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ALGEBRAIC METHODS IN
GER PROGRAMMING

INTE-

Introduction. This article highlights some of
the recent results in theoretical integer pro-
gramming that have been obtained by studying
integer programs using tools from commutative
algebra and algebraic geometry. The main com-
putational tool involved in the discussion here
is the Grobner basis of a special polynomial
ideal called a toric ideal [30],[14]. For connec-
tions between Groébner bases of toric ideals and
polytopes see [30] and for Grobner basis theory
for general polynomial ideals see [1] and [11].
Toric ideals and more generally, lattice ideals
[33], have been the subject of much research in
the past few years. The discussion in this article
follows a specific route through the work done
in this area. All effort will be made to include
references needed for details and further reading.

Toric ideals and integer programming. We
will be concerned with integer programs of the
form 1Py .(b) := min{c-z : Az = b, z € N"}
where A is a fixed d X n integer matrix of rank d.
Here N denotes the non-negative integers. The
right hand side vector b will be assumed to lie in
the monoid posz(A) := {Az : x € N"} which
guarantees that P4 .(b) is always feasible. Let
kerz(A) denote the (n — d)-dimensional satu-
rated lattice {u € Z™ : Au = 0}. For simplicity
we assume that kerz(A) N N" = {0} which im-
plies that P, := conv{z € N" : Az = b} is a
polytope for all b € posz(A). For b € posz(A)
and a v € P, N N" the set of lattice points in
P, is precisely the congruence class in N™ of v
modulo kergz(A).

The toric ideal of A is the d-dimensional bi-

<9:“+ — % oy =

€ N") in k[x] :=
, x| where k is a field. The cost vector

nomial prime ideal [4 :=
ut —u™ € kerz(A), ut,u”
k[ml, cen
¢ can be any vector in R™ and for each polyno-
mial f = 2221 kix® € I4 the initial term of f
with respect to ¢, denoted as in.(f), is the sum
of those terms in f for which ¢ - a; is maximal.
The initial ideal of I, with respect to ¢ is then
the ideal in.(1a) := (in.(f) : f € Ia) C k[x].
We will assume unless stated otherwise that the
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cost vector ¢ is such that in.(14) is a monomial
ideal, i.e, in.(I4) can be generated by monomi-
als. Such a c is said to be generic with respect
to IP4. Equivalently, ¢ is generic with respect
to I P4 if and only if each integer program in
the family 1 P4 . has a unique optimal solution.
Note that each lattice point o € N" is a solution
to a unique integer program in /P4 . since « lies
in P4, and in no other polytope of the form Pj.
The following theorem relates in.(l4) to IP4.

Lemma 1 The lattice point o € N" is a non-
optimal solution to I P4 .(Ac) if and only if the
monomial % lies in the initial ideal in.(I4).

Proof: The lattice point a € N™ is a non-optimal
solution to P4 .(Aa) if and only if there exists
B in Pao NN™ such that ¢-a > ¢- 3. This is
equivalent to the statement that z® — z” is a
non-zero element of I4 with in.(z® — 2%) = 2.

O

The standard monomials of in.(I4) are pre-
cisely all the monomials in k[x] that do not lie
in ine(la).

Corollary 2 A monomial 7 € k[x] is a stan-
dard monomial of in.(14) if and only if v is the
unique optimal solution to the integer program

TPy (A7).

By Corollary 2, there is a bijection between
the standard monomials of in.(I4) and the ele-
ments of the monoid posz(A).

The Conti-Traverso algorithm. In [9], Conti
and Traverso gave an algorithm to solve integer
programs using Grobner bases of toric ideals.
A Grobner basis with respect to ¢, of the toric
ideal 14, is any finite subset H of I4 such that
inc(Ia) = (inc(f) : f € H). A Grdbner basis
‘H is reduced if it has the additional property
that for each f € H, the coefficient of in.(f)
is the identity in & and in.(f) does not divide
any term in another element g of H. Reduced
Grobner bases are unique.

Let G, denote the reduced Groébner basis of 14
with respect to ¢. Then G. has the form {z® —
2% . i =1,...,t} where a; — 3; € kerg(A),
a;, B; € N™ and supp(a;) N supp(B;) = O for all
i=1,...,t. For p € Z", supp(p) = {i € [n] :=
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{1,...,n} : p; # 0} denotes the support of p.
If z%% — 2P ¢ G. then we always assume that
c-a; > c- .

Lemma 3 If G, = {z% — 2% : i =1,...,t}
is the reduced Grébner basis of 14 with respect
to ¢ then (i) {x* : i = 1,...,t} is the min-
imal generating set of the initial ideal in.(1,)
and (ii) for each binomial 2% — 2P € G, B; is
the unique optimal solution to the integer pro-
gram 1Py .(Aag).

Proof: Part (i) follows from the definition
of reduced Grobner bases. For each binomial
% — 2P € G, we have Aa; = AB;, o, 3; € N
and c-a; > c¢- ;. If B; is a non-optimal solu-
tion to IPa.(Aq;) then 27 lies in in.(I4) by
Lemma 1 and hence some x% for j = 1,... ,t
will divide z”% contradicting the definition of a
reduced Grobner basis. O

The conditions in Lemma 3 are in fact also
sufficient for a finite subset of binomials in 14 to
be the reduced Grobner basis of 14 with respect
to c. Given f € I4, the normal form of f with
respect to G, is the unique remainder obtained
upon dividing f by G.. See [11] for details on
the division algorithm in k[x]. The structure of
G. implies that the normal form of a monomial
z¥ with respect to G. is a monomial 2V such
that both v and v are solutions to IP4 .(Av).
The Conti-Traverso algorithm for I P4 . can be
summarized as follows.

Algorithm 4 How to solve programs in 1Py .
Input: The matrix A and cost vector c.

Pre-processing:

1. Find a generating set for the toric ideal I 4.
2. Compute the reduced Grobner basis, G., of
14 with respect to the cost vector c.

To solve 1Py (b):

3. Find a solution v to I P4 .(b).

4. Compute the normal form z¥" of the mono-
mial z¥ with respect to the reduced Grobmner

basis G.. Then v* is the optimal solution to
1Py (D).
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Proof: In order to prove the correctness of this
algorithm, it suffices to show that for each solu-
tion v of I P4 (b), the normal form of ¥ modulo
G, is the monomial 2" where v* is the unique
optimal solution to P4 .(b). Suppose z* is the
normal form of the monomial zV. Then w is
also a solution to IP4.(b) since the exponent
vectors of all monomials =% obtained during
division of zV by G, satisfy b = Av = Aw/,
w' € N™. If w # v*, then 2z — 2¥" € I4 and
ine(z? —z¥") = 2% since ¢-w > c¢-v*. This
implies that € in.(I4) and hence can be fur-
ther reduced by G. contradicting the definition
of the normal form. O

Computational Issues. Algorithm 4 raises
several computational issues. In Step 1, we
require a generating set of the toric ideal
I4 which can be a computationally challeng-
ing task as the size of A increases. The
original Conti-Traverso algorithm starts with
the ideal Jy = (x;t% — % . j =
1,...n, toty ---tg — 1) in the larger polynomial
ring k[tg, t1, ..

o ta, @1, ... ] Where aj = af —

a; is the jth column of the matrix A. The tz)ric
Ja N k[x] and hence the reduced
Grobner basis of I, with respect to ¢ can be
obtained by elimination (see Chapter 3 in [11]).

Although conceptually simple, this method has

ideal I, =

its limitations as the size of A increases since it
requires d + 1 extra variables over those present
in 14 and the Buchberger algorithm for comput-
ing Grobner bases [8] is sensitive to the number
of variables involved. Two different algorithms
for computing a generating set for I4 without
introducing extra variables can be found in [5]
and [19] respectively.

Once the generating set of 14 has been found,
one needs to compute the reduced Grobner ba-
sis G. of I4. This can be done by any computer
algebra package that does Grobner basis com-
putations like Macaulay2, Maple, Reduce, Sin-
gular or Cocoa to name a few. Cocoa has a dedi-
cated implementation for toric ideals [6]. As the
size of the problem increases, a straightforward
computation of reduced Grobner bases of 4 can
become expensive and even impossible. Several
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tricks can be applied to help the computation,
many of which are problem specific.

In Step 3 of Algorithm 4 one requires an
initial solution to I P4 (b). The original Conti-
Traverso algorithm achieves this indirectly dur-
ing the elimination procedure. Theoretically this
task can be as hard as solving I P4 .(b), although
in practice this depends on the specific prob-
lem at hand. The last step — to compute the
normal form of a monomial with respect to the
current reduced Grébner basis — is (relatively
speaking) a computationally easy task. Toric
Grobner bases for integer programming can be
found in “GRIN” [19] by Hosten and “BAS-
TAT” by Pottier (available by anonymous ftp
from zenon.inria.fr). Both these packages ex-
ploit the special structural properties of the un-
derlying ideals.

In practice, one is often only interested in
solving 1Py .(b) for a fixed b. In this situation,
the Buchberger algorithm can be truncated to
produce a sufficient set of binomials that will
solve this integer program [36]. This idea was
originally introduced in [37] in the context of
0/1 integer programs in which all the data is
non-negative. See also [10]. A “non-toric” algo-
rithm for solving integer programs with fixed
right hand sides was recently proposed in [4].

Test sets in integer programming. A geo-
metric interpretation of Algorithm 4 and more
generally of the Buchberger algorithm for toric
ideals can be found in [35]. A test set for [Py . is
a finite subset of vectors in kerz(A) such that for
an integer program [P .(b) and a non-optimal
solution v to this program, there is some u in
the test set such that c¢-v > ¢- (v —u). By inter-
preting a binomial z* — 2% € G, as the vector
a; — fB; € kerz(A), it can be seen that G, is the
unique minimal test set for the family /P4 .. A
closely related test set for integer programming
is the set of neighbors of the origin introduced
by Scarf [27].

The binomial z% — 2% € G. can also be
viewed as the directed line segment [«;, G;] di-
rected from «; to G;. For each b € posz(A) we
now construct a directed graph Fy, . as follows:
the vertices of this graph are the solutions to
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IPy(b) and the edges of this graph are all
possible directed line segments from G, that
connect two vertices of this graph. Then G, is
a necessary and sufficient set of directed line
segments such that . is a connected graph
with a unique sink (at the optimal solution) for
each b € posz(A). This geometric interpretation
of G. can be used to solve several problems. By
reversing the directions on all edges in F, ., one
obtains a directed graph with a unique root.
One can enumerate all lattice points in P, by
searching this graph starting at its root. This
idea was used in [34] to solve a class of manu-
facturing problems. The graphs F, . provide a
way to connect all the feasible solutions to an
integer program by lattice moves. This idea was
applied to statistical sampling in [13].

Universal Grobner bases. A subset U of 14
is a wuniversal Grobner basis for 14 if Uy con-
tains a Grobner basis of 14 with respect to all
(generic) cost vectors ¢ € R™. The Graver ba-
sis of A [17] is a finite universal Grobuner ba-
sis of 14 that can be described as follows. For
each 0 € {+,—}", let H, be the unique min-
imal generating set (over N) of the semigroup
kerz(A) N RY. Then the Graver basis, Gra =
UsHs\{0}. An algorithm to compute Gr4 can
be found in [31]. It was shown in [35] that all re-
duced Grobner bases of 14 are contained in Gr4
which implies that there are only finitely many
distinct reduced Grobner bases for 14 as ¢ varies
over generic cost vectors. Let UGBy denote the
union of all the distinct reduced Grobner bases
of I4. Then UGB4 is a universal Grobner ba-
sis of I4 that is contained in the Graver basis
Gry. The following theorem from [31] charac-
terizes the elements of UGB4 and thus allows
one to test whether a binomial z% — 2% € Gry
belongs UGB 4. A second test can also be found
n [31]. A vector u € Z" is said to be primitive
if the g.c.d. of its components is one.

vector u €
kerz(A), the binomial z*° — z*~ belongs to
UGB if and only if the line segment [u™, u"|
is a primitive edge in the polytope Py,+ -

Theorem 5 For a primitive
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The degree of a binomial z% — z% € 14, is
defined to be ) a;; + Y Bij. The degree of the
universal Grobner basis UGBy is then simply
the maximum degree of any binomial in UGB 4.
This number is an important complexity mea-
sure for the family of integer programs that have
A as coefficient matrix. The current best bound
for the degree of UGB 4 is as follows. See Chap-
ter 4 in [30] for a full discussion.

Theorem 6 The degree of a binomial x® —
2% € UGBy, is at most (n — d)(d + 1)D(A)
where D(A) is the mazimum absolute value of
the determinant of a d x d submatriz of A.

It has been conjectured that this bound can
be improved to (d + 1)D(A) and some partial
results in this direction can be found in [18].

The universal Grobner bases of several spe-
cial instances of A have been investigated in the
literature, a few of which we mention here. For
the family of 1 x n matrices A(n) :=[12 ---n] it
was shown in [12] that the Graver basis of A(n)
is in bijection with the primitive partition iden-
tities with largest part n. A matrix A € Z%" is
unimodular if the absolute values of the determi-
nants of all its non-singular maximal minors are
the same positive constant. For u € kerz(A), the
U e [4is a circuit of A if uis
primitive and has minimal support with respect
to inclusion. Let C4 denote the set of circuits of
A. Then in general, C4 CUGBjs C Gra. If Ais
unimodular, then all of the above containments

. . +
binomial z% — z

hold at equality although the converse is false:
there are non-unimodular matrices for which
Ca = Gra. If A, is the node-edge incidence ma-
trix of the complete graph K,, then the elements
in UGB,,, can be identified with certain sub-
graphs of K,. Grobner bases of these matrices
were investigated in [24]. The integer programs
associated with A,, are the b-matching problems
in the literature [25]. See Chapter 14 in [30] for
some other specific examples of Grobner bases.

Variation of cost functions in integer pro-
gramming. We now consider all cost vectors in
R™ (not just the generic ones) and study the ef-
fect of varying them. As seen earlier 14 has only
finitely many distinct reduced Grébner bases as
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¢ is varied over the generic cost vectors. We say
that two cost vectors c; and co are equivalent
with respect to I Py if for each b € posz(A), the
integer programs [P, (b) and IP4,(b) have
the same set of optimal solutions. The Grobner
basis approach to integer programming allows
a complete characterization of the structure of
these equivalence classes of cost vectors.

Theorem 7 [31] (i) There exists only finitely
many equivalence classes of cost vectors with re-
spect to I Py.

(ii) Fach equivalence class is the relative inte-
rior of a convex polyhedral cone in R™.

(iii) The collection of all these cones defines a
complete polyhedral fan in R™ called the Grobner
fan of A.

(iv) Let db denote any probability measure with
support posz(A) such that [, bdb < oo. Then
the Minkowski integral St(A) = [, Pydb is an
(n — d)-dimensional convex polytope, called the
state polytope of A. The normal fan of St(A)
equals the Grébner fan of A.

Grobner fans and state polytopes of graded
polynomial ideals were introduced in [26] and
[2] respectively. For a toric ideal both these en-
tities have self contained construction methods
that are rooted in the combinatorics of these
ideals [31]. For a software system for comput-
ing Grobner fans of toric ideals see [22].

We call B, for b € posz(A) a Grobner fiber
of A if there is some %" — 2% € UGBy such
that b = Aut = Au~. Since there are only
finitely many elements in UGB 4 the matrix A
has only finitely many Grébner fibers. Then the
Minkowski sum of all Grobner fibers of A is a
state polytope of A. For a survey of algorithms
to construct state polytopes and Grobner fans of
graded polynomial ideals see Chapters 2 and 3
in [30]. The Grébner fan of A provides a model
for global sensitivity analysis for the family of
integer programs P .

We now briefly discuss a theory analogous to
the above for linear programming based on re-
sults in [7] and [15]. For a comparison of in-
teger and linear programming from this point
of view see [31]. Let LP4(b) :=
Azr = b,z > 0} where A and c are as before

min{c - x
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and b is any vector in the rational polyhedral
cone pos(A) := {Az : x > 0}. We define two
cost vectors ¢; and ¢y to be equivalent with re-
spect to LP4 if the linear programs LPy ., (b)
and LPy ,(b) have the same set of optimal so-
lutions for all b € pos(A). Let A := {ay,... ,a,}
be the vector configuration in Z? consisting of
the columns of A. For a subset 0 C A, we let
pos(o) denote the cone generated by o. A poly-
hedral subdivision A of A is a collection of sub-
sets of A such that {pos(c) : 0 € A} is a set
of cones in a polyhedral fan whose support is
pos(A). The elements of A are called the faces
or cells of A. For convenience we identify A with
the set of indices [n] and any subset of A by
the corresponding subset o C [n]. A cost vector
¢ € R" induces the regular subdivision A, of A
[7],[15] as follows: o is a face of A if there exists
a vector y € R? such that aj -y = c¢j whenever
Jj € 0 and a;j -y < ¢; otherwise. A cost vector
¢ € R" is said to be generic with respect to LP4
if every linear program in the family LP4 . has
a unique optimal solution. When c is generic for
LPy, the regular subdivision A, is in fact a tri-
angulation called the regular triangulation of A
with respect to c.

Two cost vectors c; and co are equivalent with
respect to LP, if and only if A, = A.,. The
equivalence class of ¢ with respect to LP, is
hence {¢ € R" : Ay = A_.} which is the rel-
ative interior of a polyhedral cone in R called
the secondary cone of ¢, denoted as S.. The cone
S. is n-dimensional if and only if ¢ is generic
with respect to LP4. The set of all equivalence
classes of cost vectors fit together to form a com-
plete polyhedral fan in R™ called the secondary
fan of A. This fan is the normal fan of a poly-
tope called the secondary polytope of A. See [7]
for construction methods for both the secondary
fan and polytope of A.

We conclude this section by showing that the
Grobner and secondary fans of A are related.
The Stanley-Reisner ideal of A, is the square-
free monomial ideal (x;, ---x;, : {i1,... ,ir} is a

non-face of A.) C k[x].

Theorem 8 [29] The radical of the initial ideal
inc(La) is the Stanley-Reisner ideal of the regu-
lar triangulation A..
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Corollary 9 [29] (i) The Grébner fan of A is
a refinement of the secondary fan of A.

(ii) A secondary polytope of A is a summand of
a state polytope of A.

Corollary 9 reaffirms the view that integer
programming is an arithmetic refinement of lin-
ear programming,.

Group relaxations in integer program-
ming. We now investigate group relazations of
integer programs in the family /P4 . from an
algebraic point of view. The results in this sec-
tion are taken from [21],[20] and [33], sometimes
after an appropriate translation into polyhedral
language. We refer the reader to these papers
for the algebraic motivations that led to these
results.

The group relaxation of 1P .(b) [16] is the
program Group’(b) := min{és - x5 : Asxs +
Asxs = b, x5 > 0, = (z,,25) € Z"}, where
A,, the submatrix of A whose columns are in-
dexed by o C [n], is the optimal basis of the lin-
ear program LPy4 .(b) and &; = c; — co A1 A
Here the cost vector ¢ has also been partitioned
as ¢ = (¢, c5) using the set o C [n].

Definition 10 Suppose L is any sublattice of
Z", w € R" and v € N". The lattice program
Latg ., (v) defined by this data is

minimize w-u: u=v mod L, ue& N".

Lattice programs are a generalization of in-
teger programs: [Py .(b) =
L = kerz(A) and v is any feasible solution
to I P4 c(b). Grébner basis methods for integer

Latz .(v) where

programs can be extended to solve lattice pro-
grams (see [20], [33]). Given the lattice £ and a
cost vector w, we first construct the lattice ideal
Ip = (x*—xP: a—BeL,aBcNCEkx.
We then compute the reduced Grobner basis of
I with respect to w denoted as G, (Iz). (If w
does not induce a total order on N via the inner
product w - x, x € N, then we use a tie break-
ing term order to refine the order induced by w.)
For a particular lattice program Lat, ,,(v), the
optimal solution is the exponent vector of the
normal form of ¥ with respect to G, ().
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Let 7 C [n] and 7w, : Z" — ZI be
the coordinate projection map where the co-
ordinates indexed by 7 are eliminated. Con-
sider the lattice £, := (L) where £L =
kerz(A). Given a basis {b1,... ,b,—_q} of L, the
set {7 (b1),... ,mr(by—q)} forms a basis for L,.
Further, 7, : £ — L, is an isomorphism when-
ever rank(A;) = |7].

Proposition 11 [33] Let v be a feasible solu-
tion to 1P4 .(b) and A, be the optimal basis of
LPy (b). Then the group relaxation Group?(b)
of IP4 (b) is the lattice program Latr, & (74 (v))
where ¢, = T,(c—co(As)LA) = c5 —c, A; T As.

The program Group®(b) can be solved by
Grobner basis methods as explained earlier or by
dynamic programming [16]. The optimal solu-
tion =% to Group? (b) is then lifted to the unique
vector ¥ = (2}, x%) € Z" by solving the equa-
tion Ayxs + Asxs = b. If all components of z;
are non-negative then z* is the optimal solution
to I P4 .(b). Otherwise ¢- z* is a lower bound to
the optimal value of 1Py .(b).

When Group?(b) fails to solve IPj4.(b),
Wolsey [38] suggested using extended group re-
lazations of 1Py .(b). We introduce a more gen-
eral set of extended group relaxations of I P4 .(b)
inspired by the following close relationship be-
tween the linear programs in LP4 . and the reg-
ular triangulation A..

Proposition 12 [31] The optimal solutions x
to LP4(b) are the solutions to the problem :
Find x € R™ such that Ax = b, x > 0, and
supp(zx) is a subset of a face of A..

Proposition 12 says that the set o in
Group’ (b) is a maximal face of A..

Definition 13 Consider the integer program
IPyc(b) and a feasible solution v to this pro-
gram. Let T be a face of A, and o be any mazi-
mal face of A. containing T. Then the group re-
laxation of I Py (b) with respect to T denoted as
Group™ (b) is the lattice program Latr, & (7, (v))
where &, := 7, (c — c, A;LA).

The extended group relaxations in [38] are
precisely those Group™ (b)s where 7 is a subset of
the maximal face o of A, that gives the optimal
basis of LP4.(b). Clearly, one such relaxation
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will solve I P4 (b). However, we consider all re-
laxations of 1Py (b) of the form Group™(b) as
7 varies over all faces of A, in order to avoid
keeping track of which b is being considered and
what the optimal basis of LP4 .(b) is.

It was shown in [33] that the lattice pro-
gram Group” (b) is related to the localization
of the initial ideal in.(I4) at the prime ideal
pr = (x; : j & 7) in k[x]. Since group relax-
ations are always defined with respect to a face
T of A, we are guaranteed that rank(A;) = |7|
which allows a unique lifting of the optimal solu-
tion of Group™ (b) to a vector in the same congru-
ence class modulo £ as the solutions to P4 .(b).

Theorem 14 [20] Suppose u' € N7l is the opti-
mal solution to the group relaxation Group™ (b).
Then there exists a unique u € Z"™ such that
A(u — v) = 0 for any feasible solution v to
IPy . (b) and mr(u) = u'. If uw > 0 then it is
the optimal solution to IPa .(b).

A group relaxation Group™(b) is easiest to
solve when 7 is a maximal face of A.. In this
situation, the lattice ideal I is zero dimen-
stonal and hence their Grébner bases are easier
to compute than otherwise. We call such group
relaxations the Gomory relaxations of 1 P4 .(b).
In general one is most interested in those group
relaxations Group”(b) that solve [Py .(b) with
|7| as large as possible. In the rest of this sec-
tion we study several structural properties of
these “least tight” extended group relaxations
that solve programs in IP4 .. We first need a
diversion into combinatorics.

For m € N™, we define support of 2™ € k[x]
to be supp(m).

Definition 15 For a monomial ™ € k[x] and
o C [n], we say that (x™,0) is an admissible
pair of a monomial ideal M if (i) supp(m)No =
0 and (ii) every monomial in x™ - k[z; : j € o]
s a standard monomial of M.

There is a natural partial order on the set of
all admissible pairs of M given by (z™,0) <
(2™, ¢') if and only if 2™ divides 2™ and
supp(z™ /z™) U o’ C o.

Definition 16 An admissible pair (z"™,0) of M
is called a standard pair of M if it is a minimal
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element in the poset of all admissible pairs with
respect to the above partial order.

The standard pairs of M induce a unique cov-
ering of the set of standard monomials of M
which we refer to as the standard pair decompo-
sition of M. This decomposition was introduced
in [32] to study the associated primes of M and
their multiplicities and thus the arithmetic de-
gree [3] of M. When M is the initial ideal of a
toric ideal stronger conclusions can be drawn. In
our exposition below we bypass much of the al-
gebraic results associated with the standard pair
decomposition of M, but instead use these re-
sults to motivate appropriate definitions to con-
tinue our discussion of group relaxations.

Definition 17 (i) For 7 C [n], we define the
multiplicity of T, denoted as mult(T), to be the

™.T) in

number of standard pairs of the form (x
the standard pair decomposition of M.

(ii) The sum of the multiplicities of T as T varies
over the subsets of [n] is called the arithmetic

degree of M, denoted as arithdeg(M).
In the rest of this section we let M = in.(14).

Proposition 18 (see Section 12.D in [30])

(i) If (z™, 1) is a standard pair of in.(I14) then
T s a face of A..

(ii) The standard pair (1,0) occurs in the stan-
dard pair decomposition of in.(14) if and only if
o is a mazimal face of A.. In this case, mult(o)
18 the normalized volume of o in A..

The normalized volume of a maximal face
o € A. is the quotient |det(A,)|/T where T
is the g.c.d. of all |det(A,/)| as o’ varies over
the maximal faces of A.. We note that the con-
verse to Proposition 18 (i) is false. If 7 is a non-
maximal face of A, then there may not be a
standard pair of the form (z™,7) in the stan-
dard pair decomposition of in.(4).

The standard pair decomposition of in.(I4)
reduces the problem of solving integer programs
in 1Py to solving systems of linear equations:
if 8 is the optimal solution to the program
IPy4 (b), then the monomial z” is covered by
some standard pair (z*,7). Thinking of u as
a vector in NI7| (by adding zero components
if necessary), we get 8z = w and (; is the
unique solution to the linear system A,z, =
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b — A-u. Therefore, if the standard pairs of
inc(I4) are known apriori, then one can set up
arithdeg(in.(I4))-many systems of linear equa-
tions - one for each standard pair. For each b €
posz(A), one then solves for 3, as above. When-
ever the (8, obtained this way is both integral
and non-negative, we have found the optimal so-
lution to P4 .(b). Hence arithdeg(in.(14)) can
be seen as a complexity measure of I P4 .. See
[23] for another pre-processing of 1Py . that re-
duces solving I P4 (b) to solving a sequence of
subproblems involving super additive functions.

Theorem 19 [20] (i) The integer program
IPy (b) is solved by the group relazation
Group™ (b) if and only if the monomial z°, where
B is the optimal solution to IP4.(b), is covered
by a standard pair (z*,7') of in.(I4) for some
DT,

In order to state the main results, we need
yet another interpretation of group relaxations
of programs in I Py ..

Let ¢4 : N™ — Z9 be the linear map z — Azx.
Then P, is the convex hull of ¢,'(b) for each
b € posz(A). Consider a matrix B € Z"*("=d)
such that the columns of B form a basis for
kerz(A) (as an abelian group). For v € ¢3*(b)
we can identify qﬁzl(b) with the lattice points in
the polytope

Qv ={uecR"?: Bu<v}, (1)

via the bijection Q, N Z"~% — QSATl(b) such that
u — v — Bu. Under this bijection, v € qf):ll(b)
corresponds to 0 € Q,. We refer to Q, as
a Scarf formulation of Py, = conv(¢,'(b)). If
v,v" € ¢31(b), then Q, and Q. are simply lat-
tice translates of each other.

Proposition 20 If v is a feasible solution to
1Py (b), then IP4 () is equivalent to

minimize{—(cB) -u:u € Q,NZ"%}  (2)

Proof: A lattice point v* is the optimal solution
to [PA’c(b)

<= there exists u* € Z""? such that v* =
v— Bu* > 0 and ¢(v — Bu*) < ¢(v — Bu) for all
w#u* € Z" 4 withv — Bu>0

<= there exist u* € Q, N Z" % such that
—(eB)-u* < —(cB) -u for all u € Q, N Z" ¢
<= u”* is the optimal solution of the integer
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We will refer to the integer program (2) as
a Scarf formulation of 1Py .(b). Using the opti-
mal solution u* of the Scarf formulation (2), we
define the following subpolytope of Q,:

 {ueR"4: Bu<nw,

Q)= By ug—(B)wy. P

Theorem 21 Let v € N” be a feasible solution
to 1P (b). Then u* is the optimal solution to
(2) if and only if u* is the unique lattice point
in Qu(u*). In particular, v is the optimal solu-
tion to 1P (b) if and only if O is the unique
lattice point in Qu(0) = {u € R" % : Bu <
v,—(cB) -u < 0}.

Proof: A vector u* € Z" % is the optimal
solution to (2) if and only if u* is in @,
and there is no u € Q, N Z"¢ such that
—(eB)-u < —(cB) - u*. Since c is a generic cost
vector, this is equivalent to u* being the unique
lattice point in Q,(u*). The second statement
follows immediately. O

Corollary 22 A monomial z¥ is a standard
monomial of in.(14) if and only if 0 is the
unique lattice point in Q,(0).

Let B™ denote the submatrix of B whose rows
are indexed by the set 7 C [n].

Lemma 23 Suppose o is a maximal face of A,
and T a subface of o. Then ¢ BT = cB where
ér =, (c—cy(A,) T A).

Proof: Since the support of c—c, (A4,) LA is con-
tained in 7, & BT = (¢ — c,(As)'A)B = cB.0O

Theorem 24 Let v be a feasible solution to
IPy . (b), and suppose that o is a mazimal face
of As and T a subface of o. Then the group
relazation Group™(b) is the integer program
minimize {—(cB)-u : BTu < 7, (v), u € Z""}.
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Proof: Since L, = {B"u : u € Z"~}, we have:
Latz, ¢ (7-(v))
:=min{é, - w: w =7, (v) (mod L),
w e NI}
= min{é, -w : we NI,
w=m,(v) — Bu,ueZ" %

= min{é, - w : 7 (v) — BTu >0,

ue Z""%

= min{é, - (7.(v) — B7u) : BTu < 7, (v),
w ez

= min{(—éB7) -u : B"u < 7.(v),
wezZ" Y

=min{—(cB) -u : BTu < 7. (v),
u e Z" % (by Lemma 23) O

We will denote the polyhedron obtained from
@, by removing the inequalities corresponding
to 7 by Q7. By the above theorem, solving
the group relaxation of P4 .(b) with respect to
T € A, is equivalent to minimizing the linear
functional —(c¢B) - u over the lattice points in
Q7. Now we can characterize which group relax-
ations will solve 1Py .(b).

Corollary 25 (i) Let v be a feasible solution
to 1P c(b). Then Group™(b) solves 1P .(b) if
and only if the programs min{—(cB) -u : u €
QuNZ" 9} and min{—(cB)-u:u € Q,NZ" %}
have the same optimal solutions.

(i1) If v is optimal for IP4 .(b), then Group™ (b)
solves 1Py .(b) if and only if 0 is the unique
lattice point in Q7(0) := {u € R"™¢ : BTy <
mr(v), —(eB) - u < 0}.

For a polyhedron P = {z € RP : Tz < t}
we say that an inequality T;x < t; is essential
if the relaxation of the polyhedron obtained by
removing T;x < t; contains a new lattice point.

Theorem 26 [21] An admissible pair (zV,T) is
a standard pair of in.(I14) if and only if 0 is
the unique lattice point in QL (0) and all of the
inequalities in the system BTu < m,(v) are es-
sential.
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Using the above characterization of the
standard pairs of in.(I4) we obtain a com-
binatorial interpretation for
arithdeg(in.(14)).

Corollary 27 (i) The multiplicity of T is the
number of polytopes of the form QT (0) := {u €
R : B™u <wv, —(cB)-u < 0} wherev € NI7|,
0 is the unique lattice point in QT(0) and all in-
equalities in BTu < v are essential.

(ii) The arithmetic degree of in.(14) is the total
number of such polytopes Q7(0) as T ranges over
the subsets of [n].

The result that mult(o) is the normalized vol-
ume of ¢ when ¢ is a maximal face of A, is a

mult(t) and

special case of the above more general interpre-
tation of multiplicity. See [21].

Corollary 28 For the initial ideal in.(14), the
following are equivalent:

(i) The initial ideal in.(I4) has no standard
pairs of the form (xz™,T) where T is a mon-
mazimal face of Ae.

(ii) For a face T € A, if there exists a v € NI7|
such that Q7(0) contains the origin as its unique
lattice point and all inequalities are essential
then T is a maximal face of A, and QL (0) is
a simplez.

(tii) All programs in 1Py . can be solved by group
relazations with respect to mazximal faces of A..
(iv) The arithmetic of inc(la) is
vol(conv(A)).

Proposition 18 shows that the set of all 7 in
A, that index standard pairs of in.(I4) is a sub
poset (with respect to inclusion) of the face lat-
tice of A.. We denote this subposet by Std(A.).
Note that both (face lattice of) A, and Std(A.)
have the same maximal elements. We now show
that the elements of Std(A.) come in chains.

degree

Theorem 29 [21] Let 7, || < d be a non-
mazimal face of A such that T € Std(A.). Then
there exists some 71 € A, such that 7' € Std(A.)
with the property that (i) 7 O 7 and (i) |7'| =
|T| + 1.

We refer the reader to [21] for a proof of
this theorem. The tools needed in the proof are
polyhedral and depend heavily on the polyhe-
dral interpretation of a standard pair as given
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in Theorem 26. In terms of group relaxations,
Theorem 29 is saying that whenever there is a
b € posz(A) that is solved by a “least tight”
Group™ (), then there exists a b’ € posz(A) that
is solved by a “least tight” Group™ (b) where (i)
7" O 7 and (ii) |7'| = |7| + 1. Hence the “least
tight” extended group relaxations that solve the
programs in I P, . form saturated chains in the
poset Std(A.).

Since a maximal face of A, has dimension
d, the length of a maximal chain in Std(A.),
which we denote as length(Std(A.)), is at most
d. However, when n—d which is the the corank of
A is small compared to d, length(Std(A.)) has a
stronger upper bound as shown below. We need
the following result (Corollary 16.5a in [28]).

Theorem 30 Let Ax < b be a system of lin-
ear inequalities in n variables, and let ¢ € R™.
If max {c-x : Az < b,x € Z"} is finite,
then max {c-z : Az < b,z € Z"} = max
{c-z: Az <V ,x € Z"} for some subsystem
Az <V of Az < b with at most 2" — 1 inequal-
ities.

Theorem 31 The length of a mazimal chain in
Std(A.) is at most min(d,2"~% — (n —d + 1)).

Proof: Suppose v is the optimal solution to
IP4 (b) which is equivalent to min{—(cB) - u :
Bu < v,u € Z"?}. By Theorem 30, we need at
most 2"~% — 1 inequalities to describe the same
integer program. This means we can remove at
least n — (2"~% — 1) inequalities from Bu < v
without changing the optimal solution. There-
fore by Theorem 24, IP4 .(b) can be solved by
a group relaxation with respect to a 7 € A, of
size at least n— (2"~ %—1). This implies that the
maximal length of a chain in Std(A.) is at most
d—(n—2"%-1)=2""9—(n—-d+1). 0O
Corollary 32 If A € Z%" has corank two,
then length(Std(A.)) < 1.

Proof: In this situation, 2" % — (n —d + 1) =
4-(4-241)=4-3=1. O
Corollary 33 All programs in the family 1Py .

can be solved by group relaxations with respect to
aT € A, of size at least maz(0,n — (2"~% —1)).

We conclude by remarking that the bound in
Theorem 31 is sharp. See [21] for details.
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