Note

On Vector Partition Functions

BERND STURMFELS*

Department of Mathematics, University of California, Berkeley, California 94720

Communicated by Victor Klee

Received May 10, 1994

We present a structure theorem for vector partition functions. The proof rests on a formula due to Peter McMullen for counting lattice points in rational convex ⁽²⁾ 1995 Academic Press, Inc.

INTRODUCTION

of non-negative integers. The corresponding vector partition function Equivalently, the function ϕ_A is defined by the formal power series: $\phi_A: \mathbb{N}^d \to \mathbb{N}$ is defined as follows: $\phi_A(u)$ is the number of non-negative integer vectors $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{N}^n$ such that $A \cdot \lambda = \lambda_1 a_1 + ... + \lambda_n a_n = u$ Let $A = (a_1, ..., a_n)$ be a $d \times n$ -matrix of rank d with entries in N, the set

$$\prod_{i=1}^{n} \frac{1}{(1 - t_1^{a_1} t_2^{a_2} \cdots t_d^{a_d})}$$

$$= \sum_{u \in \mathbb{N}^d} \phi_{\mathcal{A}}(u_1, ..., u_d) \cdot t_1^{u_1} t_2^{u_2} \cdots t_d^{u_d}. \tag{1}$$

[14], approximation theory [4] and statistics [5]. applications, including representation theory [9], commutative algebra Vector partition functions appear in many areas of mathematics and its

decomposition into chambers studied by Alekseevskaya, Gel'sand and Zelevinsky in [1]. Within each chamber we give a formula which refines mials differ from piece to piece. Our construction uses the geometric describe such a decomposition explicitly and we analyze how the polyno- \mathbf{N}^d such that ϕ_A is a polynomial of degree n-d on each piece. Here we It was shown by Blakley [2] that there exists a finite decomposition of

Copyright of 1998 by Academic Press, Inc. As J. Fr. 2011 Co. 0097-3165/95 \$12.00

 $\phi_A(u,v,w)$

 $=\psi + \langle 1/2 + u/6 + v/3 + w/4 \rangle$ 1/2 + u/6 + 5v/24 + 3w/81 + u/6 + v/3 + w/2if $u \equiv 1 \mod 2$ and $v \equiv 1 \mod 2$. if $u \equiv 0 \mod 2$ and $v \equiv 0 \mod 2$. algorithms in [6]. partition functions, with a view towards applications, such as the sampling note is to provide polyhedral tools for the efficient computation of vector the results by Dahmen and Micchelli in [4, §3]. The objective of this

EXAMPLE (n = 6, d = 3). Consider the vector partition function

$$\phi_A: \mathbf{N}^3 \to \mathbf{N}, (u, v, w) \mapsto \# \{\lambda \in \mathbf{N}^6: A \cdot \lambda = (u, v, w)^t\}$$

associated with the matrix

$$A = \begin{pmatrix} 2 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 2 \end{pmatrix}$$

assumptions, we distinguish two cases: $\phi_A(u, v, w) = 0$, so we shall assume that $u + v + w \equiv 0 \mod 2$. Given these (u, v, w), so we may assume that $u \ge v \ge w$. Also, if $u + v + w \equiv 1 \mod 2$ then In this instance the value of ϕ_A does not depend on the permutation of

Case 1. $u \ge v + w$. Then

 $\phi_A(u,v,w)$

$$= \frac{vw}{2} + \frac{vw^2}{8} - \frac{w^3}{24}$$

$$=\frac{vw}{2}+\frac{vw^{2}}{8}-\frac{w^{3}}{24}$$

$$\begin{cases} 1/2 + v/2 + 5w/12 \\ 1/2 + 3v/8 + 13w/24 \end{cases}$$

$$\begin{cases} (1+v/2+2w/3) & \text{if } u \equiv 0 \bmod 2 \text{ and } v \equiv 0 \bmod 2, \\ 1/2+v/2+5w/12 & \text{if } u \equiv 1 \bmod 2 \text{ and } v \equiv 1 \bmod 2, \\ 1/2+3v/8+13w/24 & \text{otherwise.} \end{cases}$$

Case 2.
$$u < v + w$$
. We set

$$\psi := -u^2/8 + uv/4 + uw/4 - v^2/8 + vw/4 - w^2/8$$

$$+ u^3/48 - u^2v/16 - u^2w/16 + uv^2/16 + uvw/8 + uw^2/16$$

$$- v^3/48 - v^2w/16 + vw^2/16 - w^3/16.$$

$$\phi_{J}(u, v)$$

^{*} E-mail address: bernd@math.berkeley.edu.

groups (as seen in the "mod"-subcases). seen in the distinction of cases 1 and 2) with a structure of finite abelian

without loss of generality that A is surjective over Z, that is, $ZA = Z^d$. This implies that the semigroup $NA := pos(A) \cap ZA$ is saturated. Why? what's that? consider the submatrix $A_{\sigma} := (a_i : i \in \sigma)$, the polyhedral cone $pos(A_{\sigma})$, and the abelian group $\mathbb{Z}A_{\sigma}$ spanned by the the columns of A_{σ} . We may assume In order to deal with the general case, we introduce some notation. Let $pos(A) = \{\sum_{i=1}^{n} \lambda_i a_i \in \mathbb{R}^n : \lambda_1, ..., \lambda_n \ge 0\}$. For $\sigma \subset [n] := \{1, ..., n\}$ we

onto \mathbb{Z}^3 and then use the formula $\phi_A(u) = \phi_{BA}(Bu)$. choose a rational 3×3 -matrix B which defines an isomorphism from $\mathbb{Z}A$ example. In order to apply the results below to such a case, one must The surjectivity assumption does not hold for the 3 x 6-matrix in our

 $u \in pos(A) \cap \mathbb{N}''$, let $[u]_{\sigma}$ denote the image of u in G_{σ} . is indexed by the set $\Delta(C) = \{ \sigma \subset [n] : C \subseteq pos(A_{\sigma}) \}$. For each $\sigma \in \Delta(C)$, the group $\mathbb{Z}A_{\sigma}$ has finite index in \mathbb{Z}^d ; write $G_{\sigma} := \mathbb{Z}^d/\mathbb{Z}A_{\sigma}$ for the group of residue classes. We say that σ is non-trivial if $G_{\sigma} \neq \{0\}$. For bases. Each chamber C (meaning: maximal cell in the chamber complex) common refinement of the simplicial cones $pos(A_{\sigma})$, where σ runs over all is the polyhedral subdivision of the cone pos(A) which is defined as the A subset σ of [n] is a basis if $\#(\sigma) = rank(A_{\sigma}) = d$. The chamber complex

two equivalence classes with respect to the S_3 -symmetry. The following theorem is our main result. In the small example above there are 12 chambers; they are grouped into

n-d in $u=(u_1,...,u_d)$, and for each non-trivial $\sigma \in A(C)$ there exists a polynomial Q_{σ} of degree $\#(\sigma)-d$ in u and a function $\Omega_{\sigma}:G_{\sigma}\setminus\{0\}\to Q$ such that, for all $u\in NA\cap C$, THEOREM 1. For each chamber C there exists a polynomial P of degree

$$\phi_A(u) = P(u) + \sum \left\{ Q_{\sigma}(\llbracket u \rrbracket_{\sigma}) \cdot Q_{\sigma}(u) : \sigma \in A(C) \text{ and } \llbracket u \rrbracket_{\sigma} \neq 0 \right\}.$$

Moreover, the "corrector polynomials" Q_{σ} satisfy the linear partial differen-

MAS ONC

$$\sum_{i=1}^{d} a_{ij} \frac{\partial Q_{\sigma}}{\partial u_{i}} \equiv 0 \qquad \text{for all } j \in \sigma \text{ such that } \sigma \setminus \{j\} \notin \Delta(C).$$

implemented by P. Lisoněk [10]. §2.6]. A nice MAPLE package for computing denumerants has been denumerants (the d=1 case) which can be found in Comtet's book [3] Remarks. (1) Therem 1 provides a generalization of the theory of Lattice point Counting: a cuse study in Experience Alarmine Geometry

mod Abili whor instance, in the problem of counting non-negative integer matrices with Stypetime prescribed row and column sums; see [5] for a general survey and see [13] for the computational state of the art. \subseteq Ge+ i+ a polynomial function on each chamber [4, Corollary 3.1]. This happens, (2) Another important special case occurs when the matrix A is

correction term, which generalizes Theorem C in [3, §2.6]. The results of Dahmen and Micchelli in [4, §3] generalize a (somewhat weaker) classical theorem of Bell [3, §2.6, Thm. B]. The computational advantage of the additive decoupling is explained on page 114 in [3]. (3) The main point of our formula is the "additive decoupling" of the

and $N_{\mathbf{Q}}$ and $M_{\mathbf{Q}}$ the corresponding rational vector spaces. Suppose we are given a complete simplicial fan Σ in N having n rays, and non-zero lattice functions on t modulo the subgroup of those functions on t which are each cone $\tau = \{b_{\tau_1}, ..., b_{\tau_r}\}$, we let H_{τ} denote the group \mathbf{Z}^{τ} of integer valued points $b_1, ..., b_n$ on these rays. (The b_i need not be primitive in N!) We see e.g. [7]. Let N be a lattice of rank m, $M = Hom(N, \mathbb{Z})$ its dual lattice, restrictions from $M = Hom(N, \mathbb{Z})$. We say that τ is non-trivial if $H_{\tau} \neq \{0\}$. identify the cones of Σ with subsets of $\{b_1, ..., b_n\}$. For each $1 \le l \le m$ and Consider any convex polytope of the form We shall use notation which is standard in the theory of toric varieties;

$$P_{y} = \{ x \in M_{\mathbf{Q}} : \langle x, b_{i} \rangle \leq \gamma_{i} \text{ for } i = 1, ..., n \},$$

Checking for the image of the function $\tau \to \mathbf{Z}$, $b_i \mapsto \gamma_i$ in the group H_{r} . M. For a toric proof of this fact see e.g. [8, §5]. In general, however, the polytope P_{γ} is not integral, since the fan Σ is not assumed to be smooth. and the polynomial $F(\gamma)$ in the general case. If $\gamma \in \mathbb{Z}^n$, then we write $[\gamma]_{\tau}$ $_{1}\#(P_{\gamma}\cap M)=F(\gamma)$ provided that P_{γ} is integral, i.e., all vertices of P_{γ} lie in exists a poynomial function $F = F(\gamma)$ on $C(\Sigma)$ of degree m such that the normal fan of P_{γ} is coarser or equal to Σ . It is well known that there where $\gamma = (\gamma_1, ..., \gamma_n)$ ranges over the set $C(\Sigma)$ of all vectors in **Z**ⁿ such that The following proposition characterizes the difference between $\#(P_{\gamma} \cap M)$

 $\omega_{\tau}: H_{\tau}\backslash\{0\} \to \mathbf{Q} \ such \ that \ \#(P_{\gamma}\cap M) - F(\gamma) = \sum \left\{\omega_{\tau}(\lceil\gamma\rceil_{\tau})\cdot R_{\tau}(\gamma): \tau \in \Sigma\right\}$ and $[\gamma]_{\tau} \neq 0$ for all $\gamma \in C(\Sigma)$. Moreover, the polynomial R_{τ} depends only on R_{τ} of degree $m - \#(\tau)$ in the variables $\gamma = (\gamma_1, ..., \gamma_n)$ and a function those variables, γ_i for which $\tau \cup \{b_i\} \in \Sigma$. **PROPOSITION** 2. For every non-trivial cone $\tau \in \Sigma$ there exists a polynomial

HON

307

We shall use the following theorem of McMullen. If F is a face of a polytope $P \subset M_Q$ then $\nu(P, F)$ denotes the cone in N normal to F at P. Let $\mathscr L$ denote the set of all pairs (τ, L) where τ is a cone in N and L is an affine subspace of M_Q which is a translate of τ^{\perp} .

THEOREM 3 (McMullen [11]). There exists a function $\theta: \mathcal{L} \to \mathbf{Q}$ such that $\theta(\tau, L) = \theta(\tau, L + m)$ for all $m \in M$ and

$$\#(P \cap M) = \sum_{\substack{F \text{ face of } P}} \theta(\nu(P, F), \text{aff}(F)) \cdot Vol(F) \text{ for every polytope } P \text{ in } M_{\mathbb{Q}}.$$

Here "Vol" denotes he standard volume form on the affine span aff(F) of the face F.

Proof. This is a special case of Theorem 3 in [11], provided one passes from simple valuations to general valuations using the technique in §3 of [11].

COROLLARY 4. If P_{γ} is an integral polytope then the number of lattice points in P_{γ} equals

$$F(\gamma) = \sum_{\tau \in \Sigma} \theta(\tau, \tau^{\perp}) \cdot Vol(P_{\gamma}^{\tau}), \tag{3}$$

where P_r^r denotes the face of P_r supported by τ .

Proof. If P_{γ} is integral then $\operatorname{aff}(P_{\gamma}^{\tau})$ is a lattice translate of the linear subspace τ^{\perp} . Therefore $\theta(\tau, \operatorname{aff}(P_{\gamma}^{\tau})) = \theta(\tau, \tau^{\perp})$, and the claim follows directly from Theorem 3.

We remark that formula (3) is a valid presentation for the polynomial function $F(\gamma)$ throughout the cone $C(\Sigma)$, not just for those special values of γ for which P_{γ} is integral.

Proof of Proposition 2. Let τ be a cone in Σ and let F_{γ} be the corresponding face of P_{γ} . As γ runs over $C(\Sigma)$, the volume of F_{γ} varies as a polynomial in γ of degree $dim(F_{\gamma}) = m - \#(\tau)$. We set $R_{\tau}(\gamma) := Vol(F_{\gamma})$. This function is independent of a support parameter γ_i if the hyperplane $\langle x, b_i \rangle = \gamma_i$ does not intersect the face F_{γ} for general γ . The latter condition is equivalent to $\tau \cup \{b_i\}$ not being a cone of Σ . Hence R_{τ} has the property asserted in the second part of Proposition 2.

Consider any other vector $\gamma' \in C(\Sigma)$ and corresponding face $F_{\gamma'}$ of $P_{\gamma'}$. Note that $\operatorname{aff}(F_{\gamma}) = \{ j \in M : \forall b_i \in \tau : \langle j ; b_i \rangle = \gamma_i \}$, and similarly for $F_{\gamma'}$. This implies

$$[\gamma]_{\tau} = [\gamma']_{\tau} \Leftrightarrow \exists u \in M : \forall b_i \in \tau : \gamma_i = \gamma'_i + \langle u, b_i \rangle$$
$$\Leftrightarrow \exists u \in M : \operatorname{aff}(\hat{F}_{\gamma}) = \operatorname{aff}(F_{\gamma'}) + u.$$

We can therefore define a function $\omega_r: H_r \setminus \{0\} \to \mathbf{Q}$ by setting

$$\omega_{\tau}(\llbracket \, \gamma \, \rrbracket_{\tau}) := \theta(\tau, \, \operatorname{aff}(F_{\gamma})) - \theta(\tau, \, \tau^{\perp}).$$

Proposition 2 now follows immediately from Theorem 3 and Corollary 4.

Proof of Theorem 1. We shall use representation techniques as in [12, §5]. Let $B = (b_1, ..., b_n)$ be an integer $(n-d) \times n$ -matrix whose row space (over **Z**) equals the kernel of A. In other words, we construct a short exact sequence of abelian groups

$$0 \longrightarrow \mathbf{Z}^{n-d} \stackrel{B^d}{\longrightarrow} \mathbf{Z}^n \stackrel{A}{\longrightarrow} \mathbf{Z}^d \longrightarrow 0.$$

We set m=n-d and $M=\mathbb{Z}^{n-d}$, and we consider the polytope P_{γ} in (2), for an arbitrary $\gamma \in \mathbb{Z}^n$. The map $x \mapsto \gamma - B' \cdot x$ defines a bijection between the lattice points in P_{γ} and the set of elements $\lambda \in \mathbb{N}^n$ such that $A \cdot \lambda = A \cdot \gamma$. Therefore we have

$$\phi_{\mathcal{A}}(A \cdot \gamma) = \#(P_{\gamma} \cap M). \tag{4}$$

We now fix a chamber C and we consider those vectors $\gamma \in \mathbb{N}^n$ such that $A \cdot \gamma$ lies in the interior of C. This determines the normal fan Σ of P_{γ} as follows:

$$\Sigma = \{ \{b_{\tau_1}, ..., b_{\tau_k}\} : [n] \setminus \{\tau_1, ..., \tau_k\} \in A(C) \}.$$

Let us now fix $\sigma \in A(C)$ and set $\tau := \lfloor n \rfloor \backslash \sigma$. In order to derive the first part of Theorem 1 from Proposition 2, it suffices to show that there exists a group isomorphism δ between H_{τ} and G_{σ} , which takes a class $[\gamma]_{\tau}$ in H_{τ} to the class of $[u]_{\sigma}$ in G_{σ} , where $u := A \cdot \gamma$. Indeed, in view of (4), we can then simply define $P(u) := F(\gamma)$, $\Omega_{\sigma}([u]_{\sigma}) := \omega_{\tau}([\gamma]_{\tau})$, and $Q_{\sigma}(u) := R_{\tau}(\gamma)$ to get the desired formula for $\phi_{A}(u)$. (Note that $\#(\sigma) - d = m - \#(\tau)$.)

To define the group isomorphism δ , we consider the short exact sequence

$$0 \longrightarrow \mathbf{Z}^{\sigma} \stackrel{i}{\longrightarrow} \mathbf{Z}^{n} \stackrel{\pi}{\longrightarrow} \mathbf{Z}^{\tau} \longrightarrow 0,$$

where i and π are the obvious coordinate inclusion and projection respectively. We have

$$H_t = coker(\pi \circ B')$$
 and $G_{\sigma} = coker(A \circ i)$.

Consider any element of G_{σ} , given by a representative $u \in \mathbb{Z}^d$. We define $\delta(u)$ to be $\pi(\gamma)$, where γ is any preimage of u under A. This defines a unique

equivalences Figure 1 is element of H_{τ} because γ is well-defined up to im(B') = ker(A). We have the

$$u \in \mathbb{Z}A_{\sigma} \Leftrightarrow u$$
 has a preimage \tilde{y} under A such that $\pi(\tilde{y}) = 0$
 $\Leftrightarrow y - \tilde{y} \in ker(A) = im(B')$

for some
$$\tilde{\gamma} \in \mathbf{Z}^n$$
 such that $\pi(\tilde{\gamma}) = 0$
 $\pi(\gamma) = \pi(B', \lambda)$ for some $\lambda \in \mathbf{Z}^{n-d}$

 $\Leftrightarrow \pi(\gamma) = \pi(B' \cdot \lambda)$ for some $\lambda \in \mathbb{Z}^{n-d}$.

completes the proof of the first part of Theorem 1. A(v+w). Then $\delta(u)$ and v represent the same element of H_{τ} . This if $v \in \mathbb{Z}^r$, then choose any $w \in \mathbb{Z}$, consider $v + w \in \mathbb{Z}^n$ and define u =Therefore the group homomorphism δ is injective. But it is also surjective: This shows that u is zero in G_{σ} if and only if $\pi(\gamma) = \delta(u)$ is zero in H_{τ} .

 $\sigma \setminus \{j\} \notin A(C)$ if and only if $\tau \cup \{b_j\} \notin \Sigma$. For such an index j, we apply the operator $\partial/\partial y_j$ to the polynomial To prove the second part we note that an element $j \in \sigma$ satisfies

$$R_r(\gamma) = Q_\sigma(A \cdot \gamma).$$

as required. The result is zero, by Proposition 2, and consequently $\sum_{i=1}^{d} a_{ij} (\partial Q_{\sigma}/\partial u_i) \equiv 0$,

ACKNOWLEDGMENTS

I am grateful to Alexander Barvinok for helpful discussions. This project was supported in part by the National Science Foundation and the David and Lucile Packard Foundation.

REFERENCES

- I. T. V. ALEKSEEVSKAYA, I. M. GEL'FAND, AND A. V. ZELEVINSKY, Arrangements of real hyperplanes and related partition functions, *Doklady Akad. Nauk. SSSR* 297 (1987),
- S. BLAKLEY, Combinatorial remarks on partitions of a multipartite number, Duke Math J. 31 (1964), 335-340.
- 3. L. COMTET, "Advanced Combinatorics," Reidel, Dordrecht/Boston, 1974.
- 4. W. DAHMEN AND C. A. MICCHELLI, The number of solutions to linear diophantine equations and multivariate splines, *Trans. Amer. Math. Soc.* 308 (1988), 509-532.
- P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins, unpublished
- distributions, Ann. Statist., to appear. P. DIACONIS AND B. STURMFELS, Algebraic algorithms for sampling from conditional
- 7. W. FULTON, "Introduction to Toric Varieties," Princeton Univ. Press, Princeton, NJ,

- W. FULTON AND B. STURMFELS, Intersection theory on toric varieties, *Topology*, to appear. G. J. HECKMAN, Projections of orbits and asymptotic behavior of multiplicities for compact connected Lie groups, Invent. Math. 67 (1982), 333-356.
- 10. P. Lisonek, "Quasi-Polynomials: A Case Study in Experimental Combinatorics," Technical report 93-18, RISC-Linz, Austria, 1993
- 11. P. McMullen, Lattice invariant valuations on rational polytopes, Arch. Math. (Basel) 31
- 12. P. McMullen, Transforms, diagrams and representations, in "Contributions to Geometry" (J. Tölke and J. M. Wills, Eds.), Proceedings of the Geometry Symposium Siegen, Birkhäuser, Rasel, 1979.
- 13. J. MOUNT, "Applications of Convex Sampling to Optimization and Contingency Table Counting," Ph.D. thesis, Department of Computer Science, Carnegie Mellon University.
- 14. R. STANLEY, "Combinatorics and Commutative Algebra," Birkhäuser, Boston, 1983.