x−λ) · f(x) is a multiple of p(x). Since f(x)
is not a multiple of p(x), we conclude that λ is a root of p(x) as desired. Conversely,
if µ is any root of p(x) then the polynomial f(x) = p(x)/(x − µ) represents an
eigenvector of (1.2) with eigenvalue µ. �

Corollary 1.3. The following statements about p(x) ∈ Q[x] are equivalent:
• The polynomial p(x) is square-free, i.e., it has no multiple roots in C.
• The companion matrix Timesx is diagonalizable.
• The ideal 〈p(x)〉 is a radical ideal in Q[x].

We note that the set of multiple roots of p(x) can be computed symbolically
by forming the greatest common divisor of p(x) and its derivative:

(1.4) q(x) = gcd(p(x), p′(x))

Thus the three conditions in the Corollary are equivalent to q(x) = 1.
Every ideal in the univariate polynomial ring Q[x] is principal. Writing p(x) for

the ideal generator and computing q(x) from p(x) as in (1.4), we get the following
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general formula for computing the radical of any ideal in Q[x]:

(1.5) Rad
(
〈p(x)〉

)
= 〈p(x)/q(x)〉

1.3. Real Roots

In this section we describe symbolic methods for computing information about
the real roots of a univariate polynomial p(x). The Sturm sequence of p(x) is the
following sequence of polynomials of decreasing degree:

p0(x) := p(x), p1(x) := p′(x), pi(x) := −rem(pi−2(x), pi−1(x)) for i ≥ 2.

Thus pi(x) is the negative of the remainder on division of pi−2(x) by pi−1(x). Let
pm(x) be the last non-zero polynomial in this sequence.

Theorem 1.4. (Sturm’s Theorem) If a < b in R and neither is a zero of
p(x) then the number of real zeros of p(x) in the interval [a, b] is the number of sign
changes in the sequence p0(a), p1(a), p2(a), . . . , pm(a) minus the number of sign
changes in the sequence p0(b), p1(b), p2(b), . . . , pm(b).

We note that any zeros are ignored when counting the number of sign changes
in a sequence of real numbers. For instance, a sequence of twelve numbers with
signs +,+, 0,+,−,−, 0,+,−, 0,−, 0 has three sign changes.

If we wish to count all real roots of a polynomial p(x) then we can apply Sturm’s
Theorem to a = −∞ and b = ∞, which amounts to looking at the signs of the
leading coefficients of the polynomials pi in the Sturm sequence. Using bisection,
one gets a procedure for isolating the real roots by rational intervals. This method
is conveniently implemented in maple:

> p := x^11-20*x^10+99*x^9-247*x^8+210*x^7-99*x^2+247*x-210:
> sturm(p,x,-INFINITY, INFINITY);

3
> sturm(p,x,0,10);

2
> sturm(p,x,5,10);

0

> realroot(p,1/1000);
1101 551 1465 733 14509 7255

[[----, ---], [----, ---], [-----, ----]]
1024 512 1024 512 1024 512

> fsolve(p);
1.075787072, 1.431630905, 14.16961992

Another important classical result on real roots is the following:

Theorem 1.5. (Déscartes’s Rule of Signs) The number of positive real roots of
a polynomial is at most the number of sign changes in its coefficient sequence.

For instance, the polynomial p(x) = x200−x157 +8x101−23x61 +1, which was
featured in Section 1.2, has four sign changes in its coefficient sequence. Hence it
has at most four positive real roots. The true number is two.
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If we replace x by −x in Descartes’s Rule then we get a bound on the number
of negative real roots. It is a basic fact that both bounds are tight when all roots
of p(x) are real. In general, we have the following corollary to Descartes’s Rule.

Corollary 1.6. A polynomial with m terms has at most 2m− 1 real zeros.
The bound in this corollary is optimal as the following example shows:

x ·
m−1∏
j=1

(x2 − j)

All 2m− 1 zeros of this polynomial are real, and its expansion has m terms.

1.4. Puiseux Series

Suppose now that the coefficients ai of our given polynomial are not rational
numbers but are rational functions ai(t) in another parameter t. Hence we wish to
determine the zeros of a polynomial in K[x] where K = Q(t).

(1.6) p(t;x) = ad(t)xd + ad−1(t)xd−1 + · · ·+ a2(t)x2 + a1(t)x+ a0(t).

The role of the ambient algebraically closed field containing K is now played by
the field C{{t}} of Puiseux series. The elements of C{{t}} are formal power series
in t with coefficients in C and having rational exponents, subject to the condi-
tion that the set of exponents which appear is bounded below and has a common
denominator. Equivalently,

C{{t}} =
∞⋃

N=1

C((t
1
N )),

where C((y)) abbreviates the field of Laurent series in y with coefficients in C. A
classical theorem in algebraic geometry states that C{{t}} is algebraically closed.
For a modern treatment see [Eis95, Corollary 13.15].

Theorem 1.7. (Puiseux’s Theorem) The polynomial p(t;x) has d roots,
counting multiplicities, in the field of Puiseux series C{{t}}.

The proof of Puiseux’s theorem is algorithmic, and, lucky for us, there is an
implementation of this algorithm in maple. Here is how it works:
> with(algcurves): p := x^2 + x - t^3;

2 3
p := x + x - t

> puiseux(p,t=0,x,20);
18 15 12 9 6 3

{-42 t + 14 t - 5 t + 2 t - t + t ,
18 15 12 9 6 3

+ 42 t - 14 t + 5 t - 2 t + t - t - 1 }

We note that this implementation generally does not compute all Puiseux series
solutions but only enough to generate the splitting field of p(t;x) over K.
> with(algcurves): q := x^2 + t^4 * x - t:
> puiseux(q,t=0,x,20);

29/2 15/2 4 1/2
{- 1/128 t + 1/8 t - 1/2 t + t }

> S := solve(q,x):
> series(S[1],t,20);
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Figure 1.1. The lower boundary of the Newton polygon

1/2 4 15/2 29/2 43/2
t - 1/2 t + 1/8 t - 1/128 t + O(t )

> series(S[2],t,20);
1/2 4 15/2 29/2 43/2

-t - 1/2 t - 1/8 t + 1/128 t + O(t )

We shall explain how to compute the first term (lowest order in t) in each of the
d Puiseux series solutions x(t) to our equation p(t;x) = 0. Suppose that the ith
coefficient in (1.6) has the Laurent series expansion:

ai(t) = ci · tAi + higher terms in t.

Each Puiseux series looks like

x(t) = γ · tτ + higher terms in t.

We wish to characterize the possible pairs of numbers (τ, γ) in Q× C which allow
the identity p(t;x(t)) = 0 to hold. This is done by first finding the possible values
of τ . We ignore all higher terms and consider the equation

(1.7) cd · tAd+dτ + · · · + c1 · tA1+τ + c0 · tA0 + · · · = 0.

This equation imposes the following piecewise-linear condition on τ :

(1.8) min{Ad + dτ,Ad−1 + (d− 1)τ, . . . , A2 + 2τ,A1 + τ,A0} is attained twice.

The crucial condition (1.8) will reappear in Chapters 3 and 9. Throughout this
book, the phrase “is attained twice” will always mean “is attained at least twice”.
As an illustration consider the example p(t;x) = x2 + x− t3. For this polynomial,
the condition (1.8) reads

min{ 0 + 2τ, 0 + τ, 3 } is attained twice.

That sentence means the following disjunction of linear inequality systems:

2τ = τ ≤ 3 or 2τ = 3 ≤ τ or 3 = τ ≤ 2τ.

This disjunction is equivalent to

τ = 0 or τ = 3,

which gives us the lowest terms in the two Puiseux series produced by maple.
It is customary to phrase the procedure described above in terms of the Newton

polygon of p(t;x). This polygon is the convex hull in R2 of the points (i, Ai) for
i = 0, 1, . . . , d. The condition (1.8) is equivalent to saying that −τ equals the slope
of an edge on the lower boundary of the Newton polygon. Figure 1.1 shows a
picture of the Newton polygon of the equation p(t;x) = x2 + x− t3.
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1.5. Hypergeometric Series

The method of Puiseux series can be extended to the case when the coefficients
ai are rational functions in several variables t1, . . . , tm. The case m = 1 was dis-
cussed in the last section. An excellent reference on Puiseux series solutions for
general m is the work of John McDonald [McD95], [McD02].

In this section we examine the generic case when all d+1 coefficients a0, . . . , ad

in (1.1) are indeterminates. Each zero X of the polynomial in (1.1) is an algebraic
function of d+ 1 variables, written X = X(a0, . . . , ad). The following theorem due
to Karl Mayer [May37] characterizes these functions by the differential equations
which they satisfy.

Theorem 1.8. The roots of the general equation of degree d are a basis for the
solution space of the following system of linear partial differential equations:

∂2X
∂ai∂aj

= ∂2X
∂ak∂al

whenever i+ j = k + l,(1.9) ∑d
i=0 iai

∂X
∂ai

= −X and
∑d

i=0 ai
∂X
∂ai

= 0.(1.10)

The meaning of the phrase “are a basis for the solution space of” will be
explained at the end of this section. Let us first replace this phrase by “are solutions
of” and prove the resulting weaker version of the theorem.

Proof. The two Euler equations (1.10) express the scaling invariance of the
roots. They are obtained by applying the operator d/dt to the identities

X(a0, ta1, t
2a2, . . . , t

d−1ad−1, t
dad) = 1

t ·X(a0, a1, a2, . . . , ad−1, ad),
X(ta0, ta1, ta2, . . . , tad−1, tad) = X(a0, a1, a2, . . . , ad−1, ad).

To derive (1.9), we consider the first derivative f ′(x) =
∑d

i=1 iaix
i−1 and the sec-

ond derivative f ′′(x) =
∑d

i=2 i(i−1)aix
i−2. Note that f ′(X) 6= 0, since a0, . . . , ad

are indeterminates. Differentiating the defining identity
∑d

i=0 aiX(a0, a1, . . . , ad)i

= 0 with respect to aj , we get

(1.11) Xj + f ′(X) · ∂X
∂aj

= 0.

From this we derive

(1.12)
∂f ′(X)
∂ai

= −f
′′(X)
f ′(X)

·Xi + iXi−1.

We next differentiate ∂X/∂aj with respect to the indeterminate ai:

(1.13)
∂2X

∂ai∂aj
=

∂

∂ai

(
− Xj

f ′(X)
)

=
∂f ′(X)
∂ai

Xjf ′(X)−2 − jXj−1 ∂X

∂ai
f ′(X)−1.

Using (1.11) and (1.12), we can rewrite (1.13) as follows:

∂2X

∂ai∂aj
= −f ′′(X)Xi+jf ′(X)−3 + (i+ j)Xi+j−1f ′(X)−2.

This expression depends only on the sum of indices i+ j. This proves (1.9). �

We check the validity of our differential system for the case d = 2 and we note
that it characterizes the series expansions of the quadratic formula.
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> X := solve(a0 + a1 * x + a2 * x^2, x)[1];
2 1/2

-a1 + (a1 - 4 a2 a0)
X := 1/2 ------------------------

a2

> simplify(diff(diff(X,a0),a2) - diff(diff(X,a1),a1));
0

> simplify( a1*diff(X,a1) + 2*a2*diff(X,a2) + X );
0

> simplify(a0*diff(X,a0)+a1*diff(X,a1)+a2*diff(X,a2));
0

> series(X,a1,4);
1/2 1/2

(-a2 a0) 1 (-a2 a0) 2 4
----------- - 1/2 ---- a1 - 1/8 ----------- a1 + O(a1 )

a2 a2 2
a2 a0

What do you get when you now type series(X,a0,4) or series(X,a2,4)?
Writing series expansions for the solutions to the general equation of degree d

has a long tradition in mathematics. In 1757 Johann Lambert expressed the roots
of the trinomial equation xp +x+ r as a Gauss hypergeometric function in the pa-
rameter r. Series expansions of more general algebraic functions were subsequently
given by Euler, Chebyshev and Eisenstein, among others. The widely known poster
“Solving the Quintic with Mathematica” published by Wolfram Research in 1994
gives a nice historical introduction to series solutions of the general equation of
degree five:

(1.14) a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0 = 0.

Mayer’s Theorem 1.8 can be used to write down all possible Puiseux series solutions
to the general quintic (1.14). There are 16 = 25−1 distinct expansions. For instance,
here is one of the 16 expansions of the five roots:

X1 = −
[

a0
a1

]
, X2 = −

[
a1
a2

]
+
[

a0
a1

]
, X3 = −

[
a2
a3

]
+
[

a1
a2

]
,

X4 = −
[

a3
a4

]
+
[

a2
a3

]
, X5 = −

[
a4
a5

]
+
[

a3
a4

]
.

Each bracket is a series having the monomial in the bracket as its first term:[a0

a1

]
= a0

a1
+ a2

0a2

a3
1
− a3

0a3

a4
1

+ 2a3
0a2

2
a5
1

+ a4
0a4

a5
1
− 5a4

0a2a3

a6
1
− a5

0a5

a6
1

+ · · ·[a1

a2

]
= a1

a2
+ a2

1a3

a3
2
− a3

1a4

a4
2
− 3a0a2

1a5

a4
2

+ 2a3
1a3

3
a5
2

+ a4
1a5

a5
2
− 5a4

1a3a4

a6
2

+ · · ·[a2

a3

]
= a2

a3
− a0a5

a2
3
− a1a4

a2
3

+ 2a1a2a5
a3
3

+ a2
2a4

a3
3
− a3

2a5

a4
3

+ 2a3
2a2

4
a5
3

+ · · ·[a3

a4

]
= a3

a4
− a2a5

a2
4

+ a2
3a5

a3
4

+ a1a2
5

a3
4
− 3a2a3a2

5
a4
4
− a0a3

5
a4
4

+ 4a1a3a3
5

a5
4

+ · · ·[a4

a5

]
= a4

a5
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The last bracket is just a single Laurent monomial. The other four brackets
[ai−1

ai

]
can easily be written as an explicit sum over N4. For instance,

[a0

a1

]
=

∑
i,j,k,l≥0

(−1)2i+3j+4k+5l (2i+3j+4k+5l)!
i ! j ! k ! l ! (i+2j+3k+4l + 1)!

· a
i+2j+3k+4l+1
0 ai

2a
j
3a

k
4a

l
5

a2i+3j+4k+5l+1
1

Each coefficient appearing in one of these series is integral. Therefore these five
formulas for the roots work in any characteristic. The situation is different for the
other 15 series expansions of the roots of the quintic (1.14). For instance, consider
the expansions into positive powers in a1, a2, a3, a4. They are

Xξ = ξ ·
[a1/5

0

a
1/5
5

]
+

1
5
·
(
ξ2
[ a1

a
3/5
0 a

2/5
5

]
+ ξ3

[ a2

a
2/5
0 a

3/5
5

]
+ ξ4

[ a3

a
1/5
0 a

4/5
5

]
−
[a4

a5

])
where ξ runs over the five complex roots of the equation ξ5 = −1, and

[a1/5
0

a
1/5
5

]
= a

1/5
0

a
1/5
5

− 1
25

a1a4

a
4/5
0 a

6/5
5

− 1
25

a2a3

a
4/5
0 a

6/5
5

+ 2
125

a2
1a3

a
9/5
0 a

6/5
5

+ 3
125

a2a2
4

a
4/5
0 a

11/5
5

+ · · ·

[ a1

a
3/5
0 a

2/5
5

]
= a1

a
3/5
0 a

2/5
5

− 1
5

a2
3

a
3/5
0 a

7/5
5

− 2
5

a2a4

a
3/5
0 a

7/5
5

+ 7
25

a3a2
4

a
3/5
0 a

12/5
5

+ 6
25

a1a2a3

a
8/5
0 a

7/5
5

+ · · ·

[ a2

a
2/5
0 a

3/5
5

]
= a2

a
2/5
0 a

3/5
5

− 1
5

a2
1

a
7/5
0 a

3/5
5

− 3
5

a3a4

a
2/5
0 a

8/5
5

+ 6
25

a1a2a4

a
7/5
0 a

8/5
5

+ 3
25

a1a2
3

a
7/5
0 a

8/5
5

+ · · ·

[ a3

a
1/5
0 a

4/5
5

]
= a3

a
1/5
0 a

4/5
5

− 1
5

a1a2

a
6/5
0 a

4/5
5

− 2
5

a2
4

a
1/5
0 a

9/5
5

+ 1
25

a3
1

a
11/5
0 a

4/5
5

+ 4
25

a1a3a4

a
6/5
0 a

9/5
5

+ · · ·

Each of these four series can be expressed as an explicit sum over the lattice points in
a 4-dimensional polyhedron. The general formula can be found in [Stu00, Theorem
3.2]. That reference gives all 2d−1 distinct Puiseux series expansions of the solution
of the general equation of degree d.

The system (1.9)-(1.10) is a special case of the hypergeometric differential equa-
tions discussed in [SST99]. More precisely, it is the Gel’fand-Kapranov-Zelevinsky
system with parameters

(−1
0

)
associated with the integer matrix

A =
(

0 1 2 3 · · · n− 1 n
1 1 1 1 · · · 1 1

)
.

We abbreviate the derivation ∂
∂ai

by the symbol ∂i and we consider the ideal gener-
ated by the operators (1.10) in the commutative polynomial ring Q[∂0, ∂1, . . . , ∂d].
This is the ideal of the 2× 2-minors of the matrix(

∂0 ∂1 ∂2 · · · ∂d−1

∂1 ∂2 ∂3 · · · ∂d

)
.

This ideal defines a projective curve of degree d, namely, the rational normal curve,
and from this it follows that our system (1.9)-(1.10) is holonomic of rank d. This
means the following: Let (a0, . . . , ad) be any point in Cd+1 such that the discrimi-
nant of p(x) is non-zero, and let U be a small open ball around that point. Then the
set of holomorphic functions on U which are solutions to (1.9)-(1.10) is a complex
vector space of dimension d. Theorem 1.8 states that the d roots of p(x) = 0 form
a distinguished basis for that vector space.
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1.6. Exercises

(1) Describe the Jordan canonical form of the companion matrix Timesx.
What are the generalized eigenvectors of the endomorphism (1.2)?

(2) We define a unique cubic polynomial p(x) by four interpolation conditions
p(xi) = yi for i = 0, 1, 2, 3. The discriminant of p(x) is a rational function
in x0, x1, x2, x3, y0, y1, y2, y3. What is the denominator of this rational
function, and how many terms does the numerator have?

(3) Create a symmetric 50 × 50-matrix whose entries are random integers
between −10 and 10 and compute the eigenvalues of your matrix.

(4) For which complex parameters α is the following system solvable?

xd − α = x3 − x+ 1 = 0.

Give a formula for the resultant in terms of α and d.
(5) Consider the set of all 65, 536 polynomials of degree 15 whose coefficients

are +1 or −1. Answer the following questions about this set:
(a) Which polynomial has largest discriminant?
(b) Which polynomial has the smallest number of complex roots?
(c) Which polynomial has the complex root of largest absolute value?
(d) Which polynomial has the most real roots?

(6) Give a necessary and sufficient condition for the quartic equation

a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0

to have exactly two real roots. We expect a condition which is a Boolean
combination of polynomial inequalities involving a0, a1, a2, a3, a4.

(7) Describe an algebraic algorithm for deciding whether a polynomial p(x)
has a complex root of absolute value one.

(8) Compute all five Puiseux series solutions x(t) of the quintic equation

x5 + t · x4 + t3 · x3 + t6 · x2 + t10 · x + t15 = 0

What is the coefficient of tn in each of the five series?
(9) Fix two real symmetric n×n-matrices A and B. Consider the set of points

(x, y) in the plane R2 such that all eigenvalues of the matrix xA+ yB are
non-negative. Show that this set is closed and convex. Does every closed
convex semi-algebraic subset of R2 arise in this way?

(10) Let α and β be integers and consider the following system of linear partial
differential equations for an unknown function X(a0, a1, a2):

∂2X/∂a0∂a2 = ∂2X/∂a2
1

a1
∂X
∂a1

+ 2a2
∂X
∂a1

= α ·X

a0
∂X
∂a0

+ a1
∂X
∂a1

+ a2
∂X
∂a2

= β ·X

For which values of α and β do (non-zero) polynomial solutions exist?
Same question for rational solutions and algebraic solutions.





CHAPTER 2

Gröbner Bases of Zero-Dimensional Ideals

Suppose we are given polynomials f1, . . . , fm in Q[x1,. . . , xn] which are known
to have only finitely many common zeros in Cn. Then I = 〈f1, . . . , fm〉, the ideal
generated by these polynomials, is zero-dimensional. In this section we demonstrate
how Gröbner bases can be used to compute the zeros of I.

2.1. Computing Standard Monomials and the Radical

Let ≺ be a term order on the polynomial ring S = Q[x1,. . . , xn]. Every ideal I
in S has a unique reduced Gröbner basis G with respect to ≺. The leading terms
of the polynomials in G generate the initial monomial ideal in≺(I). Let B = B≺(I)
denote the set of all monomials xu = xu1

1 xu2
2 · · ·xun

n which do not lie in in≺(I).
These are the standard monomials of I with respect to ≺. Every polynomial f
in S can be written uniquely as a Q-linear combination of B modulo I, using the
division algorithm with respect to the Gröbner basis G. We write V(I) ⊂ Cn for
the complex variety defined by the ideal I.

Proposition 2.1. The variety V(I) is finite if and only if the set B is finite,
and the cardinality of B equals the cardinality of V(I), counting multiplicities.

Consider an example with three variables, namely, the ideal

(2.1) I = 〈 (x− y)3 − z2, (z − x)3 − y2, (y − z)3 − x2 〉

in S = Q[x, y, z]. The following Macaulay 2 computation verifies that I is zero-
dimensional:
i1 : S = QQ[x,y,z];
i2 : I = ideal( (x-y)^3-z^2, (z-x)^3-y^2, (y-z)^3-x^2 );
o2 : Ideal of S

i3 : dim I, degree I
o3 = (0, 14)

i4 : gb I

o4 = | y2z-1/2xz2-yz2+1/2z3+13/60x2-1/12y2+7/60z2
x2z-xz2-1/2yz2+1/2z3+1/12x2-13/60y2-7/60z2
y3-3y2z+3yz2-z3-x2
xy2-2x2z-3y2z+3xz2+4yz2-3z3-7/6x2+5/6y2-1/6z2
x2y-xy2-x2z+y2z+xz2-yz2+1/3x2+1/3y2+1/3z2
x3-3x2y+3xy2-3y2z+3yz2-z3-x2-z2
z4+1/5xz2-1/5yz2+2/25z2
yz3-z4-13/20xz2-3/20yz2+3/10z3+2/75x2-4/75y2-7/300z2

13
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xz3-2yz3+z4+29/20xz2+19/20yz2-9/10z3-8/75x2+2/15y2+7/300z2
xyz2-3/2y2z2+xz3+yz3-3/2z4+y2z-1/2xz2

-7/10yz2+1/5z3+13/60x2-1/12y2-1/12z2|

i5 : toString (x^10 % I)

o5 = -4/15625*x*z^2+4/15625*z^3-559/1171875*x^2
-94/1171875*y^2+26/1171875*z^2

i6 : R = S/I; basis R

o7 = | 1 x x2 xy xyz xz xz2 y y2 yz yz2 z z2 z3 |
1 14

o7 : Matrix R <--- R

The output o4 gives the reduced Gröbner basis for I with respect to the reverse
lexicographic term order with x > y > z. In o5 we compute the expansion of x10 in
this basis of S/I. We see in o7 that there are 14 standard monomials. We conclude
that the number of complex zeros of I is at most 14.

If I is a zero-dimensional ideal in S = Q[x1, . . . , xn] then the elimination ideal
I ∩ Q[xi] is non-zero for all i = 1, 2, . . . , n. Let pi(xi) denote the generator of
I ∩ Q[xi]. The univariate polynomial pi can be gotten from a Gröbner basis for I
with respect to an elimination term order. Another method is to use an arbitrary
Gröbner basis to compute the normal form of successive powers of xi until they
first become linearly dependent.

We denote the square-free part of the polynomial pi(xi) by

pi,red(xi) = pi(xi)/gcd(pi(xi), p′i(xi)).

The following result is proved in Proposition (2.7) of [CLO98].
Theorem 2.2. A zero-dimensional ideal I is radical if and only if the n elim-

ination ideals I ∩ Q[xi] are radical. Moreover, the radical of I equals

Rad(I) = I + 〈 p1,red, p2,red, . . . , pn,red 〉.

Our example in (2.1) is symmetric with respect to the variables, so that

I ∩ Q[x] = 〈p(x)〉, I ∩ Q[y] = 〈p(y)〉, I ∩ Q[z] = 〈p(z)〉.

The common generator of the elimination ideals is a polynomial of degree 8:

p(x) = x8 +
6
25
x6 +

17
625

x4 +
8

15625
x2

This polynomial is not square-free. Its square-free part equals

pred(x) = x7 +
6
25
x5 +

17
625

x3 +
8

15625
x.

Hence our ideal I is not radical. Using Theorem 2.2, we compute its radical:

Rad(I) = I + 〈pred(x), pred(y), pred(z)〉
= 〈x − 5/2y2 − 1/2y + 5/2z2 − 1/2z,
y + 3125/8z6 + 625/4z5 + 375/4z4 + 125/4z3 + 65/8z2 + 3z,

z7 + 6/25z5 + 17/625z3 + 8/15625z 〉.
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The three given generators form a lexicographic Gröbner basis. We see that V(I)
has cardinality seven. The only real root is the origin. The other six zeros of I in
C3 are not real. They are gotten by cyclically shifting

(x, y, z) =
(
−0.14233− 0.35878i, 0.14233− 0.35878i, 0.15188i

)
and (x, y, z) =

(
−0.14233 + 0.35878i, 0.14233 + 0.35878i, −0.15188i

)
.

Note that the coordinates of these vectors also can be written in terms of radicals
since pred(x)/x is a cubic polynomial in x2.

If I is a zero-dimensional radical ideal in S = Q[x1, . . . , xn] then, possibly after
a linear change of variables, the ring S/I is always isomorphic to the univariate
quotient ring Q[xi]/(I ∩ Q[xi]). This is the content of the following result.

Proposition 2.3. (Shape Lemma) Let I be a zero-dimensional radical ideal
in Q[x1, . . . , xn] such that all d complex roots of I have distinct xn-coordinates.
Then the reduced Gröbner basis of I in the lexicographic term order has the shape

G =
{
x1 − q1(xn), x2 − q2(xn), . . . , xn−1 − qn−1(xn), r(xn)

}
where r is a polynomial of degree d and the qi are polynomials of degree ≤ d− 1.

For polynomial systems of moderate size, Singular is really fast in computing
the lexicographically Gröbner basis G. It is well known that the coefficients of the
univariate polynomial r(xn) are rational numbers with very large numerators and
denominators. But, if I is a prime ideal over Q, which is frequently the case, there
is nothing we can do because the irreducible polynomial r(xn) = pn(xn) is intrinsic
to the problem and not an artifact of any particular solution method.

Perhaps surprisingly, the coefficients of the polynomials qi(xn) are often even
worse than those of r(xn). But these terrible integers are not intrinsic to the prob-
lem. They are an artifact of the method used. Roullier [Rou99] has proposed the
method of rational univariate representations to circumvent the coefficient growth
in the qi. The key idea is to replace xi−qi(xn) by a polynomial ai(xn) ·xi−bi(xn)
where ai and bi are also univariate polynomials of degree ≤ d− 1, but their coeffi-
cients are much nicer than those of qi. For details see [Rou99].

2.2. Localizing and Removing Known Zeros

In our running example, the origin is a zero of multiplicity eight, and it would
have made sense to remove this distinguished zero right from the beginning. In this
section we explain how to do this and how the number 8 could have been derived a
priori. Let I be a zero-dimensional ideal in S = Q[x1, . . . , xn] and p = (p1, . . . , pn)
any point with coordinates in Q. We consider the associated maximal ideal

M = 〈x1 − p1, x2 − p2, . . . , xn − pn〉 ⊂ S.

The ideal quotient of I by M is defined as(
I : M

)
=

{
f ∈ S : f ·M ⊆ I

}
.

We can iterate this process to get the increasing sequence of ideals

I ⊆ (I : M) ⊆ (I : M2) ⊆ (I : M3) ⊆ · · ·
This sequence stabilizes with an ideal called the saturation(

I : M∞) =
{
f ∈ S : ∃m ∈ N : f ·Mm ⊆ I

}
.

Proposition 2.4. The variety of (I : M∞) equals V(I)\{p}.
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Here is how we compute the ideal quotient and the saturation in Macaulay 2.
We demonstrate this for the ideal in the previous section and p = (0, 0, 0):
i1 : R = QQ[x,y,z];
i2 : I = ideal( (x-y)^3-z^2, (z-x)^3-y^2, (y-z)^3-x^2 );
i3 : M = ideal( x , y, z );

i4 : gb (I : M)

o4 = | y2z-1/2xz2-yz2+1/2z3+13/60x2-1/12y2+7/60z2
xyz+3/4xz2+3/4yz2+1/20x2-1/20y2 x2z-xz2-1/2yz2+ ....

i5 : gb saturate(I,M)

o5 = | z2+1/5x-1/5y+2/25 y2-1/5x+1/5z+2/25
xy+xz+yz+1/25 x2+1/5y-1/5z+2/25 |

i6 : degree I, degree (I:M), degree (I:M^2), degree(I:M^3)

o6 = (14, 13, 10, 7)

i7 : degree (I : M^4), degree (I : M^5), degree (I : M^6)

o7 = (6, 6, 6)

In this example, the fourth ideal quotient (I : M4) equals the saturation (I :
M∞) = saturate(I,M). Since p = (0, 0, 0) is a zero of high multiplicity, namely
eight, it would be interesting to further explore the local ring Sp/Ip. This is an
8-dimensional Q-vector space which tells the scheme structure at p, meaning the
manner in which those eight points pile on top of one another. The reader need
not be alarmed if he or she has not yet fully digested the notion of schemes in
algebraic geometry [EH00]. An elementary but useful perspective on schemes will
be provided in Chapter 10 where we discuss linear partial differential equations
with constant coefficients.

The following general method can be used to compute the local ring at an
isolated zero of any polynomial system. Form the ideal quotient

(2.2) J =
(
I : (I : M∞)

)
.

Proposition 2.5. The ring S/J is isomorphic to the local ring Sp/Ip under
the natural map xi 7→ xi. In particular, the multiplicity of p as a zero of I equals
the number of standard monomials for any Gröbner basis of J .

In our example, the local ideal J is particularly simple and the multiplicity
eight is obvious. Here is how the Macaulay 2 session continues:
i8 : J = ( I : saturate(I,M) )

2 2 2
o8 = ideal (z , y , x )

i9 : degree J
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o9 = 8

We note that Singular is fine-tuned for efficient computations in local rings
via the techniques in Chapter 4 of [CLO98].

Propositions 2.4 and 2.5 provide a decomposition of the given ideal:

(2.3) I = J ∩ (I : M∞).

Here J is the iterated ideal quotient in (2.2). This ideal is primary to the maximal
ideal M , that is, Rad(J) = M . We can now iterate by applying this process to
the ideal (I : M∞), and this will eventually lead to the primary decomposition of
I. We shall return to this topic in Chapter 5.

For the ideal in our example, the decomposition (2.3) is already the primary
decomposition when working over the field of rational numbers. It equals

〈 (x− y)3 − z2, (z − x)3 − y2, (y − z)3 − x2 〉 =
〈x2 , y2 , z2 〉 ∩ 〈 z2 + 1

5x−
1
5y + 2

25 , y
2 − 1

5x+ 1
5z + 2

25 ,

x2 + 1
5y −

1
5z + 2

25 , xy + xz + yz + 1
25 〉

Note that the second ideal is maximal and hence prime in Q[x, y, z]. The given
generators are a Gröbner basis with leading terms underlined.

2.3. Companion Matrices

Let I be a zero-dimensional ideal in S = Q[x1, . . . , xn], and suppose that the
Q-vector space S/I has dimension d. In this section we assume that some Gröbner
basis of I is known. Let B denote the associated monomial basis for S/I. Multipli-
cation by any of the variables xi defines an endomorphism

(2.4) S/I → S/I , f 7→ xi · f
We write Ti for the d× d-matrix over Q which represents the linear map (2.4) with
respect to the basis B. The rows and columns of Ti are indexed by the monomials
in B. If xu, xv ∈ B then the entry of Ti in row xu and column xv is the coefficient
of xu in the normal form of xi · xv.

We call Ti the ith companion matrix of the ideal I. It follows directly from the
definition that the companion matrices commute pairwise:

Ti · Tj = Tj · Ti for 1 ≤ i < j ≤ n.
The matrices Ti generate a commutative subalgebra of the non-commutative ring
of d× d-matrices, and this subalgebra is isomorphic to our ring

Q[T1, . . . , Tn] ' S/I , Ti 7→ xi.

Theorem 2.6. (Stickelberger’s Theorem) The complex zeros of the ideal I
are the vectors of joint eigenvalues of the companion matrices T1, . . . , Tn, that is,

(2.5) V(I) =
{

(λ1, . . . , λn) ∈ Cn : ∃ v ∈ Cn ∀ i : Ti · v = λi · v
}
.

Proof. Suppose that v is a non-zero complex vector such that Ti · v = λi · v
for all i. Then, for any polynomial p ∈ S,

p(T1, . . . , Tn) · v = p(λ1, . . . , λn) · v.
If p is in the ideal I then p(T1, . . . , Tn) is the zero matrix and we conclude that
p(λ1, . . . , λn) = 0. Hence the left hand side of (2.5) contains the right hand side of
(2.5).
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We prove the converse under the hypothesis that I is a radical ideal. (The
general case is left to the reader). Let λ = (λ1, . . . , λn) ∈ Cn be any zero of I.
There exists a polynomial q ∈ S ⊗ C such that q(λ) = 1 and q vanishes at all
points in V(I)\{λ}. Then xi · q = λi · q holds on V(I), hence (xi−λi) · q lies in the
radical ideal I. Let v be the non-zero vector representing the element q of S/I ⊗C.
Then v is a joint eigenvector with joint eigenvalue λ. �

Suppose that I is a zero-dimensional radical ideal. We can form a square
invertible matrix V whose columns are the eigenvectors v described above. Then
V −1 ·Ti ·V is a diagonal matrix whose entries are the ith coordinates of all the zeros
of I. This proves the if-direction in the following corollary. The only-if-direction is
also true but we omit its proof.

Corollary 2.7. The companion matrices T1, . . . , Tn can be simultaneously
diagonalized if and only if I is a radical ideal.

As an example consider the Gröbner basis given at the end of the last section.
The given ideal is a prime ideal in Q[x, y, z] having degree d = 6. We determine
the three companion matrices Tx, Ty and Tz.

> with(Groebner):

> GB := [z^2+1/5*x-1/5*y+2/25, y^2-1/5*x+1/5*z+2/25,
> x*y+x*z+y*z+1/25, x^2+1/5*y-1/5*z+2/25]:

> B := [1, x, y, z, x*z, y*z]:

> for v in [x,y,z] do
> T := array([],1..6,1..6):
> for j from 1 to 6 do
> p := normalf( v*B[j], GB, tdeg(x,y,z)):
> for i from 1 to 6 do
> T[i,j] := coeff(coeff(coeff(p,x,degree(B[i],x)),y,
> degree(B[i],y)),z,degree(B[i],z)):
> od:
> od:

> print(cat(T,v),T);
> od:

[ -2 -1 -2 ]
[0 -- -- 0 --- 0 ]
[ 25 25 125 ]
[ ]
[ -1 ]
[1 0 0 0 -- 1/25]
[ 25 ]
[ ]

Tx, [0 -1/5 0 0 1/25 1/25]
[ ]
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[ -2 ]
[0 1/5 0 0 -- 1/25]
[ 25 ]
[ ]
[0 0 -1 1 0 0 ]
[ ]
[0 0 -1 0 -1/5 0 ]

[ -1 -2 ]
[0 -- -- 0 0 2/125]
[ 25 25 ]
[ ]
[0 0 1/5 0 1/25 1/25 ]
[ ]
[ -1 ]
[1 0 0 0 1/25 -- ]

Ty, [ 25 ]
[ ]
[ -2 ]
[0 0 -1/5 0 1/25 -- ]
[ 25 ]
[ ]
[0 -1 0 0 0 1/5 ]
[ ]
[0 -1 0 1 0 0 ]

[ -2 -1 ]
[0 0 0 -- 1/125 --- ]
[ 25 125 ]
[ ]
[ -2 ]
[0 0 0 -1/5 -- 1/25]
[ 25 ]
[ ]
[ -2 ]

Tz, [0 0 0 1/5 1/25 -- ]
[ 25 ]
[ ]
[ -1 -1 ]
[1 0 0 0 -- -- ]
[ 25 25 ]
[ ]
[0 1 0 0 -1/5 1/5 ]
[ ]
[0 0 1 0 -1/5 1/5 ]
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The matrices Tx, Ty and Tz commute pairwise and they can be simultaneously
diagonalized. The entries on the diagonal are the six complex zeros. We invite the
reader to compute the common basis of eigenvectors using matlab.

2.4. The Trace Form

In this section we explain how to compute the number of real roots of a zero-
dimensional ideal which is presented to us by a Gröbner basis as before. Fix any
other polynomial h ∈ S and consider the following bilinear form on our vector space
S/I ' Qd. This is called the trace form for h:

Bh : S/I × S/I → Q , (f, g) 7→ trace
(
(f · g · h)(T1, T2, . . . , Tn)

)
.

This formula means the following: first multiply f, g and h to get a polynomial
in x1, . . . , xn, then substitute x1 7→ T1, . . . , xn 7→ Tn to get an n × n-matrix, and
finally sum up the diagonal entries of that n× n-matrix.

We represent the quadratic form Bh by a symmetric d× d-matrix over Q with
respect to the basis B. If xu, xv ∈ B then the entry of Bh in row xu and column
xv is the sum of the diagonal entries in the d × d-matrix gotten by substituting
the companion matrices Ti for the variables xi in the polynomial xu+v · h. This
rational number can be computed by summing, over all xw ∈ B, the coefficient of
xw in the normal form of xu+v+w · h modulo I.

Since the matrix Bh is symmetric, all of its eigenvalues are real numbers. The
signature of Bh is the number of positive eigenvalues of Bh minus the number of
negative eigenvalues of Bh. It turns out that this number is always non-negative
for symmetric matrices of the special form Bh. In the following theorem, real zeros
of I with multiplicities are counted only once.

Theorem 2.8. The signature of the trace form Bh equals the number of real
roots p of I with h(p) > 0 minus the number of real roots p of I with h(p) < 0.

The special case when h = 1 is used to count all real roots:
Corollary 2.9. The number of real roots of I equals the signature of B1.
We compute the symmetric 6 × 6-matrix B1 for the case of the polynomial

system whose companion matrices were determined in the previous section.
> with(linalg): with(Groebner):

> GB := [z^2+1/5*x-1/5*y+2/25, y^2-1/5*x+1/5*z+2/25,
> x*y+x*z+y*z+1/25, x^2+1/5*y-1/5*z+2/25]:
> B := [1, x, y, z, x*z, y*z]:

> B1 := array([ ],1..6,1..6):
> for j from 1 to 6 do
> for i from 1 to 6 do
> B1[i,j] := 0:
> for k from 1 to 6 do
> B1[i,j] := B1[i,j] + coeff(coeff(coeff(
> normalf(B[i]*B[j]*B[k], GB, tdeg(x,y,z)),x,
> degree(B[k],x)), y, degree(B[k],y)),z, degree(B[k],z)):
> od:
> od:
> od:
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> print(B1);
[ -2 -2 ]
[6 0 0 0 -- -- ]
[ 25 25 ]
[ ]
[ -12 -2 -2 -2 ]
[0 --- -- -- -- 0 ]
[ 25 25 25 25 ]
[ ]
[ -2 -12 -2 ]
[0 -- --- -- 0 2/25]
[ 25 25 25 ]
[ ]
[ -2 -2 -12 -2 ]
[0 -- -- --- 2/25 -- ]
[ 25 25 25 25 ]
[ ]
[-2 -2 34 -16 ]
[-- -- 0 2/25 --- --- ]
[25 25 625 625 ]
[ ]
[-2 -2 -16 34 ]
[-- 0 2/25 -- --- --- ]
[25 25 625 625 ]

> charpoly(B1,z);

6 2918 5 117312 4 1157248 3 625664 2
z - ---- z - ------ z - ------- z - ------- z

625 15625 390625 9765625

4380672 32768
+ -------- z - ------
48828125 9765625

> fsolve(%);

-.6400000, -.4371281, -.4145023, .04115916, .1171281, 6.002143

Here the matrix B1 has three positive eigenvalues and three negative eigenvalues,
so the trace form has signature zero. This confirms our earlier finding that these
equations have no real zeros. We note that we can read off the signature of B1

directly from the characteristic polynomial. Namely, the characteristic polynomial
has three sign changes in its coefficient sequence. Using the following result, which
appears in Exercise 5 on page 67 of [CLO98], we infer that there are three positive
real eigenvalues and this implies that the signature of B1 is zero.
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Lemma 2.10. The number of positive eigenvalues of a real symmetric matrix
equals the number of sign changes in the coefficient sequence of its characteristic
polynomial.

It is instructive to examine the trace form for the case of one polynomial in one
variable. Consider the principal ideal

I = 〈 adx
d + ad−1x

d−1 + · · ·+ a2x
2 + a1x+ a0 〉 ⊂ S = Q[x].

We consider the traces of successive powers of the companion matrix:

bi := trace
(
Timesi

x

)
=

∑
u∈V(I)

ui.

Thus bi is a Laurent polynomial of degree zero in a0, . . . , ad, which is essentially
the familiar Newton relation between elementary symmetric polynomials and power
sum symmetric polynomials. The trace form is given by the matrix

(2.6) B1 =


b0 b1 b2 · · · bd−1

b1 b2 b3 · · · bd
b2 b3 b4 · · · bd+1

...
...

...
. . .

...
bd−1 bd bd+1 · · · b2d−2


Thus the number of real zeros of I is the signature of this Hankel matrix. For
instance, for d = 4 the entries in the 4× 4-Hankel matrix B1 are

b0 = 4
b1 = −a3

a4

b2 = −2a4a2+a2
3

a2
4

b3 = −3a2
4a1+3a4a3a2−a3

3
a3
4

b4 = −4a3
4a0+4a2

4a3a1+2a2
4a2

2−4a4a2
3a2+a4

3
a4
4

b5 = −5a3
4a3a0−5a3

4a2a1+5a2
4a2

3a1+5a2
4a3a2

2−5a4a3
3a2+a5

3
a5
4

b6 = −6a4
4a2a0−3a4

4a2
1+6a3

4a2
3a0+12a3

4a3a2a1+2a3
4a3

2−6a2
4a3

3a1−9a2
4a2

3a2
2+6a4a4

3a2−a6
3

a6
4

,

and the characteristic polynomial of the 4× 4-matrix B1 equals

x4 + (−b0 − b2 − b4 − b6) · x3

+ (b0b2 + b0b4 + b0b6 − b25 − b21 − b22 + b2b4 + b2b6 − 2b23 − b24 + b4b6) · x2

+ (b0b25−b0b2b4−b0b2b6+b0b23+b0b24−b0b4b6+b25b2−2b5b2b3−2b5b3b4+b21b4
+b21b6−2b1b2b3−2b1b3b4+b32+b22b6+b2b23−b2b4b6+b23b4+b23b6+b34) · x

− b0b
2
5b2+2b0b5b3b4 + b0b2b4b6 − b0b23b6 − b0b34 + b25b

2
1 − 2b5b1b2b4 − 2b5b1b23

+2b5b22b3 − b21b4b6 + 2b1b2b3b6 + 2b1b3b24 − b32b6 + b22b
2
4 − 3b2b23b4 + b43

By considering sign alternations among these expressions in b0, b1, . . . , b6, we get
explicit conditions for the general quartic to have zero, one, two, three, or four
real roots respectively. These are semialgebraic conditions. This means the condi-
tions are Boolean combinations of polynomial inequalities in the five indeterminates
a0, a1, a2, a3, a4. In particular, all four zeros of the general quartic are real if and
only if the trace form is positive definite. Recall that a symmetric matrix is positive
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definite if and only if its principal minors are positive. Hence the quartic has four
real roots if and only if

b0 > 0 and b0b2 − b21 > 0 and b0b2b4 − b0b23 − b21b4 + 2b1b2b3 − b32 > 0 and
2b0b5b3b4 − b0b25b2 + b0b2b4b6 − b0b23b6 − b0b34 + b25b

2
1 − 2b5b1b2b4 − 2b5b1b23

+2b5b22b3 − b21b4b6 + 2b1b2b3b6 + 2b1b3b24 − b32b6 + b22b
2
4 − 3b2b23b4 + b43 > 0.

The last polynomial is the determinant of B1. It equals the discriminant of the
quartic (displayed in maple at the beginning of Chapter 1) divided by a6

4.

2.5. Solving Polynomial Equations in Singular

The computer algebra system Singular [GPS01] performs well in Gröbner
basis computations for zero-dimensional systems. Moreover, there now exists a
Singular library for numerically solving such systems. In this section we give a
brief demonstration how this works. For many more details see [GP02].

Let us start with our small running example:
ring R = 0, (x,y,z), dp;
ideal I = ( (x-y)^3-z^2, (z-x)^3-y^2, (y-z)^3-x^2 );
ideal G = groebner(I);
G;

These four lines produce the reduced Gröbner basis in the total degree term order
“dp”:
G[1]=60y2z-30xz2-60yz2+30z3+13x2-5y2+7z2
G[2]=60x2z-60xz2-30yz2+30z3+5x2-13y2-7z2
G[3]=y3-3y2z+3yz2-z3-x2
G[4]=6xy2-12x2z-18y2z+18xz2+24yz2-18z3-7x2+5y2-z2
G[5]=3x2y-3xy2-3x2z+3y2z+3xz2-3yz2+x2+y2+z2
G[6]=x3-3x2z+3xz2-z3+y2
G[7]=25z4+5xz2-5yz2+2z2
G[8]=300yz3-300z4-195xz2-45yz2+90z3+8x2-16y2-7z2
G[9]=600xz3-300yz3-300z4+285xz2+435yz2-270z3-40x2+32y2-7z2
G[10]=100xyz2-200xz3+100yz3-105xz2-135yz2+90z3+16x2-8y2-13z2

We next run the numerical solver in Singular:
LIB "solve.lib";
solve(G,6);

This computes floating point approximations to our solutions, truncated to six
digits:
[1]:

[1]: (-0.142332+i*0.358782)
[2]: (0.142332+i*0.358782)
[3]: (-i*0.151879)

[2]:
[1]: (-0.142332-i*0.358782)
[2]: (0.142332-i*0.358782)
[3]: (i*0.151879)

[3]:
[1]: (0.142332-i*0.358782)
[2]: (i*0.151879)
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[3]: (-0.142332-i*0.358782)
[4]:

[1]: (-i*0.151879)
[2]: (-0.142332+i*0.358782)
[3]: (0.142332+i*0.358782)

[5]:
[1]: (i*0.151879)
[2]: (-0.142332-i*0.358782)
[3]: (0.142332-i*0.358782)

[6]:
[1]: (0.142332+i*0.358782)
[2]: (-i*0.151879)
[3]: (-0.142332+i*0.358782)

[7]:
[1]: 0
[2]: 0
[3]: 0

We next present a more realistic example. It arises from the following question
due to Olivier Mathieu: Does there exist a Laurent polynomial

f(x) = x−n + an−1x
−n+1 + · · · + a1x

−1 + b1x + · · · + bn−1x
n−1 + xn

with complex coefficients all of whose powers have zero constant term?
This question can be phrased as a polynomial solving problem. For any in-

teger i ≥ 2, let [f i] denote the constant coefficient of the ith power of f . Thus
[f i] is a polynomial of degree i in S = Q[a1, . . . , an−1, b1, . . . , bn−1]. In view of
Hilbert’s Nullstellensatz, the answer to Mathieu’s question is “no” if and only if〈
[f2], [f3], [f4], . . .

〉
is the unit ideal in S. This answer “no” was proved by Duis-

termaat and van der Kallen [DvK98]. In fact, in this remarkable paper, they
establish the analogous theorem for Laurent polynomials in any number of vari-
ables. We propose the following effective version of Mathieu’s question.

Problem 2.11. Is
〈
[f2], [f3], [f4], . . . , [f2n−1]

〉
the unit ideal in S?

The answer is known to be “yes” for n ≤ 4. Assuming that the answer is always
“yes”, it makes sense to consider the zero-dimensional ideal

In =
〈
[f2], [f3], [f4], . . . , [f2n−2]

〉
.

The zeros of In are precisely those Laurent polynomials f ∈ C[x, x−1] which have
the longest possible sequence of powers with zero constant terms. We shall compute
all solutions for n = 3. Consider the Laurent polynomial

(2.7) f(x) = x−3 + a2x
−2 + a1x

−1 + b1x + b2x
2 + x3.

We take its successive powers to get our input for Singular:
ring R = 0,(a1,a2,b1,b2), lp;
ideal I3 =
2*a1*b1+2*a2*b2+2,
3*a1^2*b2+3*a2*b1^2+6*a1*a2+6*b1*b2,
6*a1^2*b1^2+24*a1*a2*b1*b2+6*a2^2*b2^2+4*a1^3
+12*a1*b2^2+12*a2^2*b1+4*b1^3+24*a1*b1+24*a2*b2+6,
20*a1^3*b1*b2+30*a1^2*a2*b2^2+20*a1*a2*b1^3+30*a2^2*b1^2*b2
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+60*a1^2*a2*b1+60*a1*a2^2*b2+60*a1*b1^2*b2+60*a2*b1*b2^2
+60*a1^2*b2+10*a2^3+60*a2*b1^2+10*b2^3+60*a1*a2+60*b1*b2;

ideal G = groebner(I3);
dim(G), vdim(G);
0 66

The output 0 66 tells us that I3 is a zero-dimensional ideal of degree d = 66. We
next check that I3 is a radical ideal in Q[a1, a2, b1, b2]:
LIB "primdec.lib";
ideal J = radical(I3);
ideal H = groebner(J);
dim(H), vdim(H);
0 66

We now know that I3 has exactly 66 distinct complex solutions, i.e., there are 66
Laurent polynomials (2.7) with [f2] = [f3] = [f4] = [f5] = 0. They are:
LIB "solve.lib";
solve(H,10,0,50);
[1]:

[1]: -2.111645747
[2]: (-i*1.5063678639)
[3]: -0.9084318754
[4]: (-i*1.9372998961)

[2]:
[1]: -0.9084318754
[2]: (-i*1.9372998961)
[3]: -2.111645747
[4]: (-i*1.5063678639)
............

[37]:
[1]: 0.4916247383
[2]: -1.1143136378
[3]: 0.4916247383
[4]: 1.1143136378

............

[59]:
[1]: 2.5222531827
[2]: -2.7132565522
[3]: 2.5222531827
[4]: 2.7132565522

............
[65]:

[1]: (0.3357455874-i*0.5815284157)
[2]: 0
[3]: (-0.7446114243-i*1.2897048188)
[4]: 0

[66]:
[1]: -0.6714911747
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[2]: 0
[3]: 1.4892228486
[4]: 0

The 66 solutions come in pairs with respect to the obvious symmetry

(a1, a2, b1, b2) ←→ (b1, b2, a1, a2).

For instance, the first two solutions [1] and [2] are such a pair. There are precisely
three pairs of real solutions. Representatives are the solutions [37], [59] and [66].
The latter one corresponds to the Laurent polynomial

f(x) = x−3 − 0.6714911747 · x−1 + 1.4892228486 · x + x3.

The entire computation took about 30 seconds. Note that the lexicographic term
order lp was used in defining the ring R. The Gröbner basis H has five elements
and is hence not as in the Shape Lemma. In the command solve(H,10,0,50)
we are telling Singular to use 50 digits of internal precision for the numerical
computation. The roots are given with 10 digits.

This was a lot of fun, indeed. Time to say...
> exit;
Auf Wiedersehen.

2.6. Exercises

(1) Let A = (aij) be a non-singular n × n-matrix whose entries are positive
integers. How many complex solutions do the following equations have:

n∏
j=1

x
a1j

j =
n∏

j=1

x
a2j

j = · · · =
n∏

j=1

x
anj

j = 1.

(2) Pick a random homogeneous cubic polynomial in four variables. Compute
the 27 lines on the cubic surface defined by your polynomial.

(3) Given d arbitrary rational numbers a0, a1, . . . , ad−1, consider the system
of d polynomial equations in d unknowns z1, z2, . . . , zd given by setting

xd + ad−1x
d−1 · · ·+ a1x+ a0 = (x− z1)(x− z2) · · · (x− zd).

Describe the primary decomposition of this ideal in Q[z1, z2, . . . , zd]. How
can you use this to find the Galois group of the given polynomial?

(4) For any two positive integers m,n, find an explicit radical ideal I in
Q[x1, . . . , xn] and a term order ≺ such that in≺(I) = 〈x1, x2, . . . , xn〉m.

(5) Fix the monomial ideal M = 〈x, y〉3 = 〈x3, x2y, xy2, y3〉 and compute
its companion matrices Tx, Ty. Describe all polynomial ideals in Q[x, y]
which are within distance ε = 0.0001 from M , in the sense that the
companion matrices are ε-close to Tx, Ty in your favorite matrix norm.

(6) Does every zero-dimensional ideal in Q[x, y] have a radical ideal in all
of its ε-neighborhoods? How about zero-dimensional ideals in Q[x, y, z]?
(Hint: The answer was given thirty years ago by Iarobbino [Iar72].)

(7) How many distinct real vectors (x, y, z) ∈ R3 satisfy the equations

x3 + z = 2y2, y3 + x = 2z2, z3 + y = 2x2 ?
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(8) Pick eight random points in the real projective plane. Compute the 12
nodal cubic curves passing through your points. Repeat the computation
100 times, recording the number of complex and real solutions. Can you
find eight points such that all 12 solutions are real?

(9) Consider a quintic polynomial in two variables, for instance,

f = 5y5 + 19y4x+ 36y3x2 + 34y2x3 + 16yx4 + 3x5

+6y4 + 4y3x+ 6y2x2 + 4yx3 + x4 + 10y3 + 10y2 + 5y + 1.

Determine the irreducible factors of f in R[x, y], and also in C[x, y].
(10) Consider a polynomial system which has infinitely many complex zeros

but only finitely many of them have all their coordinates distinct. How
would you compute those zeros with distinct coordinates?

(11) The following system of equations appears in [Rou99]:

24xy − x2 − y2 − x2y2 = 13,
24xz − x2 − z2 − x2z2 = 13,
24yz − y2 − z2 − y2z2 = 13.

Solve these equations.
(12) A well-studied problem in number theory is to find rational points on ellip-

tic curves. Given an ideal I ⊂ Q[x1, . . . , xn] how can you decide whether
V(I) is an elliptic curve, and, in the affirmative case, which computer
program would you use to look for points in V(I) ∩Qn?

(13) The number of complex solutions of the ideals I2, I3, I4, . . . in Mathieu’s
problem appears to be 4, 66, 2416, . . .. How does this sequence continue?





CHAPTER 3

Bernstein’s Theorem and Fewnomials

The Gröbner basis methods described in the previous chapter apply to arbitrary
systems of polynomial equations. They are so general that they are frequently not
the best choice when dealing with specific classes of polynomial systems. A situation
encountered in many applications is a system of n sparse polynomial equations in
n variables which has finitely many roots. Algebraically, this situation is special
because we are dealing with a complete intersection, and sparsity allows us to use
polyhedral techniques for counting and computing the zeros. Here and throughout
this book, a polynomial is called sparse if we know a priori which monomials appear
with non-zero coefficients in that polynomial. This chapter gives an introduction
to sparse polynomial systems by explaining some basic techniques for n = 2.

3.1. From Bézout’s Theorem to Bernstein’s Theorem

A polynomial in two unknowns looks like

(3.1) f(x, y) = a1x
u1yv1 + a2x

u2yv2 + · · · + amx
umyvm ,

where the exponents ui and vi are non-negative integers and the coefficients ai

are non-zero rationals. Its total degree deg(f) is the maximum of the numbers
u1 + v1, . . . , um + vm. The following theorem gives an upper bound on the number
of common complex zeros of two polynomials in two unknowns.

Theorem 3.1. (Bézout’s Theorem) Consider two polynomial equations in
two unknowns: g(x, y) = h(x, y) = 0. If this system has only finitely many zeros
(x, y) ∈ C2, then the number of zeros is at most deg(g) · deg(h).

Bézout’s Theorem is the best possible in the sense that almost all polynomial
systems have deg(g) · deg(h) distinct solutions. An explicit example is gotten by
taking g and h as products of linear polynomials α1x+ α2y + α3. More precisely,
there exists a polynomial in the coefficients of g and h such that whenever this
polynomial is non-zero then f and g have the expected number of zeros. The first
exercise below concerns finding such a polynomial.

A drawback of Bézout’s Theorem is that it yields little information for polyno-
mials that are sparse. For example, consider the two polynomials

(3.2) g(x, y) = a1 + a2x + a3xy + a4y , h(x, y) = b1 + b2x
2y + b3xy

2.

These two polynomials have precisely four distinct zeros (x, y) ∈ C2 for generic
choices of coefficients ai and bj . Here “generic” means that a certain polynomial in
the coefficients ai, bj , called the discriminant, should be non-zero. The discriminant

29
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of the system (3.2) is the following expression:
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If this polynomial of degree 14 is non-zero, then the system (3.2) has four distinct
complex zeros. This discriminant is computed in maple as follows.

g := a1 + a2 * x + a3 * x*y + a4 * y;
h := b1 + b2 * x^2 * y + b3 * x * y^2;
R := resultant(g,h,x):
S := factor( resultant(R,diff(R,y),y) ):
discriminant := op( nops(S), S);

The last command extracts the last (and most important) factor of the expres-
sion S.

Bézout’s Theorem would predict deg(g) · deg(h) = 6 common complex zeros
for the equations in (3.2). Indeed, in projective geometry we would expect the cubic
curve {g = 0} and the quadratic curve {h = 0} to intersect in six points. But these
particular curves never intersect in more than four points in C2. To understand
why the number is four and not six, we need to associate convex polygons to our
given polynomials.

Convex polytopes have been studied since the earliest days of mathematics. We
shall see that they are very useful for analyzing and solving polynomial equations. A
polytope is a subset of Rn which is the convex hull of a finite set of points. A familiar
example is the convex hull of {(0, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 0), (1, 1, 0),
(1, 0, 1), (1, 1, 1)} in R3; this is the regular 3-cube. A d-dimensional polytope has
many faces, which are again polytopes of various dimensions between 0 and d− 1.
The 0-dimensional faces are called vertices, the 1-dimensional faces are called edges,
and the (d − 1)-dimensional faces are called facets. For instance, the cube has 8
vertices, 12 edges and 6 facets. If d = 2 then the edges coincide with the facets. A
2-dimensional polytope is called a polygon.

Consider the polynomial f(x, y) in (3.1). Each term xuiyvi appearing in f(x, y)
can be regarded as a lattice point (ui, vi) in the plane R2. The convex hull of all
these points is called the Newton polygon of f(x, y). In symbols,

New(f) := conv
{

(u1, v1), (u2, v2), . . . , (um, vm)
}

This is a polygon in R2 having at mostm vertices. More generally, every polynomial
in n unknowns gives rise to a Newton polytope in Rn.
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Figure 3.1. Mixed subdivision

Our running example in this chapter is the pair of polynomials in (3.2). The
Newton polygon of the polynomial g(x, y) is a quadrangle, and the Newton polygon
of h(x, y) is a triangle. If P and Q are any two polygons in the plane, then their
Minkowski sum is the polygon

P +Q :=
{
p+ q : p ∈ P, q ∈ Q

}
.

Note that each edge of P +Q is parallel to an edge of P or an edge of Q.
The geometric operation of taking the Minkowski sum of polytopes mirrors

the algebraic operation of multiplying polynomials. More precisely, the Newton
polytope of a product of two polynomials equals the Minkowski sum of two given
Newton polytopes:

New(g · h) = New(g) + New(h).

If P and Q are any two polygons then we define their mixed area as

M(P,Q) := area(P +Q) − area(P ) − area(Q).

For instance, the mixed area of the two Newton polygons in (3.2) equals

M(P,Q) = M(New(g), New(h)) =
13
2
− 1− 3

2
= 4.

The correctness of this computation can be seen in the following diagram:
This figure shows a subdivision of P + Q into five pieces: a translate of P , a

translate of Q and three parallelograms. The mixed area is the sum of the areas of
the three parallelograms, which is four. This number coincides with the number of
common zeros of g and h. This is not an accident, but is an instance of a general
theorem due to David Bernstein [Ber75]. We abbreviate C∗ := C\{0}. The set
(C∗)2 of pairs (x, y) with x 6= 0 and y 6= 0 is a group under multiplication, called
the two-dimensional algebraic torus.

Theorem 3.2. (Bernstein’s Theorem)
If g and h are two generic bivariate polynomials, then the number of solutions of
g(x, y) = h(x, y) = 0 in (C∗)2 equals the mixed area M(New(g), New(h)).

Actually, this assertion is valid for Laurent polynomials, which means that the
exponents in our polynomials (3.1) can be any integers, possibly negative. Bern-
stein’s Theorem implies the following combinatorial fact about lattice polygons. If
P and Q are lattice polygons (i.e., the vertices of P and Q have integer coordinates),
thenM(P,Q) is a non-negative integer.

We remark that Bézout’s Theorem follows as a special case from Bernstein’s
Theorem. Namely, if g and h are general polynomials of degree d and e respectively,
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then their Newton polygons are the triangles

P := New(g) = conv{(0, 0), (0, d), (d, 0)} ,
Q := New(h) = conv{(0, 0), (0, e), (e, 0)} ,

P +Q := New(g · h) = conv{(0, 0), (0, d+ e), (d+ e, 0)}.

The areas of these triangles are d2/2, e2/2, (d+ e)2/2, and hence

M(P,Q) =
(d+ e)2

2
− d2

2
− e2

2
= d · e.

Hence two general plane curves of degree d and e meet in d · e points.
We shall present a proof of Bernstein’s Theorem. This proof is algorithmic in

the sense that it tells us how to approximate all the zeros numerically. The steps in
this proof form the foundation for the method of polyhedral homotopies for solving
polynomial systems. This is an active area of research, with lots of exciting progress
by T.Y. Li, Jan Verschelde and their collaborators [Li97], [SVW01].

We proceed in three steps. The first deals with an easy special case.

3.2. Zero-dimensional Binomial Systems

A binomial is a polynomial with two terms. We first prove Theorem 1.1 in the
case when g and h are binomials. After multiplying or dividing both binomials
by suitable scalars and powers of the variables, we may assume that our given
equations are

(3.3) g = xa1yb1 − c1 and h = xa2yb2 − c2,

where a1, a2, b1, b2 are integers (possibly negative) and c1, c2 are non-zero complex
numbers. Note that multiplying the given equations by a (Laurent) monomial
changes neither the number of zeros in (C∗)2 nor the mixed area of their Newton
polygons

To solve the equations g = h = 0, we compute an invertible integer 2×2-matrix
U = (uij) ∈ SL2(Z) such that(

u11 u12

u21 u22

)
·
(
a1 b1
a2 b2

)
=

(
r1 r3
0 r2

)
.

This is accomplished using the Hermite normal form algorithm of integer linear
algebra. The invertible matrix U triangularizes our system of equations:

g = h = 0
⇐⇒ xa1yb1 = c1 and xa2yb2 = c2

⇐⇒ (xa1yb1)u11(xa2yb2)u12 = cu11
1 cu12

2 and (xa1yb1)u21(xa2yb2)u22 = cu21
1 cu22

2

⇐⇒ xr1yr3 = cu11
1 cu12

2 and yr2 = cu21
1 cu22

2 .

This triangularized system has precisely r1r2 distinct non-zero complex solutions.
These can be expressed in terms of radicals in the coefficients c1 and c2. The
number of solutions equals

r1r2 = det
(
r1 r3
0 r2

)
= det

(
a1 b1
a2 b2

)
= area(New(g) +New(h)).
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This equals the mixed area M(New(g), New(h)), since the two Newton polygons
are just segments, so that area(New(g)) = area(New(h)) = 0. This proves Bern-
stein’s Theorem for binomials. Moreover, it gives a simple algorithm for finding all
zeros in this case.

The method described here clearly works also for n binomial equations in n
variables, in which case we are to compute the Hermite normal form of an integer
n × n-matrix. We note that the Hermite normal form computation is similar but
not identical to the computation of a lexicographic Gröbner basis. We illustrate
this in maple for a system with n = 3 having 20 zeros:
> with(Groebner): with(linalg):
> gbasis([
> x^3 * y^5 * z^7 - c1,
> x^11 * y^13 * z^17 - c2,
> x^19 * y^23 * z^29 - c3], plex(x,y,z));

13 3 8 10 15 2 2 9 8 6 3 4 7
[-c2 c1 + c3 z , c2 c1 y - c3 z , c2 c1 x - c3 z y]

> ihermite( array([
> [ 3, 5, 7 ],
> [ 11, 13, 17 ],
> [ 19, 23, 29 ] ]));

[1 1 5]
[ ]
[0 2 2]
[ ]
[0 0 10]

3.3. Introducing a Toric Deformation

We introduce a new indeterminate t, and we multiply each monomial of g and
each monomial of h by a power of t. What we want is the solutions to this system
for t = 1, but what we will do instead is to analyze it for t in neighborhood of 0.
For instance, our system (3.2) gets replaced by

gt(x, y) = a1t
ν1 + a2xt

ν2 + a3xyt
ν3 + a4yt

ν4

ht(x, y) = b1t
ω1 + b2x

2ytω2 + b3xy
2tω3

We require that the integers νi and ωj be “sufficiently generic” in a sense to be made
precise below. The system gt = ht = 0 can be interpreted as a bivariate system
which depends on a parameter t. Its zeros (x(t), y(t)) depend on that parameter.
They define the branches of an algebraic function t 7→ (x(t), y(t)). Our goal is to
identify the branches.

In a neighborhood of the origin in the complex plane, each branch of our alge-
braic function can be written as follows:

x(t) = x0 · tu + higher order terms in t,
y(t) = y0 · tv + higher order terms in t,

where x0, y0 are non-zero complex numbers and u, v are rational numbers. To
determine the exponents u and v we substitute x = x(t) and y = y(t) into the
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equations gt(x, y) = ht(x, y) = 0. In our example this gives

gt

(
x(t), y(t)

)
= a1t

ν1 + a2x0t
u+ν2 + a3x0y0t

u+v+ν3 + a4y0t
v+ν4 + · · · ,

ht

(
x(t), y(t)

)
= b1t

ω1 + b2x
2
0y0t

2u+v+ω2 + b3x0y
2
0t

u+2v+ω3 + · · · .

In order for
(
x(t), y(t)

)
to be a root, the term of lowest order must vanish

in each of these two equations. Since x0 and y0 are chosen to be non-zero, this is
possible only if the lowest order in t is attained by at least two different terms. This
implies the following two piecewise-linear equations for the indeterminate vector
(u, v) ∈ Q2:

min
{
ν1, u+ ν2, u+ v + ν3, v + ν4

}
is attained twice,

min
{
ω1, 2u+ v + ω2, u+ 2v + ω3

}
is attained twice.

As in Chapter 1, each of these translates into a disjunction of linear equations and
inequalities. For instance, the second “min-equation” translates into

ω1 = 2u+ v + ω2 ≤ u+ 2v + ω3

or ω1 = u+ 2v + ω3 ≤ 2u+ v + ω2

or 2u+ v + ω2 = u+ 2v + ω3 ≤ ω1

It is now easy to state what we mean by the νi and ωj being sufficiently generic. It
means that the minimum is attained twice but not thrice. More precisely, at every
solution (u, v) of the two piecewise-linear equations, precisely two of the linear forms
attain the minimum value in each of the two equations.

One issue in the algorithm for Bernstein’s Theorem is to choose powers of t that
are small but yet generic. In our example, the choice ν1 = ν2 = ν3 = ν4 = ω3 = 0,
ω1 = ω2 = 1 is generic. Here the two polynomials are

gt(x, y) = a1 + a2x + a3xy + a4y, ht(x, y) = b1t + b2x
2yt + b3xy

2,

and the corresponding two piecewise-linear equations are

min
{

0, u, u+ v, v
}

and min
{

1, 2u+ v + 1, u+ 2v
}

are attained twice.

This system has precisely three solutions:

(u, v) ∈
{

(1, 0), (0, 1/2), (−1, 0)
}
.

For each of these pairs (u, v), we now obtain a binomial system

g̃(x0, y0) = h̃(x0, y0) = 0

which expresses the fact that the lowest terms in gt

(
x(t), y(t)

)
and ht

(
x(t), y(t)

)
do indeed vanish. The three binomial systems are

• g̃(x0, y0) = a1 + a4y0 and h̃(x0, y0) = b1 + b3x0y
2
0 for (u, v) = (1, 0).

• g̃(x0, y0) = a1 + a2x0 and h̃(x0, y0) = b1 + b3x0y
2
0 for (u, v) = (0, 1/2).

• g̃(0, y0) = a2x0 + a3x0y0 and h̃(x0, y0) = b2x
2
0y0 + b3x0y

2
0 for (u, v) =

(−1, 0).

These binomial systems have one, two and one roots respectively. For instance, the
unique Puiseux series solution for (u, v) = (1, 0) has

x0 = −a2
4b1/a

2
1b3 and y0 = −a1/a4.
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Hence our algebraic function has a total number of four branches. If one wishes
more information about the four branches, one can now compute further terms in
the Puiseux expansions of these branches. For instance,

x(t) = −a2
4b1

a2
1b3
· t + 2 · a3

4b21(a1a3−a2a4)

a5
1b23

· t2

+ a4
4b21(a

3
1a4b2−5a2

1a2
3b1+12a1a2a3a4b1−7a2

2a2
4b1)

a8
1b83

· t3 + . . .

y(t) = −a1
a4

+ b1(a1a3−a2a4)
a2
1b3

· t + a4b21(a1a3−a2a4)(a1a3−2a2a4)

a5
1b23

· t2 + . . . .

For details on computing multivariate Puiseux series see [McD95]. In [McD02]
a method is given for finding all the Puiseux series solutions to a system of n
polynomial equations in n unknowns and m parameters.

3.4. Mixed Subdivisions of Newton Polytopes

We fix a generic toric deformation gt = ht = 0 of our equations. In this
section we introduce a polyhedral technique for solving the associated piecewise
linear equation and, in order to prove Bernstein’s Theorem, we show that the total
number of branches equals the mixed area of the Newton polygons.

Let us now think of gt and ht as Laurent polynomials in three variables (x, y, t)
whose zero set is a curve in (C∗)3. The Newton polytopes of these trivariate poly-
nomials are the following two polytopes in R3:

P := conv
{
(0, 0, ν1), (1, 0, ν2), (1, 1, ν3), (0, 1, ν4)

}
and Q := conv

{
(0, 0, ω1), (2, 1, ω2), (1, 2, ω3)

}
.

The Minkowski sum P + Q is a polytope in R3. By a facet of P + Q we mean
a two-dimensional face. A facet F of P + Q is a lower facet if there is a vector
(u, v) ∈ R2 such that (u, v, 1) is an inward pointing normal vector to P +Q at F .
Our genericity conditions for the integers νi and ωj is equivalent to:

(1) The Minkowski sum P +Q is a 3-dimensional polytope.
(2) Every lower facet of P +Q has the form F1 + F2 where either

(a) F1 is a vertex of P and F2 is a facet of Q, or
(b) F1 is an edge of P and F2 is an edge of Q, or
(c) F1 is a facet of P and F2 is a vertex of Q.

As an example consider our lifting from before, ν1 = ν2 = ν3 = ν4 = ω3 = 0
and ω1 = ω2 = 1. It meets the requirements (1) and (2). The polytope P is a
quadrangle and Q is triangle. But they lie in non-parallel planes in R3. Their
Minkowski sum P +Q is a 3-dimensional polytope with 10 vertices:

The union of all lower facets of P +Q is called the lower hull of the polytope
P + Q. Algebraically speaking, the lower hull is the subset of all points in P + Q
at which some linear functional of the form (x1, x2, x3) 7→ ux1 + vx2 + x3 attains
its minimum. Geometrically speaking, the lower hull is that part of the boundary
of P +Q which is visible from below. Let π : R3 → R2 denote the projection onto
the first two coordinates. Then

π(P ) = New(g), π(Q) = New(h), and π(P +Q) = New(g) +New(h).

The map π restricts to a bijection from the lower hull onto New(g)+New(h). The
set of polygons ∆ := {π(F ) : F lower facet of P + Q} defines a subdivision of
New(g)+New(h). A subdivision ∆ constructed by this process, for some choice of



36 3. BERNSTEIN’S THEOREM AND FEWNOMIALS

Figure 3.2. The 3-dimensional polytope P+Q

νi and ωj , is called a mixed subdivision of the given Newton polygons. The polygons
π(F ) are the cells of the mixed subdivision ∆.

Every cell of a mixed subdivision ∆ has the form F1 + F2 where either

(a) F1 = {(ui, vi)} where xuiyvi appears in g and F2 is the projection of a
facet of Q, or

(b) F1 is the projection of an edge of P and F2 is the projection of an edge
of Q, or

(c) F1 is the projection of a facet of P and F2 = {(ui, vi)} where xuiyvi

appears in h.

The cells of type (b) are called the mixed cells of ∆.

Lemma 3.3. Let ∆ be any mixed subdivision for g and h. Then the sum of the
areas of the mixed cells in ∆ equals the mixed area M(New(g), New(h)).

Proof. Let γ and δ be arbitrary positive real numbers and consider the poly-
tope γP + δQ in R3. Its projection into the plane R2 equals

π(γP + δQ) = γπ(P ) + δπ(Q) = γ ·New(g) + δ ·New(h).

Let A(γ, δ) denote the area of this polygon. This polygon can be subdivided into
cells γF1 + δF2 where F1 +F2 runs over all cells of ∆. Note that area(γF1 + δF2)
equals δ2 ·area(F1 +F2) if F1 +F2 is a cell of type (a), γδ ·area(F1 +F2) if it is a
mixed cell, and γ2 · area(F1 +F2) if it has type (c). The sum of these areas equals
A(γ, δ). Therefore A(γ, δ) = A(a) ·δ2 + A(b) ·γδ + A(c) ·γ2, where A(b) is the sum of
the areas of the mixed cells in ∆. We conclude A(b) = A(1, 1)−A(1, 0)−A(0, 1) =
M(New(g), New(h)). �

The following lemma makes the connection with the previous section.

Lemma 3.4. A pair (u, v) ∈ Q2 solves the piecewise-linear min-equations if and
only if (u, v, 1) is the normal vector to a mixed lower facet of P +Q.

This implies that the valid choices of (u, v) are in bijection with the mixed
cells in the mixed subdivision ∆. Each mixed cell of ∆ is expressed uniquely as
the Minkowski sum of a Newton segment New(g̃) and a Newton segment New(h̃),
where g̃ is a binomial consisting of two terms of g, and h̃ is a binomial consisting
of two terms of h. Thus each mixed cell in ∆ can be identified with a system of
two binomial equations g̃(x, y) = h̃(x, y) = 0. In this situation we can rewrite our
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system as follows:

gt(x(t), y(t)) = g̃(x0, y0) · ta + higher order terms in t,

ht(x(t), y(t)) = h̃(x0, y0) · tb + higher order terms in t,

where a and b are suitable rational numbers. This implies the following lemma.
Lemma 3.5. Let (u, v) be as in Lemma 3.4. The corresponding choices of

(x0, y0) ∈ (C∗)2 are the non-zero solutions of the binomial system g̃(x0, y0) =
h̃(x0, y0) = 0.

We shall now complete the proof of Bernstein’s Theorem. This is done by
showing that the equations gt(x, y) = ht(x, y) = 0 have M(New(g),New(h))
many distinct isolated solutions in (K∗)2 where K = C{{t}} is the algebraically
closed field of Puiseux series.

By Section 3.2, the number of roots (x0, y0) ∈ (C∗)2 of the binomial system in
Lemma 3.5 coincides with the area of the mixed cell New(g̃)+New(h̃). Each of these
roots provides the leading coefficients in a Puiseux series solution (x(t), y(t)) to our
equations. Conversely, by Lemma 3.4 every series solution arises from some mixed
cell of ∆. We conclude that the number of series solutions equals the sum of these
areas over all mixed cells in ∆. By Lemma 3.3, this quantity coincides with the
mixed area M(New(f),New(g)). General facts from algebraic geometry guarantee
that the same number of roots is attained for almost all choices of coefficients,
and that we can descend from the field K to the complex numbers C under the
substitution t = 1. �

Our proof of Bernstein’s Theorem gives rise to a numerical algorithm for finding
all roots of a sparse system of polynomial equations. This algorithm belongs to the
general class of numerical continuation methods, which are sometimes also called
homotopy methods. Standard references include [AG90] and [Li97]. For some
fascinating recent progress see [SVW01]. In Section 6.5 the reader will find a
hands-on demonstration of how to use homotopy methods for a concrete problem.

The idea of our homotopy is to trace each of the branches of the algebraic
curve (x(t), y(t)) between t = 0 and t = 1. We have shown that the number
of branches equals the mixed area. Our constructions give sufficient information
about the Puiseux series so that we can approximate (x(t), y(t)) for any t in a
small neighborhood of zero. Using numerical continuation, it is now possible to
approximate (x(1), y(1)).

The statement of Bernstein’s Theorem given above extends verbatim to higher
dimensions: The number of solutions in (C∗)n of a sparse system of n Laurent
polynomials in n unknowns with generic coefficients equals the mixed volume of
the n Newton polytopes. If P1, P2, . . . , Pn are polytopes in Rn then their mixed
volume can be defined by the inclusion-exclusion formula

M(P1, P2, . . . , Pn) =
∑

J⊆{1,2,...,,n}

(−1)n−#(J) · volume
(∑

j∈J

Pj

)
.

Equivalently, M(P1, P2, . . . , Pn) is the coefficient of the monomial λ1λ2 · · ·λn in
the expansion of the following homogeneous polynomial of degree n:

V (λ1, . . . , λn) = volume
(
λ1P1 + λ2P2 + · · ·+ λnPn

)
.

Here volume denotes the usual Euclidean volume in Rn and λ1, . . . , λn ≥ 0.
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In any dimension, the mixed volume can be computed by the technique of
mixed subdivisions. The currently fastest software for computing mixed volumes
is due to T.Y. Li and his collaborators [LL01]. It is based on a highly optimized
search procedure for finding the mixed cells in a mixed subdivision.

If our given polynomial system is unmixed, that is, if the n polynomials have
the same Newton polytope, then the expected number of zeros is the normalized
volume of the common Newton polytope P = P1 = · · · = Pn:

M(P, P, . . . , P ) = n ! · volume(P ).

Two useful properties of the mixed volume operator M are its symmetry and its
multilinearity. For instance, if we have three polytopes in R3, each of which is the
sum of two other polytopes, then multilinearity says:

M(P1 +Q1, P2 +Q2, P3 +Q3) =
M(P1, P2, P3) +M(P1, P2, Q3) +M(P1, Q2, P3) +M(P1, Q2, Q3) +
M(Q1, P2, P3) +M(Q1, P2, Q3) +M(Q1, Q2, P3) +M(Q1, Q2, Q3).

This sum of eight smaller mixed volumes reflects the fact that the number of roots
of system of equations is additive when each equation factors as in

f1(x, y, z) · g1(x, y, z) = 0,
f2(x, y, z) · g2(x, y, z) = 0,
f3(x, y, z) · g3(x, y, z) = 0.

When we are given a system of equations which are multilinear (or, more general,
multihomogeneous) then its mixed volume can be computed using multilinearity
alone. This observation will be crucial in our discussion of Nash equilibria in Chap-
ter 6. The mixed volume computation there involves a collection of polytopes all
of which are faces of a product of simplices.

3.5. Khovanskii’s Theorem on Fewnomials

Polynomial equations arise in many mathematical models in science and engi-
neering. In such applications one is typically interested in solutions over the real
numbers R instead of the complex numbers C. This study of real roots of polyno-
mial systems is considerably more difficult than the study of complex roots. Even
the most basic questions remain unanswered to-date. Let us start out with a very
concrete such question:

Question 3.6. What is the maximum number of isolated real roots of any
system of two polynomial equations in two variables each having four terms?

The polynomial equations considered here look like

f(x, y) = a1x
u1yv1 + a2x

u2yv2 + a3x
u3yv3 + a4x

u4yv4 ,

g(x, y) = b1x
ũ1yṽ1 + b2x

ũ2yṽ2 + b3x
ũ3yṽ3 + b4x

ũ4yṽ4 .

where ai, bj are arbitrary real numbers and ui, vj , ũi, ṽj are arbitrary integers. To
stay consistent with our earlier discussion, we shall count only solutions (x, y) in
(R∗)2, that is, we require that both x and y are non-zero real numbers.

There is an obvious lower bound for the number Question 3.6: thirty-six. It is
easy to write down a system of the above form that has 36 real roots:

f(x) = (x2 − 1)(x2 − 2)(x2 − 3) and g(y) = (y2 − 1)(y2 − 2)(y2 − 3).
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Each of the polynomials f and g depends on one variable only, and it has 6 non-zero
real roots in that variable. Therefore the system f(x) = g(y) = 0 has 36 distinct
isolated roots in (R∗)2. Note also that the expansions of f and g have exactly four
terms each, as required.

A priori it is not clear whether Question 3.6 even makes sense: why should
such a maximum exist? It certainly does not exist if we consider complex zeros,
because one can get arbitrarily many complex zeros by increasing the degrees of the
equations. The point is that such an unbounded increase of roots is impossible over
the real numbers. This was proved by Khovanskii [Kho80]. He found a bound
on the number of real roots which does not depend on the degrees of the given
equations. We state the version for positive roots.

Theorem 3.7. (Khovanskii’s Theorem) Consider n polynomials in n vari-
ables involving m distinct monomials in total. The number of isolated roots in the
positive orthant (R+)n of any such system is at most 2(m

2 ) · (n+ 1)m.
The basic idea behind the proof of Khovanskii’s Theorem is to establish the

following more general result. We consider systems of n equations which can be
expressed as polynomial functions in at most m monomials in x = (x1, . . . , xn). If
we abbreviate the ith such monomial by xai := xai1

1 xai2
2 · · ·xain

n , then we can write
our n polynomials as

Fi

(
xa1 , xa2 , . . . , xam

)
= 0 (i = 1, 2, . . . , n)

We claim that the number of real zeros in the positive orthant is at most

2(m
2 ) ·

(
1 +

n∑
i=1

deg(Fi)
)m · d∏

i=1

deg(Fi).

Theorem 2.3 concerns the case where deg(Fi) = 1 for all i.
We proceed by induction on m − n. If m = n then (2.3) is expressed in n

monomials in n unknowns. By a multiplicative change of variables

xi 7→ zui1
1 zui2

2 · · · zuin
n

we can transform our d monomials into the n coordinate functions z1, . . . , zn. (Here
the uij can be rational numbers, since all roots under consideration are positive
real numbers.) Our assertion follows from Bézout’s Theorem, which states that
the number of isolated complex roots is at most the product of the degrees of the
equations.

Now suppose m > n. We introduce a new variable t, and we multiply one of
the given monomials by t. For instance, we may do this to the first monomial and
set

Gi(t, x1, . . . , xn) := Fi

(
xa1 · t , xa2 , . . . , xam

)
(i = 1, 2, . . . , n)

This is a system of equations in x depending on the parameter t. We study the
behavior of its positive real roots as t moves from 0 to 1. At t = 0 we have a system
involving one monomial less, so the induction hypothesis provides a bound on the
number of roots. Along our trail from 0 to 1 we encounter some bifurcation points
at which two new roots are born. Hence the number of roots at t = 1 is at most
twice the number of bifurcation points plus the number of roots of t = 0.

Each bifurcation point corresponds to a root (x, t) of the augmented system

J(t,x) = G1(t,x) = · · · = Gn(t,x) = 0, (2.4)
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where J(t,x) denotes the toric Jacobian:

J(t, x1, . . . , xm) = det

(
xi ·

∂

∂xj
Gj(t,x)

)
1≤i,j≤m

.

Now, the punch line is that each of the n + 1 equations in (2.4) – including the
Jacobian – can be expressed in terms of only m monomials xa1 · t, xa2 , · · · , xam .
Therefore we can bound the number of bifurcation points by the induction hypoth-
esis, and we are done.

This was only to give the flavor of how Theorem 2.3 is proved. There are
combinatorial and topological fine points which need most careful attention. The
reader will find the complete proof in [Kho80], in [Kho91] or in [BR90].

Khovanskii’s Theorem implies an upper bound for the root count suggested in
Question 3.6. After multiplying one of the given equations by a suitable monomial,
we may assume that our system has seven distinct monomials. Substituting n = 2
and m = 7 into Khovanskii’s formula, we see that there are at most 2(7

2) · (2 +
1)7 = 4, 586, 471, 424 roots in the positive quadrant. By summing over all four
quadrants, we conclude that the maximum in Question 3.6 lies between 36 and
18, 345, 885, 696 = 22 · 2(7

2) · (2 + 1)7. The gap between 36 and 18, 345, 885, 696
is frustratingly large. Experts agree that the truth should be closer to the lower
bound than to the upper bound, but at the moment nobody knows the exact value.
Could it be 36?

The original motivation for Khovanskii’s work was the following conjecture from
the 1970’s due to Kouchnirenko. Consider any system of n polynomial equations in
n unknown, where the ith equation has at most mi terms. The number of isolated
real roots in (R+)n of such a system is at most (m1− 1)(m2− 1) · · · (md− 1). This
number is attained by equations in distinct variables, as was demonstrated by our
example with d = 2,m1 = m2 = 4 which has (m1 − 1)(m2 − 1) = 9 positive real
zeros.

Remarkably, Kouchnirenko’s conjecture remained open for many years after
Khovanskii had developed his theory of fewnomials which includes the above theo-
rem. Only recently, Bertrand Haas [Haa02] found the following counterexample to
Kouchnirenko’s conjecture in the case d = 2,m1 = m2 = 3. Proving the following
proposition from scratch is a nice challenge.

Proposition 3.8. (Haas) The two equations

x108 + 1.1y54 − 1.1y = y108 + 1.1x54 − 1.1x = 0

have five distinct strictly positive solutions (x, y) ∈ (R+)2.
It was proved by Li, Rojas and Wang [LRW00] that the lower bound provided

by Haas’ example coincides with the upper bound for two trinomials.
Theorem 3.9. (Li, Rojas and Wang) A system of two trinomials

f(x, y) = a1x
u1yv1 + a2x

u2yv2 + a3x
u3yv3 ,

g(x, y) = b1x
ũ1yṽ1 + b2x

ũ2yṽ2 + b3x
ũ3yṽ3 ,

with ai, bj ∈ R and ui, vj , ũi, ṽj ∈ R has at most five positive real zeros.
The exponents in this theorem are allowed to be real numbers not just integers.

Li, Rojas and Wang [LRW00] proved a more general result for two equations in x
and y where the first equation and the second equation has m terms. The number
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of positive real roots of such a system is at most 2m − 2. Note that this upper
bound evaluates to 6 for m = 3, while the best possible bound is 5, as seen above.

Let us end this section with a light-hearted reference to [LR97]. In that paper,
Lagarias and Richardson analyzed a particular sparse system in two variables, and
the author of the present book lost a considerable amount of money along the way.

3.6. Exercises

(1) Consider the intersection of a general conic and a general cubic curve

a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0
b1x

3+b2x2y+b3xy2+b4y3+b5x2+b6xy+b7y2+b8x+b9y+b10 = 0

Compute an explicit polynomial in the unknowns ai, bj such that the
equations have six distinct solutions whenever your polynomial is non-
zero.

(2) Draw the Newton polytope of the following polynomial

f(x1, x2, x3, x4) = (x1−x2)(x1−x3)(x1−x4)(x2−x3)(x2−x4)(x3−x4).

(3) For general αi, βj ∈ Q, how many vectors (x, y) ∈ (C∗)2 satisfy

α1x
3y + α2xy

3 = α3x+ α4y and β1x
2y2 + β2xy = β3x

2 + β4y
2 ?

Can your bound be attained with all real vectors (x, y) ∈ (R∗)2?
(4) Find the first three terms in each of the four Puiseux series solutions

(x(t), y(t)) of the two equations

t2x2 + t5xy + t11y2 + t17x+ t23y + t31 = 0
t3x2 + t7xy + t13y2 + t19x+ t29y + t37 = 0

(5) Prove Bernstein’s Theorem for n equations in n variables.
(6) Bernstein’s Theorem can be used in reverse, namely, we can calculate the

mixed volume of n polytopes by counting the number of zeros in (C∗)n of
a sparse system of polynomial equations. Pick your favorite three distinct
three-dimensional lattice polytopes in R3 and compute their mixed volume
with this method using Macaulay 2.

(7) Show that Kouchnirenko’s Conjecture is true for d = 2 and m1 = 2.
(8) Prove Proposition 3.8. Please use any computer program of your choice.
(9) Can Haas’s example be modified to show that the answer to Question 3.6

is strictly larger than 36?
(10) Determine the number of solutions of the following four equations in the

four unknowns a, b, c, d:

(a− 1)(a− 2)(b− 7)(b− 8)(c− 7)(c− 8)(d− 3)(d− 4) = 0
(a− 3)(a− 4)(b− 1)(b− 2)(c− 5)(c− 6)(d− 5)(d− 6) = 0
(a− 5)(a− 6)(b− 3)(b− 4)(c− 1)(c− 2)(d− 7)(d− 8) = 0
(a− 7)(a− 8)(b− 5)(b− 6)(c− 3)(c− 4)(d− 1)(d− 2) = 0

State your answer as the result of a mixed volume computation.





CHAPTER 4

Resultants

Elimination theory deals with the problem of eliminating one or more variables
from a system of polynomial equations, thus reducing the given problem to a smaller
problem in fewer variables. For instance, if we wish to solve

a0 + a1x+ a2x
2 = b0 + b1x+ b2x

2 = 0,

with a2 6= 0 and b2 6= 0 then we can eliminate the variable x to get

(4.1) a2
0b

2
2 − a0a1b1b2 − 2a0a2b0b2 + a0a2b

2
1 + a2

1b0b2 − a1a2b0b1 + a2
2b

2
0 = 0.

This polynomial of degree 4 is the resultant. It vanishes if and only if the given
quadratic polynomials have a common complex root x. The resultant (4.1) has the
following three determinantal representations:

(4.2)

∣∣∣∣∣∣∣∣
a0 a1 a2 0
0 a0 a1 a2

b0 b1 b2 0
0 b0 b1 b2

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣
a0 a1 a2

b0 b1 b2
[01] [02] 0

∣∣∣∣∣∣ = −
∣∣∣∣ [01] [02]

[02] [12]

∣∣∣∣
where [ij] = aibj − ajbi. Our aim in this section is to discuss such formulas.

The computation of resultants is an important tool for solving polynomial sys-
tems. It is particularly well suited for eliminating all but one variable from a system
of n polynomials in n unknowns which has finitely many solutions.

4.1. The Univariate Resultant

Consider two general polynomials of degrees d and e in one variable:

f = a0 + a1x+ a2x
2 + · · ·+ ad−1x

d−1 + adx
d,

g = b0 + b1x+ b2x
2 + · · ·+ be−1x

e−1 + bex
e.

Theorem 4.1. There exists a unique (up to sign) irreducible polynomial Res
in Z[a0, a1, . . . , ad, b0, b1, . . . , be] which vanishes whenever the polynomials f(x) and
g(x) have a common zero.

Here and throughout this section “common zeros” may lie in any algebraically
closed field (say, C) which contains the field to which we specialize the coefficients
ai and bj of the given polynomials (say, Q). Note that a polynomial with integer
coefficients being “irreducible” implies that the coefficients are relatively prime. The
resultant Res = Resx(f, g) can be expressed as the determinant of the Sylvester

43
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matrix

(4.3) Resx(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 b0
a1 a0 b1 b0

a1
. . . b1

. . .
...

. . . a0

...
. . . b0

... a1

... b1
ad be

ad

... be
...

. . . . . .
ad be

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
where the blank spaces are filled with zeroes. See the left formula in (4.2).

There are many other useful formulas for the resultant. For instance, suppose
that the roots of f are ξ1, . . . , ξd and the roots of g are η1, . . . , ηe. Then we have
the following product formulas:

Resx(f, g) = ae
db

d
e

d∏
i=1

e∏
j=1

(ξi − ηj) = ae
d

d∏
i=1

g(ξi) = (−1)debde

e∏
j=1

f(ηj).

From this we conclude the following proposition.
Proposition 4.2. If Cf and Cg are the companion matrices of f and g then

Resx(f, g) = ae
d · det

(
g(Cf )

)
= (−1)debde · det

(
f(Cg)

)
.

If f and g are polynomials of the same degree d = e, then the following method
for computing the resultant is often used in practice. Compute the following poly-
nomial in two variables, which is called the Bézoutian:

B(x, y) =
f(x)g(y)− f(y)g(x)

x− y
=

d−1∑
i,j=0

cijx
iyj .

Form the symmetric d × d-matrix C = (cij). Its entries cij are sums of brackets
[kl] = akbl − albk. The case d = 2 appears in (4.1) on the right.

Theorem 4.3. (Bézout resultant) The determinant of C equals Resx(f, g).

Proof. The resultant Resx(f, g) is an irreducible polynomial of degree 2d in
a0, . . . , ad, b0, . . . , bd. The determinant of C is also a polynomial of degree 2d. We
will show that the zero set of Resx(f, g) is contained in the zero set of det(C). This
implies that the two polynomials are equal up to a constant. By examining the
leading terms of both polynomials in the lexicographic term order, we find that the
constant is either 1 or −1.

If (a0, . . . , ad, b0, . . . , bd) is in the zero set of Resx(f, g) then the system f =
g = 0 has a complex solution x0. Then B(x0, y) is identically zero as a polynomial
in y. This implies that the non-zero complex vector (1, x0, x

2
0, . . . , x

m−1
0 ) lies in

the kernel of C, and therefore det(C) = 0. �

The 3 × 3-determinant in the middle of (4.1) shows that one can also use
mixtures of Bézout matrices and Sylvester matrices. Such hybrid formulas for
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resultants are very important in higher-dimensional problems as we shall see below.
Let us first show three simple applications of the univariate resultant.
Example. (Intersecting two algebraic curves in the real plane)
Consider two polynomials in two variables, say,

f = x4 + y4 − 1 and g = x5y2 − 4x3y3 + x2y5 − 1.

We wish to compute the intersection of the curves {f = 0} and {g = 0} in the real
plane R2, that is, all points (x, y) ∈ R2 with f(x, y) = g(x, y) = 0. To this end we
evaluate the resultant with respect to one of the variables,

Resx(f, g) = 2y28 − 16y27 + 32y26 + 249y24 + 48y23 − 128y22 + 4y21

−757y20 − 112y19 + 192y18 − 12y17 + 758y16 + 144y15 − 126y14

+28y13 − 251y12 − 64y11 + 30y10 − 36y9 − y8 + 16y5 + 1.

This is an irreducible polynomial in Q[y]. It has precisely four real roots

y = −0.9242097, y = −0.5974290, y = 0.7211134, y = 0.9665063.

Hence the two curves have four intersection points, with these y-coordinates. By
the symmetry in f and g, the same values are also the possible x-coordinates.
By trying out (numerically) all 16 conceivable x-y-combinations, we find that the
following four pairs are the real solutions to our equations:

(x, y) = (−0.9242, 0.7211), (x, y) = (0.7211,−0.9242),
(x, y) = (−0.5974, 0.9665), (x, y) = (0.9665,−0.5974).

Example. (Implicitization of a rational curve in the plane)
Consider a plane curve which is given to us parametrically:

C =
{(

a(t)
b(t)

,
c(t)
d(t)

)
∈ R2 : t ∈ R

}
,

where a(t), b(t), c(t), d(t) are polynomials in Q[t]. The goal is to find the unique
irreducible polynomial f ∈ Q[x, y] which vanishes on C. We may find f by the
general Gröbner basis approach explained in [CLO97]. It is more efficient, however,
to use the following formula:

f(x, y) = Rest

(
b(t) · x− a(t), d(t) · y − c(t)

)
.

Here is an explicit example in maple of a rational curve of degree six:
> a := t^3 - 1: b := t^2 - 5:
> c := t^4 - 3: d := t^3 - 7:
> f := resultant(b*x-a,d*y-c,t);

2 2 2
f := 26 - 16 x - 162 y + 18 x y + 36 x - 704 x y + 324 y

2 2 2 3
+ 378 x y + 870 x y - 226 x y

3 4 3 2 4 3
+ 440 x - 484 x + 758 x y - 308 x y - 540 x y

2 3 3 3 4 2 3
- 450 x y - 76 x y + 76 x y - 216 y
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Example. (Computation with algebraic numbers)
Let α and β be algebraic numbers over Q. They are represented by their minimal
polynomials f, g ∈ Q[x]. These are the unique (up to scaling) irreducible poly-
nomials satisfying f(α) = 0 and g(β) = 0. Our problem is to find the minimal
polynomials p and q for their sum α+β and their product α ·β respectively. The
answer is given by the following two formulas

p(z) = Resx

(
f(x), g(z − x)

)
and q(z) = Resx

(
f(x), g(z/x) · xdeg(g)

)
.

It is easy to check the identities p(α + β) = 0 and q(α · β) = 0. It can happen,
for special f and g, that the output polynomials p or q are not irreducible. In that
event an appropriate factor of p or q will do the trick.

As an example consider two algebraic numbers given in terms of radicals:

α = 5
√

2, β = 3
√
−7/2− 1/18

√
3981 + 3

√
−7/2 + 1/18

√
3981.

Their minimal polynomials are α5−2 and β3+β+7 respectively. Using the above
formulas, we find that the minimal polynomial for their sum α+ β is

p(z) = z15 + 5 z13 + 35 z12 + 10 z11 + 134 z10 + 500 z9 + 240 z8 + 2735 z7

+3530z6 + 1273z5 − 6355z4 + 12695z3 + 1320z2 + 22405z + 16167,

and the minimal polynomial for their product α · β equals

q(z) = z15 − 70 z10 + 984 z5 + 134456.

4.2. The Classical Multivariate Resultant

Consider a system of n homogeneous polynomials in n indeterminates

(4.4) f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0.

We assume that the ith equation is homogeneous of degree di > 0, that is,

fi =
∑

j1+···+jn=di

c
(i)
j1,...,jn

xj1
1 · · ·xjn

n ,

where the sum is over all
(
n+di−1

di

)
monomials of degree di in x1, . . . , xn. Note

that the zero vector (0, 0, . . . , 0) is always a solution of (4.4). Our question is to
determine under which condition there is a non-zero solution. In other words, in
this section we are concerned with solutions in projective space Pn−1, in contrast
to the affine solutions considered in the previous section.

As a first example we consider three linear equations (n = 3, d1 =d2 =d3 = 1):

f1 = c
(1)
100x1 + c

(1)
010x2 + c

(1)
001x3 = 0

f2 = c
(2)
100x1 + c

(2)
010x2 + c

(2)
001x3 = 0

f3 = c
(3)
100x1 + c

(3)
010x2 + c

(3)
001x3 = 0.

This system has a non-zero solution if and only if the determinant is zero:

det

 c
(1)
100 c

(1)
010 c

(1)
001

c
(2)
100 c

(2)
010 c

(2)
001

c
(3)
100 c

(3)
010 c

(3)
001

 = 0.
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Returning to the general case, we regard each coefficient c(i)j1,...,jn
of each poly-

nomial fi as an unknown, and we write Z[c] for the ring of polynomials with in-
teger coefficients in these variables. The total number of variables in Z[c] equals
N =

∑n
i=1

(
n+di−1

di

)
. For instance, the 3×3-determinant in the example above may

be regarded as a cubic polynomial in Z[c]. The following theorem characterizes the
classical multivariate resultant Res = Resd1···dn

.
Theorem 4.4. Fix positive degrees d1, . . . , dn. There exists a unique (up to

sign) irreducible polynomial Res ∈ Z[c] which has the following properties:

(a) Res vanishes under specializing the c
(i)
j1...,jn

to rational numbers if and
only if the corresponding equations (4.4) have a non-zero solution in Cn.

(b) Res is irreducible, even when regarded as a polynomial in C[c].
(c) Res is homogeneous of degree d1 · · · di−1 · di+1 · · · dn in the coefficients

(c(i)a : |a| = di) of the polynomial fi, for each fixed i ∈ {1, . . . , n}.
We sketch a proof of Theorem 4.4. It uses results from algebraic geometry.

Proof. The elements of C[c] are polynomial functions on the affine space CN .
We regard x = (x1, . . . , xn) as homogeneous coordinates for the complex projective
space Pn−1. Thus (c, x) are the coordinates on the product variety CN × Pn−1.
Let I denote the subvariety of CN × Pn−1 defined by the equations∑

j1+···+jn=di

c
(i)
j1,...,jn

xj1
1 · · ·xjn

n = 0 for i = 1, 2, . . . , n.

Note that I is defined over Q. Consider the projection

φ : CN × Pn−1 → Pn−1 , (c, x) 7→ x.

Then φ(I) = Pn−1. The preimage φ−1(x) of any point x ∈ Pn−1 can be identified
with the set { c ∈ CN : (c, x) ∈ I }. This is a linear subspace of codimension n
in CN . To this situation we apply [Sha94, §I.6.3, Theorem 8] to conclude that
the variety I is closed and irreducible of codimension n in CN × Pn−1. Hence
dim(I) = N − 1.

Consider the projection ψ : CN × Pn−1 → CN , (c, x) 7→ c. It follows from
the Main Theorem of Elimination Theory, [Eis95, Theorem 14.1] that ψ(I) is an
irreducible subvariety of CN which is defined over Q as well. Every point c in CN

can be identified with a particular polynomial system f1 = · · · = fn = 0. That
system has a nonzero root if and only if c lies in the subvariety ψ(I). For every
such c we have

dim(ψ(I)) ≤ dim(I) = N − 1 ≤ dim(ψ−1(c)) + dim(ψ(I))
The two inequalities follow respectively from parts (2) and (1) of Theorem 7 in
Section I.6.3 of [Sha94]. We now choose c by choosing (f1, . . . , fn) as follows. Let
f1, . . . , fn−1 be any equations as in (4.4) which have only finitely many zeros in
Pn−1. Then choose fn which vanishes at exactly one of these zeros, say y ∈ Pn−1.
Hence ψ−1(c) = {(c, y)}, a zero-dimensional variety. For this particular choice of
c both inequalities hold with equality. This implies dim(ψ(I)) = N − 1.

We have shown that the image of I under ψ is an irreducible hypersurface
in CN , which is defined over Z. Hence there exists an irreducible polynomial
Res ∈ Z[c], unique up to sign, whose zero set equals ψ(I). By construction, this
polynomial Res(c) satisfies properties (a) and (b) of Theorem 4.4.

Part (c) of the theorem is derived from Bézout’s Theorem. �
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Various determinantal formulas are known for the multivariate resultant. The
most useful formulas are mixtures of Bézout matrices and Sylvester matrices like
the expression in the middle of (4.2). Exact division-free formulas of this kind are
available when n ≤ 4. We discuss such formulas for n = 3.

The first non-trivial case is d1 = d2 = d3 = 2. Here the problem is to eliminate
two variables x and y from a system of three quadratic forms

F = a0x
2 + a1xy + a2y

2 + a3xz + a4yz + a5z
2,

G = b0x
2 + b1xy + b2y

2 + b3xz + b4yz + b5z
2,

H = c0x
2 + c1xy + c2y

2 + c3xz + c4yz + c5z
2.

To do this, we first compute their Jacobian determinant

J := det

 ∂F/∂x ∂F/∂y ∂F/∂z
∂G/∂x ∂G/∂y ∂G/∂z
∂H/∂x ∂H/∂y ∂H/∂z

 .

We next compute the partial derivatives of J . They are quadratic as well:

∂J/∂x = u0x
2 + u1xy + u2y

2 + u3xz + u4yz + u5z
2,

∂J/∂y = v0x
2 + v1xy + v2y

2 + v3xz + v4yz + v5z
2,

∂J/∂z = w0x
2 + w1xy + w2y

2 + w3xz + w4yz + w5z
2.

Each coefficient ui, vj or wk is a polynomial of degree 3 in the original coeffi-
cients ai, bj , ck. The resultant of F,G and H coincides with the following 6 × 6-
determinant:

(4.5) Res2,2,2 = det


a0 b0 c0 u0 v0 w0

a1 b1 c1 u1 v1 w1

a2 b2 c2 u2 v2 w2

a3 b3 c3 u3 v3 w3

a4 b4 c4 u4 v4 w4

a5 b5 c5 u5 v5 w5


This is a homogeneous polynomial of degree 12 in the 18 unknowns a0, a1, . . . ,
a5, b0, b1, . . . , b5, c0, c1, . . . , c5. The full expansion of Res has 21, 894 terms.

In a typical application of Res2,2,2, the coefficients ai, bj , ck will themselves be
polynomials in another variable t. Then the resultant is a polynomial in t which
represents the projection of the desired solutions onto the t-axis.

Consider now the more general case of three ternary forms f, g, h of the same
degree d = d1 = d2 = d3. The following determinantal formula for their resultant
was known to Sylvester. It is featured in Exercise 15 of Section 3.4 of [CLO98].
We know from part (c) of Theorem 4.4 that Resd,d,d is a homogeneous polynomial
of degree 3d2 in 3

(
d+2
2

)
unknowns. We shall express Resd,d,d as the determinant of

a square matrix of size(
2d
2

)
=

(
d

2

)
+
(
d

2

)
+
(
d

2

)
+
(
d+ 1

2

)
.

We write Se = Q[x, y, z]e for the
(
e+2
2

)
-dimensional vector space of ternary forms

of degree e. Our matrix represents a linear map of the following form

Sd−2 ⊕ Sd−2 ⊕ Sd−2 ⊕ Sd−1 → S2d−2

( a, b, c, u ) 7→ a · f + b · g + c · h + δ(u),
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where δ is a linear map from Sd−1 to S2d−2 to be described next. We shall define
δ by specifying its image on any monomial xiyjzk with i+ j + k = d− 1. For any
such monomial, we choose arbitrary representations

f = xi+1 · Px + yj+1 · Py + zk+1 · Pz

g = xi+1 ·Qx + yj+1 ·Qy + zk+1 ·Qz

h = xi+1 ·Rx + yj+1 ·Ry + zk+1 ·Rz,

where Px, Qx, Rx are homogeneous of degree d−i−1, Py, Qy, Ry are homogeneous
of degree d− j − 1, and Pz, Qz, Rz are homogeneous of degree d− k− 1. Then we
define

δ
(
xiyjzk

)
= det

 Px Py Pz

Qx Qy Qz

Rx Ry Rz

 .

Note that this determinant is indeed a ternary form of degree

(d− i− 1) + (d− j − 1) + (d− k − 1) = 3d− 3− (i+ j + k) = 2d− 2.

4.3. The Sparse Resultant

Most systems of polynomial equations encountered in real world applications
are sparse in the sense that only few monomials appear with non-zero coefficient.
The classical multivariate resultant is not well suited to this situation. As an
example consider the following system of three quadratic equations:

f = a0x+ a1y + a2xy, g = b0 + b1xy + b2y
2, h = c0 + c1xy + c2y

2.

If we substitute the coefficients of f, g and h into the resultant Res2,2,2 in (4.5) then
the resulting expression vanishes identically. This is consistent with Theorem 4.4
because the corresponding system of homogeneous equations

F = a0xz + a1yz + a2xy, G = b0z
2 + b1xy + b2y

2, H = c0z
2 + c1xy + c2y

2

always have the common root (1 : 0 : 0), regardless of what the coefficients ai, bj , ck
are. In other words, the three given quadrics always intersect in the projective
plane. But they generally do not intersect in the affine plane C2. In order for this
to happen, the following polynomial in the coefficients must vanish:

a2
1b2b

2
1c

2
0c1 − 2a2

1b2b1b0c0c
2
1 + a2

1b2b
2
0c

3
1 − a2

1b
3
1c

2
0c2 + 2a2

1b
2
1b0c0c1c2

−a2
1b1b

2
0c

2
1c2 − 2a1a0b

2
2b1c

2
0c1 + 2a1a0b

2
2b0c0c

2
1 + 2a1a0b2b

2
1c

2
0c2

−2a1a0b2b
2
0c

2
1c2 − 2a1a0b

2
1b0c0c

2
2 + 2a1a0b1b

2
0c1c

2
2 + a2

0b
3
2c

2
0c1 − a2

0b
2
2b1c

2
0c2

−2a2
0b

2
2b0c0c1c2 + 2a2

0b2b1b0c0c
2
2 + a2

0b2b
2
0c1c

2
2 − a2

0b1b
2
0c

3
2 − a2

2b
2
2b1c

3
0

+a2
2b

2
2b0c

2
0c1 + 2a2

2b2b1b0c
2
0c2 − 2a2

2b2b
2
0c0c1c2 − a2

2b1b
2
0c0c

2
2 + a2

2b
3
0c1c

2
2.

The expression is the sparse resultant of f, g and h. This resultant is custom-tailored
to the specific monomials appearing in the given input equations.

In this section we introduce the set-up of “sparse elimination theory”. In partic-
ular, we present the precise definition of the sparse resultant. Let A0,A1, . . . ,An

be finite subsets of Zn. Set mi := #(Ai). Consider a system of n + 1 Laurent
polynomials in n variables x = (x1, . . . , xn) of the form

fi(x) =
∑

a∈Ai

cia x
a (i = 0, 1, . . . , n).
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Here xa = xa1
1 · · ·xan

n for a = (a1, . . . , an) ∈ Zn. We say that Ai is the support
of the polynomial fi(x). In the example above, n = 2, m1 = m2 = m3 = 3,
A0 = { (1, 0), (0, 1), (1, 1) } and A1 = A2 = { (0, 0), (1, 1), (0, 2)}. For any subset
J ⊆ {0, . . . , n} consider the affine lattice spanned by

∑
j∈J Aj ,

LJ :=
{∑

j∈J

λja
(j) | a(j) ∈ Aj , λj ∈ Z for all j ∈ J and

∑
j∈J

λj = 1
}
.

We may assume that L{0,1,...,n} = Zn. Let rank(J) denote the rank of the lattice
LJ . A subcollection of supports {Ai}i∈I is said to be essential if

rank(I) = #(I)− 1 and rank(J) ≥ #(J) for each proper subset J of I.

The vector of all coefficients cia appearing in f0, f1, . . . , fn represents a point in
the product of complex projective spaces Pm0−1 × · · · × Pmn−1. Let Z denote the
subset of those systems (4.3) which have a solution x in (C∗)n, where C∗ := C\{0}.
Let Z̄ be the closure of Z in Pm0−1 × · · · × Pmn−1.

Lemma 4.5. The projective variety Z̄ is irreducible and defined over Q.
It is possible that Z̄ is not a hypersurface but has codimension ≥ 2. This is

where the condition that the supports be essential comes in. It is known that the
codimension of Z̄ in Pm0−1 × · · · × Pmn−1 equals the maximum of the numbers
#(I)− rank(I), where I runs over all subsets of {0, 1, . . . , n}.

We now define the sparse resultant Res. If codim(Z̄) = 1 then Res is the unique
(up to sign) irreducible polynomial in Z[. . . , cia, . . .] which vanishes on the hyper-
surface Z̄. We have the following result, Theorem 4.6, which is a generalization
of Theorem 4.4 in the same way that Bernstein’s Theorem generalizes Bézout’s
Theorem.

Theorem 4.6. Suppose that {A0,A1, . . . ,An} is essential, and let Qi denote
the convex hull of Ai. For all i ∈ {0, . . . , n} the degree of Res in the ith group of
variables {cia, a ∈ Ai} is a positive integer, equal to the mixed volume

M(Q0, . . . , Qi−1, Qi+1 . . . , Qn) =
∑

J⊆{0,...,i−1,i+1...,n}

(−1)#(J) · vol
(∑

j∈J

Qj

)
.

We refer to [GKZ94] and [PeS93] for proofs and details. The latter paper con-
tains the following combinatorial criterion for the existence of a non-trivial sparse
resultant. Note that, if each Ai is n-dimensional, then I = {0, 1, . . . , n} is essential.

Corollary 4.7. The variety Z̄ has codimension 1 if and only if there exists
a unique subset {Ai}i∈I which is essential. In this case the sparse resultant Res
coincides with the sparse resultant of the equations {fi : i ∈ I}.

Here is a small example. For the linear system

c00x+ c01y = c10x+ c11y = c20x+ c21y + c22 = 0.

the variety Z̄ has codimension 1 in the coefficient space P1 × P1 × P2. The unique
essential subset consists of the first two equations. Hence the sparse resultant of
this system is not the 3 × 3-determinant (which would be reducible). The sparse
resultant is the 2× 2-determinant Res = c00c11 − c10c01.

We illustrate Theorem 4.6 for our little system {f, g, h}. Clearly, the triple
of support sets {A1,A2,A3} is essential, since all three Newton polygons Qi =
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conv(Ai) are triangles. The mixed volume of two polygons equals

M(Qi, Qj) = area(Qi +Qj)− area(Qi)− area(Qj).

In our example the triangles Q2 and Q3 coincide, and we have

area(Q1) = 1/2, area(Q2) = 1, area(Q1 +Q2) = 9/2, area(Q2 +Q3) = 4.

This implies

M(Q1, Q2) = M(Q1, Q3) = 3 and M(Q2, Q3) = 2.

This explains why the sparse resultant above is quadratic in (a0, a1, a2) and homo-
geneous of degree 3 in (b0, b1, b2) and in (c0, c1, c2) respectively.

One of the central problems in elimination theory is to find “nice” determinantal
formulas for resultants. The best one can hope for, at least if the Ai are all distinct,
is a Sylvester-type formula, that is, a square matrix whose non-zero entries are
the coefficients of the given equation and whose determinant equals precisely the
resultant. The archetypical example of such a formula is (4.3). Sylvester-type
formulas do not exist in general, even for the classical multivariate resultant.

If a Sylvester-type formula is not available or too hard to find, the next best
thing is to construct a “reasonably small” square matrix whose determinant is a
non-zero multiple of the resultant under consideration. For the sparse resultant
such a construction was given by Canny and Emiris [CE00]. See also [Stu94] for
a more algebraic discussion. A Canny-Emiris matrix for our example is



y2 y3 xy3 y4 xy4 xy2 x2y2 x2y3 y xy

yf a1 0 0 0 0 a2 0 0 0 a0

y2f 0 a1 a2 0 0 a0 0 0 0 0
xy2f 0 0 a1 0 0 0 a0 a2 0 0
y2g b0 0 b1 b2 0 0 0 0 0 0
xy2g 0 0 0 0 b2 b0 0 b1 0 0
yg 0 b2 0 0 0 b1 0 0 b0 0
xyg 0 0 b2 0 0 0 b1 0 0 b0
xy2h 0 0 0 0 c2 c0 0 c1 0 0
yh 0 c2 0 0 0 c1 0 0 c0 0
xyh 0 0 c2 0 0 0 c1 0 0 c0


The determinant of this matrix equals a1b2 times the sparse resultant.

The structure of this 10 × 10-matrix can be understood as follows. Form the
product fgh and expand it into monomials in x and y. A certain combinatorial rule
selects 10 out of the 15 monomials appearing in fgh. The columns are indexed
by these 10 monomials. Say the ith column is indexed by the monomial xjyk.
Next there is a second combinatorial rule which selects a monomial multiple of
one of the input equations f , g or h such that this multiple contains xiyj in its
expansion. The ith row is indexed by that polynomial. Finally the (i, j)-entry
contains the coefficient of the jth column monomial in the ith row polynomial. This
construction implies that the matrix has non-zero entries along the main diagonal.
The two combinatorial rules mentioned in the previous paragraph are based on the
geometric construction of a mixed subdivision of the Newton polytopes as described
in Section 3.4.
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The main difficulty overcome by the Canny-Emiris formula is this: If one sets
up a matrix like the one above just by “playing around” then most likely its deter-
minant will vanish (try it), unless there is a good reason why it shouldn’t vanish.
Now the key idea is this: a big unknown polynomial (such as Res) will be non-zero
if one can ensure that its initial monomial (with respect to some term order) is
non-zero.

Consider the lexicographic term order induced by the variable ordering a1 >
a0 > a2 > b2 > b1 > b0 > c0 > c1 > c2. The 24 monomials of Res are listed in this
order above. All 10 ! permutations contribute a (possible) non-zero term to the
expansion of the determinant of the Canny-Emiris matrix. There will undoubtedly
be some cancellation. However, the unique largest monomial (in the above term
order) appears only once, namely, on the main diagonal. This guarantees that
the determinant is a non-zero polynomial. Note that the product of the diagonal
elements in the 10× 10-matrix equals a1b2 times the underlined leading monomial.

An explicit combinatorial construction for all possible initial monomials (with
respect to any term order) of the sparse resultant is given in [Stu94]. It is shown
there that for any such initial monomial there exists a Canny-Emiris matrix which
has that monomial on its main diagonal.

4.4. The Unmixed Sparse Resultant

In this section we consider the important special case when the given Laurent
polynomials f0, f1, . . . , fn all have the same support:

A := A0 = A1 = · · · = An ⊂ Zn.

In this situation, the sparse resultant Res is the Chow form of the projective toric
varietyXA which is given parametrically by the vector of monomials

(
xa : a ∈ A

)
.

For an introduction to Chow forms see [GKZ94, Section 3.2.B]. Chow forms play a
central role in elimination theory, and it is of great importance to find determinantal
formulas for Chow forms of projective varieties which appear frequently. Significant
progress in this direction has been made in the recent work of Eisenbud and Schreyer
[ES02] on exterior syzygies and the Bernstein-Gel’fand-Gel’fand correspondence.
Khetan [Khe02] has applied these techniques to give an explicit determinantal
formula of mixed Bézout-Sylvester type for the Chow form of any toric surface
or toric threefold. This provides a very practical technique for eliminating two
variables from three equations or three variables from four equations.

We describe Khetan’s formula for an example. Consider the following unmixed
system of three equations in two unknowns:

f = a1 + a2x+ a3y + a4xy + a5x
2y + a6xy

2,

g = b1 + b2x+ b3y + b4xy + b5x
2y + b6xy

2,

h = c1 + c2x+ c3y + c4xy + c5x
2y + c6xy

2.

The common Newton polygon of f, g and h is a pentagon of normalized area 5.
It defines a toric surface of degree 5 in projective 5-space. The sparse unmixed
resultant Res = Res(f, g, h) is the Chow form of this surface. It can be written
as a homogeneous polynomial of degree 5 in the brackets

[ijk] =

 ai aj ak

bi bj bk
ci cj ck

 .
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Hence Res is a polynomial of degree 15 in the 18 unknowns a1, a2, . . . , c6. It equals
the determinant of the following 9× 9-matrix

0 −[124] 0 [234] [235] [236] a1 b1 c1
0 −[125] 0 0 0 0 a2 b2 c2
0 −[126] 0 − [146] −[156]−[345] −[346] a3 b3 c3
0 0 0 [345]−[156]−[246] − [256] −[356] a4 b4 c4
0 0 0 − [256] 0 0 a5 b5 c5
0 0 0 − [356] − [456] 0 a6 b6 c6
a1 a2 a3 a4 a5 a6 0 0 0
b1 b2 b3 b4 b5 b6 0 0 0
c1 c2 c3 c4 c5 c6 0 0 0


The reader may wonder what is the use of this for solving polynomial equations.

How can one apply such determinantal formulas for resultants? We will now try
to answer this question by presenting a concrete example. Consider the following
innocent polynomial optimization problem in three unknowns:

Maximize z subject to
8 + 5 z3x− 4 z8y + 3x2y − xy2 = 0,

1− z9 − z3x+ y + 3 z5xy + 7x2y + 2xy2 = 0,
−1− 5 z − 5 z9x− 5 z8y − 2 z9xy + x2y + 4xy2 = 0.

We wish to find the largest z-coordinate among the real zeros of these three equa-
tions. The three polynomials generate a radical ideal of degree 85 in Q[x, y, z]. It
takes about 20 seconds in Singular get a Gröbner basis for that ideal.

We shall use the above unmixed resultant to solve our optimization problem.
We regard the three polynomials as polynomials in x and y whose coefficients are
polynomials in z. Then the three polynomials have the same Newton polygon,
namely, it is the pentagon discussed above. We can thus identify our system with
the equations f = g = h = 0 by setting a1 = 8, a2 = 5z3, . . . , c6 = 4. We then
substitute these coefficients into the above 9 × 9-matrix. Taking the determinant
gives the following polynomial in z:

−22164480 z88 + 15475200 z87 + 122137600 z86 + 2529280 z85

−127449920 z84 + 32229600 z83 + 602821440 z82 + 82392960 z81

+346487960 z80 − 185665480 z79 − 826226960 z78 − 1109723680 z77

+11127639562 z76 + 463378760 z75 + 501611630 z74 − 381982588 z73

−2652411801 z72 − 1262356225 z71 + 41327276770 z70 − 1851079789 z69

+20177395368 z68 − 12234532687 z67 + 2917319158 z66 + 5550379172 z65

+55290733641 z64 − 7157109518 z63 + 22594171392 z62 − 59668817247 z61

+9284745119 z60 − 24457258566 z59 + 11916256872 z58 − 48972229683 z57

−10708963850 z56 + 14930224972 z55 + 11945104288 z54 − 67351685674 z53

+30076150819 z52 − 183771841266 z51 − 67110924959 z50 + 128326366727 z49

+82566055130 z48 + 67047977503 z47 + 79814883590 z46 − 11384678903 z45

−167471148156 z44 − 84019239967 z43 − 302711927414 z42 − 637289913117z41
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+28678967096 z40 − 16099713942 z39 + 95010313255 z38 − 95142265127 z37

+140514519496 z36 + 30751712914 z35 + 101472313202 z34 − 232022638120 z33

+169474847373 z32 + 194154012741 z31 − 55498446549 z30 − 136708130533 z29

−19227547495 z28 − 32503148691 z27 + 77588325009 z26 + 215265703718 z25

+66072328920 z24 + 48410904568 z23 + 89707435519 z22 + 6091791043 z21

−117211364660 z20 + 7640170746 z19 + 138621097004 z18 − 123609336747 z17

+1181945518 z16 + 18937092538 z15 − 2620479355 z14 − 63367791305 z13

+88482019067 z12 − 1576638856 z11 + 68265080910 z10 − 48292301278 z9

+707273957 z8 − 3255417425 z7 + 18794493042 z6 − 38464953475 z5

+23765746680 z4 + 9532208907 z3

The desired solution to our optimization problem is the largest real root of this
polynomial of degree 88. That number equals z = 2.701610104. Computing the
above polynomial and its real roots took less than 2 seconds by running the following
maple code which implements the matrix formula:

> f := 8 + 5*z^3*x-4*z^8*y+3*x^2*y-x*y^2:
> g := 1-z^9-z^3*x+y+3*z^5*x*y+7*x^2*y+2*x*y^2:
> h := -1-5*z-5*z^9*x-5*z^8*y-2*z^9*x*y+x^2*y+4*x*y^2:

> a1 := coeff(coeff(f,x,0),y,0):a2 := coeff(coeff(f,x,1),y,0):
> a3 := coeff(coeff(f,x,0),y,1):a4 := coeff(coeff(f,x,1),y,1):
> a5 := coeff(coeff(f,x,2),y,1):a6 := coeff(coeff(f,x,1),y,2):
> b1 := coeff(coeff(g,x,0),y,0):b2 := coeff(coeff(g,x,1),y,0):
> b3 := coeff(coeff(g,x,0),y,1):b4 := coeff(coeff(g,x,1),y,1):
> b5 := coeff(coeff(g,x,2),y,1):b6 := coeff(coeff(g,x,1),y,2):
> c1 := coeff(coeff(h,x,0),y,0):c2 := coeff(coeff(h,x,1),y,0):
> c3 := coeff(coeff(h,x,0),y,1):c4 := coeff(coeff(h,x,1),y,1):
> c5 := coeff(coeff(h,x,2),y,1):c6 := coeff(coeff(h,x,1),y,2):

> A := array([ [a1,a2,a3,a4,a5,a6],
> [b1,b2,b3,b4,b5,b6],
> [c1,c2,c3,c4,c5,c6]]): with(linalg):

> d := proc(i,j,k) det(submatrix(A,[1,2,3],[i,j,k])) end:

> AmitsFormula := array( [
>[0,-d(1,2,4),0, d(2,3,4), d(2,3,5), d(2,3,6),a1,b1,c1],
>[0,-d(1,2,5),0, 0 , 0 , 0 ,a2,b2,c2],
>[0,-d(1,2,6),0,-d(1,4,6),-d(1,5,6)-d(3,4,5),-d(3,4,6),a3,b3,c3],
>[0,0,0,d(3,4,5)-d(1,5,6)-d(2,4,6),-d(2,5,6),-d(3,5,6),a4,b4,c4],
>[0, 0, 0, -d(2,5,6), 0 , 0 ,a5,b5,c5],
>[0, 0, 0, -d(3,5,6), d(4,5,6), 0 ,a6,b6,c6],
>[a1,a2,a3, a4, a5, a6, 0, 0, 0],
>[b1,b2,b3, b4, b5, b6, 0, 0, 0],
>[c1,c2,c3, c4, c5, c6, 0,0,0]]):
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> minipoly := sort(det(AmitsFormula),z):
> fsolve(det(AmitsFormula),z);

-2.091448184, -.2679041558, 0., 0., 0.,
.9656692830, 1.102760939, 2.701610104

The irreducible minimal polynomial of z = 2.701610104 has degree 85 and is
gotten by removing the factor z3 from our polynomial of degree 88. We note that
this polynomial was also produced in maple, by saying latex(minipoly); at the
end of the session above.

4.5. The Resultant of Four Trilinear Equations

Polynomials arising in many applications are multihomogeneous. Sometimes
we are even luckier and the equations are multilinear, that is, multihomogeneous
of degree (1, 1, . . . , 1). This will happen in Chapter 6. The resultant of a mul-
tihomogeneous system is the instance of the sparse resultant where the Newton
polytopes are products of simplices. There are lots of nice formulas available for
such resultants. For a systematic account see [SZ94] and [DE02].

In this section we discuss one particular example, namely, the resultant of four
trilinear polynomials in three unknowns. This material was prepared by Amit
Khetan in response to a question by J. Maurice Rojas. The given equations are

fi = Ci7x1x2x3 + Ci6x1x2 + Ci5x1x3 + Ci4x1 + Ci3x2x3 + Ci2x2 + Ci1x3 + Ci0,

where i = 0, 1, 2, 3. The four polynomials f0, f1, f2, f3 in the unknowns x1, x2, x3

share the same Newton polytope, the standard 3-dimensional cube. Hence our
system is the unmixed polynomial system supported on the 3-cube.

The resultant Res(f0, f1, f2, f3) is the unique (up to sign) irreducible polyno-
mial in the 32 indeterminates Cij which vanishes if f0 = f1 = f2 = f3 = 0 has
a common solution (x1, x2, x3) in C3. If we replace the affine space C3 by the
product of projective lines P1 × P1 × P1, then the “if” in the previous sentence
can be replaced by “if and only if”. The resultant is a homogeneous polynomial of
degree 24, in fact, it is homogeneous of degree 6 in the coefficients of fi for each
i. In algebraic geometry, we interpret this resultant as the Chow form of the Segre
variety P1 × P1 × P1 ⊂ P7.

We first present a Sylvester matrix for Res. Let S(a, b, c) denote the vector
space of all polynomials in Q[x1, x2, x3] of degree less than or equal to a in x1,
less than or equal to b in x2, and less than or equal to c in x3. The dimension of
S(a, b, c) is (a+ 1)(b+ 1)(c+ 1). Consider the Q-linear map

φ : S(0, 1, 2)4 → S(1, 2, 3) , (g0, g1, g2, g3) 7→ g0f0 + g1f1 + g2f2 + g3f3.

Both the range and the image of the linear map φ are vector spaces of dimension
24. We fix the standard monomial bases for both of these vector spaces. Then the
linear map φ is given by a 24 × 24 matrix. Each non-zero entry in this matrix is
one of the coefficients Cij . In particular, the determinant of φ is a polynomial of
degree 24 in the 32 unknowns Cij .

Proposition 4.8. The determinant of the matrix φ equals Res(f0, f1, f2, f3).
This formula is a Sylvester Formula for the resultant of four trilinear polyno-

mials. The Sylvester formula is easy to generate, but it is not the most efficient
representation when it comes to actually evaluating our resultant. A better repre-
sentation is the following Bézout formula.
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For i, j, k, l ∈ {0, 1, 2, 3, 4, 5, 6, 7} we define the bracket variables

[ijkl] = det


C0i C0j C0k C0l

C1i C1j C1k C1l

C2i C2j C2k C2l

C3i C3j C3k C3l


We shall present a 6 × 6 matrix B whose entries are linear forms in the bracket
variables, such that detB = Res(f0, f1, f2, f3). This construction is described, for
arbitrary products of projective spaces, in a recent paper by Dickenstein and Emiris
[DE02]. First construct the 4× 4-matrix M such that

M0j = fj(x1, x2, x3) for j = 0, 1, 2, 3

Mij =
fj(y1, . . . , yi, xi+1, . . . , x3)− fj(y1, . . . , yi−1, xi, . . . , x3)

yi − xi

for i = 1, 2, 3 and j = 0, 1, 2, 3.

The first row of the matrix M consists of the given polynomials fi, while each
successive row of M is an incremental quotient with each xi successively replaced
by a corresponding yi. After a bit of simplification, such as subtracting x1 times
the second row from the first, the matrix M gets replaced by a 4× 4-matrix of the
form

M̃ =


C03x2x3 + C02x2 + C01x3 + C00 . . .
C07x2x3 + C06x2 + C05x3 + C04 . . .
C07y1x3 + C06y1 + C03x3 + C02 . . .
C07y1y2 + C05y1 + C03y2 + C01 . . .


Let B(x, y) denote the determinant of this matrix. This is a polynomial in

two sets of variables. It is called the (affine) Bézoutian of the given trilinear forms
f0, f1, f2, f3. It appears from the entries of M̃ that B(x, y) has total degree 8, but
this is not the case. In fact, the total degree of this polynomial is only 6. The
monomials xαyβ = xα1

1 xα2
2 xα3

3 yβ1
1 yβ2

2 yβ3
3 appearing in B(x, y) satisfy αi < i and

βi < 3 − i. This is the content of the lemma below. The coefficient bαβ of xαyβ

in B(x, y) is a linear form in the bracket variables.

Lemma 4.9. B(x, y) ∈ S(0, 1, 2)⊗ S(2, 1, 0).

We can interpret the polynomial B(x, y) as as a linear map, also denoted B,
from the dual vector space S(2, 1, 0)∗ to S(0, 1, 2). Each of these two vector spaces
is 6-dimensional and has a canonical monomial basis. The following 6 × 6-matrix
represents the linear map B in the monomial basis:



[0124] [0234] [0146]− [0245] [0346]− [0247] [0456] [0467]

−[0125]− [0134] [1234] + [0235] [0147] + [0156] −[1247] + [0356] [1456] + [0457] [1467] + [0567]
−[0345]− [1245] −[0257] + [1346]

−[0135] [1235] [0157]− [1345] −[1257] + [1356] [1457] [1567]

−[0126] [0236] −[1246] + [0256] [2346]− [0267] [2456] [2467]

−[0136]− [0127] [1236] + [0237] −[1247]− [1346] −[0367]− [1267] [3456] + [2457] [2567] + [3467]
[0257] + [0356] [2356] + [2347]

−[0137] [1237] −[1347] + [0357] −[1367] + [2357] [3457] [3567]



Proposition 4.10. Res(f0, f1, f2, f3) is the determinant of the above matrix.
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This type of formula is called a Bézout formula or sometimes pure Bézout
formula in the resultant literature. Expanding the determinant gives a polynomial
of degree 6 in the brackets with 11, 280 terms. It remains a formidable challenge
to further expand this expression into an honest polynomial of degree 24 in the 32
coefficients Cij .

4.6. Exercises

(1) Prove Proposition 4.2.
(2) Compute the resultant Res1,2,3 of three ternary forms (n = 3) of degrees

one, two and three respectively. This resultant is a polynomial of degree
11 in 19 unknowns. How many monomials appear in its expansion?

(3) Fix your favorite term order on a polynomial ring in 45 unknowns. De-
termine the leading monomial in the expansion of the resultant Res4,4,4

of three ternary quartics. Hint: Use [Stu94].
(4) A cubic curve in P2 is the zero set of a ternary cubic

f(x, y, z) = a1x
3 + a2x

2y + a3xy
2 + a4y

3 + a5x
2z

+ a6xyz + a7y
2z + a8xz

2 + a9yz
2 + a10z

3.

Compute the resultant Res2,2,2

(
∂f
∂x ,

∂f
∂y ,

∂f
∂z

)
of the three partial deriva-

tives of f . This is a polynomial of degree 12 in ten unknowns a1, . . . , a10

which vanishes if and only if the cubic curve has a singularity. How does
this polynomial relate to your computations in Exercise (8) in Chapter 2?

(5) What is the Dixon resultant and which computer scientists use it? Try to
find an answer on the world wide web by searching with Google.

(6) Use the formula for Res3,3,3 at the end of Section 4.2 to solve the equations

(x+ y − z)(x+ 2y − 3z)(x+ 4y − 9z) = α,

(x− y + z)(x− 2y + 3z)(x− 4y + 9z) = β,

(−x+ y + z)(−x+ 2y + 3z)(−x+ 4y + 9z) = γ,

where α, β, γ are parameters. How does x depend on these parameters?
Show that there is a unique real solution for α = 13, β = 17, γ = 19.

(7) Give an exact formula for the resultant of three biquadratic equations.
(8) How can resultants help to solve Exercise (1) in Chapter 3?
(9) Give a necessary and sufficient condition for the following system of four

equations in three unknowns x, y, z to have a common solution in (C∗)3:
a1x+ a2y + a3z + a4x

−1 + a5y
−1 + a6z

−1, = 0
b1x+ b2y + b3z + b4x

−1 + b5y
−1 + b6z

−1, = 0
c1x+ c2y + c3z + c4x

−1 + c5y
−1 + c6z

−1, = 0
d1x+ d2y + d3z + d4x

−1 + d5y
−1 + d6z

−1. = 0





CHAPTER 5

Primary Decomposition

In this chapter we consider arbitrary systems of polynomial equations in several
unknowns. The solution set of these equations may have many different components
of different dimensions, and our task is to identify all of these irreducible compo-
nents. The algebraic technique for doing this is primary decomposition [CLO97,
Section 4.7]. After reviewing the relevant basic results from commutative algebra,
we demonstrate how to do such computations in Singular and Macaulay 2. We
then present some particularly interesting examples. Our main objective is to ex-
pose non-experts to the joy of decomposing algebraic varieties. Readers wishing to
learn more about algorithms for primary decomposition may consult [DGP99].

5.1. Prime Ideals, Radical Ideals and Primary Ideals

Let I be an ideal in the polynomial ring Q[x] = Q[x1, . . . , xn]. Solving the
polynomial system I means at least finding the irreducible decomposition

V(I) = V(P1) ∪ V(P2) ∪ · · · ∪ V(Pr) ⊂ Cn

of the complex variety defined by I. Here each V(Pi) is an irreducible variety over
the field of rational numbers Q. Naturally, if we extend scalars and pass to the
complex numbers C, then V(Pi) may further decompose into more components,
but describing those components typically involves numerical computations, for in-
stance, as in [SVW01]. The special case where I is zero-dimensional was discussed
in Chapter 2. In this chapter we mostly stick to doing arithmetic in Q[x] only.

Recall that an ideal P in Q[x] is a prime ideal if

(5.1) (P : f) = P for all f ∈ Q[x]\P

Here (P : f) denotes the set of all polynomials g ∈ Q[x] such that f · g lies in P .
The zero set of a prime ideal is an irreducible variety. Deciding whether a given
ideal is prime is not an easy task. See Corollary 5.4 below for a method that works
quite well (say, in Macaulay 2) on small enough examples.

Fix an ideal I in Q[x]. A prime ideal P is said to be associated to I if

there exists f ∈ Q[x] such that (I : f) = P.(5.2)

A polynomial f which satisfies (I : f) = P is called a witness for P in I. We write
Ass(I) for the set of all prime ideals which are associated to I.

Proposition 5.1. For any ideal I ⊂ Q[x], Ass(I) is non-empty and finite.
Here are some simple examples of ideals I, primes P and witnesses f .

Example 5.2. In each of the following six cases, P is a prime ideal in the
polynomial ring in the given unknowns, and the identity (I : f) = P holds.

(a) I = 〈x4
1 − x2

1〉, f = x3
1 − x1, P = 〈x1〉.

59
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(a′) I = 〈x4
1 − x2

1〉, f = x17
1 − x16

1 , P = 〈x1 + 1〉.
(b) I = 〈x1x4 + x2x3, x1x3, x2x4〉, f = x2

4, P = 〈x1, x2〉.
(b′) I = 〈x1x4 + x2x3, x1x3, x2x4〉, f = x1x4, P = 〈x1, x2, x3, x4〉.
(c) I = 〈x1x2+x3x4, x1x3+x2x4, x1x4+x2x3〉, f = (x2

3−x2
4)x4, P =〈x1, x2, x3〉.

(c′) I = 〈x1x2+x3x4, x1x3+x2x4, x1x4+x2x3〉, f = x1x
2
4+x2x

2
4−x3x

2
4+x2

3x4,
P = 〈x1 − x4, x2 − x4, x3 + x4〉.

The radical of an ideal I equals the intersection of all its associated primes:

(5.3) Rad(I) =
⋂{

P : P ∈ Ass(I)
}
.

The computation of the radical and the set of associated primes are built-in com-
mands in Macaulay 2. The following session checks whether the ideals in (b) and
(c) of Example 5.2 are radical, and it illustrates the identity (5.3).
i1 : R = QQ[x1,x2,x3,x4];

i2 : I = ideal( x1*x4+x2*x3, x1*x3, x2*x4 );

i3 : ass(I)
o3 = {ideal (x4, x3), ideal (x2, x1), ideal (x4, x3, x2, x1)}

i4 : radical(I) == I
o4 = false

i5 : radical(I)
o5 = ideal (x2*x4, x1*x4, x2*x3, x1*x3)

i6 : intersect(ass(I))
o6 = ideal (x2*x4, x1*x4, x2*x3, x1*x3)

i7 : ass(radical(I))
o7 = {ideal (x4, x3), ideal (x2, x1)}

i8 : J = ideal( x1*x2+x3*x4, x1*x3+x2*x4, x1*x4+x2*x3 );

i9 : ass(J)
o9 = {ideal (x3 + x4, x2 - x4, x1 - x4), ideal (x4, x2, x1),

ideal (x3 + x4, x2 + x4, x1 + x4), ideal (x4, x3, x1),
ideal (x3 - x4, x2 + x4, x1 - x4), ideal (x4, x3, x2),
ideal (x3 - x4, x2 - x4, x1 + x4), ideal (x3, x2, x1)}

i10 : radical(J) == J
o10 = true

The following result is a useful method for showing that an ideal is radical.
Proposition 5.3. Let I be an ideal in Q[x] and ≺ any term order. If the

initial monomial ideal in≺(I) is square-free then I is a radical ideal.
An ideal I in Q[x] is called primary if the set Ass(I) is a singleton. In that

case, its radical Rad(I) is a prime ideal and Ass(I) =
{
Rad(I)

}
.

Corollary 5.4. The following three conditions are equivalent for an ideal I:
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(1) I is a prime ideal;
(2) I is radical and primary;
(3) Ass(I) =

{
I
}
.

We can use the condition (3) to test whether a given ideal is prime. Here is an
interesting example. LetX = (xij) and Y = (yij) be two n×n-matrices both having
indeterminate entries. Each entry in their commutator XY − Y X is a quadratic
polynomial in the polynomial ring Q[X,Y ] generated by the 2n2 unknowns xij , yij .
We let I denote the ideal generated by these n2 quadratic polynomials. It is known
that the commuting variety V(I) is an irreducible variety in C2n2

but it is unknown
whether I is always a prime ideal. The following Macaulay 2 session proves that I
is a prime ideal for n = 2.
i1 : R = QQ[ x11,x12,x21,x22, y11,y12,y21,y22 ];
i2 : X = matrix({ {x11,x12} , {x21,x22} });
i3 : Y = matrix({ {y11,y12} , {y21,y22} });

i4 : I = ideal flatten ( X*Y - Y*X )

o4 = ideal (- x21*y12 + x12*y21, x21*y12 - x12*y21,
x21*y11 - x11*y21 + x22*y21 - x21*y22,

- x12*y11 + x11*y12 - x22*y12 + x12*y22)

i5 : ass(I) == {I}
o5 = true

5.2. How to Decompose a Polynomial System

The following is the main result about primary decompositions in Q[x].
Theorem 5.5. Every ideal I in Q[x] is an intersection of primary ideals,

(5.4) I = Q1 ∩ Q2 ∩ · · · ∩ Qr,

where the primes Pi = Rad(Qi) are distinct and associated to I.
It is a consequence of (5.3) that the following inclusion holds:

Ass
(
Rad(I)

)
⊆ Ass

(
I
)
.

In the situation of Theorem 5.5, the associated prime Pi is a minimal prime of I
if it also lies in Ass

(
Rad(I)

)
. In that case, the corresponding primary component

Qi of I is unique. If Pi is a minimal prime of I, and I has no embedded prime
containing Pi, then Qi can be recovered by the formula

(5.5) Qi =
(
I : (I : P∞i )

)
.

The same formula looks like this in the Macaulay 2 language:
Qi = ( I : saturate( I, Pi ) )

On the other hand, if Pi lies in Ass
(
I
)
\Ass

(
Rad(I)

)
then Pi is an embedded prime

of I and the primary component Qi in Theorem 5.5 is not unique.
A full implementation of a primary decomposition algorithm is available also

in Singular. We use the following example to demonstrate how it works.

I = 〈xy, x3 − x2, x2y − xy〉 = 〈x〉 ∩ 〈x− 1, y〉 ∩ 〈x2, y〉.
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The first two components are minimal primes while the third component is an
embedded primary component. Geometrically, V(I) consists of the y-axis, a point
on the x-axis, and an embedded point at the origin. Here is Singular:

> ring R = 0, (x,y), dp;
> ideal I = x*y, x^3 - x^2, x^2*y - x*y;
> LIB "primdec.lib";
> primdecGTZ(I);
[1]:
[1]:

_[1]=x
[2]:

_[1]=x
[2]:
[1]:

_[1]=y
_[2]=x-1

[2]:
_[1]=y
_[2]=x-1

[3]:
[1]:

_[1]=y
_[2]=x2

[2]:
_[1]=x
_[2]=y

The output consists of three pairs denoted [1], [2], [3]. Each pair consists of a
primary ideal Qi in [1] and the prime ideal P = Rad(Qi) in [2].

We state two more results about primary decomposition which are quite useful
in practice. Recall that a binomial is a polynomial of the form

α · xi1
1 x

i2
2 · · ·xin

n − β · xj1
1 x

j2
2 · · ·xjn

n ,

where α and β are scalars, possibly zero. An ideal I is a binomial ideal if it is
generated by a set of binomials. All examples of ideals seen in this chapter so far
are binomial ideals. Note that every monomial ideal is a binomial ideal.

The following theorem, due to Eisenbud and Sturmfels [ES96], states that
primary decomposition is a binomial-friendly operation. Here we must pass to an
algebraically closed field such as C. Otherwise the statement is not true as the
following primary decomposition in one variable over Q shows:

〈x11 − 1 〉 = 〈x− 1〉 ∩ 〈x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1〉.

Theorem 5.6. If I is a binomial ideal in C[x] then the radical of I is binomial,
every associated prime of I is binomial, and I has a primary decomposition where
each primary component is a binomial ideal.

Of course, these statements are well-known (and easy to prove) when “bino-
mial” is replaced by “monomial”. For details on monomial primary decomposition
see the chapter by Hoşten and Smith [HS01] in the Macaulay 2 book.
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Another class of ideals which behave nicely with regard to primary decompo-
sition are the Cohen-Macaulay ideals. The archetype of a Cohen-Macaulay ideal
is a complete intersection, that is, an ideal I of codimension c which is generated
by c polynomials. The case c = n of zero-dimensional complete intersections was
discussed at length in earlier chapters, but also higher-dimensional complete inter-
sections come up frequently in practice.

Theorem 5.7. (Macaulay’s Unmixedness Theorem) If I is a complete
intersection of codimension c in Q[x] then I has no embedded primes and every
minimal prime of I has codimension c as well.

When computing a non-trivial primary decomposition, it is advisable to keep
track of the degrees of the pieces. The degree of an ideal I is additive in the sense
that degree(I) is the sum of degree(Qi) where Qi runs over all primary components
of maximal dimension in (5.4). Theorem 5.7 implies

Corollary 5.8. If I is a homogeneous complete intersection, then

degree(I) =
r∑

i=1

degree(Qi).

In the following sections we shall illustrate these results for some systems of
polynomial equations derived from matrices.

5.3. Adjacent Minors

Questions arising from linear algebra surprisingly often lead to interesting poly-
nomial systems and algebraic varieties. An important example is the variety of all
m × n-matrices of rank ≤ k − 1. This variety is irreducible, and its prime ideal
is generated by the set of k × k-subdeterminants of a matrix of indeterminates.
Sometimes one cannot guarantee that all such subdeterminants vanish but only a
subset of them. In this way, one often gets a larger variety which has the matrices
of rank ≤ k − 1 as a component. The techniques of primary decomposition can be
helpful in identifying the other components.

In this section we consider the following specific question: What does it mean
for an m× n-matrix to have all adjacent k × k-subdeterminants vanish?

To make this question more precise, fix an m × n-matrix of indeterminates
X = (xi,j) and let Q[X] denote the polynomial ring in these m× n unknowns. For
any two integers i ∈ {1, . . . ,m− k+1} and j ∈ {1, . . . , n− k+1} we consider the
following k × k-minor

(5.6) det


xi,j xi,j+1 . . . xi,j+k−1

xi+1,j xi+1,j+1 . . . xi+1,j+k−1

...
...

. . .
...

xi+k−1,j xi+k−1,j+1 . . . xi+k−1,j+k−1


Let Ak,m,n denote the ideal in Q[X] generated by these adjacent minors. Thus
Ak,m,n is an ideal generated by (n − k + 1)(m − k + 1) homogeneous polynomials
of degree k in mn unknowns. The variety V(Am,n,k) consists of all complex m×n-
matrices whose adjacent k × k-minors vanish. Our problem is to describe all the
irreducible components of this variety. Ideally, we would like to know an explicit
primary decomposition of the ideal Ak,m,n.
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In the special case k = m = 2, our problem has the following beautiful solution.
Let us rename the unknowns and consider the 2× 2-matrix

X =
(
x1 x2 · · · xn

y1 y2 · · · yn

)
.

Our ideal A2,2,n is generated by the n− 1 binomials

xi−1 · yi − xi · yi−1 (i = 2, 3, . . . , n).

These binomials form a Gröbner basis because the underlined leading monomials are
relatively prime. This shows that A2,2,n is a complete intersection of codimension
n − 1. Hence Theorem 5.7 applies here. Moreover, since the leading monomials
are square-free, Proposition 5.3 tells us that A2,2,n is a radical ideal. Hence we
know already, without having done any computations, that A2,2,n is an intersection
of prime ideals each having codimension n. The first case which exhibits the full
structure is n = 5, here in Macaulay 2:
i1: R = QQ[x1,x2,x3,x4,x5,y1,y2,y3,y4,y5];
i2: A225 = ideal( x1*y2 - x2*y1, x2*y3 - x3*y2,

x3*y4 - x4*y3, x4*y5 - x5*y4);

i3: ass(A225)
o3 = { ideal(y4, y2, x4, x2),

ideal(y3, x3, x5*y4 - x4*y5, x2*y1 - x1*y2),
ideal(y4, x4, x3*y2 - x2*y3, x3*y1 - x1*y3, x2*y1 - x1*y2),
ideal(y2, x2, x5*y4 - x4*y5, x5*y3 - x3*y5, x4*y3 - x3*y4),
ideal (x5*y4 - x4*y5, x5*y3 - x3*y5, x4*y3 - x3*y4,

x5*y2 - x2*y5, x4*y2 - x2*y4, x3*y2 - x2*y3,
x5*y1-x1*y5, x4*y1-x1*y4, x3*y1-x1*y3, x2*y1-x1*y2)}

i4: A225 == intersect(ass(A225))
o4 = true

After a few more experiments one conjectures the following general result:
Theorem 5.9. The number of associated primes of A2,2,n is the Fibonacci

number f(n), defined by f(n) = f(n−1) + f(n−2) and f(1) = f(2) = 1.

Proof. Let F(n) denote the set of all subsets of {2, 3, . . . , n − 1} which do
not contain two consecutive integers. The cardinality of F(n) equals the Fibonacci
number f(n). For instance, F(5) =

{
∅, {2}, {3}, {4}, {2,4}

}
. For each element S of

F(n) we define a binomial ideal PS in Q[X]. The generators of PS are the variables
xi and yi for all i ∈ S, and the binomials xjyk − xkyj for all j, k 6∈ S such that
no element of S lies between j and k. It is easy to see that PS is a prime ideal of
codimension n − 1. Moreover, PS contains A2,2,n, and therefore PS is a minimal
prime of A2,2,n. We claim that

A2,2,n =
⋂

S∈F(n)

PS .

In view of Theorem 5.7 and Corollary 5.8, it suffices to prove the identity∑
S∈F(n)

degree(PS) = 2n−1.
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First note that P∅ is the determinantal ideal 〈xiyj − xixj : 1 ≤ i < j ≤ n〉. The
degree of P∅ equals n. Using the same fact for matrices of smaller size, we find
that, for S non-empty, the degree of the prime PS equals the product

(i1 − 1)(i2 − i1 − 1)(i3 − i2 − 1) · · · (ir − ir−1 − 1)(n− ir)
where S = {i1 < i2 < · · · < ir}.

Consider the surjection φ : 2{2,...,n} → F(n) defined by

φ
(
{j1<j2< · · · <jr}) = {jr−1, jr−3, jr−5, . . .}.

The product displayed above is the cardinality of the inverse image φ−1(S). This
proves

∑
S∈F(n) #(φ−1(S)) = 2n−1, which implies our assertion. �

Our result can be phrased in plain English as follows: if all adjacent 2 × 2-
minors of a 2×n-matrix vanish then the matrix is a concatenation of 2×ni-matrices
of rank 1 separated by zero columns. Unfortunately, things are less nice for larger
matrices. First of all, the ideal Ak,m,n is neither radical nor a complete intersection.
For instance, A2,3,3 has four associated primes, one of which is embedded. Here is
the Singular code for the ideal A2,3,3:
ring R = 0,(x11,x12,x13,x21,x22,x23,x31,x32,x33),dp;
ideal A233 = x11*x22-x12*x21, x12*x23-x13*x22,

x21*x32-x22*x31, x22*x33-x23*x32;
LIB "primdec.lib";
primdecGTZ(A233);

The three minimal primes of A2,3,3 translate into English as follows: if all adjacent
2 × 2-minors of a 3 × 3-matrix vanish then either the middle column vanishes, or
the middle row vanishes, or the matrix has rank at most 2.

The binomial ideals A2,m,n were studied in [DES98] and in [HS00]. The
motivation was an application to statistics to be described in Section 8.3. We
describe the primary decomposition for the case m = n = 4. The ideal of adjacent
2× 2-minors of a 4× 4-matrix is

A2,4,4 = 〈x12x21 − x11x22, x13x22 − x12x23, x14x23 − x13x24,

x22x31 − x21x32, x23x32 − x22x33, x24x33 − x23x34,

x32x41 − x31x42, x33x42 − x32x43, x34x43 − x33x44〉.

Let P denote the prime ideal generated by all thirty-six 2 × 2-minors of our
4× 4-matrix (xij) of indeterminates. We also introduce the prime ideals

C1 := 〈x12, x22, x23, x24, x31, x32, x33, x43〉
C2 := 〈x13, x21, x22, x23, x32, x33, x34, x42〉.

and the prime ideals

A := 〈x12x21 − x11x22, x13, x23, x31, x32, x33, x43 〉
B := 〈x11x22 − x12x21, x11x23 − x13x21, x11x24 − x14x21, x31, x32,

x12x23 − x13x22, x12x24 − x14x22, x13x24 − x14x23, x33, x34 〉.

Rotating and reflecting the matrix (xij), we find eight ideals A1, A2, . . . , A8 equiva-
lent to A and four ideals B1, B2, B3, B4 equivalent to B. Note that Ai has codimen-
sion 7 and degree 2, Bj has codimension 7 and degree 4, and Ck has codimension
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8 and degree 1, while P has codimension 9 and degree 20. The following lemma
describes the variety V(A2,4,4) ⊂ C4×4 set-theoretically.

Lemma 5.10. The minimal primes of A2,4,4 are the 15 primes Ai, Bj, Cj and
P . Each of these is equal to its primary component in A2,4,4. From

Rad(A2,4,4) = A1 ∩A2 ∩ · · · ∩A8 ∩ B1 ∩B2 ∩B3 ∩B4 ∩ C1 ∩ C2 ∩ P.

we find that both A2,4,4 and Rad(A2,4,4) have codimension 7 and degree 32.

We next present the list of all the embedded components of A2,4,4. Each of the
following five ideals D,E, F, F ′ and G was shown to be primary by using Algorithm
9.4 in [ES96]. Our first primary ideal is

D := 〈x13, x23, x33, x43〉2 + 〈x31, x32, x33, x34〉2 +
〈xikxjl − xilxjk : min{j, l} ≤ 2 or (3, 3) ∈ {(i, k), (j, l), (i, l), (j, k)}〉.

The radical of D is a prime of codimension 10 and degree 5. (Commutative algebra
experts will notice that Rad(D) is a ladder determinantal ideal.) Up to symmetry,
there are four such ideals D1, D2, D3, D4.

Our second type of embedded primary ideal is

E :=
( [
I + 〈x2

12, x
2
21, x

2
22, x

2
23, x

2
24, x

2
32, x2

33, x
2
34, x

2
42, x

2
43〉
]

: (x11x13x14x31x41x44)2
)
.

Its radical Rad(E) is a monomial prime of codimension 10. Up to symmetry, there
are four such primary ideals E1, E2, E3, E4.

Our third type of primary ideal has codimension 10 as well. It equals

F :=
( [
I + 〈x3

12, x
3
13, x

3
22, x

3
23, x

3
31, x

3
32, x

3
33, x

3
34, x

3
42, x

3
43〉
]

: (x11x14x21x24x41x44)2(x11x24 − x21x14)
)
.

Its radical Rad(F ) is a monomial prime. Up to symmetry, there are four such
primary ideals F1, F2, F3, F4. Note how Rad(F ) differs from Rad(E).

Our fourth type of primary component is the following ideal of codimension 11:

F ′ :=
( [
I + 〈x3

12, x
3
13, x

3
22, x

3
23, x

3
31, x

3
32, x

3
33, x

3
34, x

3
42, x

3
43〉
]

: (x11x14x21x24x41x44)(x21x44 − x41x24)
)

Up to symmetry, there are four such primary ideals F ′1, F
′
2, F

′
3, F

′
4. Note that

Rad(F ′) = Rad(F ) + 〈x14x21 − x11x24〉. In particular, the ideals F and F ′ lie
in the same cellular component of I; see ([ES96], Section 6). Our last primary
ideal has codimension 12. It is unique up to symmetry.

G :=
( [
I + 〈x5

12, x
5
13, x

5
21, x

5
22, x

5
23, x

5
24, x

5
31, x

5
32, x

5
33, x

5
34, x

5
42, x

5
43〉
]

: (x11x14x41x44)5(x11x44 − x14x41)
)
.

In summary, we have the following theorem.

Theorem 5.11. The ideal of adjacent 2×2-minors of a generic 4×4-matrix has
32 associated primes, 15 minimal and 17 embedded. Using the prime decomposition
in Lemma 5.10, we get the minimal primary decomposition

A2,4,4 = Rad(I) ∩ D1∩· · ·∩D4 ∩ E1∩· · ·∩E4 ∩ F1∩· · ·∩F4 ∩ F ′1∩· · ·∩F ′4 ∩ G.
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The correctness of the above intersection can be checked by Singular or
Macaulay 2. It remains an open problem to find a primary decomposition for
the ideal of adjacent 2×2-minors for larger sizes. The minimal primes for the 3×n
case are determined in [HS00].

Very recently, Serkan Hoşten and Seth Sullivant found a beautiful combinatorial
description for the minimal primes of the ideal A2,m,n of adjacent 2× 2-minors and
also of the ideal Am,m,n of adjacent maximal minors (where m ≤ n). In the latter
case, the ideal is radical, and the number of components is given by a natural
generalization of the Fibonacci numbers. In the former case, the embedded primes
remain elusive. However, there are reasons to be optimistic that some of their results
will extend to multidimensional matrices, which would open up new applications
to statistics as described in Chapter 8.

5.4. Permanental Ideals

The permanent of an n×n-matrix is the sum over all its n ! diagonal products.
The permanent looks just like the determinant, except that every minus sign in the
expansion is replaced by a plus sign. For instance, the permanent of a 3× 3-matrix
equals

(5.7) per

 a b c
d e f
g h i

 = aei + afh + bfg + bdi + cdh + ceg.

In this section we discuss the following problem: What does it mean for an m× n-
matrix to have all its k × k-subpermanents vanish? As before, we fix an m × n-
matrix of indeterminates X = (xi,j) and let Q[X] denote the polynomial ring in
these m×n unknowns. Let Perk,m,n denote the ideal in Q[x] generated by all k×k-
subpermanents of X. Thus Perk,m,n represents a system of

(
m
k

)
·
(
n
k

)
polynomial

equations of degree k in m · n unknowns.
As our first example consider the three 2× 2-permanents in a 2× 3-matrix:

Per2,2,3 = 〈x11x22 + x12x21, x11x23 + x13x21, x12x23 + x13x22〉.
The generators are not a Gröbner basis for any term order. If we pick a term order
which selects the underlined leading monomials then the Gröbner basis consists of
the three generators together with two square-free monomials:

x13x21x22 and x12x13x21.

Proposition 5.3 tells us that Per2,2,3 is radical. It is also a complete intersection
and hence the intersection of prime ideals of codimension three. We find

Per2,2,3 = 〈x11, x12, x13〉 ∩ 〈x21, x22, x23〉 ∩ 〈x11x22 + x12x21, x13, x23〉
∩ 〈x11x23 + x13x21, x12, x22〉 ∩ 〈x12x23 + x13x22, x11, x21〉.

However, if m,n ≥ 3 then P2,m,n is not a radical ideal. Let us examine the 3×3-case
in Macaulay 2 with variable names as in the 3× 3-matrix (5.7).
i1 : R = QQ[a,b,c,d,e,f,g,h,i];
i2 : Per233 = ideal( a*e+b*d, a*f+c*d, b*f+c*e,

a*h+b*g, a*i+c*g, b*i+c*h,
d*h+e*g, d*i+f*g, e*i+f*h);

i3 : gb Per233
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o3 = | fh+ei ch+bi fg+di eg+dh cg+ai bg+ah ce+bf cd+af bd+ae
dhi ahi bfi bei dei afi aeh adi adh abi aef abf aei2 ae2i a2ei|

This Gröbner basis shows us that Per2,3,3 is not a radical ideal. We compute the
radical using the built-in command:
i4 : time radical Per233

-- used 53.18 seconds

o4 = ideal (f*h + e*i, c*h + b*i, f*g + d*i, e*g + d*h,
c*g + a*i, b*g + a*h, c*e + b*f, c*d + a*f, b*d + a*e, a*e*i)

The radical has a minimal generator of degree three, while the original ideal was
generated by quadrics. We next compute the associated primes. There are 16 such
primes, the first 15 are minimal and the last one is embedded:
i5 : time ass Per233

-- used 11.65 seconds

o5 = { ideal (g, f, e, d, a, c*h + b*i),
ideal (i, h, g, d, a, c*e + b*f),
ideal (i, h, g, e, b, c*d + a*f),
ideal (h, f, e, d, b, c*g + a*i),
ideal (i, f, e, d, c, b*g + a*h),
ideal (i, h, g, f, c, b*d + a*e),
ideal (i, f, c, b, a, e*g + d*h),
ideal (h, e, c, b, a, f*g + d*i),
ideal (g, d, c, b, a, f*h + e*i),

ideal (h, g, e, d, b, a), ideal (i, h, g, f, e, d),
ideal (i, g, f, d, c, a), ideal (f, e, d, c, b, a),
ideal (i, h, g, c, b, a), ideal (i, h, f, e, c, b),

ideal (i, h, g, f, e, d, c, b, a) }

i6 : time intersect ass Per233
-- used 0.24 seconds

o6 = ideal (f*h + e*i, c*h + b*i, f*g + d*i, e*g + d*h,
c*g + a*i, b*g + a*h, c*e + b*f, c*d + a*f, b*d + a*e, a*e*i)

Note that the lines o4 and o6 have the same output by equation (5.3). However,
for this example the obvious command radical is slower than the non-obvious
command intersect ass. The lesson to be learned is that many roads lead to
Rome and one should always be prepared to apply one’s full range of mathematical
know-how when trying to crack a polynomial system.

The ideals of 2 × 2-subpermanents of matrices of any size were studied in
full detail by Laubenbacher and Swanson [LS00] who gave explicit descriptions of
associated primes, and a primary decomposition of P2,m,n. The previous Macaulay
2 session offers a glimpse of their results.

Recently, George Kirkup has taken up the project of extending this work to
3× 3-subpermanents. A special role in his theory is played by the prime ideal

(5.8) J =
(
Per3,3,4 : (

∏
i,j

xij)∞
)
.
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Here is a brief summary of Kirkup’s results. A prime ideal in Q[X] is of type 1 if
it is generated by all the indeterminates of X except those either in two rows, two
columns, or one row and one column. A prime is of type 2 if it is generated by
some 2× 2-subpermanent and all the indeterminates of X except in one row or one
column (which does not intersect that 2× 2 block). Similarly, a prime is of type 3
if it is generated by a 3× 3 permanent and all other indeterminates in X. A prime
is of type 3A if it contains all the indeterminates in X outside a 3× 4 or 4× 3 block
and in that block is a copy of the special prime ideal J . Finally a prime is of type
3B if it is generated by all the indeterminates in X except two 2× 2 blocks (which
have no common rows or columns) and the two 2×2 subpermanents corresponding
to those two blocks. Kirkup’s theorem states that the minimal primes of Per3,m,n

are of one of these types. Moreover, if m,n ≥ 4 then these are all minimal.

We present one more open problem about permanental ideals. Consider the
n×2n-matrix [XX] which is gotten by concatenating our matrix of unknowns with
itself. We write Pern[XX] for the ideal of n × n-subpermanents of this n × 2n-
matrix. A conjecture on graph polynomials posed by Alon, Jaeger and Tarsi in
1981 suggests that every matrix in the variety of Pern[XX] should be singular. A
discussion of this conjecture can be found in [Yu99] and in [DOS02]. We offer the
following refinement of the Alon-Jaeger-Tarsi conjecture.

Conjecture 5.12. The nth power of the determinant of X lies in Pern[XX].

For n = 2 this conjecture is easy to check. Indeed, the ideal

Per2

(
x11 x12 x11 x12

x21 x22 x21 x22

)
= 〈x11x22 + x12x21, x11x21, x12x22 〉

contains (x11x22 − x12x21)2 but not x11x22 − x12x21. But already the next two
cases n = 3 and n = 4 pose a nice challenge for primary decomposition. The state
of the art regarding the Alon-Jaeger-Tarsi conjecture appears in the work of De
Loera, Onn and Sebö [DOS02]. These authors discuss the connections to graph
theory, and they provide a computer proof of this conjecture up to n ≤ 5.

5.5. Exercises

(1) Explain how one can find a witness f for a given associated prime P of
an ideal I.

(2) Let P be a prime ideal and m a positive integer. Show that P is a minimal
prime of Pm. Give an example where Pm is not primary.

(3) For an ideal I of codimension c we define top(I) as the intersection of
all primary components Qi of codimension c. Explain how one computes
top(I) from I in Macaulay 2 or Singular? Compute top(I) for
(a) I = 〈x1x2x3, x4x5x6, x

2
1x

3
2, x

5
3x

7
4, x

11
5 x

13
6 〉,

(b) I = 〈x1x2 + x3x4 + x5x6, x1x3 + x4x5 + x6x2, x1x4 + x5x6 + x2x3,
x1x5 + x6x2 + x3x4, x1x6 + x2x3 + x4x5 〉,

(c) I = 〈x2
1 +x2x3− 1, x2

2 +x3x4− 1, x2
3 +x4x5− 1, x2

4 +x5x6− 1, x2
5 +

x6x1 − 1, x2
6 + x1x2 − 1 〉.

(4) What happens if you apply the formula (5.5) to an embedded prime Pi?
(5) Prove that P is associated to I if and only if

(
I : (I : P )

)
= P .

(6) Decompose the two adjacent-minor ideals A2,3,4 and A3,3,5.
(7) Decompose the permanental ideals Per2,4,4, Per3,3,5 and Per4,4,5.
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(8) Find a 3 × 4-integer matrix with all non-zero entries such that all four
3 × 3-subpermanents are zero. (Hint: Compute the ideal J in (5.8) and
find a rational point in V(J)).

(9) Compute the primary decomposition of Per3[XX] in Singular.
(10) Prove Conjecture 5.12 for n = 4.
(11) For positive integers d and e consider the ideal

I = 〈xd
1x2 − xd

3x4 , x1x
e
2 − xe+1

4 〉
Find a primary decomposition of I and a minimal generating set for the
radical of I. What are the degrees of the generators? This example is due
to Chardin and D’Cruz [CD02]. It shows that the Castelnuovo-Mumford
regularity of Rad(I) can be higher than that of I.



CHAPTER 6

Polynomial Systems in Economics

The computation of equilibria in economics leads to systems of polynomial
equations. In this chapter we discuss the equations satisfied by the Nash equilibria
of an n-person game in normal form. For n = 2 these equations are linear but
for n > 2 they are multilinear. We derive these multilinear equations, we present
algebraic techniques for solving them, and we give a sharp bound for the number
of totally mixed Nash equilibria. This bound is due to McKelvey and McLennan
[MM97] who derived it from Bernstein’s Theorem. In Section 6.2 we offer a detailed
analysis of the Three-Man Poker Game which appeared in the original paper of
Nash [Nas51] and leads to solving a quadratic equation. In Section 6.5 we discuss
a graphical model for game theory [KLS01], and we demonstrate how Verschelde’s
homotopy software PHCpack can be used to compute totally mixed Nash equilibria.

6.1. Three-Person Games with Two Pure Strategies

We present the scenario of a non-cooperative game by means of a small example.
Our notation is consistent with that used by Nash [Nas51]. There are three players
whose names are Adam, Bob and Carl. Each player can choose from two pure
strategies, say “buy stock #1” or “buy stock #2”. He can mix them by allocating
a probability (or, fraction of his money) to each pure strategy. We write a1 for the
probability which Adam allocates to strategy 1, a2 for the probability which Adam
allocates to strategy 2, b1 for the probability which Bob allocates to strategy 1,
etc.. The six probabilities a1, a2, b1, b2, c1, c2 are our decision variables. The vector
(a1, a2) is Adam’s strategy, (b1, b2) is Bob’s strategy, and (c1, c2) is Carl’s strategy.
We use the term strategy for what is called mixed strategy in the literature. The
strategies of our three players satisfy

a1, a2, b1, b2, c1, c2 ≥ 0 and a1 + a2 = b1 + b2 = c1 + c2 = 1.(6.1)

The data representing a particular game are three payoff matrices A = (Aijk),
B = (Bijk), and C = (Cijk). Here i, j, k run over {1, 2} so that each of A, B,
and C is a three-dimensional matrix of format 2 × 2 × 2. Thus our game is given
by 24 = 3× 2× 2× 2 rational numbers Aijk, Bijk, Cijk. All of these numbers are
known to all three players. The game is for Adam, Bob and Carl to select their
strategies. They will then receive the following payoff:

Adam’s payoff =
∑2

i,j,k=1Aijk · ai · bj · ck
Bob’s payoff =

∑2
i,j,k=1Bijk · ai · bj · ck

Carl’s payoff =
∑2

i,j,k=1 Cijk · ai · bj · ck
A vector (a1, a2, b1, b2, c1, c2) satisfying (6.1) is called a Nash equilibrium if no player
can increase his payoff by changing his strategy while the other two players keep

71
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their strategies fixed. In other words, the following condition holds: For all pairs
(u1, u2) with u1, u2 ≥ 0 and u1 + u2 = 1 we have∑2

i,j,k=1Aijk · ai · bj · ck ≥
∑2

i,j,k=1Aijk · ui · bj · ck,∑2
i,j,k=1Bijk · ai · bj · ck ≥

∑2
i,j,k=1Bijk · ai · uj · ck,∑2

i,j,k=1 Cijk · ai · bj · ck ≥
∑2

i,j,k=1 Cijk · ai · bj · uk.

Given fixed strategies chosen by Adam, Bob and Carl, each of the expressions on
the right hand side is a linear function in (u1, u2). Therefore the universal quantifier
above can be replaced by “For (u1, u2) ∈ {(1, 0), (0, 1)} we have”. Introducing three
new variables α, β, γ for Adam’s, Bob’s and Carl’s payoffs, the conditions for a Nash
equilibrium can be written as follows:

α = a1 ·
∑2

j,k=1A1jk · bj · ck + a2 ·
∑2

j,k=1A2jk · bj · ck,

α ≥
∑2

j,k=1A1jk · bj · ck and α ≥
∑2

j,k=1A2jk · bj · ck,

β = b1 ·
∑2

i,k=1Bi1k · ai · ck + b2 ·
∑2

i,k=1Bi2k · ai · ck,

β ≥
∑2

i,k=1Bi1k · ai · ck and β ≥
∑2

i,k=1Bi2k · ai · ck,

γ = c1 ·
∑2

i,j=1 Cij1 · ai · bj + c2 ·
∑2

i,j=1 Cij2 · ai · bj ,

γ ≥
∑2

i,j=1 Cij1 · ai · bj and γ ≥
∑2

i,j=1 Cij2 · ai · bj .

Since a1 + a2 = 1 and a1 ≥ 0 and a2 ≥ 0, first two rows imply:

(6.2) a1 ·
(
α −

2∑
j,k=1

A1jk · bj · ck
)

= a2 ·
(
α −

2∑
j,k=1

A2jk · bj · ck
)

= 0.

Similarly, we derive the following equations:

(6.3) b1 ·
(
β −

2∑
i,k=1

Bi1k · ai · ck
)

= b2 ·
(
β −

2∑
i,k=1

Bi2k · ai · ck
)

= 0,

(6.4) c1 ·
(
γ −

2∑
i,j=1

Cij1 · ai · bj
)

= c2 ·
(
γ −

2∑
i,j=1

Cij2 · ai · bj
)

= 0.

We regard (6.2), (6.3) and (6.4) as a system of polynomial equations in the nine
unknowns a1, a2, b1, b2, c1, c2, α, β, γ. Our discussion shows the following:

Proposition 6.1. The set of Nash equilibria of the game given by the payoff
matrices A,B,C is the set of solutions (a1, . . . , c2, α, β, γ) to (6.1), (6.2), (6.3) and
(6.4) which make the six expressions in the large parentheses nonnegative.

For practical computations it is convenient to change variables as follows:

a1 = a, a2 = 1− a, b1 = b, b2 = 1− b, c1 = c, c2 = 1− c.

Corollary 6.2. The set of Nash equilibria of the game given by the payoff
matrices A,B,C consists of the common zeros of the following six polynomials
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subject to a, b, c, and all parenthesized expressions being nonnegative:

a ·
(
α−A111bc−A112b(1− c)−A121(1− b)c−A122(1− b)(1− c)

)
,

(1− a) ·
(
α−A211bc−A212b(1− c)−A221(1− b)c−A222(1− b)(1− c)

)
,

b ·
(
β −B111ac−B112a(1− c)−B211(1− a)c−B212(1− a)(1− c)

)
,

(1− b) ·
(
β −B121ac−B122a(1− c)−B221(1− a)c−B222(1− a)(1− c)

)
,

c ·
(
γ − C111ab− C121a(1− b)− C211(1− a)b− C221(1− a)(1− b)

)
,

(1− c) ·
(
γ − C112ab− C122a(1− b)− C212(1− a)b− C222(1− a)(1− b)

)
.

A Nash equilibrium is called totally mixed if all six probabilities a, 1 − a, b,
1−b, c, 1−c are strictly positive. If we are only interested in totally mixed equilibria
then we can erase the left factors in the six polynomials and eliminate α, β, γ by
subtracting the second polynomial from the first, the fourth polynomial from the
third, and the last polynomial from the fifth.

Corollary 6.3. The set of totally mixed Nash equilibria of the game (A,B,C)
consists of the common zeros (a, b, c) ∈ (0, 1)3 of three bilinear polynomials:

(A111−A112−A121+A122−A211+A212+A221−A222) · bc + A122−A222

+(A112 −A122 −A212 +A222) · b + (A121 −A122 −A221 +A222) · c,
(B111−B112+B122−B121−B211+B212−B222+B221) · ac + B212−B222

+(B211 −B212 −B221 +B222) · c + (B112 −B122 −B212 +B222) · a,
(C111−C112+C122−C121−C211+C212−C222+C221) · ab + C221−C222

+(C121 − C221 − C122 + C222) · a + (C222 − C221 − C212 + C211) · b.

These three equations have two complex solutions, for general payoff matrices
A,B,C. Indeed, the mixed volume of the three Newton squares equals 2. In the
next section we give an example where both roots are real and lie in the open cube
(0, 1)3, meaning there are two totally mixed Nash equilibria. In Exercise (9) the
reader is asked to construct a game for Adam, Bob and Carl such that the two
Nash equilibria have a prescribed square root among their coordinates.

6.2. Two Numerical Examples Involving Square Roots

Consider the game described in the previous section with the payoff matrices

(6.5)


111 112 121 122 211 212 221 222

A = 0 6 11 1 6 4 6 8
B = 12 7 6 8 10 12 8 1
C = 11 11 3 3 0 14 2 7


For instance, B112 = 7 and C212 = 14. The equations in Corollary 6.2 are

a ·
(
α− 6b(1− c)− 11(1− b)c− (1− b)(1− c)

)
= 0,

(1− a) ·
(
α− 6bc− 4b(1− c)− 6(1− b)c− 8(1− b)(1− c)

)
= 0,

b · (β − 12ac− 7a(1− c)− 6(1− a)c− 8(1− a)(1− c)
)

= 0,

(1− b) ·
(
β − 10ac− 12a(1− c)− 8(1− a)c− (1− a)(1− c)

)
= 0,

c ·
(
γ − 11ab− 11a(1− b)− 3(1− a)b− 3(1− a)(1− b)

)
= 0,

(1− c) ·
(
γ − 14a(1− b)− 2(1− a)b− 7(1− a)(1− b)

)
= 0.
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These equations are radical and they have 16 solutions all of which are real. Namely,
a vector (a, b, c, α, β, γ) is a solution if and only if it lies in the set{ (

7/12, 7/9, 0, 44/9, 89/12, 28/9
)
,
(
1/2, 5/11, 1, 6, 9, 7

)∗
,(

4, 0, 7/12, 41/6, 337/12, 35
)
,
(
−1/10, 1, 1/4, 9/2, 297/40, 11/5

)
,(

0, 4/5, 7/9, 86/15, 58/9, 3
)∗
,
(
1, 3/14, 5/7, 663/98, 74/7, 11

)∗
,(

0, 0, 0, 8, 1, 7
)
,
(
0, 0, 1, 6, 8, 3

)
,
(
0, 1, 0, 4, 8, 2

)
,
(
0, 1, 1, 6, 6, 3

)
,(

1, 0, 0, 1, 12, 14
)
,
(
1, 0, 1, 11, 10, 11

)
,
(
1, 1, 0, 6, 7, 0

)
,
(
1, 1, 1, 0, 12, 11

)
,(

0.8058, 0.2607, 0.6858, 6.3008, 9.6909, 9.4465
)∗(

0.4234, 0.4059, 0.8623, 6.0518, 8.4075, 6.3869
)∗ }

However, some of these solution vectors are not Nash equilibria. For instance, the
third vector has a = 4 which violates the non-negativity of (1−a). The first vector
(a, b, c, α, β, γ) = (7/12, 7/9, 0, 44/9, 89/12, 28/9) violates the non-negativity of
(γ − 11ab− 11a(1− b)− 3(1− a)b− 3(1− a)(1− b)), etc... This process eliminates
11 of the 16 candidate vectors. The remaining five are marked with a star. We
conclude: The game (6.5) has five isolated Nash equilibria. Of these five, the last
two are totally mixed Nash equilibria.

The two totally mixed Nash equilibria can be represented algebraically by ex-
tracting a square root. Namely, we first erase the left factors a, . . . , (1 − c) from
the six equations, and thereafter we compute the Gröbner basis:{

1011α+ 1426c− 7348, 96β + 698c− 1409, 3γ + 52c− 64,

24a+ 52c− 55, 1011b− 832c+ 307, 208c2 − 322c+ 123
}
.

As with all our Gröbner bases, leading terms are underlined. These six equations
are easy to solve. The solutions are the last two vectors above.

Our second example is the Three-Man Poker Game discussed in Nash’s 1951
paper [Nas51]. This game leads to algebraic equations which can be solved by
extracting the square root of 321. The following material was prepared by Ruchira
Datta. The game was originally solved by Nash in collaboration with Shapley
[NS50]. We believe that it is of some historical interest.

This is a greatly simplified version of poker. The cards are of only two kinds,
high and low. The three players A, B, and C ante up two chips each to start. Then
each player is dealt one card. Starting with player A, each player is given a chance
to “open”, i.e., to place the first bet (two chips are always used to bet). If no one
does so, the players retrieve their antes from the pot. Once a player has opened,
the other two players are again given a chance to bet, i.e., they may “call”. Finally,
the cards are revealed and those players with the highest cards among those who
placed bets share the pot equally.

Once the game is open, one should call if one has a high card and pass if one
has a low card. The former is obvious; the latter follows because it might be the
strategy of the player who opened the game, to only open on a high card. In this
case one would definitely lose one’s bet as well as the ante. So the only question is
whether to open the game. Player C should obviously open if he has a high card. It
turns out that player A should never open if he has a low card (this requires proof).
Thus player A has two pure strategies: when he has a high card, to open or not
to open. We denote his probability of opening in this case by a. (His subsequent



6.2. TWO NUMERICAL EXAMPLES INVOLVING SQUARE ROOTS 75

moves, and his moves in case he has a low card, are determined.) Player C also has
two pure strategies: when he has a low card, to open or not to open. We denote his
probability of opening in this case by c. Player B has four pure strategies: for each
of his possible cards, to open or not to open. We denote his probability of opening
when he has a high card by d, and his probability of opening when he has a low
card by e. It turns out that the equilibrium strategy is totally mixed in these four
parameters.

Assuming each of the eight possible hands is equally likely, the payoff matrix
(where by payoff we mean the expected value of the payoff) contains 48 = 3×2×4×2
rational entries. As in the examples above, this can be written as a 3× 16 matrix.
Here is the left (a = 0) block:

(6.6)


0000 0001 0010 0011 0100 0101 0110 0111

A = −1
4

−1
4

−1
4 0 −1

4 0 −1
4

1
4

B = 1
4

1
4

−1
4 0 1

2
−1
4 0 −1

2

C = 0 0 1
2 0 −1

4
1
4

1
4

1
4


and here is the right (a = 1) block:

(6.7)


1000 1001 1010 1011 1100 1101 1110 1111

A = 1
8

1
8 0 −1

2
1
4

1
4

1
8

−3
8

B = −1
4

−1
4

−1
4

1
4

1
8

−7
8

1
8

−3
8

C = 1
8

1
8

1
4

1
4

−3
8

5
8

−1
4

3
4


(We split the matrix into blocks to fit the page.) Here the indices across the top
indicate the pure strategies chosen by the players. If we write a0 = a, a1 = 1 − a,
d0 = d, d1 = 1−d, e0 = e, e1 = 1−e, c0 = c, and c1 = 1−c, then for instance B1010

is B’s payoff when player A does not open on a high card (so a1 = 1), player B
does open on a high card (so d0 = 1) and does not open on a low card (so e1 = 1),
and player C does open on a low card (so c0 = 1). In general, Xijkl is player X’s
payoff when ai = 1, dj = 1, ek = 1, and cl = 1. The equation for the expected
payoff β of player B is

β = d · e ·
∑1

i,k=0Bi00k · ai · ck + d · (1− e) ·
∑1

i,k=0Bi01k · ai · ck
+(1− d) · e ·

∑1
i,k=0Bi10k · ai · ck + (1−d)(1−e) ·

∑1
i,k=0Bi11k · ai · ck.

We have a modified version of Corollary 6.2 with eight polynomials instead of six.
The first polynomial becomes:

a ·
(
α−A0000dec−A0001de(1− c)
− A0010d(1− e)c−A0011d(1− e)(1− c)
− A0100(1− d)ec−A0101(1− d)e(1− c)
− A0110(1− d)(1− e)c−A0111(1− d)(1− e)(1− c)

)
The second, fifth, and sixth polynomials are modified analogously. The third and
fourth polynomials are replaced by four polynomials, the first of which is

d · e ·
(
β −B0000ac−B0001a(1− c)−B1000(1− a)c−B1001(1− a)(1− c)

)
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Again, we can cancel the left factors of all the polynomials since the equilibrium is
totally mixed. Eliminating α and γ as before gives us the following two trilinear
polynomials:

(A0000−A0001−A0010+A0011−A0100+A0101+A0110−A0111

−A1000+A1001+A1010−A1011+A1100−A1101−A1110+A1111) · cde
+(A0010−A0011−A0110+A0111−A1010+A1011+A1110−A1111) · cd
+(A0100−A0101−A0110+A0111−A1100+A1101+A1110−A1111) · ce
+(A0001−A0011−A0101+A0111−A1001+A1011+A1101−A1111) · de

+(A0110−A0111−A1110+A1111) · c+ (A0011−A0111−A1011+A1111) · d
+(A0101−A0111−A1101+A1111) · e+ (A0111 −A1111)

and

(C0000−C0001−C0010+C0011−C0100+C0101+C0110−C0111

−C1000+C1001+C1010−C1011+C1100−C1101−C1110+C1111) · ade
+(C0010−C0011−C0110+C0111−C1010+C1011+C1110−C1111) · ad
+(C0100−C0101−C0110+ C0111−C1100+C1101+C1110−C1111) · ae
+(C1000−C1001−C1010+C1011−C1100+C1101+C1110−C1111) · de

+(C0110−C0111−C1110+C1111) · a+ (C1010−C1011−C1110+C1111) · d
+(C1100−C1101−C1110+C1111) · e+ (C1110 − C1111).

(For each term, take the bitstring that indexes its coefficient and mask off the bits
corresponding to variables that don’t occur in its monomial, which will always be
one; then the parity of the resulting bitstring gives the sign of the term.) There
are four polynomials in β; subtracting each of the others from the first gives the
following three bilinear polynomials:

(B0000−B0001−B0010+B0011−B1000+B1001+B1010−B1011)ac+B1001−B1011

+(B0001 −B0011 −B1001 +B1011) · a+ (B1000 −B1001 −B1010 +B1011) · c,
(B0000−B0001−B0100+B0101−B1000+B1001+B1100−B1101)ac+B1001−B1101

+(B0001 −B0101 −B1001 +B1101) · a+ (B1000 −B1001 −B1100 +B1101) · c,
(B0000−B0001−B0110+B0111−B1000+B1001+B1110−B1111)ac+B1001−B1111

+(B0001 −B0111 −B1001 +B1111) · a+ (B1000 −B1001 −B1110 +B1111) · c.
So the set of totally mixed Nash equilibria consists of the common zeros (a, d, e, c) ∈
(0, 1)4 of these five polynomials. Substituting our payoff matrix into the last poly-
nomial gives

1
8

+
5
8
a− 1

2
c = 0.

Solving for c gives

c =
5a+ 1

4
and substituting into the previous two polynomials yields

−3
8

+
21
16
a− 5

16
a2 = 0

and
3
8
− 21

16
a+

5
16
a2 = 0.
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Solving for a in the range 0 < a < 1 gives

a =
21−

√
321

10
.

Substituting into the two trilinear polynomials yields two linear equations for d and
e; solving these yields

d =
5− 2a
5 + a

, e =
4a− 1
a+ 5

,

which agrees with the result in Nash’s 1951 paper [Nas51].

6.3. Equations Defining Nash Equilibria

We consider a finite n-person game in normal form. The players are la-
beled 1, 2, . . . , n. The ith player can select from di pure strategies which we call
1, 2, . . . , di. The game is defined by n payoff matrices X(1), X(2), . . . , X(n), one for
each player. Each matrixX(i) is an n-dimensional matrix of format d1×d2×· · ·×dn

whose entries are rational numbers. The entry X
(i)
j1j2···jn

represents the payoff for
player i if player 1 selects the pure strategy j1, player 2 selects the pure strategy j2,
etc. Each player is to select a (mixed) strategy, which is a probability distribution
on his set of pure strategies. We write p

(i)
j for the probability which player i allo-

cates to the strategy j. The vector p(i) =
(
p
(i)
1 , p

(i)
2 , . . . , p

(i)
di

)
is called the strategy

of player i. The payoff πi for player i is the value of the multilinear form given by
his matrix X(i):

πi =
d1∑

j1=1

d2∑
j2=1

· · ·
dn∑

jn=1

X
(i)
j1j2...jn

· p(1)
j1
p
(2)
j2
· · · p(n)

jn
.

Summarizing, the data for our problem are the payoff matrices X(i), so the
problem is specified by nd1d2 · · · dn rational numbers. We must solve for the d1 +
d2 + · · ·+ dn unknowns p(i)

j . Since the unknowns are probabilities,

(6.8) ∀ i, j : p(i)
j ≥ 0 and ∀ i : p(i)

1 + p
(i)
2 + · · ·+ p

(i)
di

= 1.

These conditions specify that p = (p(i)
j ) is a point in the product of simplices

(6.9) ∆ = ∆d1−1 ×∆d2−1 × · · · ×∆dn−1.

A point p ∈ ∆ is a Nash equilibrium if none of the n players can increase his payoff
by changing his strategy while the other n − 1 players keep their strategies fixed.
We shall write this as a system of polynomial constraints in the unknown vectors
p ∈ ∆ and π = (π1, . . . , πn) ∈ Rn. For each of the unknown probabilities p

(i)
k we

consider the following multilinear polynomial:

(6.10) p
(i)
k ·
(
πi−

d1∑
j1=1

· · ·
di−1∑

ji−1=1

di+1∑
ji+1=1

· · ·
dn∑

jn=1

X
(i)
j1...ji−1kji+1jn

·p(1)
j1
· · · p(i−1)

ji−1
p
(i+1)
ji+1
· · · p(n)

jn

)
Hence (6.10) together with (6.8) represents a system of n+d1 + · · ·+dn polynomial
equations in n+ d1 + · · ·+ dn unknowns, where each polynomial is the product of
a linear polynomial and a multilinear polynomial of degree n− 1.

Theorem 6.4. A vector (p, π) ∈ ∆ × Rn represents a Nash equilibrium for
the game with payoff matrices X(1), . . . , X(n) if and only if (p, π) is a zero of the
polynomials (6.10) and each parenthesized expression in (6.10) is nonnegative.
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Nash [Nas51] proved that every game has at least one equilibrium point (p, π).
His proof and many subsequent refinements made use of fixed point theorems from
topology. Numerical algorithms based on combinatorial refinements of these fixed
point theorems have been developed, notably in the work of Scarf [Sca73]. The
algorithms converge to one Nash equilibrium but they do not give any additional
information about the number of Nash equilibria or, if that number is infinite, about
the dimension and component structure of the semi-algebraic set of Nash equilibria.
For that purpose one needs the more refined algebraic techniques discussed here.

There is an obvious combinatorial subproblem arising from the equations,
namely, in order for the product (6.10) to be zero, one of the two factors must
be zero and the other factor must be non-negative. Thus our problem is that of a
non-linear complementarity problem. The case n = 2 is the linear complementarity
problem. In this case we must solve a disjunction of systems of linear equations,
which implies that each Nash equilibrium has rational coordinates and can be com-
puted using exact arithmetic. A classical simplex-like algorithm due to Lemke and
Howson [LH64] finds one Nash equilibrium in this manner. It is a challenging
computational task to enumerate all Nash equilibria for a given 2-person game as
d1 and d2 get large. The problem is similar to (but more difficult than) enumer-
ating all vertices of a convex polyhedron given by linear inequalities. In the latter
case, the Upper Bound Theorem gives a sharp estimate for the maximal number of
vertices, but the analogous problem for counting Nash equilibria of bimatrix games
is open in general. For the state of the art see [MP99]. We illustrate the issue of
combinatorial complexity with an example from that paper.

Example 6.5. (A two-person game with exponentially many Nash equilibria)
Take n = 2, d1 = d2 =: d and both X(1) and X(2) to be the d× d-unit matrix. In
this game, the two players both have payoff 1 if their choices agree and otherwise
they have payoff 0. Here the equilibrium equations (6.10) take the form

(6.11) p
(1)
k ·

(
π1 − p(2)

k

)
= p

(2)
k ·

(
π2 − p(1)

k

)
= 0 for k = 1, 2, . . . , d.

The Nash equilibria are solutions of (6.11) such that all p(i)
k are between 0 and πi

and p
(1)
1 + · · ·+ p

(1)
d = p

(2)
1 + · · ·+ p

(2)
d = 1. Their number equals 2d − 1.

For instance, for d = 2 the equilibrium equations (6.11) have five solutions,
which we compute using the program Macaulay 2 as follows:

i1 : R = QQ[p,q,Pi1,Pi2];
i2 : I = ideal( p * (Pi1 - q), (1 - p) * (Pi1 - 1 + q),

q * (Pi2 - p), (1 - q) * (Pi2 - 1 + p) );

i3 : decompose(I)
o3 = { ideal (Pi2 - 1, Pi1 - 1, p, q),

ideal (Pi2 - 1, Pi1 - 1, p - 1, q - 1),
ideal (2Pi2 - 1, 2Pi1 - 1, 2p - 1, 2q - 1),
ideal (Pi2, Pi1, p, q - 1),
ideal (Pi2, Pi1, p - 1, q) }

Only the first three of these five components correspond to Nash equilibria. For
d = 2, the 2d − 1 = 3 Nash equilibria are (p, q) = (0, 0), ( 1

2 ,
1
2 ), (1, 1).

In what follows we shall disregard the issues of combinatorial complexity dis-
cussed above. Instead we focus on the algebraic complexity of our problem. To this
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end, we consider only totally mixed Nash equilibria, that is, we add the requirement
that all probabilities p(i)

j be strictly positive. In our algebraic view, this is no re-
striction in generality because the vanishing of some of our unknowns yields smaller
system of polynomial equations with fewer unknowns but of the same multilinear
structure. From now on, the p

(i)
j will stand for real variables whose values are

strictly between 0 and 1. This allows us to remove the left factors p(i) in (6.10) and
work with the parenthesized (n − 1)-linear polynomials instead. Eliminating the
unknowns πi, we get the following polynomials for i = 1, . . . , n, and k = 2, 3, . . . , di:

d1∑
j1=1

· · ·
di−1∑

ji−1=1

di+1∑
ji+1=1

· · ·
dn∑

jn=1

(X(i)
j1...ji−1kji+1jn

−X(i)
j1...ji−11ji+1jn

)p(1)
j1
· · ·p(i−1)

ji−1
p
(i+1)
ji+1
· · · p(n)

jn

This is a system of d1 + · · · + dn − n equations in d1 + · · · + dn unknowns, which
satisfy the n linear equations in (6.8). Corollary 6.3 generalizes as follows.

Theorem 6.6. The totally mixed Nash equilibria of the n-person game with
payoff matrices X(1), . . . , X(n) are the common zeros in the interior of the polytope
∆ of the d1 + · · ·+ dn − n multilinear polynomials above.

In what follows, we always eliminate n of the variables by setting

p
(i)
di

= 1−
di−1∑
j=1

p
(i)
j for i = 1, 2, . . . , n.

What remains is a system of δ multilinear polynomials in δ unknowns, where δ :=
d1 + · · ·+ dn − n. We shall study these equations in the next section.

6.4. The Mixed Volume of a Product of Simplices

Consider the di−1 polynomials which appear in Theorem 6.6 for a fixed upper
index i. They share the same Newton polytope, namely, the product of simplices

(6.12) ∆(i) = ∆d1−1 × · · · ×∆di−1−1 × {0} ×∆di+1−1 × · · · ×∆dn−1.

Here ∆di−1 is the convex hull of the unit vectors and the origin in Rdi−1. Hence
the Newton polytope ∆(i) is a polytope of dimension δ − di + 1 in Rδ. Combining
all Newton polytopes, we get the following δ-tuple of polytopes

∆[d1, . . . , dn] :=
(
∆(1), . . . ,∆(1), ∆(2), . . . ,∆(2), . . . , ∆(n), . . . ,∆(n)

)
,

where ∆(i) appears di − 1 times.
Corollary 6.7. The totally mixed Nash equilibria of an n-person game where

player i has di pure strategies are the zeros of a sparse polynomial system with
support ∆[d1, . . . , dn], and every such system arises from some game.

We are now in the situation of Bernstein’s Theorem, which tells us that the
expected number of complex zeros in (C∗)δ of a sparse system of δ polynomials in δ
unknowns equals the mixed volume of the Newton polytopes. The following result
of McKelvey & McLennan [MM97] gives a combinatorial description for the mixed
volume of the tuple of polytopes ∆[d1, . . . , dn].

Theorem 6.8. The maximum number of isolated totally mixed Nash equilibria
for any n-person game where the ith player has di pure strategies equals the mixed
volume of ∆[d1, . . . , dn]. This mixed volume coincides with the number of partitions
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of the δ-element set of unknowns { p(i)
k : i = 1, . . . , n, k = 2, . . . , di } into n disjoint

subsets B1, B2, . . . , Bn such that
• the cardinality of the ith block Bi is equal to di − 1, and
• the ith block Bi is disjoint from { p(i)

1 , p
(i)
2 , . . . , p

(i)
di

}
, i.e., no variable with

upper index i is allowed to be in Bi.
This theorem says, in particular, that the maximum number of complex zeros of

a sparse system with Newton polytopes ∆[d1, . . . , dn] can be attained by counting
real zeros only. Moreover, it can be attained by counting only real zeros which have
all their coordinates strictly between 0 and 1. The key idea in proving Theorem
6.8 is to replace each of the given multilinear equations by a product of linear
forms. This technique was discussed at the end of Section 3.4. In terms of Newton
polytopes, this means that ∆(i) is expressed as the Minkowski sum of the n − 1
simplices

(6.13) {0} × · · · × {0} ×∆dj−1 × {0} × · · · × {0}.

We shall illustrate Theorem 6.8 and this factoring construction for the case
n = 3, d1 = d2 = d3 = 3. Our familiar players Adam, Bob and Carl reenter the
scene in this case. A new stock #3 has come on the market, and our friends can now
each choose from three pure strategies. The probabilities which Adam allocates to
stocks #1, #2 and #3 are a1, a2, and 1− a1 − a2. There are now six equilibrium
equations in the six unknowns a1, a2, b1, b2, c1, c2. The number of set partitions of
{a1, a2, b1, b2, c1, c2} described in Theorem 6.8 is ten. The ten allowed partitions
are

{b1, b2} ∪ {c1, c2} ∪ {a1, a2} {c1, c2} ∪ {a1, a2} ∪ {b1, b2}
{b1, c1} ∪ {a1, c2} ∪ {a2, b2} {b1, c1} ∪ {a2, c2} ∪ {a1, b2}
{b1, c2} ∪ {a1, c1} ∪ {a2, b2} {b1, c2} ∪ {a2, c1} ∪ {a1, b2}
{b2, c1} ∪ {a1, c2} ∪ {a2, b1} {b2, c1} ∪ {a2, c2} ∪ {a1, b1}
{b2, c2} ∪ {a1, c1} ∪ {a2, b1} {b2, c2} ∪ {a2, c1} ∪ {a1, b1}.

This number ten is the mixed volume of six 4-dimensional polytopes, each a
product of two triangles, regarded as a face of the product of three triangles:

∆[2, 2, 2] =
(
• ×∆2 ×∆2 , • ×∆2 ×∆2 , ∆2 × • ×∆2 ,

∆2 × • ×∆2 , ∆2 ×∆2 × • , ∆2 ×∆2 × •
)

Theorem 6.8 tells us that Adam, Bob and Carl can be made happy in ten possible
ways, i.e, their game can have as many as ten totally mixed Nash equilibria. We
shall construct payoff matrices which attain this number.

Consider the following six bilinear equations in factored form:

(200b1 + 100b2 − 100)(200c1 + 100c2 − 100) = 0
(190b1 + 110b2 − 101)(190c1 + 110c2 − 101) = 0
(200a1 + 100a2 − 100)(180c1 + 120c2 − 103) = 0
(190a1 + 110a2 − 101)(170c1 + 130c2 − 106) = 0
(180a1 + 120a2 − 103)(180b1 + 120b2 − 103) = 0
(170a1 + 130a2 − 106)(170b1 + 130b2 − 106) = 0.



6.4. THE MIXED VOLUME OF A PRODUCT OF SIMPLICES 81

These equations have the Newton polytopes ∆[2, 2, 2], and the coefficients are cho-
sen so that all ten solutions have their coordinates between 0 and 1. We now need
to find 3× 3× 3-payoff matrices (Aijk), (Bijk), and (Cijk) which give rise to these
equations. Clearly, the payoff matrices are not unique. To make them unique we
require the normalizing condition that each player’s payoff is zero when he picks
stock #1. In symbols, A1jk = Bi1k = Cij1 = 0 for all i, j, k ∈ {1, 2, 3}. The
remaining 54 parameters are now uniquely determined. To find them, we expand
our six polynomials in a different basis, like the one used in Corollary 6.2. The
rewritten equations are

10000b1c1 − 10000b1(1− c1 − c2)− 10000(1− b1 − b2)c1
+10000(1− b1 − b2)(1− c1 − c2) = 0,

7921b1c1 + 801b1c2 − 8989b1(1− c1 − c2) + 801b2c1 + 81b2c2
−909b2(1− c1 − c2)− 8989(1− b1 − b2)c1 − 909(1− b1 − b2)c2

+10201(1− b1 − b2)(1− c1 − c2) = 0,
7700a1c1 + 1700a1c2 − 10300a1(1− c1 − c2)− 7700(1− a1 − a2)c1
−1700(1− a1 − a2)c2 + 10300(1− a1 − a2)(1− c1 − c2) = 0,
5696a1c1 + 2136a1c2 − 9434a1(1− c1 − c2) + 576a2c1 + 216a2c2

−954a2(1− c1 − c2)− 6464(1− a1 − a2)c1 − 2424(1− a1 − a2)c2
+10706(1− a1 − a2)(1− c1 − c2) = 0,

5929a1b1 + 1309a1b2 − 7931a1(1− b1 − b2) + 1309a2b1 + 289a2b2

−1751a2(1− b1 − b2)− 7931(1− a1 − a2)b1 − 1751(1− a1 − a2)b2
+10609(1− a1 − a2)(1− b1 − b2) = 0,

4096a1b1 + 1536a1b2 − 6784a1(1− b1 − b2) + 1536a2b1 + 576a2b2

−2544a2(1− b1 − b2)− 6784(1− a1 − a2)b1 − 2544(1− a1 − a2)b2
+11236(1− a1 − a2)(1− b1 − b2) = 0.

The 18 coefficients appearing in the first two equations are the entries in Adam’s
payoff matrix:

A211 = 10000, A212 = 0, . . . , a233 = 10000 ; A311 = 7921, . . . , A333 = 10201.

Similarly, we get Bob’s payoff matrix from the middle two equations, and we get
Carl’s payoff matrix from the last two equations. In this manner, we have con-
structed an explicit three-person game with three pure strategies per player which
has ten totally mixed Nash equilibria.

Multilinear equations are particularly well-suited for the use of numerical ho-
motopy methods. For the starting system of such a homotopy one can take products
of linear forms as outlined above. We present another concrete example in the next
section. We believe that considerable progress can still be made in the numerical
computation of totally mixed Nash equilibria.

One special case of Theorem 6.8 deserves special attention: d1 = d2 = · · · =
dn = 2. This concerns an n-person game where each player has two pure strategies.
The corresponding polytope tuple ∆[1, 1, . . . , 1] consists of the n distinct facets of
the n-dimensional cube. Here parallel pairs of facets of the n-cube are identified,
which is why our n-cube has only n facets instead of 2n. In this special case,
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the partitions described in Theorem 6.8 correspond to the derangements of the set
{1, 2, . . . , n}, that is, permutations of {1, 2, . . . , n} without fixed points.

Corollary 6.9. The following three numbers coincide, for every n ∈ N:
• The maximum number of isolated totally mixed Nash equilibria for an n-

person game where each player has two pure strategies,
• the mixed volume of the n distinct facets of the n-cube,
• the number of derangements of an n-element set.

Counting derangements is a classical problem is combinatorics. Their number
grows as follows: 1, 2, 9, 44, 265, 1854, 14833, 133496, . . .. For instance, the number
of derangements of {1, 2, 3, 4, 5} is 44. A 5-person game with two mixed strategies
can have as many as 44 totally mixed Nash equilibria.

6.5. Computing Nash Equilibria with PHCpack

In this section we demonstrate a practical application of numerical homotopy
methods. We will use Jan Verschelde’s software package PHCpack to solve a certain
game with eight players. This program is freely available and easy to download
from http://www.math.uic.edu/∼jan/. Numerical homotopy methods are well
suited for solving multilinear equations. They are the author’s method of choice
for computing all totally mixed Nash equilibria of a game.

The particular game to be chosen was inspired by recent work of Kearns,
Littman and Singh [KLS01] on Graphical Models for Game Theory. We briefly
summarize the setting of that paper. We are given a simple graph G with n nodes,
and our n players are thought to be located at these nodes. Each player’s payoff is
local in the sense that the payoff πi of player i depends only on the choices made
by those players which are neighbors of i in G. The strategy selected by any player
j such that {i, j} is not an edge of G has no influence on πi. More formally, our
payoff matrices are assumed to satisfy the following hypothesis relative to the graph
G:

X
(i)
j1j2···jn

= X
(i)
k1k2···kn

whenever

∀ ν ∈ {1, 2, . . . , n} : jν = kν or {i, ν} is not an edge of G.

Kearns, Littman and Singh [KLS01] assume that each of the n players has only a
binary choice. In other words, there are only two pure strategies available:

d1 = d2 = · · · = dn = 2.

The totally mixed Nash equilibria of this game are given by a system of multilin-
ear equations in n unknowns p(1), p(2), . . . p(n), where p(i) denotes the probability
allocated by player i to his first choice. In the situation of Corollary 6.9, the ith
equation does not involve the unknown p(i). In the presence of the graph G the
following holds: the ith equation is a multilinear form in the unknowns p(j) where
j runs over all neighbors of i. Thus we are faced with solving a system of n mul-
tilinear equations in n unknowns where the unknowns in the ith equation involve
only neighbors of i in G. Corollary 6.9 generalizes to the graphical case as follows:

Theorem 6.10. For a graph G on {1, 2, . . . , n} the following numbers coincide:
• the maximum number of isolated totally mixed Nash equilibria of the game

with graph G, assuming binary choices for each of the n players,
• the number of all permutations π of {1, 2, . . . , n} such that {i, π(i)} is an

edge of G for all i ∈ {1, 2, . . . , n},
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• the permanent of the n× n-adjacency matrix of G.
Our example is a game where G is the edge graph of the 3-dimensional cube.

The eight players are associated to the vertices of the cube as follows:

Adam Bob Carl Dick Frank Gary Hugh Jim
000 001 010 011 100 101 110 111
a b c d f g h j

Thus Adam’s neighbors are Bob, Carl and Frank. The choices made by Dick, Gary,
Hugh and Jim are irrelevant for Adam’s payoff. The unknown b is the probability
allocated by Bob to the first choice. Thus Adam’s equation is a trilinear form in
the three unknowns b, c, and f. We shall consider the specific game on the 3-cube
whose eight equations are as follows:
8
(3*b-1)*(3*c-1)*(3*f-1)-0.1;
(3*a-1)*(3*d-1)*(3*g-1)-0.1;
(5*a-1)*(5*d-1)*(3*h-1)-0.1;
(5*b-1)*(5*c-1)*(3*j-1)-0.1;
(7*a-1)*(5*g-1)*(5*h-1)-0.1;
(7*b-1)*(5*f-1)*(5*j-1)-0.1;
(7*c-1)*(7*f-1)*(7*j-1)-0.1;
(7*d-1)*(7*g-1)*(7*h-1)-0.1;

These nine lines are in a format readable to PHCpack. Let us type exactly these nine
lines into file called cubegame. If we delete the trailing term -0.1 = 1/10 from
each of the eight equations, then our system fully factors and there are 81 distinct
rational solutions. Each of these 81 solutions represents a Nash equilibrium as it
has all of its coordinates between 0 and 1. Indeed, this count is consistent with
Theorem 6.10: there are precisely 81 permutations mapping each vertex of the
3-cube to a neighboring vertex.

We now solve the given system with the trailing terms -0.1 by typing

phc −b cubegame cubegameout

The marker −b tells PHCpack to use “black box mode”, which is the way to go for
beginners. The program runs for about two minutes and then prints output both
on the old file cubegame and on the new file cubegameout. The latter file contains
a detailed version of the results. It starts like this:
8
27*b*c*f-9*b*c-9*b*f-9*c*f+ 3*b+ 3*c+ 3*f-1.10000000E+00;
27*a*d*g-9*a*d-9*a*g-9*d*g+ 3*a+ 3*d+ 3*g-1.10000000E+00;
75*a*d*h-25*a*d-15*a*h-15*d*h+ 5*a+ 5*d+ 3*h-1.10000000E+00;
75*b*c*j-25*b*c-15*b*j-15*c*j+ 5*b+ 5*c+ 3*j-1.10000000E+00;
175*a*g*h-35*a*g-35*a*h-25*g*h+ 7*a+ 5*g+ 5*h-1.1000000E+00;
175*b*f*j-35*b*f-35*b*j-25*f*j+ 7*b+ 5*f+ 5*j-1.1000000E+00;
343*c*f*j-49*c*f-49*c*j-49*f*j+ 7*c+ 7*f+ 7*j-1.10000000E+00;
343*d*g*h-49*d*g-49*d*h-49*g*h+ 7*d+ 7*g+ 7*h-1.10000000E+00;

These are just the input polynomials in expanded form. First the program computes
the mixed volume using the methods explained at the end of Section 3.4.
ROOT COUNTS :
total degree : 6561
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7-homogeneous Bezout number : 81
with partition : {b }{c }{f }{a j }{d }{g }{h }

general linear-product Bezout number : 81
based on the set structure :

{b }{c }{f }
{a }{d }{g }
{a }{d }{h }
{b }{c }{j }
{a }{g }{h }
{b }{f }{j }
{c }{f }{j }
{d }{g }{h }

mixed volume : 81

TIMING INFORMATION for Root Counting
The elapsed time in seconds was 88.0500 = 0h 1m28s 50ms
User time in seconds was 88.0500 = 0h 1m28s 50ms
System CPU time in seconds was 0.0000 = 0h 0m 0s 0ms
....

At the bottom of the file cubegameout we find the following crucial information:

A list of 81 solutions has been refined :
Number of regular solutions : 81.
Number of singular solutions : 0.
Number of real solutions : 49.
Number of complex solutions : 32.
Number of clustered solutions : 0.
Number of failures : 0.
...
The elapsed time in seconds was 158.060 = 0h 2m38s 60ms
...

Hence our system has 81 distinct complex solutions of which 49 are real. But not
all real solutions are Nash equilibria. There are 33 real solutions which have at
least one negative coordinate. Here is one example of a real solution which is not
a Nash equilibrium, in the format found on the file cubegameout.

solution 8: start residual: 7.459E-17 #iterations: 1 success
...
a : 1.55970479507211E-01 9.62195295633190E-49
b : 1.25274260526218E-01 1.28292706084425E-48
c : 2.95132526635802E-01 3.42113882891801E-49
d : 3.57332205266636E-01 2.99349647530326E-48
f : 7.99323811855881E-01 -1.09476442525376E-46
g : -5.36793856105409E-01 1.12213353588511E-46
h : 1.40857082427868E-01 -1.12256117823872E-49
j : 1.45773653038247E-01 3.74187059412907E-49

== err : 5.143E-15 = .... 1.709E-16 = real regular ==
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This complex solution vector (a, b, c, d, f, g, h, j) is numerically recognized as being
real. The imaginary part of each coordinate is on the order of 10−48. It is not a
Nash equilibrium because the coordinate g = −0.5368 is negative.

At this point we wish to comment on our choice of variable names. We did
not use the letters e and i as these are reserved in PHCpack. The symbols i and I
stand for

√
−1, and the symbols e and E denote floating point numbers in scientific

notation, e.g., 9.62E-49 = 9.62e-49. Avoiding the use of these two letters is one of
the basic principles of polynomial system solving.

Our system has exactly 16 real solutions whose coordinates lie between 0 and
1. We list these points with each coordinate rounded to three decimals. Here is the
final conclusion for this example. Our game has precisely 16 totally mixed isolated
Nash equilibria. They are given by the rows of the table

Adam Bob Carl Dick Frank Gary Hugh Jim
a b c d f g h j

0.022 0.147 0.144 0.398 0.439 0.150 0.295 0.785
0.668 0.668 0.175 0.175 0.263 0.263 0.217 0.217
0.125 0.022 0.398 0.295 0.150 0.799 0.146 0.295
0.668 0.125 0.295 0.175 0.799 0.263 0.217 0.146
0.022 0.125 0.295 0.398 0.799 0.150 0.295 0.146
0.147 0.147 0.144 0.144 0.439 0.439 0.785 0.785
0.147 0.125 0.295 0.144 0.799 0.439 0.785 0.146
0.022 0.022 0.398 0.398 0.150 0.150 0.295 0.295
0.125 0.147 0.144 0.295 0.439 0.799 0.146 0.785
0.668 0.147 0.144 0.175 0.439 0.263 0.217 0.785
0.147 0.022 0.398 0.144 0.150 0.439 0.785 0.295
0.125 0.125 0.295 0.295 0.799 0.799 0.146 0.146
0.668 0.022 0.398 0.175 0.150 0.263 0.217 0.295
0.125 0.668 0.175 0.295 0.263 0.799 0.146 0.217
0.022 0.668 0.175 0.398 0.263 0.150 0.295 0.217
0.147 0.668 0.175 0.144 0.263 0.439 0.785 0.217

6.6. Exercises

(1) Consider three equations in unknowns a, b, c as in Corollary 6.3:

λ0bc+ λ1b+ λ2c+ λ3 = µ0ac+ µ1a+ µ2c+ µ3

= ν0ab+ ν1a+ ν2b+ ν3 = 0.

Find necessary and sufficient conditions, in terms of the nine parameters
λi, µj , νk for this system to have two real roots (a, b, c) both of which
satisfy 0 < a, b, c < 1. (In other words, characterize those 3-person games
with 2 pure strategies which have 2 totally mixed Nash equilibria.)

(2) Find all irreducible components of the variety defined by the equations
(6.11). How many components do not correspond to Nash equilibria?

(3) Determine the exact maximum number of isolated totally mixed Nash
equilibria of any 5-person game where each player has 5 pure strategies.

(4) Pick your favorite integer N between 0 and 44. Construct an explicit
five-person game with two mixed strategies per player which has exactly
N totally mixed Nash equilibria.
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(5) Write eight explicit payoff matrices of format 2×2×· · ·×2, one for each of
the eight players Adam, Bob, Carl, Dick, Frank, Gary, Hugh and Jim. In
other words, describe the 8-person game which gives rise to the algebraic
equations in Section 6.5.

(7) Suppose that the Adam-Bob-Carl-Dick-Frank-Gary-Hugh-Jim interaction
model changes as follows: the edge graph of the 3-cube is enlarged by
adding one diagonal for each of the six facets of the cube. For the new
graph with 18 edges, what is the expected number of totally mixed Nash
equilibria? Does this number depend on your choice of diagonals?

(8) Use Singular to solve the equations in the previous three exercises.
(9) Prove that there is nothing special about the number 321 appearing in

Nash’s poker game. More precisely, for every positive integer p which is
not a perfect square, there exists a 3-person game of format 2×2×2 which
has two totally mixed Nash equilibria whose coordinates are irrational
and lie in the field Q(

√
p). (In the weeks after the CBMS conference,

Ruchira Datta proved a much more general result, to the effect that every
real algebraic variety can be realized as the set of totally mixed Nash
equilibria of a 3-person game, and also of a multi-person game of format
2× 2× · · · × 2.)



CHAPTER 7

Sums of Squares

This chapter concerns polynomial problems over the real numbers R. This
means that the input consists of polynomials in R[x1, . . . , xn] where each coefficient
is given either as a rational number or a floating point number. A trivial but
crucial observation about real numbers is that sums of squares are non-negative.
Sums of squares lead us to Semidefinite Programming, an exciting subject of current
interest in numerical optimization and its engineering applications [VB96]. We
will give an introduction to semidefinite programming with a view towards solving
polynomial equations and inequalities over R. A crucial role is played by the Real
Nullstellensatz (Theorem 7.5) which tells us that either a polynomial problem has
a solution or there exists a certificate that no solution exists. Pablo Parrilo showed
in his dissertation [Par00] that semidefinite programming provides a numerical
method for computing such certificates, and he implemented this in SOStools.

7.1. Positive Semidefinite Matrices

We begin by reviewing some basic material from linear algebra. Let V ' Rm

be an m-dimensional real vector space which has a known basis. Every quadratic
form on V is represented uniquely by a symmetric m ×m-matrix A. Namely, the
quadratic form associated with a real symmetric matrix A is

(7.1) φ : V → R , u 7→ uT ·A · u.

The matrix A has only real eigenvalues. It can be diagonalized over the real numbers
by an orthogonal matrix Λ, whose columns are eigenvectors of A:

(7.2) ΛT ·A · Λ = diag(λ1, λ2, . . . , λm).

Computing this identity is a task in numerical linear algebra, a task that matlab
performs well. Given (7.2) our quadratic form can be written as

(7.3) φ(u) =
m∑

j=1

λj ·
( m∑

i=1

Λijui

)2
.

This expression is an alternating sum of squares of linear forms on V .

Proposition 7.1. For a symmetric m × m-matrix A with entries in R, the
following five conditions are equivalent:

(a) uT ·A · u ≥ 0 for all u ∈ Rm,
(b) all eigenvalues of A are nonnegative real numbers,
(c) all diagonal subdeterminants of A are nonnegative,
(d) there exists a real m×m-matrix B such that A = B ·BT ,
(e) the quadratic form uT ·A · u is a sum of squares of linear forms on Rm.

87
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A matrix A which satisfies the conditions (a) – (e) is called positive semidefinite.
By a diagonal subdeterminant of A we mean an i× i-subdeterminant with the same
row and column indices, for any i ∈ {1, 2, . . . ,m}. Thus condition (c) amounts to
checking 2m − 1 polynomial inequalities in the entries of A. If we wish to check
whether A is positive definite, which is the situation when all eigenvalues are strictly
positive, then it suffices to take the m principal minors, which are gotten by taking
the first i rows and first i columns only.

We call the identity A = B · BT in (d) a Cholesky decomposition of A. In
numerical analysis texts this term is often reserved for such a decomposition where
B is lower triangular. We allow B to be any real matrix. Note that the factor
matrix B is easily expressed in terms of the (floating point) data computed in (7.2)
and vice versa. Namely, we take

B = Λ · diag(
√
λ1,
√
λ2, . . . ,

√
λm).

In view of (7.3), this proves the equivalence of (d) and (e): knowledge of the matrix
B is equivalent to writing the quadratic form φ as a sum of squares.

Let Sym2(V ) denote the real vector space consisting of all symmetric m×m-
matrices. The positive semidefinite cone or PSD cone is

PSD(V ) = {A ∈ Sym2(V ) : A is positive semidefinite }.
This is a full-dimensional closed semi-algebraic convex cone in the vector space
Sym2(V ) ' R(m+1

2 ). The set PSD(V ) is closed and convex because it is the
solution set of an infinite system of linear inequalities in (a), one for each u ∈ Rm.
It is semi-algebraic because it can be defined by 2m−1 polynomial inequalities as in
(c). It is full-dimensional because every matrix A with strictly positive eigenvalues
λi has an open neighborhood in PSD(V ). The extreme rays of the cone PSD(V )
are the squares of linear forms, such as φ(u) = (c1u1 + c2u2 + · · ·+ cmum)2.

In what follows we use the symbol ` to denote a linear function (plus a constant)
on the vector space Sym2(V ). Explicitly, for an indeterminate symmetric matrix
A = (aij), a linear function ` can be written as follows:

`(A) = u00 +
m∑

1≤j<k≤m

ujk · ajk

where the ujk are constants. An affine subspace is the solution set to a system
of linear equations `1(A) = · · · = `r(A) = 0. Semidefinite programming concerns
the intersection of an affine subspace with the positive semidefinite cone [VB96].
There are highly efficient algorithms for solving the following problems.

Semidefinite Programming: Decision Problem
Given linear functions `1, . . . , `r, does there exist a positive semidefinite matrix
A ∈ PSD(V) which satisfies the equations `1(A) = · · · = `r(A) = 0?

Semidefinite Programming: Optimization Problem
Given linear functions `0, `1, . . . , `r, minimize `0(A) subject to A ∈ PSD(V) and
`1(A) = · · · = `r(A) = 0.

It is instructive to examine these two problems for the special case when A is
assumed to be a diagonal matrix, say, A = diag(λ1, . . . , λm). Then A ∈ PSD(V )
is equivalent to λ1, . . . , λm ≥ 0, and our first problem is to solve a linear system
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of equations in the non-negative reals. This is the Decision Problem of Linear
Programming. The second problem amounts to minimizing a linear function over
a convex polyhedron, which is the Optimization Problem of Linear Programming.
Thus Linear Programming is the restriction of Semidefinite Programming to diag-
onal matrices.

Consider the following simple semidefinite programming decision problem for
m = 3. Suppose we wish to find a positive semidefinite matrix

A =

a11 a12 a13

a12 a22 a23

a13 a23 a33

 ∈ PSD(R3) which satisfies

(7.4) a11 = 1, a12 = 0, a23 = −1, a33 = 2 and 2a13 + a22 = −1.

It turns out that this particular problem has a unique solution:

(7.5) A =

 1 0 −1
0 1 −1
−1 −1 2

 =

 1 0 0
0 1 0
−1 −1 0

 ·
 1 0 0

0 1 0
−1 −1 0

T

We will use this example to sketch the connection to sums of squares. Consider
the following fourth degree polynomial in one unknown:

f(x) = x4 − x2 − 2x+ 2.

We wish to know whether f(x) is non-negative on R. Since f(x) is a polynomial
in one variable only, this is equivalent to asking whether f(x) can be written as a
sum of squares of quadratic polynomials.

Consider the possible representations of our polynomial as a matrix product:

(7.6) f(x) =
(
x2 x 1

)
·

a11 a12 a13

a12 a22 a23

a13 a23 a33

 ·
x2

x
1


This identity holds if and only if the linear equations (7.4) are satisfied. By condition
(e) in Proposition 7.1, the polynomial in (7.6) is a sum of squares if and only if
the matrix A = (aij) is positive semidefinite. Thus the semidefinite programming
decision problem specified by (7.4) is equivalent to the question whether f(x) is a
sum of squares. The answer is affirmative and given in (7.5). From the Cholesky
decomposition of A = (aij) in (7.5) we get

f(x) =
(
x2 − 1 x− 1 0

)
·

x2 − 1
x− 1

0

 = (x2 − 1)2 + (x− 1)2.

7.2. Zero-dimensional Ideals and SOStools

Let I be a zero-dimensional ideal in S = R[x1,. . . , xn] which is given to us
by an explicit Gröbner basis G with respect to some term order ≺. Thus we are
in the situation of Chapter 2. The set B = B≺(I) of standard monomials is an
effective basis for the R-vector space V = S/I. Suppose that #(B) = m, so that
S/I ' Rm. Every quadratic form on V is represented by an m×m-matrix A whose
rows and columns are indexed by B. Let X denote the column vector of length
m whose entries are the monomials in B. Then XT · A · X is a polynomial in
S = R[x1, . . . , xn]. It can be regarded as an element of S/I = RB by taking its
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normal form modulo the Gröbner basis G. In this section we apply semidefinite
programming to the quadratic forms XT · A ·X on V . The point of departure is
the following theorem.

Theorem 7.2. The following three statements are equivalent:
(a) The ideal I has no real zeros.
(b) The constant −1 is a sum of squares in V = S/I.
(c) There exists a positive semidefinite m×m-matrix A such that

(7.7) XT ·A ·X + 1 lies in the ideal I.

The equivalence of (b) and (c) follows from Proposition 7.1. The implication
from (b) to (a) is obvious. The implication from (a) to (b) is proved by reduction to
the case n = 1. For one variable, it follows from the familiar fact that a polynomial
in R[x] with no real roots can be factored into a product of irreducible quadratic
polynomials. See Corollary 7.7 for a generalization. The condition (7.7) can be
written as

(7.8) XT ·A ·X + 1 reduces to zero modulo the Gröbner basis G.
This is a linear system of equations in the unknown entries of the symmetric

matrix A. We wish to decide whether A lies in cone PSD(V ). Thus the question
whether the given ideal I has a real zero or not has been reformulated as a decision
problem of semidefinite programming. A positive solution A to the semidefinite
programming problem provides a certificate for the non-existence of real roots.

The following ideal (for n = 3) appeared as an example in Chapter 2:

I = 〈 z2 + 1
5x−

1
5y + 2

25 , y
2 − 1

5x+ 1
5z + 2

25 ,

x2 + 1
5y −

1
5z + 2

25 , xy + xz + yz + 1
25 〉

The four given generators are a Gröbner basis. We have R[x, y, z]/I ' R6. The
column vector of standard monomials is X =

(
1, x, y, z, xz, yz

)T . We wish to
show that I has no real zeros, by finding a representation (7.7). We use the software
SOStools which was developed by Pablo Parrilo and his collaborators at Caltech.
It is available at http://www.cds.caltech.edu/sostools/.

The following SOStools sessions were prepared by Ruchira Datta. We write
g1, g2, g3, g4 for the given generators of the ideal I. Our decision variables are p1,
a sum of squares, and p2, p3, p4, p5, arbitrary polynomials. They are supposed to
satisfy

p1 + 1 + p2 · g1 + p3 · g2 + p4 · g3 + p5 · g4 = 0.
Here is how to say this in SOStools:
>> clear; maple clear; echo on
>> syms x y z;
>> vartable = [x; y; z];
>> prog = sosprogram(vartable);
>> Z = [ 1; x; y; z; x*z; y*z ];
>> [prog,p{1}] = sossosvar(prog,Z);
>> for i = 1:4

[prog,p{1+i}] = sospolyvar(prog,Z);
end;

>> g{1} = z^2 + x/5 - y/5 + 2/25;
>> g{2} = y^2 - x/5 + z/5 + 2/25;
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>> g{3} = x^2 + y/5 - z/5 + 2/25;
>> g{4} = x*y + x*z + y*z + 1/25;
>> expr = p{1} + 1;
>> for i = 1:4

expr = expr + p{1+i}*g{i};
end;

>> prog = soseq(prog,expr);
>> prog = sossolve(prog);

The program prepares the semidefinite programming problem (SDP) and then it
calls on another program SeDuMi for solving the SDP by interior point methods.
The numerical output produced by SeDuMi looks like this:

SeDuMi 1.05 by Jos F. Sturm, 1998, 2001.
Alg = 2: xz-corrector,
Step-Differentiation, theta = 0.250, beta = 0.500
eqs m = 35, order n = 87, dim = 117, blocks = 2
nnz(A) = 341 + 0, nnz(ADA) = 563, nnz(L) = 336
it : b*y gap delta rate t/tP* t/tD* feas cg cg
0 : 2.82E-01 0.000
1 : 3.23E+00 6.35E-03 0.000 0.0225 0.9905 0.9900 -0.07 1 1
2 : 2.14E-04 3.33E-06 0.000 0.0005 0.9999 0.9999 0.97 1 1
3 : 2.15E-11 3.34E-13 0.000 0.0000 1.0000 1.0000 1.00 1 1

iter seconds digits c*x b*y
3 0.8 Inf 0.0000000000e+00 2.1543738837e-11

|Ax-b| = 2.1e-12, [Ay-c]_+ = 6.2E-12,|x|= 7.5e+01,|y|= 2.3e-11
Max-norms: ||b||=1, ||c|| = 0,
Cholesky |add|=0, |skip| = 0, ||L.L|| = 2.79883.

Residual norm: 2.1405e-12
cpusec: 0.8200
iter: 3

feasratio: 1.0000
pinf: 0
dinf: 0

numerr: 0

The bottom two entries pinf: 0 and dinf: 0 indicate that the SDP was fea-
sible and a solution p1, . . . , p5 has been found. At this point we may already
conclude that I has no real zeros. We can now ask SOStools to display the sum of
squares p1 it has found. This is done by typing

>> SOLp1 = sosgetsol(prog,p{1})

Rather than looking at the messy output, let us now return to our general
discussion. Suppose that I is a zero-dimensional ideal which has real roots, perhaps
many of them. Then we might be interested in selecting the best real root, in the
sense that it minimizes some polynomial function.

Real Root Optimization Problem
Given a polynomial f ∈ S, minimize f(u) subject to u ∈ V(I) ∩ Rn.
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This problem is equivalent to finding the largest real number λ such that f(x)−
λ is non-negative on V(I) ∩ Rn. In the context of semidefinite programming, it
makes sense to consider the following optimization problem:

Sum of Squares in an Artinian Ring
Given a polynomial f ∈ S, maximize λ ∈ R subject to

XT ·A ·X − f(x) + λ ∈ I and A positive semidefinite.

The latter problem can be easily solved using semidefinite programming, and
it always leads to a lower bound λ for the true minimum. Recent unpublished work
of Parrilo shows that this lower bound is always tight. We illustrate the basic idea
with a trivial example in one variable. Consider the optimization problem

Minimize x subject to x2 − 5x+ 6 = 0.

Its reformulation as a Sum of Squares problem is as follows:

Maximize λ such that x− λ is a sum of squares modulo 〈x2 − 5x+ 6〉.
The solution to this semidefinite program is λ = 2, the desired answer, since

(x− 2) = (x− 2)2 − (x2 − 5x+ 6).

I learned the following result from Pablo Parrilo, while both of us enjoyed a few
frosty days at the University of Saskatchewan in Saskatoon in March 2002.

Theorem 7.3. (Parrilo) Let I be a zero-dimensional radical ideal in S =
R[x1, . . . , xn], and let g ∈ S be a polynomial which is nonnegative on V(I) ∩ Rn.
Then g is a sum of squares in S/I.

Proof. For each real root u of I, pick a polynomial pu(x) which vanishes on
V(I)\{u} but pu(u) = 1. For each pair of imaginary roots U = {u, u}, we pick
a polynomial qU (x) with real coefficients which vanishes on V(I)\U but qU (u) =
qU (u) = 1, and we construct a sum of squares sU (x) in S = R[x1, . . . , xn] such
that g is congruent to sU modulo 〈x − u〉 ∩ 〈x − u〉. The following polynomial
has real coefficients and is obviously a sum of squares:

G(x) =
∑

u∈V(I)∩Rn

g(u) · pu(x)2 +
∑

U∈V(I)\Rn

sU (x) · qU (x)2.

By construction, the difference g(x)−G(x) vanishes on the complex variety of I.
Since I is a radical ideal, the Nullstellensatz implies that g(x) − G(x) lies in I.
This proves that the image of g(x) in S/I is a sum of squares. �

Corollary 7.4. If I is radical then the Real Root Optimization Problem is
solved exactly by its relaxation Sum of Squares in an Artinian Ring.

7.3. Global Optimization

In this section we discuss the problem of finding the global minimum of a
polynomial function on Rn, along the lines presented in more detail in [PaS01].
Let f be a polynomial in R[x1, . . . , xn] which attains a minimum value f∗ = f(u)
as u ranges over all points in Rn. Our goal is to find the real number f∗. Naturally,
we also wish to find a point u at which this value is attained, but let us concentrate
on finding f∗ first.
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For example, the following class of polynomials is obviously bounded below and
provides a natural test family:

(7.9) f(x1, . . . , xn) = x2d
1 + x2d

2 + · · ·+ x2d
n + g(x1, . . . , xn)

where g is an arbitrary polynomial of degree at most 2d− 1. In fact, it is possible
to deform any instance of our problem to one that lies in this family.

An optimal point u ∈ Rn of our minimization problem is a zero of the critical
ideal

I =
〈 ∂f
∂x1

,
∂f

∂x2
, . . . ,

∂f

∂xn

〉
⊆ S.

Hence one possible approach would be to locate the real roots of I and then to
minimize f over that set. For instance, in the situation of (7.9), the n partial
derivatives of f are already a Gröbner basis of I with respect to the total degree
term order, so it should be quite easy to apply any of the methods we already
discussed for finding real roots. The trouble is that the Bézout number of the
critical ideal I equals (2d− 1)n. This number grows exponentially in n for fixed d.
A typical case we might wish to solve in practice is minimizing a quartic in eleven
variables. For 2d = 4 and n = 11 we get (2d − 1)n = 311 = 177, 147. What
we are faced with is doing linear algebra with square matrices of size 177, 147, an
impossible task.

Consider instead the following relaxation of our problem. This relaxation was
first proposed and studied by N. Shor [Sho98].

Global Minimization: SOS Relaxation
Find the largest λ ∈ R such that f(x1, . . . , xn)− λ is a sum of squares.

The optimal value λ∗ for this problem clearly satisfies λ∗ ≤ f∗. It is well-known
from the solution to Hilbert’s 17th problem that there exist positive polynomials
which are not sums of squares. Such polynomials f have the property λ∗ < f∗.
For instance, consider Motzkin’s polynomial

(7.10) f(x, y) = x4y2 + x2y4 − 3x2y2.

For this polynomial we even have λ∗ = −∞ and f∗ = 0. However, the experiments
in [PaS01] suggest that the equality f∗ = λ∗ almost always holds in random
instances. Moreover, the semidefinite algorithm for computing λ∗ allows us to
certify f∗ = λ∗ and to find a matching u ∈ Rn in these cases.

The SOS Relaxation can be translated into a semidefinite programming prob-
lem where the underlying vector space is the space of polynomials of degree at most
d,

V = R[x1, . . . , xn]≤d ' R(n+d
d ).

Note that the dimension
(
n+d

d

)
of this space grows polynomially in n when d is

fixed. For a concrete example consider again the problem of minimizing a quartic in
eleven variables. Here d = 2 and n = 11, so we are dealing with symmetric matrices
of order

(
n+d

d

)
=
(
13
2

)
= 78. This number is considerably smaller than 177, 147.

Linear algebra for square matrices of order 78 is quite tractable, and a standard
semidefinite programming implementation finds the exact minimum of a random
instance of (7.9) in about ten minutes. Here is an explicit example in SOStools,
with its SeDuMi output suppressed:
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>> clear; maple clear; echo on
>> syms x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 lambda;
>> vartable = [x1; x2; x3; x4; x5; x6; x7; x8; x9; x10; x11];
>> prog=sosprogram(vartable,[lambda]);
>> f = x1^4 + x2^4 + x3^4 + x4^4 + x5^4 + x6^4 + x7^4 + x8^4

+ x9^4 + x10^4 + x11^4 - 59*x9 + 45*x2*x4 - 8*x3*x11
- 93*x1^2*x3 + 92*x1*x2*x7 + 43*x1*x4*x7 - 62*x2*x4*x11
+ 77*x4*x5*x8 + 66*x4*x5*x10 + 54*x4*x10^2 - 5*x7*x9*x11;

>> prog=sosineq(prog,f+lambda);
>> prog=sossetobj(prog,lambda);
>> prog=sossolve(prog);
>> SOLlambda=sosgetsol(prog,lambda)

SOLlambda =

.12832e8

With a few more lines of SOStools and matlab code, we can now verify that
λ∗ = 0.12832e8 = f∗ holds and we can find a point u ∈ R11 such that f(u) = f∗.

7.4. The Real Nullstellensatz

In this section we consider an arbitrary system of polynomial equations and
inequalities in n real variables x = (x1, . . . , xn). The Real Nullstellensatz states
that such a system either has a solution u ∈ Rn or there exists a certain certificate
that no solution exists. This result can be regarded as a common generalization
of Hilbert’s Nullstellensatz (for polynomial equations over C) and of Linear Pro-
gramming Duality (for linear inequalities over R). The former states that a set of
polynomials f1, . . . , fr either has a common complex zero or there exists a certificate
of non-solvability of the form

∑r
i=1 pifi = 1, where the pi are polynomial mul-

tipliers. One of the many equivalent formulations of Linear Programming duality
states the following: A system of strict linear inequalities h1(x) > 0, . . . , ht(x) > 0
either has a solution, or there exists nonnegative real numbers αi, not all zero, such
that

t∑
i=1

αi · hi(x) = 0.

Such an identity is an obvious certificate of non-solvability.
The Real Nullstellensatz states the existence of certificates for all polynomial

systems. The following version of this result is due to Stengle [Ste74].
Theorem 7.5. (Real Nullstellensatz) The system of polynomial equations

and inequalities

f1(x) = 0, f2(x) = 0, . . . , fr(x) = 0,
g1(x) ≥ 0, g2(x) ≥ 0, . . . , gs(x) ≥ 0,
h1(x) > 0, h2(x) > 0, . . . , ht(x) > 0,

either has a solution in Rn, or there exists a polynomial identity∑r
i=1 αifi +

∑
ν∈{0,1}s(

∑
j bjν)2 · gν1

1 · · · gνs
s

+
∑

ν∈{0,1}t(
∑

j cjν)2 · hν1
1 · · ·h

νt
t +

∑
k d

2
k +

∏t
l=1 h

ul

l = 0,
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where uj ∈ N and ai, bjν , cjν , dk are polynomials.
It is instructive to consider some special cases of this theorem. For instance,

consider the case r = s = 0 and t = 1. In that case we must decide the solvability
of a single strict inequality h(x) > 0. This inequality has no solution, i.e., −h(x)
is a nonnegative polynomial on Rn, if and only if there exists an identity of the
following form

(
∑

j

cj)2 · h +
∑

k

d2
k + hu = 0.

Here u is either 0 or 1. In either case, we can solve for −h and conclude that −h
is a ratio of two sum of squares of polynomials. This expression can obviously be
rewritten as a sum of squares of rational functions. This proves:

Corollary 7.6. (Artin’s Theorem) Every polynomial which is nonnegative
on Rn is a sum of squares of rational functions.

Another case deserves special attention, namely, the case s = t = 0. There are
no inequalities, but we are to solve r polynomial equations

(7.11) f1(x) = f2(x) = · · · = fr(x) = 0.

For this polynomial system, the expression
∏t

l=1 h
ul

l in the Real Nullstellensatz
certificate is the empty product, which evaluates to 1. Hence if (7.11) has no real
solutions, then there exists an identity

r∑
i=1

αifi +
∑

k

d2
k + 1 = 0.

This implies that Theorem 7.2 holds not just in the zero-dimensional case.
Corollary 7.7. Let I be any ideal in S = R[x1, . . . , xn] whose real variety

V(I) ∩ Rn is empty. Then −1 is a sum of squares of polynomials modulo I.
Here is our punchline, first stated in the dissertation of Pablo Parrilo [Par00]:

A Real Nullstellensatz certificate of bounded degree can be computed efficiently
by semidefinite programming. Here we can also optimize parameters which appear
linearly in the coefficients.

This suggests the following algorithm for deciding a system of polynomial equa-
tions and inequalities: decide whether there exists a witness for infeasibility of de-
gree ≤ D, for some D � 0. If our system is feasible, then we might like to minimize
a polynomial f(x) over the solution set. The Dth SDP relaxation would be to ask
for the largest real number λ such that the given system together with the inequal-
ity f(x) − λ < 0 has an infeasibility witness of degree D. This generalizes what
was proposed in the previous section.

It is possible, at least in principle, to use an a priori bound for the degree D in
the Real Nullstellensatz. However, the currently known bounds are still very large.
Lombardi and Roy [Roy01] recently announced a bound which is triply-exponential
in the number n of variables. We hope that such bounds can be further improved,
at least for some natural families of polynomial problems arising in optimization.

Here is a very simple example in the plane to illustrate the method:

(7.12) f := x− y2 + 3 ≥ 0 , g := y + x2 + 2 = 0.

By the Real Nullstellensatz, the system {f ≥ 0, g = 0} has no solution (x, y) in
the real plane R2 if and only if there exist polynomials s1, s2, s3 ∈ R[x, y] that



96 7. SUMS OF SQUARES

satisfy the following:

(7.13) s1 + s2 · f + 1 + s3 · g ≡ 0 , where s1 and s2 are sums of squares.

The Dth SDP relaxation of the polynomial problem {f ≥ 0, g = 0} asks whether
there exists a solution (s1, s2, s3) to (7.13) where the polynomial s1 has degree ≤ D
and the polynomials s2, s3 have degree ≤ D − 2. For each fixed integer D > 0 this
can be tested by semidefinite programming. Specifically, we can use the program
SOStools. For D = 2 we find the solution

s1 = 1
3 + 2

(
y + 3

2

)2 + 6
(
x− 1

6

)2
, s2 = 2, s3 = −6.

The resulting identity (7.13) proves that the polynomial system {f ≥ 0, g = 0} is
inconsistent.

7.5. Symmetric Matrices with Double Eigenvalues

The material in this section is independent from the previous sections. It is
inspired by a lecture of Peter Lax in the Berkeley Mathematics Colloquium in
February 2001 and by discussions with Beresford Parlett and David Eisenbud.

Given three real symmetric n × n-matrices A0, A1 and A2, how many real
matrices of the form A0 +xA1 +yA2 have a double eigenvalue? Peter Lax [Lax98]
proved that there is always at least one such matrix if n ≡ 2 (mod 4). We shall
extend the result of Lax as follows:

Theorem 7.8. Given three general symmetric n×n-matrices A0, A1, A2, there
are exactly

(
n+1

3

)
pairs of complex numbers (x, y) for which A0 + xA1 + yA2 has

a critical double eigenvalue.

A critical double eigenvalue is one at which the complex discriminantal hyper-
surface ∆ = 0 (described below) is singular. This theorem implies the result of Lax
because all real double eigenvalues are critical, and(

n+ 1
3

)
=

1
6
· (n− 1) · n · (n+ 1) is odd if and only if n ≡ 2 (mod 4).

In the language of algebraic geometry, Theorem 7.8 states that the complexifi-
cation of the set of all real n×n-symmetric matrices which have a double eigenvalue
is a projective variety of degree

(
n+1

3

)
. Surprisingly, this variety is not a hypersur-

face but has codimension 2. We also propose the following refinement of Theorem
7.8 in terms of real algebraic geometry:

Conjecture 7.9. There exist three real symmetric n× n-matrices A0, A1 and
A2 such that all

(
n+1

3

)
complex solutions (x, y) to the problem in Theorem 7.8 have

real coordinates.

Consider the case n = 3. The discriminant ∆ of the symmetric matrix

(7.14) X =

a b c
b d e
c e f


is the discriminant of its characteristic polynomial. This is an irreducible homoge-
neous polynomial with 123 terms of degree 6 in the indeterminates a, b, c, d, e, f . It
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can be written as a sum of squares of ten cubic polynomials:

∆ = 2(−acd+ acf + b2c− bde+ bef − c3 + cd2 − cdf)2

+ 2(−abd+ abf + b3 − bc2 + bdf − bf2 − cde+ cef)2

+ 2(abd− abf + ace− b3 − bdf + be2 + bf2 − cef)2

+ 2(abe− acd+ acf − bde− c3 + cd2 − cdf + ce2)2

+ 2(−a2e+ abc+ ade+ aef − bcd− c2e− def + e3)2

+ 2(−a2e+ abc+ ade+ aef − b2e− bcf − def + e3)2

+ 14(b2e−bcd+ bcf−c2e)2 + 14(ace−bc2 + be2−cde)2

+14(abe−b2c−bef + ce2)2 + (a2d− a2f − ab2 + ac2

−ad2 + af2 + b2d− c2f + d2f − de2 − df2 + e2f)2

This polynomial defines a hypersurface in complex projective 5-space P5. What
we are interested in is the complexification of the set of real points of this hyper-
surfaces. (These real points are precisely the real symmetric 3× 3-matrices which
have a double eigenvalue.) This is the subvariety of P5 defined by the ten cubic
polynomials appearing in the above representation of ∆. These cubics arise from
the following determinantal presentation of our variety due to Ilyushechkin [Ily92].
Consider the following two 3× 6-matrices of linear forms:

FT =

−b b 0 a− d −e c
−c 0 c −e a− f b
0 −e e −c b d− f


G =

 1 1 1 0 0 0
a d f b c e

a2+b2+c2 b2+d2+e2 c2+e2+f2 ab+bd+ce ac+be+cf bc+de+ef


The kernel of either matrix equals the row span of the other matrix,

G · F =

0 0 0
0 0 0
0 0 0


and this holds even when we take the kernel or row span as modules over the
polynomial ring S = R[a, b, c, d, e, f ]. In other words, we have an exact sequence
of free S-modules:

0 −→ S3 F−→ S6 G−→ S3.

The set of ten cubics defining our variety coincides with the set of non-zero maximal
minors of F and also with the set of non-zero maximal minors of G. For instance,
the 12-term cubic in the last summand of our formula for ∆ equals the determinant
of the last three columns of F or of the first three columns of F . In fact, we have
the following identity

∆ = det
(
FT · diag(2, 2, 2, 1, 1, 1) · F

)
= det

(
G · diag(1, 1, 1, 2, 2, 2) ·GT

)
.

The following two facts are easily checked with maple:
(1) The subvariety of P5 defined by the 3 × 3-minors of either F or G is

irreducible of codimension 2 and degree 4.
(2) There exists a real 2-plane in P5 whose intersection with that subvariety

consists of four distinct points whose coordinates are real.
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These two points are exactly what is claimed for n = 3 in our conjecture.

The exact sequence and the above formula for ∆ exist for all values of n.
This beautiful construction is due to Ilyushechkin [Ily92]. We shall describe it
in commutative algebra language. We write Sym2(Rn) for the space of symmetric
n×n-matrices, and we write ∧2(Rn) for the space of antisymmetric n×n-matrices.
These are real vector spaces of dimension

(
n+1

2

)
and

(
n
2

)
respectively. Let X = (xij)

be a symmetric n× n-matrix with indeterminate entries. Let S = R[X] denote the
polynomial ring over the real numbers generated by the

(
n+1

2

)
variables xij and

consider the free S-modules

∧2(Sn) = ∧2(Rn)⊗ S and Sym2(S
n) = Sym2(Rn)⊗ S.

Lemma 7.10. The following is an exact sequence of free S-modules:

(7.15) 0 −→ ∧2(Sn) F−→ Sym2(S
n) G−→ Sn −→ 0,

where the maps are defined as

F (A) = AX −XA and G(B) =
(
trace(BXi)

)
i=0,...,n−1

.

Proof. It is easily seen that the sequence is a complex and is generically
exact. The fact that it is exact follows from the Buchsbaum-Eisenbud criterion
[Eis95, Theorem 20.9], or, more specifically, by applying [Eis95, Exercise 20.4] to
the localizations of S at maximal minors of F . �

The following sum of squares representation is due to Ilyushechkin [Ily92].
Theorem 7.11. The discriminant of a symmetric n× n-matrix X equals

(7.16) ∆ = det
(
FT · F) = det

(
G ·GT ),

where F and G are matrices representing the maps F and G in suitable bases.
We now come to the proof of Theorem 7.8.

Proof. The dual sequence to (7.15) is also exact and it provides a minimal
free resolution of the module coker(FT ). This module is Cohen-Macaulay of codi-
mension 2 and the resolution can be written with degree shifts as follows:

0 −→ ⊕n
i=1S(−i) GT

−→ S(−1)(
n+1

2 ) F T

−→ S(n
2).

The Hilbert series of the shifted polynomial ring S is xi · (1− x)−(n+1
2 ) . The

Hilbert series of the module S(−1)(
n+1

2 ) is
(
n+1

2

)
· x · (1− x)−(n+1

2 ). The Hilbert
series of the module coker(FT ) is the alternating sum of the Hilbert series of the
modules in (7.16), and it equals{(

n

2

)
−
(
n+ 1

2

)
· x+

n∑
i=1

xi

}
· (1− x)−(n+1

2 ).

Removing a factor of (1 − x)2 from the parenthesized sum, we can rewrite this
expression for the Hilbert series of coker(FT ) as follows:{ n∑

i=2

(
i

2

)
xn−i

}
· (1− x)−(n+1

2 )+2.
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We know already that coker(FT ) is a Cohen-Macaulay module of codimension 2.
Therefore we can conclude the following formula for its degree:

(7.17) degree
(
coker(FT )

)
=

n∑
i=2

(
i

2

)
=

(
n+ 1

3

)
.

Finally, let X be the support of the module coker(FT ). Thus X is precisely our
codimension 2 variety which is cut out by the vanishing of the maximal minors of the
matrix F . The generic fiber of the vector bundle on X represented by coker(FT )
is a one-dimensional space, since the rank drop of the matrix F is only one if the
underlying symmetric matrix has only one double eigenvalue and n − 2 distinct
eigenvalues. We conclude that the degree of X equals the degree of the module
coker(FT ). The identity in (7.17) now completes the proof of Theorem 7.8. �

7.6. Exercises

(1) Solve the following one-variable problem using SOStools: Minimize x
subject to x11 − 6x7 + x2 + 1 = 0.

(2) Take g(x1, x2, . . . , x10) to be your favorite inhomogeneous polynomial of
degree three in ten variables. Make sure it looks random enough. Use
SOStools to find the global minimum in R10 of the quartic polynomial

x4
1 + x4

2 + · · ·+ x4
10 + g(x1, x2, . . . , x10).

(3) Suppose that two polynomial inequalities f(x, y, z) ≥ 0 and g(x, y, z) ≥ 0
have no common solution in R3. What does the real Nullstellensatz say
about this situation? How would you compute a witness?

(4) Nina and Pascal stand in the playground 10 meters apart and they each
hold a ball of radius 10 cm. Suddenly they throw their balls at each
other in a straight line at the same constant speed, say, 1 meter per
second. At what time (measured in seconds) will their balls first hit?
Formulate this using polynomial equations (and inequalities?) and explain
how semidefinite programming can be used to solve it. Nina next suggests
to Pascal that they replace their balls by more interesting semialgebraic
objects, for instance, those defined by xai + ya2 + za3 ≤ 1 for arbitrary
integers a1, a2, a3. Update your model and your SDP.

(5) Find the smallest positive real number a such that the following three
equations have a common solution in R3:

x6 + 1 + ay2 + az = y6 + 1 + az2 + ax

= z6 + 1 + ax2 + ay = 0.

(6) What does the Duality Theorem of Semidefinite Programming say? What
is the dual solution to the SDP problem which asks for a sum of squares
representation of f(x) − λ? Can you explain the cryptic sentence “With
a few more lines...” at the end of the third section?

(7) Write the discriminant ∆ of the symmetric 3 × 3-matrix (7.14) as a sum
of squares, where the number of squares is as small as possible.

(8) Consider the following configuration of eight points and eight lines in the
projective plane, where each line contains three points and each point lies
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on three lines. The collinear triples of points are

124 235 346 457 568 671 782 813.

No other triple is collinear. Prove that such a configuration exists over the
complex numbers C but does not exist over the real numbers R. Provide
a Real Nullstellensatz certificate for the non-existence over R.

(9) Compute the discriminant of the generic real symmetric 4 × 4-matrix.
Prove Conjecture 7.9 for n = 4.



CHAPTER 8

Polynomial Systems in Statistics

In this chapter we encounter three classes of polynomial systems arising in
statistics and probability. The first one concerns the algebraic conditions charac-
terizing conditional independence statements for discrete random variables. Com-
putational algebra provides useful tools for analyzing such statements and for mak-
ing inferences about conditional independence. A particular emphasis is placed
on graphical models in the sense of Lauritzen’s book [Lau96]. The second class
consists of binomial equations which represent certain moves for Markov chains.
We discuss joint work with Diaconis and Eisenbud [DES98] on the use of primary
decomposition for quantifying the connectivity of Markov chains. The third class
consists of the polynomial equations satisfied by the maximum likelihood equations
in a log-linear model. We present a classical numerical algorithm, called iterative
proportional scaling, for solving the maximum likelihood equations. For additional
background regarding the use of Gröbner bases in statistics we refer to the book
Algebraic Statistics by Pistone, Riccomagno and Wynn [PRW01].

8.1. Conditional Independence

The set of probability distributions that satisfy a conditional independence
statement is the zero set of certain polynomials and can hence be studied using
methods from algebraic geometry. We call such a set an independence variety. In
what follows we describe the polynomials defining independence varieties and we
present some fundamental algebraic problems about them.

Let X1, . . . , Xn denote discrete random variables, where Xi takes values in the
set [di] = {1, 2, . . . , di}. We write D = [d1]× [d2]× · · · × [dn] so that RD denotes
the real vector space of n-dimensional tables of format d1 × d2 × · · · × dn. We
introduce an indeterminate pu1u2...un

which represents the probability of the event
X1 = u1, X2 = u2, . . . , Xn = un. These indeterminates generate the ring R[D] of
polynomial functions on the space of tables RD.

A conditional independence statement about X1, X2, . . . , Xn has the form

(8.1) A is independent of B given C (in symbols: A ⊥ B |C)

where A, B and C are pairwise disjoint subsets of {X1, . . . , Xn}. If C is the empty
set then (8.1) just reads A is independent of B.

Proposition 8.1. The independence statement (8.1) translates into a set of
quadratic polynomials in R[D] indexed by

(8.2)
(∏

Xi∈A[di]
2

)
×
(∏

Xj∈B [dj ]
2

)
×
∏

Xk∈C

[dk].

101
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Proof. Picking any element of the set (8.2) means choosing two distinct ele-
ments a and a′ in

∏
Xi∈A[di], two distinct elements b and b′ in

∏
Xj∈B [dj ], and an

element c in
∏

Xk∈C [dk]. This determines an expression involving probabilities:

Prob(A = a,B = b, C = c) · Prob(A = a′, B = b′, C = c)
− Prob(A = a′, B = b, C = c) · Prob(A = a,B = b′, C = c).

The vanishing of this expression, for all a, a′, b, b′, c, is equivalent to the validity of
the independence statement A ⊥ B |C.

To get our quadrics indexed by (8.2), we translate each of the probabilities
Prob( · · · · · · ) into a linear polynomial in R[D]. Namely, Prob(A = a,B = b, C =
c) equals the sum of all indeterminates pu1u2···un which satisfy:

• for all Xi ∈ A, the Xi-coordinate of a equals ui,
• for all Xj ∈ B, the Xj-coordinate of b equals uj , and
• for all Xk ∈ C, the Xk-coordinate of c equals uk.

We define IA⊥B|C to be the ideal in the polynomial ring R[D] which is generated
by the quadratic polynomials indexed by (8.2) and described above. �

We illustrate the definition of the ideal IA⊥B|C with some simple examples.
Take n = 3 and d1 = d2 = d3 = 2, so that RD is the 8-dimensional space of
2× 2× 2-tables, and

R[D] = R[p111, p112, p121, p122, p211, p212, p221, p222].

The statement {X2} is independent of {X3} given {X1} describes the ideal

(8.3) IX2⊥X3|X1 = 〈p111p122 − p112p121, p211p222 − p212p221〉.
The statement {X2} is independent of {X3} determines the principal ideal

(8.4) IX2⊥X3 = 〈 (p111 + p211)(p122 + p222) − (p112 + p212)(p121 + p221) 〉.
The ideal IX1⊥{X2,X3} representing the statement {X1} is independent of {X2, X3}
is generated by the six 2× 2-subdeterminants of the 2× 4-matrix

(8.5)
(
p111 p112 p121 p122

p211 p212 p221 p222

)
The variety VA⊥B|C is defined as the set of common zeros in CD of the poly-

nomials in IA⊥B|C . Thus VA⊥B|C is a set of complex d1 × · · · × dn-tables, but in
statistics applications we only care about the subset V ≥0

A⊥B|C of tables whose entries
are non-negative reals. These correspond to probability distributions that satisfy
the independence fact A ⊥ B|C. We also consider the subsets V R

A⊥B|C of real
tables and V >0

A⊥B|C of strictly positive tables. The variety VA⊥B|C is irreducible
because the ideal IA⊥B|C is a prime ideal.

Lemma 8.2. For any independence statement (8.1), the ideal IA⊥B|C prime.

Proof. This is derived from the well-known fact that the ideal generated by
all 2 × 2-subdeterminants of a matrix of indeterminates is a prime ideal. Indeed,
for fixed c ∈

∏
Xk∈C [dk], we can form the matrix with entries

Prob(A = a,B = b, C = c).

The rows of this matrix are indexed by
∏

Xi∈A[di] and the columns are indexed by∏
Xj∈B [dj ]. The entries in this matrix are linear forms in R[D]. These linear forms
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are sums of pairwise disjoint sets of indeterminates. Hence the ideal of 2×2-minors
is a prime ideal in R[D]. Our ideal IA⊥B|C is the sum of these prime ideals, as
c ranges over

∏
Xk∈C [dk]. Again, the sets of indeterminates appearing among the

generators of each summand are pairwise disjoint, and hence the resulting ideal
IA⊥B|C is prime as well. �

Many statistical models for categorical data can be described by a finite set of
independence statements (8.1). An independence model is such a set:

M =
{
A(1)⊥B(1)|C(1), A(2)⊥B(2)|C(2), . . . , A(m)⊥B(m)|C(m)

}
.

This class of models includes all directed and undirected graphical models, to be
discussed below. The ideal of the model M is defined as the sum

IM = IA(1)⊥B(1)|C(1) + IA(2)⊥B(2)|C(2) + · · · + IA(m)⊥B(m)|C(m) .

The independence variety is the set of tables which satisfy these polynomials:

VM = VA(1)⊥B(1)|C(1) ∩ VA(2)⊥B(2)|C(2) ∩ · · · ∩ VA(m)⊥B(m)|C(m) .

Problem 8.3. For which models M is the independence ideal IM a prime
ideal, and for which models M is the independence variety VM irreducible?

As an example consider the following model for binary random variables:

MyModel =
{
X2 ⊥ X3 , X1 ⊥ {X2, X3}

}
The ideal of this model is neither prime nor radical. It decomposes as

(8.6) IMyModel = IX2⊥X3 + IX1⊥{X2,X3} = ISegre ∩
(
P 2 + IX1⊥{X2,X3}

)
where the first component is the independence ideal for the model

Segre =
{
X1 ⊥ {X2, X3}, X2 ⊥ {X1, X3}, X3 ⊥ {X1, X2}

}
Thus ISegre is the prime ideal of the Segre embedding of P1 × P1 × P1 into P7.
The second component in (8.6) is a primary ideal with radical

P = 〈 p111 + p211, p112 + p212, p121 + p221, p122 + p222 〉.

Since this ideal has no non-trivial zeros in the positive orthant, we conclude that
MyModel is equivalent to the complete independence model Segre.

V ≥0
MyModel = V ≥0

Segre.

Thus the equation (8.6) proves the following rule for binary random variables:

(8.7) X2 ⊥ X3 and X1 ⊥ {X2, X3} implies X2 ⊥ {X1, X3}

It would be a nice project to determine the primary decompositions for all mod-
els on few random variables, say n ≤ 5. The combinatorial techniques introduced
by Hoşten and Shapiro [HS00] should be particularly helpful for this. A catalogue
of all resulting rules is likely to be useful for applications in artificial intelligence.

Clearly, some of the rules will be subject to the hypothesis that all probabilities
involved be strictly positive. A good example is Proposition 3.1 in [Lau96, page
29], which states that, for strictly positive densities,

X1 ⊥ X2 |X3 and X1 ⊥ X3 |X2 implies X1 ⊥ {X2, X3}.
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It corresponds to the primary decomposition

IX1⊥X2 |X3 + IX1⊥X3 |X2

= IX1⊥{X2,X3} ∩ 〈p111, p122, p211, p222〉 ∩ 〈p112, p121, p212, p221〉.

The conditional independence statement (8.1) is called saturated if

A ∪ B ∪ C = {X1, X2, . . . , Xn}.

In that case IA⊥B|C is a generated by differences of monomials. Such an ideal
is called a binomial ideal. Recall from Chapter 5 that every binomial ideal has a
primary decomposition into binomial ideals.

Proposition 8.4. The ideal IM is a binomial ideal if and only if the model
M consists of saturated independence statements.

8.2. Graphical Models

The property that the ideal IM is binomial holds for the important class of undi-
rected graphical models. LetG be an undirected graph with vertices X1, X2, . . . , Xn.
From the graph G one derives three natural sets of saturated independence condi-
tions:

(8.8) pairwise(G) ⊆ local(G) ⊆ global(G).

See ([Lau96], page 32) for details and definitions. For instance, pairwise(G) consists
of all independence statements

Xi ⊥ Xj | {X1, . . . , Xn}\{Xi, Xj}

where Xi and Xj are not connected by an edge in G. It is known that the ideal
Iglobal(G) is prime if and only if G is a decomposable graph. This situation was stud-
ied by Takken [Tak99], Dobra and Sullivant [DS02] and Geiger, Meek and Sturm-
fels [GMS02]. These authors showed that the quadratic generators of Iglobal(G)

form a Gröbner basis.

Problem 8.5. For decomposable graphical models G, including chains, study
the primary decomposition of the binomial ideals Ipairwise(G) and Ilocal(G).

For a general undirected graph G, the following problem makes sense:

Problem 8.6. Study the primary decomposition of the ideal Iglobal(G).

The most important component in this decomposition is the prime ideal

(8.9) TG := (Ipairwise(G) : p∞) = (Iglobal(G) : p∞).

This equation follows from the Hammersley-Clifford Theorem [Lau96, Theorem
3.9]. Here p denotes the product of all the indeterminates pu1u2...un

. The ideal TG

is called the toric ideal of the graphical model G. The most basic invariants of any
projective variety are its dimension and its degree. There is an easy formula for
the dimension of the variety of TG, but its degree remains mysterious:

Problem 8.7. What is the degree of the toric ideal TG of a graphical model?
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Example 8.8. We illustrate these definitions and problems for the graph G
which is the 4-chain X1 – X2 – X3 – X4. Here each Xi is a binary random
variable. The ideal coding the pairwise Markov property equals Ipairwise(G) =

〈 p1121p2111 − p1111p2121, p1112p2111 − p1111p2112, p1112p1211 − p1111p1212,

p1122p2112 − p1112p2122, p1122p2121 − p1121p2122, p1122p1221 − p1121p1222,

p1221p2211 − p1211p2221, p1212p2211 − p1211p2212, p2112p2211 − p2111p2212,

p1222p2212 − p1212p2222, p1222p2221 − p1221p2222, p2122p2221 − p2121p2222 〉

Solving these twelve binomial equations is not so easy. First, Ipairwise(G) is not a
radical ideal, which means that there exists a polynomial f with f2 ∈ Ipairwise(G)

but f 6∈ Ipairwise(G). Using the division algorithm modulo Ipairwise(G), one checks
that the following binomial enjoys this property

f = p1111p1212p1222p2121 − p1111p1212p1221p2122.

An ideal basis of the radical of Ipairwise(G) consists of the 12 quadrics and eight
quartics such as f . The variety defined by Ipairwise(G) has 25 irreducible components.
One these components is defined by the toric ideal

TG = Ipairwise(G) + 〈 p1122p2221 − p1121p2222, p1221p2212 − p1212p2221,

p1222p2211 − p1211p2222, p1112p2211 − p1111p2212, p1222p2121 − p1221p2122,

p1121p2112 − p1112p2121, p1212p2111 − p1211p2112, p1122p2111 − p1111p2122 〉.

The twenty binomial generators of the toric ideal TG form a Gröbner basis. The
corresponding toric variety in P15 has dimension 7 and degree 34. Each of the other
24 minimal primes of Ipairwise(G) is generated by a subset of the indeterminates.
More precisely, among the components of our model there are four linear subspaces
of dimension eight, such as the variety of

〈p1111, p1112, p1121, p1122, p2211, p2212, p2221, p2222〉,

there are 16 linear subspaces of dimension six, such as the variety of

〈p1111, p1112, p1121, p1122, p1212, p1221, p2112, p2212, p2221, p2222〉,

and there are four linear subspaces of dimension four, such as the variety of

(8.10) 〈p1111, p1112, p1121, p1211, p1221, p1222, p2112, p2121, p2122, p2211, p2212, p2222〉.

Each of these irreducible components gives a simplex of probability distributions
which satisfies the pairwise Markov property but does not factor in the four-chain
model. For instance, the ideal in (8.10) represents the tetrahedron with vertices
indexed by the four missing strings 1122, 1212, 2111 and 2221.

In this example, the solution to Problem 8.7 is the number 34. The degree of
any projective toric variety equals the normalized volume of the associated convex
polytope ([Ful93], Section 5.3). In the setting of [Stu95], this polytope is the
convex hull of the columns of an integer matrix A. The integer matrix A which
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encodes the toric ideal TG equals



1111 1112 1121 1122 1211 1212 1221 1222 2111 2112 2121 2122 2211 2212 2221 2222

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


The convex hull of the 16 columns of this matrix is a 7-dimensional polytope in
R12. The normalized volume of this polytope equals 34.

We briefly rephrase some of the algebra in this example in the usual statis-
tical notation for graphical models as in [Lau96]. The sufficient statistics of this
graphical model are given by the three vectors n1,2, n2,3, n3,4, corresponding to the
cliques of G. These functions are put in the matrix A with rows indexed by their
twelve components n11••,n12••, . . . ,n••22. If A(·,ijkl) is the column of A indexed
by ijkl, the probabilities in the log-linear model could be parametrized by

pijkl =
1
zθ
· exp

(
(θ12|θ23|θ34) ·A(·,ijkl)

)
,

where θ12 is a real vector of four components and zθ is a normalizing constant. This
seems at first to have 12 parameters, but the matrix A has rank 8 only, so four
constraints can be imposed for parameter identifiability. This corresponds to the
dimension 8 of the affine variety defined by the ideal TG of algebraic relations among
the pijkl. Since the constant vector is in the row space of A, and the probabilities
sum to one, there is one further constraint and there are in fact 7 free parameters.
The number 7 is the dimension of the projective variety defined by TG. �

We can generalize the definition of the toric ideal TG from graphical models
to arbitrary independence models M. For any subset A of {X1, . . . , Xn} and any
element a of

∏
Xi∈A[di], we consider the linear form Prob(A = a) which is the

sum of all indeterminates pu1u2···un such that the Xi-coordinate of a equals ui for
all Xi ∈ A. Let p denote the product of all such linear forms Prob(A = a). We
define the following ideal by saturation:

TM = ( IM : p∞ ).

Problem 8.9. Is TM the vanishing ideal of the set of those probability distri-
butions which are limits of strictly positive distributions which satisfy M.

An affirmative answer to this question would imply that TM is always a radical
ideal. Perhaps it is even always prime? A nice example is the model M = {X1 ⊥
X2, X1 ⊥ X3, X2 ⊥ X3} for three binary random variables. Its ideal IM is the
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intersection of four prime ideals, the last one of which is TM:

IM = 〈Prob(X1 = 1),Prob(X1 = 2),Prob(X2 = 1),Prob(X2 = 2) 〉
∩ 〈Prob(X1 = 1),Prob(X1 = 2),Prob(X3 = 1),Prob(X3 = 2) 〉
∩ 〈Prob(X2 = 1),Prob(X2 = 2),Prob(X3 = 1),Prob(X3 = 2) 〉
∩ 〈 p112p221 + p112p222 − p121p212 − p121p222 − p122p212 + p122p221,

p121p212 − p111p221 − p111p222 + p121p211 − p211p222 + p212p221,

p111p212 + p111p222 − p112p211 − p112p221 + p211p222 − p212p221,

p111p221 + p111p222 − p121p211 + p121p222 − p122p211 − p122p221,

p111p122 + p111p222 − p112p121 − p112p221 + p121p222 − p122p221 〉.

The five generators for TM are a Gröbner basis with leading terms underlined.
An important class of non-saturated independence models arise from directed

graphs as in [Lau96, Section 3.2.2]. Let G be an acyclic directed graph with vertices
X1, X2, . . . , Xn. For any vertex Xi, let pa(Xi) denote the set of parents of Xi in
G and let nd(Xi) denote the set of non-descendants of Xi in G which are not
parents of Xi. The directed graphical model of G is described by the following set
of independence statements:

local(G) =
{
Xi ⊥ nd(Xi) |pa(Xi) : i = 1, 2, . . . , n

}
.

Theorem 3.27 in Lauritzen’s book [Lau96] states that this model is well-behaved,
in the sense that every non-negative solution to Ilocal(G) admits a recursive factor-
ization according to the model G. However, this is no longer true when we allow
negative real coordinates. We have the following algebraic result.

Proposition 8.10. The real variety of the ideal Ilocal(G) describing the local
Markov property of a directed graphical model G is generally not irreducible.

We prove this proposition by means of an explicit example. Consider the di-
rected graph G on four binary random variables with four edges X1 → X2, X1 →
X3, X2 → X4 and X3 → X4. Here

local(G) =
{
X2 ⊥ X3 |X1 , X4 ⊥ X1 | {X2, X3}

}
.

The ideal associated with this directed graphical model equals

Ilocal(G) = 〈 (p1111 + p1112)(p1221 + p1222)− (p1121 + p1122)(p1211 + p1212),
(p2111 + p2112)(p2221 + p2222)− (p2121 + p2122)(p2211 + p2212),

p1111p2112 − p1112p2111 , p1121p2122 − p1122p2121,

p1211p2212 − p1212p2211 , p1221p2222 − p1222p2221〉

This ideal is a complete intersection, so its variety has codimension six. The six
quadrics form a Gröbner basis with respect to a suitable monomial order. Hence
Ilocal(G) is a radical ideal by Proposition 5.3.

We do not know the answer to the following question in general.
Problem 8.11. Does the ideal Ilocal(G) of a directed graphical model G always

have a quadratic Gröbner basis? Is it always radical?
Returning to our example, we now apply the techniques of Chapter 5 to find

that here Ilocal(G) is the irredundant intersection of five prime ideals:

(8.11) Ilocal(G) = P•1•• ∩ P••1• ∩ P•2•• ∩ P••2• ∩ Tlocal(G).
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The first four components are extraneous as far as statistics goes. They are

P•1•• = 〈p2121 + p2122, p2111 + p2112, p1121 + p1122, p1111 + p1112〉+ Ilocal(G),

P••1• = 〈p2211 + p2212, p2111 + p2112, p1211 + p1212, p1111 + p1112〉+ Ilocal(G),

P•2•• = 〈p2221 + p2222, p2211 + p2212, p1221 + p1222, p1211 + p1212〉+ Ilocal(G),

P••2• = 〈p2221 + p2222, p2121 + p2122, p1221 + p1222, p1121 + p1122〉+ Ilocal(G).

The important prime component has codimension 6 and degree 48:

(8.12) Tlocal(G) =
(
Ilocal(G) : p∞

)
.

As defined above, here p denotes the product of the 16 unknowns pijkl and the 8
eight parenthesized expressions. We find that Tlocal(G) is minimally generated by
9 quartics modulo Ilocal(G). For the sake of symmetry, we prefer to display the
following redundant set of 16 quartic generators: Tlocal(G) =

Ilocal(G) +
〈
p111ip212jp221kp122l − p211ip112jp121kp222l : i, j, k, l ∈ {1, 2}

〉
.

The decomposition (8.11) easily gives a proof of Proposition 8.10. Each of the
ideals P•1••, P••1•, P•2•• and P••2• defines a variety in R16 = R2×2×2×2 which
has points not in the variety of Tlocal(G). For the sake of concreteness, here is a zero
of Ilocal(G) which is not a zero of Tlocal(G).

p1111 = −1 , p1112 = 1 , p1121 = 1 , p1122 = −1 ,
p1211 = 1 , p1212 = −1 , p1221 = 1 , p1222 = −1 ,
p2111 = 1 , p2112 = −1 , p2121 = 1 , p2122 = −1 ,
p2211 = 1 , p2212 = −1 , p2221 = 1 , p2222 = −1.

In other words, this real vector satisfies the independence conditions given in
local(G) but it does not have a recursive factorization in the model G.

Experts in log-linear models will note that these 16 quartic generators of
Tlocal(G) express independence in the hierarchical model consisting of the triangle
{2, 3, 4} and the edges {1, 2} and {1, 3}. It would be very interesting to determine
the minimal generators of Tlocal(G) for larger directed graphs G. We also do not
know the answer to the following question:

Problem 8.12. Is the ideal Tlocal(G) in (8.12) prime for every directed graph
G?

The answer is “yes” for our particular example. We will prove this by showing
that Tlocal(G) is the vanishing ideal of an irreducible variety, namely, the variety of
all points in C16 = C2×2×2×2 which admit a recursive factorization as described
in [Lau96, Section 3.2.2]. We write this factorization in algebraic notation as a
homomorphism of polynomial rings.

We introduce 9 = 20 + 21 + 21 + 22 new unknowns to represent the prob-
abilities of each node given its parents. Note that in a general directed binary
graphical model, each node v contributes 2indegree(v) such unknowns. The quan-
tity

∑
v 2indegree(v) counts degrees of freedom. It is the dimension of the projec-

tive variety of Tlocal(G). In our example, we associate the letters a, b, c, d with
the random variables X1, X2, X3, X4 in this order. The 9 new unknowns are
a, b1, b2, c1, c2, d11, d12, d21, d22. For instance, the unknown d21 stands for the prob-
ability of the event “X4 = 1 given X2 = 2 and X3 = 1”.
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We express our directed graphical model G as a homomorphism φ from the
polynomial ring R[p1111, p1112, . . . , p2222] in 16 unknowns to the polynomial ring
R[a, b1, b2, c1, c2, d11, d12, d21, d22] in 9 unknowns. The homomorphism is given by

φ(p1111) = a · b1 · c1 · d11

φ(p1112) = a · b1 · c1 · (1− d11)
φ(p1121) = a · b1 · (1− c1) · d12

φ(p1122) = a · b1 · (1− c1) · (1− d12)
φ(p1211) = a · (1− b1) · c1 · d21

φ(p1212) = a · (1− b1) · c1 · (1− d21)
φ(p1221) = a · (1− b1) · (1− c1) · d22

φ(p1222) = a · (1− b1) · (1− c1) · (1− d22)

φ(p2111) = (1− a) · b2 · c2 · d11

φ(p2112) = (1− a) · b2 · c2 · (1− d11)
φ(p2121) = (1− a) · b2 · (1− c2) · d12

φ(p2122) = (1− a) · b2 · (1− c2) · (1− d12)
φ(p2211) = (1− a) · (1− b2) · c2 · d21

φ(p2212) = (1− a) · (1− b2) · c2 · (1− d21)
φ(p2221) = (1− a) · (1− b2) · (1− c2) · d22

φ(p2222) = (1− a) · (1− b2) · (1− c2) · (1− d22).

We compute the kernel of the ring homomorphism φ in Macaulay 2 or Singular.
After about one minute, we obtain the following result:

(8.13) kernel(φ) = Tlocal(G) +
〈
1 −

2∑
i=1

2∑
j=1

2∑
k=1

2∑
l=1

pijkl

〉
.

Clearly, the sum of the factored probabilities φ(pijkl) must be equal to 1. This
explains the extra generator. Our computation proves that the inhomogeneous
ideal on the right hand side of (8.13) is a prime ideal. From this we conclude that
the homogeneous ideal Tlocal(G) is prime as well. This answers the question in
Problem 8.12 affirmatively for this particular graph G.

In this section we explored statistical models which are described by conditional
independence statements. These furnish a wealth of interesting algebraic varieties
which are cut out by quadratic equations. Gaining a better understanding of inde-
pendence varieties and their equations is likely to have a significant impact for the
study of multidimensional tables and its applications to problems in statistics.

8.3. Random Walks on the Integer Lattice

Let B be a (typically finite) subset of the integer lattice Zn. The elements of
B are regarded as the moves or steps in a random walk on the lattice points in the
non-negative orthant. More precisely, let GB be the graph with vertices the set
Nn of non-negative integer vectors, where a pair of vectors u, v is connected by an
edge if and only if either u− v or v − u lies in B. The problem to be addressed in
this section is to characterize the connected components of the graph GB. Having
a good understanding of the connected components and their higher connectivity
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properties is a necessary precondition for any study of specific Markov chains and
their mixing time.

Example 8.13. Let n = 5 and consider the set of moves

B =
{

(1,−1,−1, 1, 0) , (1,−1, 0,−1, 1) , (0, 1,−1,−1, 1)
}
.

These three vectors span the kernel of the matrix

A =
(

1 1 1 1 1
1 2 3 4 5

)
The two rows of the matrix A represent linear invariants of the walk given by B.
Two vectors u, v ∈ N5 lie in the same component of GB only if they have the same
linear invariants. The converse is not quite true: we need additional inequalities.
Two non-negative integer vectors u and v lie in the same connected component of
GB if and only if A · u = A · v and

u1 + u2 + u3 ≥ 1, u1 + u2 + u4 ≥ 1, u2 + u4 + u5 ≥ 1, u3 + u4 + u5 ≥ 1,
v1 + v2 + v3 ≥ 1, v1+v2+v4 ≥ 1, v2+v4+v5 ≥ 1, and v3 + v4 + v5 ≥ 1.

Returning to the general case, let L denote the sublattice of Zn generated
by B. Computing the linear invariants amounts to computing the image under
the canonical map Zn → Zn/L. If Zn/L is torsion-free then this map can be
represented by an integer matrix A. A necessary condition for u and v to lie in the
same component of GB is that they have the same image under the linear map A.
Thus we are looking for conditions (e.g. linear inequalities) which, in conjunction
with the obvious condition u− v ∈ L, will ensure that v can be reached from u in
a random walk on Nn using steps from B only.

We encode every vector u in B by a difference of two monomials, namely,

xu+ − xu− =
∏

i:ui>0

xui
i −

∏
j:uj<0

x
−uj

j .

Let IB denote the ideal in S = Q[x1, . . . , xn] generated by the binomials xu+ − xu−

where u runs over B. Thus every binomial ideal encountered in this book can be
interpreted as a graph on non-negative lattice vectors.

Theorem 8.14. Two vectors u, v ∈ Nn lie in the same connected component of
GB if and only if the binomial xu − xv lies in the binomial ideal IB.

Our algebraic approach in studying the connectivity properties of graph GB is
to compute a suitable ideal decomposition:

IB = IL ∩ J1 ∩ J2 ∩ · · · ∩ Jr.

This decomposition could be a binomial primary decomposition, or it could be
some coarser decomposition where each Ji still has many associated primes. The
key requirement is that membership in each component Ji should be describable by
some easy combinatorial condition. Sometimes we can only give sufficient conditions
for membership of xu − xv in each Ji, and this will lead to sufficient conditions for
u and v being in the same component of GB. The lattice ideal IL encodes the
congruence relation modulo L = ZB. Two vectors u and v in Nn have the same
linear invariants if and only if xu − xv lies in IL. Note that the lattice ideal IL is
prime if and only if Zn/L is torsion-free. This ideal always appears in the primary
decomposition of IB because(

IB : (x1x2 · · ·xn)∞
)

= IL.
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This identity of ideals has the following interpretation for our application: Two
vectors u, v ∈ N5 lie in the same component of GB only if they have the same linear
invariants and their coordinates are positive enough.

Our discussion implies that Gröbner basis software can be used to determine the
components of the graph GB. For instance, the system of inequalities in Example
8.13 is the output o3 of the following Macaulay 2 session:

i1 : R = QQ[x1,x2,x3,x4,x5];
i2 : IB = ideal(x1*x4-x2*x3,x1*x5-x2*x4,x2*x5-x3*x4);
i3 : toString ass(IB)
o3 = { ideal(x1,x2,x3), ideal(x1,x2,x4),

ideal(x2,x4,x5), ideal(x3,x4,x5),
ideal(x4^2-x3*x5, x3*x4-x2*x5, x2*x4-x1*x5,

x3^2-x1*x5, x2*x3-x1*x4, x2^2-x1*x3) }
i4 : IB == intersect ass(IB)
o4 = true

Two-dimensional contingency tables are ubiquitous in statistics, and it is a
classical problem to study random walks on the set of all contingency tables with
fixed margins. For instance, consider the set N4×4 of non-negative integer 4 × 4-
matrices. The ambient lattice Z4×4 is isomorphic to Z16. The linear invariants
are given by the row sums and column sums of the matrices. Equivalently, the
sublattice L consists of all matrices in Z4×4 whose row sums and column sums are
zero. The lattice ideal IL is the prime ideal generated by the thirty-six 2×2-minors
of a 4× 4-matrix (xij) of indeterminates.

A natural question is to study the connectivity of the graph GB defined by
some basis B for the lattice L. For instance, take B to be the set of nine adjacent
2× 2-moves. The corresponding binomial ideal equals

IB = 〈 x12x21 − x11x22, x13x22 − x12x23, x14x23 − x13x24,

x22x31 − x21x32, x23x32 − x22x33, x24x33 − x23x34,

x32x41 − x31x42, x33x42 − x32x43, x34x43 − x33x44〉.

Theorem 8.14 tells us that two non-negative integer 4 × 4-matrices (aij) and (bij)
with the same row and column sums can be connected by a sequence of adjacent
2× 2-moves if and only if the binomial∏

1≤i,j≤4

x
aij

ij −
∏

1≤i,j≤4

x
bij

ij lies in the ideal IB.

The primary decomposition of IB was computed in Chapter 5. This primary de-
composition implies the following combinatorial result:

Proposition 8.15. Two non-negative integer 4×4-matrices with the same row
and column sums can be connected by a sequence of adjacent 2× 2-moves if both of
them satisfy the following six inequalities:
(i) a21 + a22 + a23 + a24 ≥ 2;
(ii) a31 + a32 + a33 + a34 ≥ 2;
(iii) a12 + a22 + a32 + a42 ≥ 2;
(iv) a13 + a23 + a33 + a43 ≥ 2;
(v) a12 + a22 + a23 + a24 + a31 + a32 + a33 + a43 ≥ 1;
(vi) a13 + a21 + a22 + a23 + a32 + a33 + a34 + a42 ≥ 1.
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We remark that these sufficient conditions remain valid if (at most) one of the
four inequalities “≥ 2” is replaced by “≥ 1.” No further relaxation of the conditions
(i)–(vi) is possible, as is shown by the following two pairs of matrices, which cannot
be connected by an adjacent 2× 2-walk:

0 0 0 0
0 1 1 0
0 1 0 0
0 0 0 1

 ←→


0 0 0 0
0 0 1 1
0 1 0 0
0 1 0 0




0 0 1 0
1 1 0 0
0 0 0 2
0 0 0 0

 ←→


0 0 0 1
0 0 1 1
1 1 0 0
0 0 0 0


The necessity of conditions (v) and (vi) is seen from the disconnected pairs

n n 0 n
0 0 0 n
n 0 0 0
n 0 n n

 ←→


n 0 n n
n 0 0 0
0 0 0 n
n n 0 n


for any integer n ≥ 0. Such minimally disconnected pairs of matrices are derived
by computing witnesses for the relevant associated primes of IB.

Random walks arising from graphical models play a significant role in the sta-
tistical study of multi-dimensional contingency tables. A noteworthy real-world
application of these techniques is the work on the U.S. census data by Stephen
Fienberg (see e.g. [DF00]) and his collaborators at the National Institute of Sta-
tistical Sciences (http://www.niss.org/). Studying the connectivity problems of
these random walks is precisely the issue of Problems 8.5 and 8.6. Namely, given
a graph G, each of the three sets of independence facts in (8.8) translates into a
set of quadratic binomials and hence into a random walk on all tables with mar-
gins in the graphical model G. The primary decompositions of the binomial ideals
Ipairwise(G), Ilocal(G) and Iglobal(G) will furnish us with conditions under which
two multi-dimensional tables are connected in under the random walk. Example
8.8 is a good place to start; see Exercise (3) below.

We conclude with the family of circuit walks which is very natural from a
mathematical perspective. Let A be a d×n-integer matrix and L = kerZ(A) ⊂ Zn

as before. The ideal IL is prime; it is the toric ideal associated with A. A non-zero
vector u = (u1, . . . , un) in L is called a circuit if its coordinates ui are relatively
prime and its support supp(u) = { i : ui 6= 0} is minimal with respect to inclusion.
We shall consider the walk defined by the set C of all circuits in L. This makes
sense for two reasons:

• The lattice L is generated by the circuits, i.e., ZC = L.
• The circuits can be computed easily from the matrix A.

Here is a simple algorithm for computing C. Initialize C := ∅. For any (d+1)-subset
τ = {τ1, . . . , τd+1} of {1, . . . , n} form the vector

Cτ =
d+1∑
i=1

(−1)i · det(Aτ\{τi}) · eτi
,
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where ej is the jth unit vector and Aσ is the submatrix of A with column indices σ.
If Cτ is non-zero then remove common factors from its coordinates. The resulting
vector is a circuit and all circuits are obtained in this manner.

Example 8.16. Let d = 2, n = 4 and A =
(

0 2 5 7
7 5 2 0

)
. Then

C = ±
{

(3,−5, 2, 0), (5,−7, 0, 2), (2, 0,−7, 5), (0, 2,−5, 3)
}
.

It is instructive – for Exercise (4) below – to check that the Z-span of C equals L =
kerZ(A). (For instance, try to write (1,−1,−1, 1) ∈ L as a Z-linear combination
of C). We shall derive the following result: Two L-equivalent non-negative integer
vectors (A,B,C,D) and (A′, B′, C ′, D′) can be connected by the circuits if both of
them satisfy the following inequality

min
{

max{A,B,C,D}, max{B, 9
4
C,

9
4
D}, max{9

4
A,

9
4
B, C}

}
≥ 9.

The following two L-equivalent pairs are not connected in the circuit walk:

(8.14) (4, 9, 0, 2)↔ (5, 8, 1, 1) and (1, 6, 6, 1)↔ (3, 4, 4, 3).

To analyze circuit walks in general, we consider the circuit ideal IC generated
by the binomials xu+ − xu− where u = u+ − u− runs over all circuits in L.
The primary decomposition of circuit ideals was studied in Section 8 of [ES96].
We summarize the relevant results. Let pos(A) denote the d-dimensional convex
polyhedral cone in Rd spanned by the column vectors of A. Each face of pos(A) is
identified with the subset σ ⊂ {1, . . . , n} consisting of all indices i such that the ith
column of A lies on that face. If σ is a face of pos(A) then the ideal Iσ := 〈xi :
i 6∈ σ〉+ IL is prime. Note that I{1,...,n} = IL and I{} = 〈x1, x2, . . . , xn〉.

Theorem 8.17. (Decomposition of Circuit Ideals [ES96, Section 8])

Rad(IC) = IL and Ass(IC) ⊆
{
Iσ : σ is a face of pos(A)

}
.

Applying the techniques of binomial primary decomposition to the circuit
ideal IC gives connectivity properties of the circuit walk in terms of the faces
of the polyhedral cone pos(A). Let us see how this works for Example 8.16.
We choose variables a, b, c, d for the four columns of A. The cone pos(A) =
pos{(7, 0), (5, 2), (2, 5), (0, 7)} equals the nonnegative quadrant in R2. It has one 2-
dimensional face, labeled {a, b, c, d}, two 1-dimensional faces, labeled {a} and {d},
and one 0-dimensional face, labeled {}. The toric ideal is

(8.15) IL = 〈 ad− bc, ac4 − b3d2, a3c2 − b5, b2d3 − c5, a2c3 − b4d 〉.
The circuit ideal equals

IC = 〈 a3c2 − b5, a5d2 − b7, a2d5 − c7, b2d3 − c5 〉.
It has the minimal primary decomposition

IC = IL ∩ 〈 b9, c4, d4, b2d2, c2d2, b2c2 − a2d2, b5 − a3c2 〉
∩ 〈 a4, b4, c9, a2b2, a2c2, b2c2 − a2d2, c5 − b2d3 〉

∩
(
〈a9, b9, c9, d9〉 + IC

)
.

The second and third ideals are primary to I{a} = 〈b, c, d〉 and to I{d} = 〈a, b, c〉.
This primary decomposition implies the inequality in (8.16) because

〈a9, b9, c9, d9〉 ∩ 〈b9, c4, d4〉 ∩ 〈a4, b4, c9〉 ∩ IL ⊂ IC .
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Returning to our general discussion, Theorem 8.17 implies that for each face σ
of the polyhedral cone pos(A) there exists a non-negative integer Mσ such that

IL ∩
⋂

σ face

〈xi : i 6∈ σ 〉Mσ ⊂ IC .

Corollary 8.18. For each proper face σ of pos(A) there is an integer Mσ

such that any two L-equivalent vectors (a1, . . . , an) and (b1, . . . , bn) in Nn with∑
i 6∈σ

ai ≥ Mσ and
∑
i 6∈σ

bi ≥ Mσ for all proper faces σ of pos(A)

can be connected in the circuit walk.
This suggests the following research problem.
Problem 8.19. Find bounds for the integers Mσ in terms of the matrix A.
The optimal value of Mσ seems to be related to the singularity of the toric

variety defined by IL along the torus orbit labeled σ: The worse the singularity
is, the higher the value of Mσ. It would be very interesting to understand these
geometric aspects. In Example 8.16 the optimal values are

M{} = 15 and M{a} = 11 and M{d} = 11.

Optimality is seen from the pairs of disconnected vectors in (8.14).

8.4. Maximum Likelihood Equations

We fix a d×n-integer matrix A = (aij) with the property that all column sums
of A are equal. As before we consider the polyhedral cone pos(A) and the sublattice
L = kerZ(A) of Zn. The toric ideal IL is the prime ideal in Q[x1, . . . , xn] generated
by all binomials xu+ − xu− where u runs over L. We write V+

L for the set of zeros
of IL in the non-negative orthant Rn

≥0. This set is the log-linear model associated
with A. Log-linear models include undirected graphical models and other statistical
models defined by saturated independence facts. For instance, the graphical model
for a four-chain of binary random variables corresponds to the 12 × 16-matrix A
in Example 8.8. If an element p of Rn

≥0 has coordinate sum 1 then we regard p as
a probability distribution. The coordinates of the vector A · p in Rd are the linear
invariants of p. If n is a non-negative integer vector (representing data) of length
d then the vector A · n is the sufficient statistic for the log-linear model associated
to A. A probability vector p belongs to this log-linear model if and only if p ∈ V+

L .
The following result is fundamental both for statistics and for toric geometry.

Theorem 8.20. (Birch’s Theorem) For any vector p ∈ Rn
≥0 there exists a

unique vector p̂ ∈ V+
L with the same linear invariants as p, i.e., A · p̂ = A · p.

The vector p̂ is called the maximum likelihood estimate for p in the model
A. Computing the maximum likelihood estimate amounts to solving a system of
polynomial equations. We write 〈Ax−Ap〉 for the ideal generated by the d linear
polynomial

∑n
j=1 aij(xj − pj) for i = 1, 2, . . . , d. The maximum likelihood ideal for

the non-negative vector p in the log-linear model A is

(8.16) IL + 〈Ax−Ap〉 ⊂ Q[x1, . . . , xn].

We wish to find the zero x = p̂. Theorem 8.20 can be reworded as follows.
Corollary 8.21. Each maximum likelihood ideal (8.16) has precisely one non-

negative real root.
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Theorem 8.20 is known as Birch’s Theorem in statistics. A standard reference
is Agresti’s book [Agr90, page 168]. Proofs of Theorem 8.20 and Corollary 8.21
appearing in the geometry books are based on convexity considerations. One such
proof can be found in Chapter 4 of Fulton [Ful93]. In toric geometry, the matrix
A represents the moment map from V+

L , the non-negative part of the toric variety,
onto the polyhedral cone pos(A). The version of Theorem 8.20 appearing in [Ful93]
states that the moment map defines a homeomorphism from V+

L onto pos(A).
As an example consider the log-linear model discussed in Example 8.16. Let

us compute the maximum likelihood estimate for the probability distribution p =
(3/7, 0, 0, 4/7). The maximum likelihood ideal is given by the two coordinates of
Ax = Ap and the five binomial generators of (8.15). More precisely, the maximum
likelihood ideal (8.16) for this example equals

〈x2x3 − x1x4, x
5
3 − x2

2x
3
4, x

5
2 − x3

1x
2
3, x1x

4
3 − x3

2x
2
4, x

2
1x

3
3 − x4

2x4,

0x1 + 2x2 + 5x3 + 7x4 − b1 , 7x1 + 5x2 + 2x3 + 0x4 − b2 〉
with b1 = 4 and b2 = 3. This ideal has exactly one real zero x = p̂, which is
necessarily non-negative by Corollary 8.21. We find numerically

(8.17) p̂ =
(
0.3134107644, 0.2726959080, 0.2213225526, 0.1925707745

)
.

There are other parameter values, for instance b1 = 1, b2 = 50, for which the above
ideal has three real zeros. But always only of them is non-negative.

The maximum likelihood ideal deserves further study from an algebraic point
of view. First, for special points p in Rn

≥0, it can happen that the ideal (8.16) is not
zero-dimensional. It would be interesting to characterize those special values of p.
For generic values of p, the ideal (8.16) is always zero-dimensional and radical, and
it is natural to ask how many complex zeros it has. This number is bounded above
by the degree of the toric ideal IL, and for many matrices A these two numbers
are equal. For instance, in the above example, the degree of IL is seven and the
maximum likelihood equations have seven complex zeros.

Interestingly, these two numbers are not equal for most of the toric ideals which
actually arise in statistics applications. For instance, for the four-chain model in
Example 8.8, the degree of IL is 34 but the degree of the ideal (8.16) is 1; see Exercise
(7) below. An explanation is offered by Proposition 4.18 in [Lau96] which gives a
rational formula for maximum likelihood estimation in a decomposable graphical
model. This raises the following question for nondecomposable graphical models.

Problem 8.22. What is the number of isolated complex zeros of the maximum
likelihood equations for a nondecomposable graphical model G?

Geiger, Meek and Sturmfels [GMS02] proved that this number is always
greater than one. It would be nice to identify log-linear models other than decom-
posable graphical models whose maximum likelihood estimator is rational. Equiv-
alently, which toric varieties have the property that the inverse of the moment map
is given by a rational function? Let us phrase this question as follows:

Problem 8.23. Characterize the integer matrices A whose maximum likelihood
ideal (8.16) has exactly one complex solution, for each generic p.

Statisticians use a numerical algorithm called iterative proportional scaling to
find the unique positive real solution of the maximum equations. One standard
reference is a paper by Darroch and Ratcliff [DR72]. Iterative Proportional Scaling
is extremely easy to describe and equally easy to implement. Here are a few lines
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of a generic maple program which works for any log-linear model. The data A and
B are set up to compute the numerical vector (8.17) above:

A := array([ [0,2,5,7],
[7,5,2,0]]);

B := array([[ 4 ] ,
[ 3 ] ]):

epsilon := 10^(-6): Digits := 12:

with(linalg): d := rowdim(A): n := coldim(A):
a := sum(A[i,1], i=1..d): b := sum(B[i,1], i=1..d):
P := []: for j from 1 to n do P := [P[],evalf(1/n)]: od:
C := multiply(scalarmul(A,1/a), transpose(array([P]))):

while (norm(matadd(scalarmul(B,-1/b),C)) > epsilon) do
for j from 1 to n do
P[j] := P[j]*product((B[i,1]/(b*C[i,1]))^(A[i,j]/a),i=1..d):
od:
C := multiply( scalarmul(A,1/a), transpose(array([P])) ):

od:
print(b/a*P);

The same code can be used for any non-negative integer d × n-matrix A whose
column sums all have the same sum a > 0. The user specifies a column d-vector
B which is a positive linear combination of the columns of A, and we set b > 0 to
be the coordinate sum of B. The goal is to find a probability n-vector P in the
toric variety of A such that A · ( b

a · P ) = B, or, equivalently 1
aA · P = 1

b ·B. We
start our iterative procedure with the uniform distribution P = ( 1

n ,
1
n , . . . ,

1
n ). We

always set

C =
1
a
A · P.

If the norm of the d-column vector

C − 1
b
·B

is less than our chosen ε > 0, we are done and we output b
a · P . Otherwise we

update the probability vector P by the following simple rule:

(8.18) P ←− P × (
1
b
B)

1
a A × C−

1
a A.

Here the product “×” is the product of elements in the multiplicative abelian
group (R+)n. All three factors lie in subgroup V(IL) ∩ (R+)n, so, throughout
the computation, P will always lie in the toric variety V(IL). The two factors on
right are understood as follows. If A = (aij) and Y = (y1, . . . , yd) is any positive
real d-vector then Y

1
a A denotes the positive real n-vector whose ith coordinate is

y
a1i/a
1 y

a2i/a
2 · · · yadi/a

d . Darroch and Ratcliff [DR72] prove that this process always
converges to the desired solution P̂ provided B is a strictly positive combination of
the columns of A. This hypothesis is equivalent to saying that P̂ is strictly positive.
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8.5. Exercises

(1) Let X1, X2, X3, X4 be binary random variables and consider the model

M =
{
X1 ⊥ X2|X3 , X2 ⊥ X3|X4 , X3 ⊥ X4|X1 , X4 ⊥ X1|X2

}
.

Compute the ideal IM and find the irreducible decomposition of the va-
riety VM. Does every component meet the probability simplex?

(2) Let G be the cycle on five binary random variables. List the generators
of the binomial ideal Ipairwise(G) and compute its minimal primes.

(3) Give a necessary and sufficient condition for two 2×2×2×2-contingency
tables with the same margins in the four-chain model to be connected by
pairwise Markov moves. In other words, use the primary decomposition
of Example 8.8 to analyze the associated random walk.

(4) Prove that each sublattice L of Zn is spanned by its subset C of circuits.
(5) Determine and interpret the three numbers M{}, M{a} and M{d} for

circuit walk defined by the matrix A =
(

0 3 7 10
10 7 3 0

)
.

(6) Compute the maximum likelihood estimate p̂ for the probability distribu-
tion p = (1/11, 2/11, 3/11, 5/11) in the log-linear model specified by the
2× 4-matrix A in the previous exercise.

(7) Write the maximum likelihood equations for the four-chain model in Ex-
ample 8.8 and show that it has only one complex solution x = p∗.

(8) Let X = (xijk) be a 3 × 3 × 3-matrix of indeterminates. Describe the
solution set of the 27 quartic binomial equations of the form

xijkximnxljnxlmk = xlmnxljkximkxijn.

Interpret your result in terms of a random walk on 3× 3× 3-tables.
(9) Pick an acyclic directed graph G with 5 vertices and 8 edges, where the

vertices represent binary random variables. Compute the ideals Ilocal(G)

and Tlocal(G) in the polynomial ring R[p11111, p11112, . . . , p22222].





CHAPTER 9

Tropical Algebraic Geometry

The tropical semiring is the extended real line R∪ {−∞} with two arithmetic
operations called tropical addition and tropical multiplication. The tropical sum of
two numbers is their maximum and the tropical product of two numbers is their
sum. We use the familiar symbols “+” and “×” to denote these operations as
well. The tropical semiring

(
R ∪ {−∞},+,×

)
satisfies many of the usual axioms

of arithmetic such as (a+ b)× c = (a× c) + (b× c). The additive unit is −∞, the
multiplicative unit is the real number 0, and x2 denotes x×x. Tropical polynomials
make perfect sense. Consider the cubic f(x) = 5 + (1)×x + (0)×x2 + (−4)×x3.
Then, tropically, f(3) = 6. For background on tropical semirings see the article of
Pin [Pin98]. We learned there that the adjective “tropical” originated when French
computer scientists gave reference to the work of a Brazilian mathematician. In
the Russian literature, the tropical calculus is known as idempotent analysis or as
Maslov dequantization, in the honor of V.I. Maslov and his collaborators [MK94].

In this chapter we study the problem of solving systems of polynomial equations
in the tropical semiring. The relationship to classical polynomial equations is given
by valuation theory, specifically by considering Puiseux series solutions. This is
made precise in Theorems 9.16 and 9.17. These two results are an extension of
Misha Kapranov’s note on amoebas over non-archimedean fields [Kap00].

Indeed, the material in this chapter offers a glimpse of the beautiful emerging
subject of amoebas [Mik01] from the point of view of polynomial systems solving;
see also [FPT00], [The02]. It is partly based on discussions with Grisha Mikhalkin,
with whom the author shares a common passion for tropical algebraic geometry.

Gregorio Malajovich pointed out that the material in this chapter is related
to the classical method of Graeffe iteration for numerical root finding [MZ01]. It
would be fascinating to explore this further and to develop a truly multidimensional
Graeffe iteration based on amoebas and tropical algebraic geometry.

9.1. Tropical Geometry in the Plane

A tropical polynomial f(x) in n unknowns x = (x1, . . . , xn) is the maximum
of a finite set of linear functions with N-coefficients. Hence the graph of f(x) is
piecewise linear and convex. We define the variety of f(x) as the set of points
x ∈ Rn at which f(x) is not differentiable. This is consistent with the intuitive
idea that we are trying to solve f(x) = −∞, given that −∞ is the additive unit.
Equivalently, the variety of f(x) is the set of all points x at which the maximum of
the linear functions in f(x) is attained at least twice.

Let us begin by deriving the solution to the general quadratic equation

(9.1) ax2 + bx + c “ = 0 ”

119
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Figure 9.1. Tropical Lines

Here a, b, c are arbitrary real numbers. We wish to compute the tropical variety of
(9.1). In ordinary arithmetic, this amounts to solving the equation

(9.2) max
{
a+ 2x, b+ x, c

}
is attained twice.

This is equivalent to

a+ 2x = b+ x ≥ c or a+ 2x = c ≥ b+ x or b+ x = c ≥ a+ 2x.

From this we conclude: The tropical solution set to the quadratic equation (9.1)
equals {b− a, c− b} if a+ c ≤ 2b, and it equals {(c− a)/2} if a+ c ≥ 2b.

Our next step is the study of tropical lines in the plane. A tropical line is the
tropical variety defined by a polynomial

f(x, y) = ax + by + c,

where a, b, c are fixed real numbers. The tropical line is a star with three rays
emanating in the directions west, south and northeast. The midpoint of the star is
the point (x, y) = (c − a, c − b). This is the unique solution of a + x = b + y = c,
meaning that the maximum involved in f(x, y) is attained not just twice but three
times. The following result is easily seen in Figure 9.1.

Proposition 9.1. Two general tropical lines intersect in a unique point. Two
general points lie on a unique tropical line.

Consider now an arbitrary tropical polynomial in two variables

f(x, y) =
∑

(i,j)∈A

ωijx
iyj .

Here A is a finite subset of Z2. Note that it is important to specify the support
set A because the term ωijx

iyj is present even if ωij = 0. For any two points
(i′, j′), (i′′, j′′) in A, we consider the system of linear inequalities

(9.3) ωi′j′ + i′x + j′y = ωi′′j′′ + i′′x + j′′y ≥ ωij + ix + jy for (i, j) ∈ A.

The solution set of (9.3) is either empty, or a point, or a line segment, or a ray in
R2. The union of these solution sets, as (i′, j′), (i′′, j′′) range over distinct points
in A, is the tropical curve defined by f(x, y).

We use the following method to compute and draw this curve. For each point
(i, j) in A, plot the point (i, j, ωij) in 3-space. The convex hull of these points is a
3-dimensional polytope. Consider the set of upper faces of this polytope. These are
the faces which have an upward pointing outer normal. The collection of these faces
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Figure 9.2. A quadratic curve
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Figure 9.3. Another quadratic curve

maps bijectively onto the convex hull of A under deleting the third coordinates. It
defines a regular subdivision ∆ω of A.

Proposition 9.2. The solution set to (9.3) is a segment if and only if (i′, j′)
and (i′′, j′′) are connected by an interior edge in the regular subdivision ∆ω, and it
is a ray if and only if they are connected by a boundary edge of ∆ω. The tropical
curve of f(x, y) is the union of these segments and rays.

An analogous statement holds in higher dimensions: The tropical hypersurface
of a multivariate polynomial f(x1, . . . , xn) is an unbounded polyhedral complex ge-
ometrically dual to the regular subdivision ∆ω of the support of f . If the coefficients
of the tropical polynomial f are sufficiently generic, then ∆ω is a regular triangu-
lation. If, in addition, every simplex in ∆ω has unit volume then the hypersurface
is said to be smooth.

Returning to the case n = 2, here are a few examples of smooth curves.
Example 9.3. (Two Quadratic Curves) A smooth quadratic curve in the plane

is a trivalent graph with four vertices, connected by three bounded edges and six
unbounded edges. These six rays come in three pairs which go off in directions
west, south and northeast. The primitive vectors on the three edges emanating
from any vertex always sum to zero. Our first example is

f1(x, y) = 0x2 + 1xy + 0y2 + 1x + 1y + 0.

The curve of f1(x, y) has the four vertices (0, 0), (1, 0), (0, 1) and (−1,−1). It is
depicted in Figure 9.2.
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Figure 9.4. A cubic curve

Figure 9.5. A biquadratic curve

We now gradually increase the coefficient of x from 1 to 3 and we observe what
happens to our curve during this homotopy. The final curve is

f3(x, y) = 0x2 + 1xy + 0y2 + 3x + 1y + 0.

This curve has the four vertices (−3,−1), (−1, 1), (1, 2) and (3, 2). It is depicted
in Figure 9.3.

Example 9.4. (Two Elliptic Curves) The genus of a smooth tropical curve is
the number of bounded regions in its complement. The two quadratic curves divide
the plane into six regions, all of them unbounded, so their genus is zero. A tropical
elliptic curve has precisely one bounded region in its complement. A smooth cubic
curve in the projective plane has this property, as seen in Figure 9.4.

Of course, we can also pick a different support set whose convex hull has exactly
one interior lattice point. An example is the square of side length 2. It corresponds
to a curve of bidegree (2, 2) in the product of two projective lines P1 × P1. Such
curves are elliptic, as seen in Figure 9.5.

The result of Proposition 9.1 can be extended from tropical lines to tropical
curves of any degree, and, in fact, to tropical hypersurfaces in any dimension. In
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Figure 9.6. The Tropical Bézout theorem

particular, any two general quadratic curves in the plane meet in four points. An
example is shown in Figure 9.6.

Theorem 9.5. (Tropical Bézout-Bernstein Theorem) Two general trop-
ical curves of degrees d and e intersect in d · e points, counting multiplicities as
explained below. More generally, the number of intersection points of two tropical
curves with prescribed Newton polygons equals the mixed area of these polygons.

We need to explain the multiplicities arising when intersecting two tropical
curves. Consider two lines with rational slopes in the plane, where the primitive
lattice vectors along the lines are (u1, v1) and (u2, v2). The two lines meet in exactly
one point if and only if the determinant u1v2 − u2v1 is nonzero. The multiplicity
of this intersection point is defined as |u1v2 − u2v1|.

This definition of multiplicity ensures that the total count of the intersection
points is invariant under parallel displacement of the tropical curves. For instance,
in the case of two curves in the tropical projective plane, we can displace the curves
of degree d and e in such a way that all intersection points are gotten by intersecting
the southern rays of the first curve with the eastern rays of the second curve, as
in Figure 9.6. Clearly, there are precisely d · e such intersection points, and their
local multiplicities are all one.

To prove the tropical Bernstein theorem, we use exactly the same method as
in Chapter 3. Namely, we observe that the union of the two curves is the geometric
dual of a mixed subdivision of the Minkowski sum of the two Newton polygons.
The mixed cells in this mixed subdivision correspond to the intersection points of
the two curves. The local intersection multiplicity at such a point, |u1v2−u2v1|, is
the area of the corresponding mixed cell. Hence the mixed area, which is the total
area of all mixed cells, coincides with the number of intersection points, counting
multiplicity. Figure 9.7 demonstrates this reasoning for the intersection of two
quadratic curves.

9.2. Amoebas and their Tentacles

Let X be any subvariety of the n-dimensional algebraic torus (C∗)n. The
amoeba of X is defined to be the image log(X) of X under the componentwise
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Figure 9.7. The Tropical Bernstein theorem

logarithm map from (C∗)n into Rn:

(9.4) log : (C∗)n → Rn, (z1, . . . , zn) 7→
(
log|z1|, log|z2|, . . . , log|zn|

)
The computational study of amoebas is an important new direction in the general
field of “Solving Polynomial Equations”. Even testing membership in the amoeba is
a non-trivial problem. Consider the question whether or not the origin (0, 0, . . . , 0)
lies in log(X), where X is given by its vanishing ideal of Laurent polynomials. This
problem is equivalent to the following: Given a system of polynomial equations
over the complex numbers, does there exist a solution all of whose coordinates are
complex numbers of unit length?

We shall not pursue this question any further here. Instead, we shall take
a closer look at the tentacles of the amoeba. The term amoeba was coined by
Gel’fand, Kapranov and Zelevinsky [GKZ94, Chapter 11.5]. In the case when X
is a hypersurface, the complement of X in Rn is a union of finitely many open
convex regions, at most one for each lattice point in the Newton polytope of the
defining polynomial of X; see [FPT00]. For n = 2, the amoeba does look like one
of these biological organisms, with unbounded tentacles going off to infinity. These
tentacle directions are normal to the edges of the Newton polygon, just like the
tentacles of a tropical curve. We shall see that this is no coincidence.

Given any variety X in (C∗)n we define a subset B(X) of the unit (n−1)-sphere
Sn−1 in Rn as follows. A point p ∈ Sn−1 lies in B(X) if and only if there exists a
sequence of vectors p(1), p(2), p(3), . . . in Rn such that

p(r) ∈ log(X) ∩ r · Sn−1 for all r ≥ 1 and lim
r→∞

1
r
· p(r) = p.

The set B(X) was first introduced by George Bergman [Ber71] who called it the
logarithmic limit set of the variety X. We write B̃(X) for the subset of all vectors
p in Rn such that either p = 0 or 1

||p|| · p lies in B(X). We refer to B(X) as the

Bergman complex of X and to B̃(X) as the Bergman fan of X. These objects are
polyhedral by the following result due to Bieri and Groves [BG84].

Theorem 9.6. The Bergman fan B̃(X) of a d-dimensional irreducible subva-
riety X of (C∗)n is a finite union of rational d-dimensional convex polyhedral cones
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with apex at the origin. The intersection of any two cones is a common face of
each. Hence B(X) is a pure (d− 1)-dimensional polyhedral complex.

Before discussing the proof of this theorem, let us to consider some special cases
of low dimension or low codimension. Clearly, if X = X1 ∪ X2 ∪ · · · ∪ Xr is a
reducible variety then its Bergman complex equals B(X) = B(X1)∪B(X2)∪ · · · ∪
B(Xr). We start out with the case when each Xi is a point.

• d = 0: If X is a finite subset of (C∗)n then B(X) is the empty set.
• d = 1: If X is a curve then B(X) is a finite subset of the unit sphere.

The directions in B(X) are called critical tropisms in singularity theory.
• d = 2: If X is a surface then B(X) is a graph embedded in the unit

sphere Sn−1. This geometric graph retains all the symmetries of X.
• d = n − 1: If X is a hypersurface whose defining polynomial has the

Newton polytope P then B(X) is the intersection of Sn−1 with the col-
lection of proper faces in the normal fan of P . Thus B(X) is a radial
projection of the (n− 1)-skeleton of the dual polytope P ∗.

Bergman [Ber71] showed that B(X) is a discrete union of spherical polytopes,
and he conjectured that this union is finite and equidimensional. This conjecture
was proved using valuation theory by Bieri and Groves [BG84]. In what follows
we shall outline a simpler proof of Theorem 9.6 using Gröbner bases.

Let I be any ideal in the polynomial ring R = C[x±1
1 , . . . , x±1

n ]. For instance,
I could be the prime ideal defining our irreducible variety X.

For a fixed weight vector ω ∈ Rn, we use the following notation. For any
Laurent polynomial f =

∑
cαx

α, the initial form inω(f) is the sum of all terms
cαx

α such that the inner product ωα is maximal. The initial ideal inω(I) is the
ideal generated by the initial forms inω(f) where f runs over I. Note that inω(I)
will be the unit ideal in R if ω is chosen sufficiently generic. We are interested in the
set of exceptional ω for which inω(I) does not contain any monomials (i.e. units).
This is precisely the Bergman fan.

Lemma 9.7. Let X be any variety in (C∗)n and I its vanishing ideal. Then

B̃(X) =
{
ω ∈ Rn : inω(I) does not contain a monomial }.

We sometimes use the notation B̃(I) for the Bergman fan of an ideal I, defined
by the above formula, and similarly B(I) for the Bergman complex.

Consider the closure of X in n-dimensional complex projective space Pn and
let J denote the homogeneous ideal in S = C[x0, x1, . . . , xn] which defines this
closure. The ideal J is computed from I by homogenizing the given generators and
saturating with respect to the ideal 〈x0〉. For any ω ∈ Rn, the initial ideal inω(I)
is computed as follows: form the vector (0, ω) in Rn+1, compute the initial ideal
in(0,ω)(J), and then replace x0 by 1.

Corollary 9.8. B̃(X) =
{
ω ∈ Rn : in(0,ω)(J) contains no monomial in S

}
.

Proof of Theorem 9.6: Two vectors ω and ω′ in Rn are considered equivalent for
J if in(0,ω)(J) = in(0,ω′)(J). The equivalence classes are the relatively open cones
in a complete fan in Rn called the Gröbner fan of J . This fan is the outer normal
fan of the state polytope of J . See Chapter 2 in [Stu95]. If C is any cone in the
Gröbner fan then we write inC(J) for inω(J) where ω is any vector in the relative
interior of C.
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The finiteness and completeness of the Gröbner fan together with Corollary 9.8
imply that B̃(X) is a finite union of rational polyhedral cones in Rn. Indeed, B̃(X)
is the support of the subfan of the Gröbner fan of J consisting of all Gröbner cones
C such that inC(J) contains no monomial. Note that if C is any such cone then
the Bergman fan of the zero set XC of the initial ideal inC(J) in (C∗)n equals

(9.5) B̃(XC) = B̃(X) + R · C.

What remains to be proved is that the maximal Gröbner cones C which lie in B̃(X)
all have the same dimension d. For that we need the following lemma.

Lemma 9.9. Let L be a homogeneous ideal in the polynomial ring S, containing
no monomials and X(L) its zero set in the algebraic torus (C∗)n. Then the following
are equivalent:

(1) Every proper initial ideal of L contains a monomial.
(2) There exists a subtorus T of (C∗)n such that X(L) consists of finitely

many T -orbits.
(3) The Bergman fan B̃(X(L)) is a linear subspace of Rn.

Proof of Theorem 9.6 (continued): Let C be a cone in the Gröbner fan of J which
is maximal with respect to containment in B̃(X). The ideal L = inC(J) satisfies
the three equivalent properties in Lemma 9.9. The projective variety defined by
L is equidimensional of the same dimension as the irreducible projective variety
defined by J . Equidimensionality follows, for instance, from [KS95]. We conclude
that dim(X(L)) = dim(X) = d. Hence the subtorus T in property (2) and the
subspace in property (3) of Lemma 9.9 both have dimension d. It follows from (9.5)
that

B̃(X(L)) = B̃(XC) = R · C,
and we conclude that the Gröbner cone C has dimension d, as desired. �

Proof of Lemma 9.9: Let L denote the linear subspace of Rn consisting of all vectors
ω such that inω(L) = L. In other words, L is the common lineality space of all
cones in the Gröbner fan of L. A non-zero vector (ω1, . . . , ωn) lies in L if and only
if the one-parameter subgroup { (tω1 , . . . , tωn) : t ∈ C∗ } fixes L. The subtorus T
generated by these one-parameter subgroups of (C∗)n has the same dimension as L,
and it fixes the variety X(L). We now replace (C∗)n by its quotient (C∗)n/T , and
we replace Rn by its quotient Rn/L. This reduces our lemma to the following easier
assertion: For a homogeneous ideal L which contains no monomial the following
are equivalent:

(1′) For any non-zero vector ω, the initial ideal inω(L) contains a monomial.
(2′) X(L) is finite.

(3′) B̃(X(L)) = {0}.
The equivalence of (1′) and (3′) is immediate from Corollary 9.8, and the equiv-

alence of (2′) and (3′) follows from Theorem 3 in [Ber71]. It can also be derived
from the well-known fact that a subvariety of (C∗)n is compact if and only if it is
finite. �

Our proof suggests the following algorithm for computing the Bergman complex
of an algebraic variety. First compute the Gröbner fan, or the state polytope, of
the homogenization of its defining ideal. See Chapter 3 of [Stu95] for details. For
certain nice varieties we might know a universal Gröbner basis and from this one
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can read off the Gröbner fan more easily. We then check all d-dimensional cones
C in the Gröbner fan, or equivalently, all (n − d)-dimensional faces of the state
polytope, and for each of them we determine whether or not inC(I) contains a
monomial. This happens if and only if the reduced Gröbner basis of inC(I) in any
term order contains a monomial. Here is an example to demonstrate these methods.

Example 9.10. The Bergman complex of the Grassmannian G2,5 of lines in P4

is the Petersen graph. The Grassmannian G2,5 is the subvariety of P9 whose prime
ideal is generated by the following five quadratic polynomials:

(9.6)
p03p12 − p02p13 + p01p23 , p04p12 − p02p14 + p01p24 ,
p04p13 − p03p14 + p01p34 , p04p23 − p03p24 + p02p34 ,

p14p23 − p13p24 + p12p34.

A universal Gröbner basis consists of these five quadrics together with fifteen cubics
such as p01p02p34 − p02p03p14 + p03p04p12 + p04p01p23. The ideal of G2,5 has 132
initial monomial ideals. They come in three symmetry classes:

〈p02p13, p02p14, p04p13, p04p23, p14p23〉 12 ideals ,
〈p02p14, p04p13, p04p23, p14p23, p01p23〉 60 ideals ,

〈p01p14p23, p01p24, p03p12, p03p14, p03p24, p13p24〉 60 ideals .

We regard G2,5 as the 7-dimensional variety in (C∗)10 consisting of all nonzero
vectors (p01, . . . , p34) formed by the 2 × 2-minors of any complex 2 × 5-matrix.
Hence n = 10 and d = 7. The common lineality space L of all Gröbner cones has
dimension 5; hence the state polytope of G2,5 is 5-dimensional as well. Working
modulo L as in the proof of Lemma 9.9, we conclude that B̃(G2,5) is a finite union
of 2-dimensional cones in a 5-dimensional space. Equivalently, it is a finite union
of spherical line segments on the 4-dimension sphere. We consider B(G2,5) in this
embedding as a graph in the 4-sphere.

By doing a local computation for the Gröbner cones of the three distinct reduced
Gröbner bases (modulo symmetry), we found that this graph has 10 vertices and 15
edges. The vertices are the rays spanned by the vectors −eij , the images modulo
L of the negated unit vectors in R10. The corresponding initial ideal is gotten
by erasing those monomials which contain variable pij . It is generated by three
quadratic binomials and two quadratic trinomials.

Two vertices are connected by an edge if and only if the index sets of the
two unit vectors are disjoint. Hence the graph B̃(G2,5) is isomorphic to the graph
whose vertices are the 2-subsets of {0, 1, 2, 3, 4} and whose edges are disjoint pairs.
This is the Petersen graph. The edges correspond to the fifteen deformations of
G2,5 to a toric variety. See Example 11.9 in [Stu95]. For instance, the initial
ideal corresponding to the disjoint pair ({0, 1}, {3, 4}) is gotten by setting the two
underlined variables to zero in (9.6). �

9.3. The Bergman Complex of a Linear Space

We next compute the Bergman complex of an arbitrary linear subspace in terms
of matroid theory. Let I be an ideal in Q[x1, . . . , xn] generated by (homogeneous)
linear forms. Let d be the dimension of the space of linear forms in I. A d-subset
{i1, . . . , id} of {1, . . . , n} is a basis if there does not exist a non-zero linear form in I
depending only on {x1, . . . , xn} \ {xi1 , . . . , xid

}. The collection of bases is denoted
M and called the matroid of I.
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In the following, we investigate the Bergman complex of an arbitrary matroid
M of rank d on the ground set {1, 2, . . . , n}. We do not even require the matroid M
to be representable over any field. One of many axiomatization of abstract matroids
goes like this: take any collection M of (n− d)-subsets σ of {1, 2, . . . , n} and form
the convex hull of the points

∑
i∈σ ei in Rn. Then M is a matroid if and only if

every edge of this convex hull is a parallel translate of the difference ei − ej two
unit vectors. In this case, we call the above convex hull the matroid polytope of M .

Fix any vector ω ∈ Rn. We are interested in all the bases ofM having minimum
ω-cost. The set of these optimal bases is itself the set of bases of a matroid Mω

of rank d on {1, . . . , n}. The matroid polytope of Mω is the face of the matroid
polytope of M at which the linear functional ω is minimized. An element of the
matroid is a loop if it does not occur in any basis.

In the amoeba framework the correspondence between the tentacle characteri-
zation and the matroid characterization can be stated as follows.

Lemma 9.11. Let I be an ideal generated by linear forms, M be the associated
matroid and ω ∈ Rn. Then the ideal inω(I) does not contain any variable xi if and
only if the matroid Mω does not have a loop.

We may assume without loss of generality that ω is a vector of unit length
having coordinate sum zero. The set of these vectors is

Sn−2 =
{
ω ∈ Rn : ω1 + ω2 + · · ·+ ωn = 0 and ω2

1 + ω2
2 + · · ·+ ω2

n = 1
}
.

The Bergman complex of an arbitrary matroid M is defined as the set

B(M) :=
{
ω ∈ Sn−2 : Mω has no loops

}
.

Theorem 9.12. The Bergman complex B(M) of a rank d matroid M is a pure
(d− 2)-dimensional polyhedral complex embedded in the (n− 2)-sphere.

Clearly, B(M) is a subcomplex in the spherical polar to the matroid polytope
of M . The content of this theorem is that each face of the matroid polytope of M
whose matroidMω has no loops, and is minimal with this property, has codimension
n− d+ 1. If M is represented by a linear ideal I then B(M) coincides with B(X)
where X is the variety of I in (C∗)n. In this case, Theorem 9.12 is simply a special
case of Theorem 9.6. However, when M is not representable, then we need to
give a new proof of Theorem 9.12. This can be done using an inductive argument
involving the matroidal operations of contraction and deletion.

We wish to propose the combinatorial problem of studying the complex B(M)
for various classes of matroids M . For instance, for rank(M) = 3 we always get
a subgraph of the ridge graph of the matroid polytope, and for rank(M) = 4 we
get a two-dimensional complex. What kind of extremal behavior, in terms of face
numbers, homology etc...etc... can we expect? What is the most practical algorithm
for computing B(M) from M?

Example 9.13. Let M be the uniform matroid of rank d on {1, 2, . . . , n}. Then
B(M) is the set of all vectors ω in Sn−2 whose largest n− d+ 1 coordinates are all
equal. This set can be identified with the (d − 2)-skeleton of the (n − 1)-simplex.
For instance, let M the uniform rank 3 matroid on {1, 2, 3, 4, 5}. Then B(M) is
the complete graph K5, which has ten edges, embedded in the 3-sphere S3 with
vertices ( 1

2
√

5
,

1
2
√

5
,

1
2
√

5
,

1
2
√

5
,− 2√

5

)
,
( 1
2
√

5
,

1
2
√

5
,

1
2
√

5
,− 2√

5
,

1
2
√

5

)
, . . .
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These five vectors are normal to five of the ten facets of the second hypersimplex
in R5, which is the polytope conv

{
ei + ej : 1 ≤ i < j ≤ 5

}
.

Example 9.14. Let M be the rank 3 matroid on {1, 2, 3, 4, 5} which has eight
bases and two non-bases {1, 2, 3} and {1, 4, 5}. Then B(M) is the complete bipartite
graph K3,3, given with a canonical embedding in the 3-sphere S3.

Example 9.15. Consider the codimension two subvariety X of (C∗)6 defined
by the following two linear equations:

x1 + x2 − x4 − x5 = x2 + x3 − x5 − x6 = 0.

We wish to describe its Bergman complex B(X), or, equivalently, by Theorem 9.16
below, we wish to solve these two linear equations tropically. This amounts to
finding all initial ideals of the ideal of these two linear forms which contain no
variable, or equivalently, we are interested in all faces of the polar of the matroid
polytope which correspond to loopless matroids.

We can think of x1, x2, . . . , x6 as the vertices of a regular octahedron, where the
affine dependencies are precisely given by our equations. The Bergman complex
B(X) has 9 vertices, 24 edges, 20 triangles and 3 quadrangles. The 9 vertices
come in two symmetry classes. There are six vertices which we identify with the
vertices xi of the octahedron. The other three vertices are drawn in the inside of
the octahedron: they correspond to the three symmetry planes. We then take the
boundary complex of the octahedron plus certain natural connection to the three
inside points.

9.4. The Tropical Variety of an Ideal

We now connect tropical geometry with algebraic geometry in the usual sense.
The basic idea is to introduce an auxiliary variable t and to take exponents of t as
the coefficients in a tropical polynomial. More precisely, let f be any polynomial
in Q[ t , x1, x2, . . . , xn ], written as a polynomial in x1, . . . , xn,

f =
∑
a∈A

pa(t) · xa1
1 x

a2
2 · · ·xan

n .

We define the tropicalization of f to be the polynomial

trop(f) =
∑
a∈A

(−lowdeg(pa)) · xa1
1 x

a2
2 · · ·xan

n ∈ N[x1, . . . , xn],

where lowdeg(pa) is the largest integer u such that tu divides pa(t). For instance,
for any non-zero rational numbers a, b and c, the polynomial

f = a · t3x5
1 + b · t7x5

1 + c · t2x1x
4
2.

has the tropicalization

trop(f) = (−3) · x5
1 + (−2) · x1x

4
2.

The negation in the definition of trop(f) is necessary because we are taking the
maximum of linear forms when we evaluate a tropical polynomial. On the other
hand, when working with Puiseux series, as in the definition of log(X) below, we
always take the minimum of the occurring exponents.

Given any ideal I in Q[t, x1, . . . , xn], we defined its tropical variety to be the
tropical variety in Rn defined by the tropical polynomials trop(f) as f runs over all
polynomials in I. If the auxiliary variable t does not appear in any of the generators
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of I then I can be regarded as an ideal in Q[x1, . . . , xn]. In this case we recover
the Bergman complex.

Theorem 9.16. Let I be an ideal in Q[x1, . . . , xn] and X the variety it defines
in (C∗)n. Then the tropical variety trop(I) equals the Bergman fan B(X).

In the more general case when t does appear in I, the tropical variety trop(I)
is not a fan, but it is a polyhedral complex with possibly many bounded faces. We
have seen many examples of tropical curves at the beginning of this chapter. In
those cases, I is a principal ideal in Q[x, y].

Consider the algebraically closed field K = C{{t}} of Puiseux series. Every
Puiseux series x(t) has a unique lowest term a ·tu where a ∈ C∗ and u ∈ Q. Setting
val(f) = u, this defines the canonical valuation map

val : (K∗)n → Qn, (x1, x2, . . . , xn) 7→
(
val(x1), val(x2), . . . , val(xn)

)
.

If X is any subvariety of (K∗)n then we can consider its image val(X) in Qn. The
closure of val(X) in Rn is called the non-archimedean amoeba of X.

The following is our main theorem. It identifies all the piecewise-linear objects
introduced in this chapter. The algorithmic importance of this theorem lies in the
fact that we can compute arbitrary tropical varieties using Gröbner basis methods.

Theorem 9.17. Let I be any ideal in Q[t, x1, . . . , xn] and X its variety in
(K∗)n. Then the following three subsets of Rn coincide:

• The negative −val(X) of the non-archimedean amoeba of the variety X ⊂
(K∗)n,

• the tropical variety trop(I) of I,
• the intersection of the Bergman complex B(I) in Sn with the southern

hemisphere {t < 0}, identified with Rn via stereographic projection.

Theorem 9.17 implies Theorem 9.16. The proof of Theorem 9.17 is not given
here. It is based on reduction to the zero-dimensional case, by examining monomial
curves and then applying Puiseux’s theorem. This method was introduced by
Kapranov [Kap00] who proved Theorem 9.17 in the case when X is a hypersurface.

Let us illustrate Theorem 9.17 for our most basic example, the solution to the
quadratic equation. Suppose n = 1 and consider an ideal of the form

I = 〈αtax2 + βtbx + γtc 〉,

where α, β, γ are non-zero rationals and a, b, c are integers with a + c ≥ 2b. Then
trop(I) is the variety of the tropicalization (−a)x2 + (−b)x + (−c) of the ideal
generator. Since (−a) + (−c) ≤ 2(−b), we have trop(I) = {a − b, b − c}. The
variety of X in the affine line over K = C{{t}} equals

X =
{
−β
α
tb−a + · · · , −γ

β
tc−b + · · ·

}
.

Hence val(X) = {b−a, c−b} = −trop(I). The Bergman fan B̃(I) of the bivariate
ideal I is a one-dimensional fan in the (t, x)-plane R2, consisting of three rays.
These rays are generated by (−1, a− b), (−1, b− c) and (2, c− a), and hence the
intersection of B̃(I) with the line t = −1 is precisely trop(I).
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9.5. Exercises

(1) Draw the graph and the variety of the tropical polynomial

f(x) = 10 + 9x + 7x2 + 4x3 + 0x4.

(2) Draw the graph and the variety of the tropical polynomial

f(x, y) = 1x2 + 2xy + 1y2 + 3x + 3y + 1.

(3) Let I be the ideal of 3 × 3-minors of a 3 × 4-matrix of indeterminates.
Compute the Bergman complex B(I) of this ideal.

(4) The Bergman complex B(M) of a rank 4 matroid M on {1, 2, 3, 4, 5, 6} is
a polyhedral surface embedded in the 4-sphere. What is the maximum
number of vertices of B(M), as M ranges over all such matroids?

(5) Let I be a complete intersection ideal in Q[t, x1, x2, x3] generated by two
random polynomials of degree three. Describe trop(I) ⊂ R3.

(6) Prove that five general points in the plane determine a unique tropical
quadric. What is the condition for six points in the plane to lie on a
tropical quadric?

(7) Pick eight random points in the plane. Draw all tropical curves of degree
three which pass through the eight points and which are not smooth.

(8) Determine the Bergman complex of the Grassmannian G2,6 of lines in P5.
(9) Is there such a thing as a tropical Buchberger algorithm?

(10) On Tuesday, April 16, 2002, Maxim Kontsevich gave a lecture at Kansas
State University in Manhattan, Kansas. What did he speak about?





CHAPTER 10

Linear Partial Differential Equations
with Constant Coefficients

Every system of polynomials translates naturally into a system of linear partial
differential equations with constant coefficients. The equation

(10.1)
∑

ci1i2...in
xi1

1 x
i2
2 · · ·xin

n = 0

translates into the partial differential equation

(10.2)
∑

ci1i2...in

∂i1+i2+···+inf

∂xi1
1 ∂x

i2
2 · · · ∂x

in
n

= 0

for an unknown function f = f(x1, . . . , xn). In this chapter we argue that it
is advantageous to regard polynomials as linear PDEs, especially when the given
polynomials have zeros with multiplicities or embedded components. This point of
view was advocated by Wolfgang Gröbner, who frequently returned to this theme
throughout his mathematical career, starting with his famous 1938 paper on the
ideal-theoretic foundation of algebraic geometry [Gro38]; see also [Gro39].

The general theory was developed in the 1960’s by Ehrenpreis and Palamodov,
culminating in their Fundamental Principle which states that all solutions to a sys-
tem of linear PDEs with constant coefficients have a certain integral representation
over the underlying complex variety (Theorem 10.12). In the special case when I
is a prime ideal, this representation was known to Gröbner in the 1930’s. A good
reference on the Fundamental Principle is the last chapter in Björk’s book [Bjö79].

In the 1990’s, Ulrich Oberst resumed Gröbner’s tradition in Innsbruck, Tyro-
lia, with a sequence of important papers (specifically [Obe95] and [Obe99]) on
this subject. These papers inspired the writing of this chapter. What follows is
an introduction to the algebraic study of linear partial differential equations with
constant coefficients, from the point of view of solving polynomial equations.

10.1. Why Differential Equations?

There are many good reasons for passing from polynomials to differential equa-
tions. The first reason is that we do not lose any information by doing so. The
zeros of a polynomial system are recovered from the exponential solutions to the
associated differential equations.

Remark 10.1. A vector p = (p1, p2, . . . , pn) ∈ Cn is a solution to the polyno-
mial equation (10.1) if and only if the exponential function exp(p·x) = exp(p1x1+
p2x2 + · · ·+ pnxn) is a solution of the differential equation (10.2).

However, we wish to argue that the differential equations are somehow better.
Let us illustrate this for one simple quadratic equation in one variable:

(10.3) x2 = α2

133
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where α is a real parameter. This equation has two distinct solutions, namely
x = α and x = −α, provided the parameter α is non-zero. For α = 0, there is
only one solution, namely x = 0, and conventional algebraic wisdom tells us that
this solution is to be regarded as having multiplicity 2. In the design of homotopy
methods for solving algebraic equations, such multiple points create considerable
difficulties, both conceptually and numerically.

Consider the translation of (10.3) into an ordinary differential equation:

(10.4) f ′′(x) = α2 · f(x).

The solution space Vα to (10.4) is always a two-dimensional complex vector space,
for any value of α. For α 6= 0, this space has a basis of exponentials,

Vα = C
{

exp(α · x), exp(−α · x)
}
,

but for α = 0 these two basis vectors become linearly dependent. However, there
exists a better choice of a basis which works for all values of α, namely,

(10.5) Vα = C
{

exp(α · x), 1
2α
(
exp(α · x) − exp(−α · x)

) }
,

This new basis behaves gracefully when we take the limit α→ 0:

V0 = C
{

1 , x
}
.

The representation (10.5) displays Vα as a rank 2 vector bundle on the affine α-
line. There was really nothing special about the point α = 0 after all. Perhaps this
vector bundle point of view might be useful in developing new reliable homotopy
algorithms for numerically computing the complicated scheme structure which is
frequently hidden in a given non-radical ideal.

Our second example is the following system of three polynomial equations

(10.6) x3 = yz , y3 = xz , z3 = xy.

These equations translate into the three differential equations

(10.7)
∂3f

∂x3
=

∂2f

∂y∂z
,

∂3f

∂y3
=

∂2f

∂x∂z
and

∂3f

∂z3
=

∂2f

∂x∂y
.

The set of entire functions f(x, y, z) which satisfy the differential equations (10.7)
is a complex vector space. This vector space has dimension 27, the Bézout number
of (10.6). A solution basis for (10.7) is given by{

exp(x+ y + z), exp(x− y − z), exp(y − x− z), exp(z − x− y),
exp(x+ iy − iz), exp(x− iy + iz), exp(y + ix− iz), exp(y − ix+ iz),

exp(z + ix− iy), exp(z − ix+ iy), exp(iy + iz − x), exp(−iy − iz − x),
exp(ix+ iz −y), exp(−ix− iz −y), exp(ix+ iy −z), exp(−ix− iy −z),

1, x, y, z, z2, y2, x2, x3 + 6yz, y3 + 6xz, z3 + 6xy, x4 + y4 + z4 + 24xyz
}

Here i =
√
−1. Using Remark 10.1 and results to be stated in the next sections, we

can read off the following facts about our equations from the solution basis above:
(a) The system (10.6) has 17 distinct complex zeros, of which 5 are real.
(b) A point (a, b, c) is a zero of (10.6) if and only if exp(ax + by + cz) is a

solution to (10.7). All zeros other than the origin have multiplicity one.
(c) The multiplicity of the origin (0, 0, 0) as a zero of (10.6) is eleven. This

number is the dimension of the space of polynomial solutions to (10.7).
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(d) Every polynomial solution to (10.7) is gotten from one specific solution,
namely, from x4 + y4 + z4 + 24xyz, by taking successive derivatives.

(e) The local ring of (10.6) at the origin is Gorenstein.

We conclude that our solution basis to (10.7) contains all the information one might
want about the solutions to the polynomial system (10.6). The aim of this chapter
is to extend this kind of reasoning to arbitrary polynomial systems, that is, to
arbitrary systems of linear PDEs with constant coefficients.

Our third and final example is to reinforce the view that, in a sense, the PDE
formulation reveals a lot more information than the polynomial formulation. Con-
sider the problem of solving the following polynomial equations:

(10.8) xi
1 + xi

2 + xi
3 + xi

4 = 0 for all integers i ≥ 1.

The only solution is the origin (0, 0, 0, 0), and this zero has multiplicity 24. In
the corresponding PDE formulation one seeks to identify the vector space of all
functions f(x1, x2, x3, x4), on a suitable subset of R4 or C4, such that

(10.9)
∂if

∂x1
i

+
∂if

∂x2
i

+
∂if

∂x3
i

+
∂if

∂x4
i

= 0 for all integers i ≥ 1.

Such functions are called harmonic. The space of harmonic functions has dimension
24. It consists of all successive derivatives of the discriminant

∆(x1, x2, x3, x4) = (x1 − x2)(x1 − x3)(x1 − x4)(x2 − x3)(x2 − x4)(x3 − x4).

Thus the solution space to (10.9) is the cyclic C
[

∂
∂x1

, ∂
∂x2

, ∂
∂x3

, ∂
∂x4

]
-module gener-

ated by ∆(x1, x2, x3, x4). This is what “solving (10.8)” should really mean.

10.2. Zero-dimensional Ideals

We fix the polynomial ring Q[∂] = Q[∂1, . . . , ∂n]. The variables have funny
names but they are commuting variables just like x1, . . . , xn in the previous chap-
ters. We shall be interested finding the solutions of an ideal I in Q[∂]. The material
in this section is well-known in the Gröbner basis community. It is sometimes re-
ferred to as Gröbner duality. Two relevant references are [MMM96] and [Mou97].

Let F be a class of C∞-functions on Rn or on Cn or on some subset thereof.
For instance F might be the class of entire functions on Cn. Then F is a module
over the ring Q[∂]: polynomials in Q[∂] acts on F by differentiation. More pre-
cisely, if p(∂1, ∂2, . . . , ∂n) is a polynomial then it acts on F by sending a function
f = f(x1, . . . , xn) in the class F to the result of applying the differential operator
p( ∂

∂x1
, ∂

∂x2
, . . . , ∂

∂xn
) to f .

The class of functions F in which we are solving should always be chosen large
enough in the following sense. If I is any ideal in Q[∂] and Sol(I) is its solution set
in F then the set of all operators which annihilate all functions in Sol(I) should
be precisely equal to I. What this means algebraically is that F is supposed to
be an injective cogenerator for Q[∂]. See [Obe95] for a discussion of such injective
cogenerators F . In what follows we will consider functions which are gotten by
integrating products of exponentials and polynomials. Any class F containing
these functions will be large enough.

We start out by reviewing the case of one variable, abbreviated ∂ = ∂1, over the
field C of complex numbers. Here I = 〈p〉 is a principal ideal in C[∂], generated
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by one polynomial which factors completely:

p(∂) = ad∂
d + ad−1∂

d−1 + · · · + a2∂
2 + a1∂ + a0

= (∂ − u1)e1(∂ − u2)e2 · · · (∂ − ur)er

We can take F to be the set of entire functions on the complex plane C. The ideal
I represents the ordinary differential equation

(10.10) ad · f (d)(x) + · · · + a2 · f ′′(x) + a1 · f ′(x) + a0 · f(x) = 0.

The solution space Sol(I) consists of all entire functions f(x) which satisfy the
equation (10.10). This is a complex vector space of dimension d = e1+e2+· · ·+er.
A canonical basis for this space is given as follows:

(10.11) Sol(I) = C
{
xj · exp(ui · x) | i = 1, 2, . . . , r , j = 0, 1, . . . , ei − 1

}
.

We see that Sol(I) encodes all the zeros together with their multiplicities.
We now generalize the formula (10.11) to PDEs in n unknowns which have a

finite-dimensional solution space. Let I be any zero-dimensional ideal in C[∂] =
C[∂1, . . . , ∂n]. We work over the complex numbers C instead of the rational numbers
Q to keep things simpler. The variety of I is a finite set

V(I) = {u(1), u(2), . . . , u(r) } ⊂ Cn,

where u(i) = (u(i)
1 , . . . , u

(i)
n ). The ideal I has a unique primary decomposition

I = Q1 ∩ Q2 ∩ · · · ∩Qr,

where Qi is primary to the maximal ideal of the point u(i),

Rad(Qi) = 〈 ∂1 − u(i)
1 , ∂2 − u(i)

2 , . . . , ∂n − u(i)
n 〉.

Given any operator p in C[∂], we write p(∂+u(i)) for the operator gotten from p(∂)
by replacing the variable ∂j with ∂j + u

(i)
j for all j ∈ {1, 2, . . . , n}. The following

shifted ideal is primary to the maximal ideal 〈∂1, . . . , ∂n〉:

shift(Qi) = 〈 p(∂ + u(i)) : p ∈ Qi 〉.

Let shift(Qi)⊥ denote the complex vector space of all polynomials f ∈ C[x1, . . . , xn]
which are annihilated by all the operators in shift(Qi).

Lemma 10.2. The vector spaces shift(Qi)⊥ and C[∂]/Qi are isomorphic.

Proof. Writing J = shift(Qi), we need to show the following. If J is a
〈∂1, . . . , ∂n〉-primary ideal, then C[∂]/J is isomorphic to the space J⊥ of polyno-
mial solutions of J . By our hypothesis, there exists a positive integer m such that
〈∂1, . . . , ∂n〉m lies in J . Hence J⊥ consists of polynomials all of whose terms have
degree less than m. Consider the two complex vector spaces C[∂]/〈∂1, . . . , ∂n〉m
and C[x]<m = { polynomials of degree less than m}. Both spaces have the same
finite dimension, and there is a natural C-bilinear map from their product to C,
given by differentiating polynomials. This pairing is nondegenerate, which means
that any square matrix representing this bilinear map is non-singular. This implies
that J equals the annihilator of J⊥ in C[∂]/〈∂1, . . . , ∂n〉m, and hence C[∂]/J and
J⊥ are complex vector spaces of the same dimension. �

In the next section we will show how to compute all polynomial solutions of an
ideal in C[∂]. Here we patch solutions from the points of V(I) together.
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Theorem 10.3. The solution space Sol(I) of the zero-dimensional ideal I ⊂
C[∂] is a finite-dimensional complex vector space isomorphic to C[∂]/I. It is
spanned by the functions

q(x) · exp(u(i) · x) = q(x1, x2, . . . , xn) · exp(u(i)
1 x1 + u

(i)
2 x2 + · · ·+ u(i)

n xn),

where i = 1, 2, . . . , r and q(x) ∈ shift(Qi)⊥.

Proof. An operator p(∂) annihilates the function q(x) · exp(u(i) · x) if and
only if the shifted operator p(∂ + u(i)) annihilates the polynomial q(x). Hence the
given functions do lie in Sol(I). Moreover, if we let q(x) range over a basis of
shift(Qi)⊥, then the resulting functions are C-linearly independent. We conclude
that the dimension of Sol(I) is at least the dimension of C[∂]/I. For the reverse
direction, we assume that every function f in F is characterized by its Taylor
expansion at the origin. Any set of such functions whose cardinality exceeds the
number of standard monomials of I, in any term order, is easily seen to be linearly
dependent over the ground field C. �

We have demonstrated that solving a zero-dimensional ideal in C[∂] can be
reduced, by means of primary decomposition, to finding all polynomial solutions of
a system of linear PDEs with constant coefficients. In the next section we describe
how to compute the polynomial solutions.

10.3. Computing Polynomial Solutions

In this section we switch back to our favorite ground field, the rational numbers
Q, and we address the following problem. Let J be any ideal in Q[∂] = Q[∂1, . . . , ∂n].
We do not assume that J is zero-dimensional. We are interested in the space
Polysol(J) of polynomial solutions to J . Thus Polysol(J) consists of all polynomials
in Q[x] = Q[x1, . . . , xn] which are annihilated by all operators in J . Our problem
is to decide whether Polysol(J) is finite-dimensional and, in the affirmative case, to
give a vector space basis.

The first step in our computation is to find the ideal quotient

(10.12) J ′ =
(
J : 〈∂1, ∂2, . . . , ∂n〉∞

)
The ideal J ′ is the intersection of all primary components of J whose prime is not
the maximal ideal 〈∂1, ∂2, . . . , ∂n〉.

Proposition 10.4. The following three conditions are equivalent:
• The vector space Polysol(J) is finite-dimensional.
• The vector space Polysol(J ′) is zero.
• One of the generators of J ′ has a nonzero constant term.

It is easy to test the last condition. If it is not satisfied then we stop. If it is
satisfied then we test whether J = J ′. In that case there are no nonzero polynomial
solutions to J and we stop as well. Otherwise, we can conclude that 〈∂1, ∂2, . . . , ∂n〉
is a minimal prime of J and we compute

(10.13) I = (J : J ′ ).

The ideal I is the primary component of J at 〈∂1, ∂2, . . . , ∂n〉. We have

(10.14) Polysol(J) = Polysol(I).



138 10. LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Let B be the (finite) set of monomials in Q[x1, . . . , xn] which are annihi-
lated by in≺(I). These are precisely the ≺-standard monomials of I but writ-
ten in the x-variables instead of the ∂-variables. Clearly, the set B is a Q-basis of
Polysol(in≺(I)). For every non-standard monomial ∂α there is a unique polynomial

∂α −
∑

xβ∈B

cα,β · ∂β

in the ideal I which is gotten by taking the normal form modulo G. Here cα,β ∈ Q.

Abbreviate β ! := β1!β2! · · ·βn!. For a standard monomial xβ , define

(10.15) fβ(x) = xβ +
∑

xα∈N
cα,β

β!
α!
xα,

where N denotes the set of monomials in Q[x1, . . . , xn]\B. This sum is finite
because I is 〈∂1, . . . , ∂n〉-primary, i.e., if |α| � 0, then ∂α ∈ I and hence cα,β = 0.
We can also write it as a sum over all α ∈ Nn:

fβ(x) =
∑
α

cα,β
β!
α!
xα.

Theorem 10.5. The polynomials fβ, where xβ runs over the set B of standard
monomials, form a Q-basis for the space I⊥ = Sol(I) = Polysol(I).

Proof. The polynomials fβ are Q-linearly independent. Therefore, it suffices
to show g(∂)fβ(x) = 0 for g(∂) =

∑
u Cu∂

u ∈ I.

g(∂)fβ(x) =
∑
α

∑
u

cα,βCu
β!
α!

(∂uxα)

=
∑
α

∑
u≤α

cα,βCu
β!

(α− u)!
xα−u

=
∑

v

(∑
u

cu+v,βCu
β!
v!

)
xv where v = α− u

= β!
∑

v

1
v!

(∑
u

cu+v,βCu

)
xv.

The expression
∑

u cu+v,βCu is the coefficient of ∂β in the ≺-normal form of ∂vg(∂).
It is zero since ∂vg(∂) ∈ I. � �

If I is homogeneous, then we can write

(10.16) fβ = xβ +
∑

xα∈Nd

cα,β ·
β !
α !
· xα

where the degree of xβ is d and Nd denotes the degree d elements in the set N of
non-standard monomials.

We summarize our algorithm for finding all polynomial solutions to a system
of linear partial differential equations with constant coefficients.

Input: An ideal J ∈ Q[∂].
Output: A basis for the space of polynomial solutions of J .

(1) Compute the colon ideal I using formulas (10.12) and (10.13).



10.3. COMPUTING POLYNOMIAL SOLUTIONS 139

(2) Compute the reduced Gröbner basis of I for a term order ≺.
(3) Let B be the set of standard monomials for I.
(4) Output fβ(x1, . . . , xn) for fβ in (10.15), for all xβ ∈ B.

The following special case deserves particular attention. A homogeneous zero-
dimensional ideal I is called Gorenstein if there is a homogeneous polynomial V (x)
such that I = {p ∈ Q[∂] : p(∂)V (x) = 0 }. In this case I⊥ consists precisely of
all polynomials which are gotten by taking successive partial derivatives of V (x).
For example, the ideal I generated by the elementary symmetric polynomials is
Gorenstein. Here V (x) =

∏
1≤i<j≤n(xi − xj), the discriminant, and I⊥ is the

space of harmonic polynomials.
Suppose we wish to decide whether or not an ideal I is Gorenstein. We first

compute a Gröbner basis G of I with respect to some term order ≺. A necessary
condition is that there exists a unique standard monomial xβ of maximum degree,
say t. For every monomial xα of degree t there exists a unique constant cα ∈ Q
such that xα−cα ·xβ ∈ I. We can find the cα’s by normal form reduction modulo G.
Define V :=

∑
α:|α|=t(cα/α !) · xα, and let Q[∂]V be the Q-vector space spanned

by the polynomials

(10.17) ∂uV =
∑

α:|α|=t−|u|

(cα+u/α !) · xα,

where ∂u runs over all monomials of degree at most t.
Proposition 10.6. The ideal I is Gorenstein if and only if Q[∂]V = I⊥ if

and only if dimQ(Q[∂]V ) equals the number of standard monomials.

The previous two propositions provide a practical method for solving linear
systems with constant coefficients. We illustrate this in a small example.

Example 10.7. For n = 5 consider the homogeneous ideal

I = 〈∂1∂3, ∂1∂4, ∂2∂4, ∂2∂5, ∂3∂5, ∂1 + ∂2 − ∂4, ∂2 + ∂3 − ∂5 〉.

Let ≺ be any term order with ∂5 ≺ ∂4 ≺ ∂3 ≺ ∂2 ≺ ∂1. The reduced Gröbner basis
of I with respect to ≺ equals

G =
{
∂1 − ∂3 − ∂4 + ∂5, ∂2 + ∂3 − ∂5, ∂

2
3 + ∂4∂5, ∂3∂5, ∂

2
4 , ∂3∂4 − ∂4∂5, ∂

2
5

}
.

The underlined monomials generate the initial ideal in≺(I). The space of polyno-
mials annihilated by in≺(I) is spanned by the standard monomials

B =
{

1, x3, x4, x5, x4x5

}
.

There exists a unique standard monomial of maximum degree t = 2, so it makes
sense to check whether I is Gorenstein. For any quadratic monomial xixj , the
normal form of xixj with respect to G equals cij · x4x5 for some constant cij ∈ Q.
We collect these constants in the quadratic form

V =
1
2

5∑
i=1

ciix
2
i +

∑
1≤i<j≤5

cijxixj

= x4x5 + x1x5 + x3x4 + x2x3 + x1x2 −
1
2
x2

3 −
1
2
x2

2 −
1
2
x2

1.

This polynomial is annihilated by I, and its initial monomial is annihilated by
in≺(I). We next compute the Q-vector space Q[∂]V of all partial derivatives of V .
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It turns out that this space is five-dimensional. Using Proposition 10.6 we conclude
that I is Gorenstein and its solution space I⊥ equals Q[∂]V .

10.4. How to Solve Monomial Equations

We consider an arbitrary monomial ideal M = 〈 ∂a(1)
, ∂a(2)

, . . . , ∂a(r) 〉 in
Q[∂]. The solution space Sol(M) consists of all functions f(x1, . . . , xn) for which
a specified set of partial derivatives vanishes:

∂|a
(i)|f

∂x
a
(i)
1

1 · · · ∂xa
(i)
r

r

= 0 for i = 1, 2, . . . , r.

If M is zero-dimensional then Sol(M) is finite-dimensional with basis the stan-
dard monomials B as in the previous section. Otherwise, Sol(M) is an infinite-
dimensional space. In what follows we offer a finite description.

We are interested in pairs (u, σ) consisting of a monomial xu, with u ∈ Nn, and
a subset σ of {x1, x2, . . . , xn} with the following three properties:

(1) ui = 0 for all i ∈ σ.
(2) Every monomial of the form xu ·

∏
i∈σ x

vi
i lies in Sol(M).

(3) For each j 6∈ σ there exists a monomial ∂wj

j ·
∏

i∈σ ∂
vi
i which lies in M .

The pairs (u, σ) with these three properties are called the standard pairs of the
monomial ideal M . Computing the standard pairs of a monomial ideal is a standard
task in combinatorial commutative algebra. See [HS01] for an implementation in
Macaulay 2. This is important for us because the standard pairs are exactly what
we want when solving a monomial ideal.

Theorem 10.8. A function f(x) is a solution to the ideal M of monomial
differential operators if and only if it can be written in the form

f(x1, . . . , xn) =
∑

xu1
1 · · ·xun

n · g(u,σ)

(
xi : i ∈ σ

)
,

where the sum is over all standard pairs of M .
Example 10.9. Let n = 3 and consider the monomial ideal

M = 〈 ∂2
1∂

3
2∂

4
3 , ∂

2
1∂

4
2∂

3
3 , ∂

3
1∂

2
2∂

4
3 , ∂

3
1∂

4
2∂

2
3 , ∂

4
1∂

2
2∂

3
3 , ∂

4
1∂

3
2∂

2
3 〉.

Thus Sol(M) consists of all function f(x1, x2, x3) with the property

∂9f

∂x2
i ∂x

3
j∂x

4
k

= 0 for all permutations (i, j, k) of {1, 2, 3}.

The ideal M has precisely 13 standard pairs:

(x3, {x1, x2}) , (1, {x1, x2}) , (x2, {x1, x3}) , (1, {x1, x3}) ,
(x1, {x2, x3}) , (1, {x2, x3}) , (x2

2x
2
3, {x1}) , (x2

3x
2
1, {x2}) , (x2

1x
2
2, {x3}) ,

(x3
1x

3
2x

3
3, ∅) , (x2

1x
3
2x

3
3, ∅) , (x3

1x
2
2x

3
3, ∅) , (x3

1x
3
2x

2
3, ∅).

We conclude that the solutions to M are the functions of the following form

x3 · f1(x1, x2) + f2(x1, x2) + x2 · g1(x1, x3) + g2(x1, x3)
+x1 · h1(x2, x3) + h2(x2, x3) + x2

2x
2
3 · p(x1) + x2

1x
2
3 · q(x2) + x2

1x
2
2 · r(x3)

+ a1 · x3
1x

3
2x

3
3 + a2 · x2

1x
3
2x

3
3 + a3 · x3

1x
2
2x

3
3 + a4 · x3

1x
3
2x

2
3.



10.5. THE EHRENPREIS-PALAMODOV THEOREM 141

10.5. The Ehrenpreis-Palamodov Theorem

We are seeking a finite representation of all the solutions to an arbitrary ideal
I in C[∂] = C[∂1, . . . , ∂n]. This representation should generalize both the case of
zero-dimensional ideals and the case of monomial ideals, and it should reveal all
polynomial solutions. Let us present two simple examples, both for n = 3, which
do not fall in the categories discussed so far.

Example 10.10. Consider the principal prime ideal I = 〈 ∂1∂3−∂2 〉. The
variety of I is a surface in C3 parametrically given as (s, st, t) where s, t runs over
all complex numbers. The PDE solutions to I are the functions f(x1, x2, x3) which
satisfy the equation

∂2f

∂x1∂x3
=

∂f

∂x2
.

In the setting of Ehrenpreis and Palamodov, every solution to this differential equa-
tion can be expressed as a double integral of the form

(10.18) f(x1, x2, x3) =
∫∫

exp
(
sx1 + stx2 + tx3

)
dµ(s, t),

where the integral is taken with respect to any measure µ on the complex (s, t)-
plane C2. For instance, we might integrate with respect to a measure supported
only at the two points (i, i) and (0, 17). From this we get a solution like

g(x1, x2, x3) = exp
(
ix1 − x2 + ix3

)
+ exp

(
17x3

)
.

Example 10.11. Let us consider the previous example but now add the re-
quirement that the second partials with respect to x2 and x3 should vanish as well.
That is, we now consider the larger ideal J = 〈 ∂1∂3 − ∂2 , ∂

2
2 , ∂

2
3 〉. The ideal J

is primary to 〈∂2, ∂3〉. It turns out that there are two kinds of solutions: The first
class of solutions are functions in the first variable only:

f(x1, x2, x3) = g(x1),

The second class of solutions takes the following form:

f(x1, x2, x3) = g(x1) · x3 + g′(x1) · x2.

In both cases, g is any differentiable function in one variable. It is instructive to
derive the second class as a special case from the integral formula (10.18). �

We are now prepared to state the Ehrenpreis-Palamodov Theorem, in a form
that emphasizes the algebraic aspects over the analytic aspects. For more analytic
information and a proof of Theorem 10.12 see [Bjö79].

Theorem 10.12. Given any ideal I in C[∂1, . . . , ∂n], there exist finitely many
pairs (Aj , Vj) where Aj(x1, . . . , xn, ξ1, . . . , ξn) is a polynomial in 2n unknowns and
Vj ⊂ Cn is the irreducible variety of an associated prime of I, such that the following
holds. If K is any compact and convex subset of Rn and f ∈ C∞(K) is any solution
to I, then there exist measures µj on Vj such that

(10.19) f(ix1, . . . , ixn) =
∑

j

∫
Vj

Aj(x, ξ) exp(ix · ξ) dµj(ξ).

Here i2 = −1. Theorem 10.12 gives a precise characterization of the scheme
structure defined by I. Indeed, if I is a radical ideal then all Aj can be taken as
the constant 1, and the pairs (1, Vj) simply run over the irreducible components of
I. The main point is that the polynomials Aj(x, ξ) are independent of the space
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F = C∞(K) in which the solutions lie. In the opinion of the author, the true
meaning of solving a polynomial system I is to exhibit the associated primes of I
together with their multiplier polynomials Aj(x, ξ).

Our earlier results on zero-dimensional ideals and monomial ideals can be in-
terpreted as special cases of the Ehrenpreis-Palamodov Theorem. In both cases,
the polynomials Aj(x, ξ) only depend on x and not on the auxiliary variables ξ. In
the zero-dimensional case, each Vj is a single point, say Vj = {u(j)}. Specifying a
measure µj on Vj means picking a constant multiplier for the function exp(x ·u(j)).
Hence we recover Theorem 10.3. If I is a monomial ideal then each Vj is a coordi-
nate subspace, indexed by a subset σ of the variables, and we can take monomials
xu1

1 · · ·xun
n for the Aj . Thus, in the monomial case, the pairs (Aj , Vj) are the

standard pairs of Theorem 10.8.
For general ideals which are neither zero-dimensional nor monomials, one needs

the appearance of the extra variables ξ = (ξ1, . . . , ξn) is the polynomials Aj(x, ξ).
A small ideal where this is necessary appears in Example 10.11.

Suppose we are given an ideal I in C[∂] and we wish to compute the list of pairs
(Aj , Vj) described in the Ehrenpreis-Palamodov Theorem. It is conceptually easier
to first compute a primary decomposition of I, and then compute multipliers Aj for
each primary component separately. This leads to the idea of Noetherian operators
associated to a primary ideal. In the literature, it is customary to Fourier-dualize
the situation and to think of the Ai(x, ξ) as differential operators. We shall sketch
this in the next section.

10.6. Noetherian Operators

In this section we consider ideals in the polynomial ring C[x] = C[x1, . . . , xn].
Let Q be a primary ideal in C[x] and V its irreducible variety in Cn.

Theorem 10.13. There exist differential operators with polynomial coefficients,

Ai(x, ∂) =
∑

j

cij · pj(x1, . . . , xn) · ∂j1
1 ∂

j2
2 · · · ∂jn

n , i = 1, 2, . . . , t,

with the following property. A polynomial f ∈ C[x] lies in the ideal Q if and only
if the result of applying Ai(x, ∂) to f(x) vanishes on V for i = 1, 2, . . . , t.

The operators A1(x, ∂), . . . , Ar(x, ∂) are said to be Noetherian operators for
the primary ideal Q. Note that the Noetherian operators for Q are not unique.
Our computational task is to go back and forth between the two presentations of a
primary ideal Q. The first presentation is by means of ideal generators, the second
presentation is by means of Noetherian operators. Solving the equations Q means
to go from the first presentation to the second. The reverse process can be thought
of as implicitization and is equally important.

An algorithm for computing Noetherian operators for a given primary ideal Q
was given by Oberst [Obe99]. Just like the proof in [Bjö79], Oberst’s approach is
based on Noether normalization. We will not discuss this algorithm here.

Example 10.14. We Fourier-dualize the primary ideal in Example 10.11 to get

Q = 〈x1x3 − x2, x
2
2, x

2
3 〉.

Here V is the x1-axis in affine 3-space. There are two Noetherian operators:

A1 = 1 and A2 = ∂3 + x1∂2.
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A polynomial f = f(x1, x2, x3) lies in the primary ideal Q if and only if both
A1(f) = f and A2(f) = ∂f/∂x3 + x1 · ∂f/∂x2 vanish on the line V . �

If I is an arbitrary (not necessarily primary) ideal in C[x] then we can char-
acterize the membership in I by Noetherian operators Aj(x, ∂) attached to the
various primary components of I. If we replace xi by ξi and ∂i by xi in these Aj ,
then we obtain a description as in Theorem 10.12 of all solutions to the system
of linear partial differential equations represented by the ideal I. The number of
Noetherian operators needed to describe I is closely related to a quantity known in
commutative algebra as the arithmetic degree of I.

We illustrate the process of solving a polynomial system by means of Noetherian
operators for a non-trivial example. Consider the ideal

I = 〈x3
1x

2
4 − x5

2 , x
2
1x

3
4 − x5

3 , x1x
2
3 − x3

2 , x
2
2x4 − x3

3 〉
= 〈x1x4 − x2x3 , x1x

2
3 − x3

2 , x
2
2x4 − x3

3 〉
∩ 〈x2

1 , x
2
2 , x

2
3 〉 ∩ 〈x2

2 , x
2
3 , x

2
4 〉

∩ 〈x3
1 , x

3
2 , x

3
3 , x

3
4 , x1x

2
3 , x

2
2x4 〉.

This is the circuit ideal of the matrix A =
(

0 2 3 5
5 3 2 0

)
. As predicted by

Theorem 8.17, there are four associated primes, namely, the radicals of the primary
ideals appearing in the intersection. The corresponding irreducible varieties are

• the toric surface V (1) = { (s5, s3t2, s2t3, t5) : s, t ∈ C },
• the x1-axis V (2) = { (s, 0, 0, 0) : s ∈ C },
• the x4-axis V (3) = { (0, 0, 0, t) : t ∈ C },
• the origin V (4) = { (0, 0, 0, 0)}.

The first primary ideal is prime: it consists precisely of those polynomials which
vanish on V1. The three embedded primary ideals are monomial. Membership in
these ideals is easily characterized by standard pairs. Putting everything together
we find the following list of 13 Noetherian operators:

A
(1)
1 = 1,

A
(2)
2 = ∂2∂3∂4, A

(2)
3 = ∂2∂3, A

(2)
4 = ∂2∂4, A

(2)
5 = ∂3∂4,

A
(3)
6 = ∂1∂2∂3, A

(3)
7 = ∂1∂2, A

(3)
8 = ∂1∂3, A

(3)
9 = ∂2∂3,

A
(4)
10 = ∂2

1∂
2
4 + ∂2

2∂
2
3 , A

(4)
11 = ∂2

1∂2∂3∂
2
4 , A

(4)
12 = ∂2

1∂2∂
2
4 , A

(4)
13 = ∂2

1∂3∂
2
4 .

This results in the following characterization: A polynomial f = f(x1, x2, x3, x4)
lies in the ideal I if and only if A

(j)
i (f) vanishes on V (j) for all i and j.

We now translate this result into a corresponding result for solving differential
equations. Here I is regarded as an ideal in C[∂]:

I = 〈 ∂3
1∂

2
4 − ∂5

2 , ∂
2
1∂

3
4 − ∂5

3 , ∂1∂
2
3 − ∂3

2 , ∂
2
2∂4 − ∂3

3 〉.

Each of the 13 Noetherian operators translates into a class of functions which is a
solution to I. For instance, the operator A(1)

1 = 1 associated to the toric surface
V (1) gives rise to all the solutions p(x1, x2, x3, x4) of the prime ideal

Rad(I) = 〈∂1∂4 − ∂2∂3 , ∂1∂
2
3 − ∂3

2 , ∂
2
2∂4 − ∂3

3 〉.
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Each of these solutions has an integral representation

(10.20) f1(x1, x2, x3, x4) =
∫ ∫

exp(s5x1 + s3t2x2 + s2t3x3 + t5x4)dµ(s, t),

where µ(s, t) is a suitable measure. The second Noetherian operator A(2)
2 = ∂2∂3∂4

is associated to the line V (2). It represents all the solutions

x2x3x4 · g2(x1) = x2x3x4 ·
∫

exp(sx1)dµ′(s).

Continuing in this manner, we reach the following final conclusion of this example:
A function p(x1, x2, x3, x4) satisfies the four differential equations

∂5p

∂x3
1∂x

2
4

=
∂5p

∂x5
3

,
∂5p

∂x2
1∂x

3
4

=
∂5p

∂x5
2

,
∂3p

∂x1∂x2
3

=
∂3p

∂x3
2

,
∂3p

∂x2
2∂x4

=
∂3p

∂x3
3

if and only if it can be written in the following form

p = f1(x1, x2, x3, x4)
+x2x3x4 · g2(x1) + x2x3 · g3(x1) + x2x4 · g4(x1) + x3x4 · g5(x1)
+x1x2x3 · h6(x4) + x1x2 · h7(x4) + x1x3 · h8(x4) + x2x3 · h9(x4)

+ c10 · (x2
1x

2
4 + x2

2x
2
3) + c11 · x2

1x2x3x
2
4 + c12 · x2

1x2x
2
4 + c13 · x2

1x3x
2
4,

where the ci are constants, the gi and hi are arbitrary functions in one variable,
and f1 is any function which has an integral representation as in (10.20).

10.7. Exercises

(1) Let a, b, c be arbitrary positive integers. How many linearly independent
(polynomial) functions f(x, y, z) satisfy the differential equations

∂af

∂xa
=

∂b+cf

∂yb∂zc
,

∂af

∂ya
=

∂b+cf

∂zb∂xc
and

∂af

∂za
=

∂b+cf

∂xb∂yc
?

(2) Let α1, α2, α3 be parameters and consider the differential equations

〈 ∂1 + ∂2 + ∂3 − α1, ∂1∂2 + ∂1∂3 + ∂2∂3 − α2, ∂1∂2∂3 − α3 〉

Find a solution basis which works for all values of the three parameters
α1, α2 and α3. One of your basis elements should have the form

(x1 − x2)(x1 − x3)(x2 − x3) + O(α1, α2, α3).

(3) Describe all solutions to the differential equations 〈 ∂1∂3 − ∂2
2 , ∂

3
2 , ∂

3
3 〉.

(4) The mth symbolic power P (m) of a prime ideal P in a polynomial ring
C[x1, . . . , xn] is the P -primary component in the ordinary power Pm.
What are the Noetherian operators for P (m)?

(5) Let P be any homogeneous prime ideal in C[x] and M an artinian mono-
mial ideal in C[∂], both given by generators. Let P (M) denote the set
of all polynomials f = f(x) such that, for every standard monomial ∂a

of M , the polynomial ∂a(f) lies in P . Show that P (M) is an ideal in
C[x1, . . . , xn]. How would you compute a generating set of this ideal?

(6) Revisit the circuit ideal in Example 8.16 from the Ehrenpreis-Palamodov
perspective. Determine all solutions to the differential equations

〈∂3
1∂

2
3 − ∂5

2 , ∂
5
1∂

2
4 − ∂7

2 , ∂
2
1∂

5
4 − ∂7

3 , ∂
2
2∂

3
4 − ∂5

3 〉.
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(7) Explain the commands toDual and fromDual in Macaulay 2. What are
these commands good for, and how do they work?

(8) Let I be the ideal of all operators in C[∂1, ∂2, ∂3, ∂4] which annihilate all
functions in x1, x2, x3, x4 which have the special form

f(x1 + x2, x3 + x4) + g(x1 + x3, x2 + x4) + h(x1 + x4, x2 + x3).

Show that I is generated by three second-order operators. Find them.
(9) Let C[∂] be the polynomial ring in the nine differential operators ∂11 ∂12 ∂13

∂21 ∂22 ∂23

∂31 ∂32 ∂33


– The ideal of 2× 2-subpermanents of this 3× 3-matrix is a system of

nine second order operators. Describe all its solutions.
– The ideal of adjacent 2× 2-subdeterminants of this 3× 3-matrix is a

system of four second order operators. Describe all its solutions.
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[Bjö79] J.-E. Björk, Rings of Differential Operators, North-Holland Mathematical Library,

Vol. 21, Amsterdam-New York, 1979.
[CE00] J. Canny and I. Emiris, A subdivision-based algorithm for the sparse resultant, Journal

of the ACM 47 (2000) 417–451.

[CD02] M. Chardin and C. D’Cruz, Castelnuovo-Mumford regularity: Examples of curves and
surfaces, Preprint, March 2002, posted at

http://www.math.jussieu.fr/∼chardin/textes.html.
[CLO97] D. Cox, J. Little and D. O’Shea, Ideals, Varieties, and Algorithms. An Introduction to

Computational Algebraic Geometry and Commutative Algebra, Second edition. Under-

graduate Texts in Mathematics. Springer-Verlag, New York, 1997.
[CLO98] D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry, Graduate Texts in Mathe-

matics, Vol 185. Springer-Verlag, New York, 1998.

[DR72] J. Darroch and D. Ratcliff, Generalized iterative scaling for log-linear models, The Annals
of Mathematical Statitics 43 (1972) 1470–1480.

[DGP99] W. Decker, G.-M. Greuel and G. Pfister, Primary decomposition: algorithms and com-

parisons. Algorithmic algebra and number theory (Heidelberg, 1997), 187–220, Springer,
Berlin, 1999.

[DOS02] J. De Loera, S. Onn and A. Sebo, Characterization of graph properties via polynomial

equations, Preprint UC Davis, May 2002.
[DS98] P. Diaconis and B. Sturmfels, Algebraic algorithms for sampling from conditional distri-

butions, Annals of Statistics 26 (1998) 363–397.

[DES98] P. Diaconis, D. Eisenbud and B. Sturmfels, Lattice walks and primary decomposition,
in: B. Sagan and R. Stanley (eds), Mathematical Essays in Honor of Gian-Carlo Rota,

Progress in Mathematics, Vol 161, Birkhäuser, Boston, 1998, pp. 173–193.
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[HS01] S. Hoşten and G. Smith, Monomial ideals, in Mathematical Computations with Macaulay
2, eds. D. Eisenbud, D. Grayson, M. Stillman and B. Sturmfels, Algorithms and Compu-
tation in Mathematics, Vol. 8, Springer Verlag, Heidelberg, 2001, pp. 73–100.

[Iar72] A. Iarrobino, Reducibility of the families of 0-dimensional schemes on a variety, Invent.

Math. 15 (1972) 72–77.
[Ily92] N.V. Ilyushechkin, The discriminant of the characteristic polynomial of a normal matrix.

Mat. Zametki 51 (1992), no. 3, 16–23; translation in Math. Notes 51 (1992), no. 3-4,

230–235.
[KS95] M. Kalkbrener and B. Sturmfels, Initial complexes of prime ideals, Advances in Mathe-

matics 116 (1995) 365–376.

[Kap00] M. Kapranov, Amoebas over non-archimedean fields, Manuscript, 2000.

[KLS01] M. Kearns, M. Littman and S. Singh, Graphical models for game theory, Proceedings of
the 17th Conference on Uncertainty in Artificial Intelligence (UAI), 2001, pp. 253–260,

posted at http://www.cs.colorado.edu/∼baveja/Papers/graphgames.pdf
[Khe02] A. Khetan, Determinantal formula for the Chow form of a toric surface, ISSAC 2002,

posted at http://math.berkeley.edu/∼akhetan/
[Kho80] A. Khovanskii, A class of systems of transcendental equations, Dokl. Akad. Nauk SSSR

255 (1980), no. 4, 804–807.

[Kho91] A. Khovanskii, Fewnomials, Translations of Mathematical Monographs, Vol 88. American

Mathematical Society, Providence, RI, 1991.
[KR00] M. Kreuzer and L. Robbiano, Computational Commutative Algebra. 1, Springer-Verlag,

Berlin, 2000, see also http://cocoa.dima.unige.it/

[LR97] J. Lagarias and T. Richardson, Multivariate Descartes rule of signs and Sturmfels’s chal-
lenge problem, Math. Intelligencer 19 (1997) 9–15.



BIBLIOGRAPHY 149

[LS00] R. Laubenbacher and I. Swanson, Permanental ideals, J. Symbolic Comput. 30 (2000)

195–205.

[Lau96] S. Lauritzen, Graphical Models. Oxford Statistical Science Series, 17, Oxford University
Press, New York, 1996.

[Lax98] P. Lax, On the discriminant of real symmetric matrices, Comm. Pure Appl. Math. 51

(1998) 1387–1396.
[LH64] C. Lemke and J. Howson, Jr., Equilibrium points of bimatrix games, J. Soc. Indust. Appl.

Math. 12 (1964) 413–423.

[Li97] T.Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation
methods, Acta numerica, 1997, 399–436, Acta Numer., Vol 6, Cambridge Univ. Press,

Cambridge, 1997.

[LRW00] T.Y. Li, J.M. Rojas and X. Wang, Counting real connected components of tri-
nomial curve intersections and mmm-nomial hypersurfaces, submitted for publication,

math.CO/0008069.
[LL01] T.Y. Li and X. Li, Finding mixed cells in the mixed volume computation, Found. Com-

put. Math. 1 (2001) 161–181.
[MZ01] G. Malajovich and J. Zubelli, On the geometry of Graeffe iteration, Journal of Complexity

17 (2001) 541–573.
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Bézout matrix, 44, 48
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