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Abstract. We consider the problem Max FS: For a given infeasible
linear system, determine a largest feasible subsystem. This problem has
interesting applications in linear programming as well as in fields such
as machine learning and statistical discriminant analysis. Max FS is
NP -hard and also difficult to approximate. In this paper we examine
structural and algorithmic properties of Max FS and of irreducible in-
feasible subsystems (IISs), which are intrinsically related, since one must
delete at least one constraint from each IIS to attain feasibility. In partic-
ular, we establish: (i) that finding a smallest cardinality IIS is NP -hard
as well as very difficult to approximate; (ii) a new simplex decomposition
characterization of IISs; (iii) that for a given clutter, realizability as the
IIS family for an infeasible linear system subsumes the Steinitz problem
for polytopes; (iv) some results on the feasible subsystem polytope whose
vertices are incidence vectors of feasible subsystems of a given infeasible
system.

1 Introduction

We consider the following combinatorial problem related to infeasible linear in-
equality systems.
Max FS: Given an infeasible system Σ : {Ax ≤ b} with A ∈ IRm×n and
b ∈ IRm, find a feasible subsystem containing as many inequalities as possible.

This problem has several interesting applications in various fields such as
statistical discriminant analysis, machine learning and linear programming (see
[2, 26, 22] and the references therein). In the latter case, it arises when the
LP formulation phase yields infeasible models and one wishes to diagnose and
resolve infeasibility by deleting as few constraints as possible, which is the com-
plementary version of Max FS [19, 27, 12]. In most situations this cannot be
done by inspection and the need for effective algorithmic tools has become more
acute with the considerable increase in model size. In fact, Max FS turns out to
be NP -hard [10] and it does not admit a polynomial time approximation scheme
unless P = NP [3]. The above complementary version, in which the goal is to
delete as few inequalities as possible in order to achieve feasibility, is equivalent
to solve to optimality, but is much harder to approximate than Max FS [5, 4].
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Not surprisingly, minimal infeasible subsystems, first discussed in Motzkin’s
thesis [25], play a key role in the study of Max FS. A subsystem Σ′ of Σ is
an irreducible infeasible subsystem (IIS) when Σ′ is infeasible, but every proper
subsystem of Σ′ is feasible. In order to help the modeler resolve infeasibility of
large linear inequality systems, attention was first devoted to the problem of
identifying IISs with a small and possibly minimum number of inequalities [19];
see [14, 13] for several heuristics, now available in commercial solvers such as
CPLEX and MINOS [11]. Clearly, when there are many overlapping IISs, this
does not provide enough information to repair the original system. To achieve
feasibility, one must delete an inequality from each IIS. If all IISs were known,
the complementary version of Max FS could be formulated as the following
covering problem [17].

Min IIS Cover: Given an infeasible system Σ : {Ax ≤ b} with A ∈ IRm×n and
b ∈ IRm and the set C of all its IISs, minimize

∑m
i=1 yi subject to

∑
i∈C yi ≥ 1

∀C ∈ C, yi ∈ {0, 1}, 1 ≤ i ≤ m.

Note that |C| can grow exponentially with m and n [10].
An exact algorithm based on a partial cover formulation is proposed in [26, 27]

and heuristics are described in [22, 12]; a collection of infeasible LPs is maintained
in the Netlib library. In [29, 30] the class of hypergraphs representing the IISs of
infeasible systems is studied and it is shown that in some special cases Max FS

and Min IIS Cover can be solved in polynomial time in the number of IISs.

In this paper we investigate some structural and algorithmic properties of
IISs and of the polytope defined by the convex hull of incidence vectors of fea-
sible subsystems of a given infeasible system. It is worth noting that, although
Max FS with 0 − 1 variables can be easily shown to admit as a special case
the graphical problem of finding a maximum independent node set, it has a dif-
ferent structure when the variables are real-valued. Recent work on problems
related to Max FS and IISs includes, for instance, H̊astad’s breakthrough [20]
which bridges the approximability gap for Max FS on GF (p), as well as the
investigation of the problems of determining minimum or minimal witnesses of
infeasibility in network flows [1].

Below we denote the ith row of the matrix A ∈ IRm×n by ai ∈ IRn, 1 ≤ i ≤ m;
for S ⊆ [m] := {1, . . . , m}, AS denotes the |S|×n matrix consisting of the rows of
A indexed by S. By identifying the ith inequality of the system Σ (i.e., aix ≤ bi)
with index i itself, [m] may also refer to Σ.

2 Irreducible Infeasible Subsystems

First we briefly recall the main known structural results regarding IISs. For
notational simplicity, we use the same A and b, with A ∈ IRm×n and b ∈ IRm,
to denote either the original system Σ or one of its IISs.

The known characterizations of IISs are based on the following version of
the Farkas Lemma. For any system Σ : {Ax ≤ b}, either Ax ≤ b is feasible or
∃ y ∈ IRm, y ≥ 0, such that yA = 0 and yb < 0, but not both.
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Theorem 1 (Motzkin [25], Fan [16]). The system Σ : {Ax ≤ b} with A, b
as above is an IIS if and only if rank(A) = m − 1 and ∃ y ∈ IRm, y > 0, such
that yA = 0 and yb < 0.

The rank condition obviously implies that m ≤ n + 1.

Now let Σ : {Ax ≤ b} be an infeasible system which is not necessarily an IIS.
The following result relates the IISs of Σ to the vertices of a given alternative
polyhedron. Recall that the support of a vector is the set of indices of its nonzero
components.

Theorem 2 (Gleeson and Ryan [17]). Let Σ : {Ax ≤ b} be an infeasible
system with A, b as above. Then the IISs of Σ are in one-to-one correspondence
with the supports of the vertices of the polyhedron

P := {y ∈ IRm |yA = 0, yb ≤ −1, y ≥ 0} .

The inequality in the alternative system can obviously be replaced by the equa-
tion yb = −1. Note that, by using the transformation into Karmarkar’s standard
form, any polytope can be expressed as {y ∈ IRm |yA = 0, y1l = 1, y ≥ 0} for
an appropriate matrix A. Theorem 2 can also be stated in terms of rays [27] and
elementary vectors [18].

Definition 1. An elementary vector of a subspace L ⊆ IRm is a nonzero vector
y that has a minimal number of nonzero components (when expressed with respect
to the standard basis of IRm). In other words, if x ∈ L and supp(x) ⊂ supp(y)
then x = 0, where supp(y) denotes the support of y.

Corollary 1 (Greenberg [18]). Let Σ : Ax ≤ b, A ∈ IRm×n, b ∈ IRm be an
infeasible system. Then S ⊆ [m] corresponds to an IIS of Σ if and only if there
exists an elementary vector y in the subspace L := {y ∈ IRm |yA = 0} with
yb < 0, y ≥ 0 such that S = supp(y).

The following result establishes an interesting geometric property of the poly-
hedra obtained by deleting any inequality from an IIS.

Theorem 3 (Motzkin [25]). Let Σ : {Ax ≤ b} be an IIS and let σ ∈ Σ be an
arbitrary inequality of Σ. Then the polyhedron corresponding to Σ \ σ, i.e., the
subsystem obtained by removal of σ, is an affine convex cone.

2.1 Minimum Cardinality IISs

We now determine the complexity status of the following problem for which
heuristics have been proposed in [14, 13, 26, 27].

Min IIS: Given an infeasible system Σ : {Ax ≤ b} as above, find a minimum
cardinality IIS.
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To settle the issue left open in [19, 14, 27], we prove that Min IIS is not only
NP -hard to solve optimally but also hard to approximate. Note that, where
DTIME(T (m)) denotes the class of problems solvable in time T (m), the as-
sumption NP 6⊆ DTIME(mpolylog m) is stronger than NP 6⊆ P , but it is also
believed to be extremely unlikely. Results that hold under such an assumption
are often referred to as almost NP -hard.

Theorem 4. Assuming P 6= NP , no polynomial time algorithm is guaranteed
to yield an IIS whose cardinality is at most c times larger than the minimum
one, for any constant c ≥ 1. Assuming NP 6⊆ DTIME(mpolylog m), Min IIS

cannot be approximated within a factor 2log1−ε m, for any ε > 0, where m is the
number of inequalities.

Proof. We proceed by reduction from the following problem: Given a feasible
linear system Dz = d, with D ∈ IRm′×n′

and d ∈ IRm′
, find a solution z satisfy-

ing all equations with as few nonzero components as possible. In [4] we establish
that it is (almost) NP -hard to approximate this problem within the same type
of factors, but with m replaced by n, the number of variables. Note that the
above nonconstant factor grows faster than any polylogarithmic function, but
slower than any polynomial one.

For each instance of the latter problem with an optimal solution containing
s nonzero components, we construct a particular instance of Min IIS with a
minimum cardinality IIS containing s+1 inequalities. Given any instance (D,d),
consider the system

(
D −D −d

)



z+

z−

z0


 = 0,

(
0t 0t −1

)



z+

z−

z0


 < 0, z+, z− ≥ 0, z0 ≥ 0.

(1)

Since the strict inequality implies z0 > 0, the system Dz = d has a solution with
s nonzero components if and only if (1) has one with s + 1 nonzero components.
Now, applying Corollary 1, (1) has such a solution if and only if the system




Dt

−Dt

−dt


 x ≤




0
0
−1


 (2)

has an IIS of cardinality s + 1. Since (2) is the alternative system of (1), the
Farkas Lemma implies that exactly one of these is feasible; as (1) is feasible, (2)
must be infeasible. Thus (2) is a particular instance of Min IIS with m = 2n′+1
inequalities in n = m′ variables.

Given that the polynomial time reduction preserves the objective function
modulo an additive unit constant, we obtain the same type of non-approx-
imability factors for Min IIS. ut

Note that for the similar (but not directly related) problem of determining
minimum witnesses of infeasibility in network flows, NP-hardness is established
in [1].
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2.2 IIS Simplex Decomposition

Here we provide a new geometric characterization of IISs. For A ∈ IRm×n, b ∈
IRm, let Ai := A[m]\{i} and bi := b[m]\{i} denote the (m−1)×n submatrix and,
respectively, the (m − 1)–dimensional vector obtained by removing the ith row
of A and ith component of b. The following result strengthens the initial part of
Theorem 1.

Lemma 1. For any IIS {Ax ≤ b}, Ai has linearly independent rows, ∀ i; i.e.,
rank(Ai) = m − 1.

Proof. According to Theorem 1, there exists a y > 0 such that yA = 0 and
yb = −1 (by scaling yb < 0). Suppose some proper subset of rows is linearly
dependent; i.e. ∃z, such that zA = 0, zb ≥ 0 (without loss of generality) and
some zk = 0.

If some zi > 0, consider (y − εz)A = 0, (y − εz)b ≤ −1, where ε =
min{yi/zi > 0 | 1 ≤ i ≤ m, zi > 0} (and y is as above). Then y − εz ≥ 0,
the ith component of y − εz is 0 and the Farkas Lemma contradicts minimality
of the system (y − εz fulfills the requirements).

If all zi ≤ 0, then −z ≥ 0, −zA = 0 and −zb ≤ 0; so setting y = −z in
the Farkas Lemma leads to a contradiction of minimality, provided −zb < 0. If
−zb = 0, then (y + εz)A = 0, (y + εz)b = −1, with ε = min{yi/(−zi) | 1 ≤ i ≤
m, −zi > 0} leads to a contradiction as above. ut
It is interesting to note that this lemma together with Theorem 1 imply that an
infeasible system {Ax ≤ b} is an IIS if and only if rank(Ai) = m − 1 for all i,
1 ≤ i ≤ m.

We thus have the following simplex decomposition result for IISs.

Theorem 5. The system {Ax ≤ b} is an IIS if and only if {x ∈ IRn |Ax ≥
b} = L + Q, where L is the lineality subspace {x ∈ IRn |Ax = 0} and Q is
an (m − 1)–simplex with vertices determined by maximal proper subsystems of
{Ax = b}; namely, each vertex of Q is a solution for a subsystem {Aix = bi},
1 ≤ i ≤ m.

Proof. (⇒) To see feasibility of {Ax ≥ b}, delete constraint aix ≥ bi to get the
equality system {Aix = bi}. By Lemma 1, this system has a solution, say xi,
and we must have aixi > bi, else xi satisfies {Ax ≤ b}. Applying the polyhedral
resolution theorem, P := {x ∈ IRn |Ax ≥ b} 6= ∅ can be written as P = K + Q,
where K = {x ∈ IRn |Ax ≥ 0} is its recession cone and Q ⊆ P is a polytope
generated by representatives of its minimal nonempty faces.

If x satisfies Ax ≥ 0 and aix > 0 for row ai then xi−εx satisfies A(xi−εx) ≤
b for sufficiently large ε > 0 and the original system {Ax ≤ b} would be feasible.
Therefore we must have that each aix = 0 for 1 ≤ i ≤ m, x ∈ K and we get
that in fact K = L := {x ∈ IRn |Ax = 0}.

For Q, minimal nonempty faces of P are given by changing a maximal set of
inequalities into equalities (all but one relation). Thus the vectors xi obtained



50 Edoardo Amaldi, Marc E. Pfetsch, and Leslie E. Trotter, Jr.

by solving {Aix = bi} determine Q; i.e., Q = conv({x1, . . . , xm}). For A ∈
IRm×n, Q is the (m − 1)–simplex generated by the m points {x1, . . . , xm}. To
see that the xi generate an (m − 1)–simplex, we must only show that they
are affinely independent. But if xi is affinely dependent on the other xj , then
xi =

∑
j 6=i λjx

j with
∑

j 6=i λj = 1. Thus we have aixi > bi, but also aixi =
ai(

∑
j 6=i λjx

j) =
∑

j 6=i λj(aixj) =
∑

j 6=i λjbi = bi, which is a contradiction.

(⇐) If the system {Ax ≤ b} is infeasible, then the minimality is obvious, because
the simplex conditions on Q imply that every proper subsystem has an equality
solution.

To show that {Ax ≤ b} is infeasible, assume for the sake of contradiction
that x̂ ∈ {x ∈ IRn |Ax ≤ b} 6= ∅ and x̂ satisfies a maximal number of these
relations at equality. Let aix̂ < bi and note that for xi defined as above, we have
aixi > bi. Thus we can set λ = (aixi − bi)/(aixi − aix̂) and have 0 < λ < 1,
so that ai(λx̂ + (1 − λ)xi) = bi. But then at λx̂ + (1 − λ)xi more relations of
{Ax ≤ b} hold at equality than at x̂, contradicting the choice of x̂. ut

According to the above proof, we can take the xi’s as the representatives
of the minimal nonempty faces of {Ax ≤ b} that lie in L⊥; i.e., Q ⊂ L⊥. By
Lemma 1, we know that {x ∈ IRn |Aix = bi} = xi + L, where L is the lineality
space of the original linear system {Ax ≥ b}.

It is worth observing that Theorem 5 handles the following special cases.
If m = 1, then A has only one row, say {Ax ≤ b} = {0x ≤ −1}. Thus L = {x ∈
IRn |0x = 0} = IRn and {x ∈ IRn |0x ≥ −1} = IRn + {0} = L + Q = L.
If m = n + 1, then A has n + 1 rows. Assuming A to be of full column rank,
L = {x ∈ IRn |Ax = 0} = {0} and Q = conv({x1, . . . , xn+1}) is an n–simplex
and {x ∈ IRn |Ax ≥ b} = {0} + Q.

3 IIS-Hypergraphs

Consider for any infeasible system the following hypergraph.

Definition 2. Given an infeasible system Σ : {Ax ≤ b} with A ∈ IRm×n and
b ∈ IRm, H = (V, E) is the IIS-hypergraph of Σ if

i. the nodes in V are in one-to-one correspondence with the inequalities of Σ,
ii. the hyperedges in E are in one-to-one correspondence with the IISs of Σ and

each hyperedge contains precisely the nodes associated to the inequalities
contained in the corresponding IIS.

Investigations on the structure of IIS-hypergraphs began with [29, 30]. In
particular, it was shown that IIS-hypergraphs do not share many properties
with other known classes of hypergraphs generalizing bipartite graphs. Indeed,
IIS-hypergraphs (with no trivial IISs of cardinality 1) just turn out to be bi-
colourable; i.e., their nodes can be partitioned into two subsets so that neither
subset contains a hyperedge. Note, however, that there is more structure for
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IIS-hypergraphs than simply bicolourability, as there will generally exist many
different bipartitions into two feasible subsystems [29, 18].

In IIS-hypergraph terminology, Min IIS Cover amounts to finding a mini-
mum cardinality transversal, i.e., a subset of nodes having nonempty intersection
with every hyperedge. The special structure of the IIS-hypergraphs accounts for
the fact that the greedy algorithm is guaranteed to find a minimum transveral
for those with nondegenerate alternative polyhedra [30] (a subclass of uniform
hypergraphs) while the problem is NP -hard even for simple graphs, i.e., for
2-uniform hypergraphs.

Here we address the fundamental problem of recognizing IIS-hypergraphs.
For the definitions of a poset and (face) lattice see, e.g., [31].

Let E be a finite set and F a clutter on E. The poset L(F) = (S,≤) can be
constructed as follows. S ⊆ 2E and the relation “≤” on S is the set inclusion.
A subset U of E is in S if U is the intersection of elements of F . The element
1̂ :=

⋃{F ∈ F} is also in S. Notice that the zero 0̂ :=
⋂{F ∈ F} is always in S

and is possibly the empty set. Then L(F) is a lattice with the meet defined by
intersection. Note that the size of L(F) can be exponential in the size of F .

The face lattice of a polytope P is its set of faces, ordered by inclusion, with
the meet defined by intersection. It is well known (see, e.g., [31]) that the face
lattice of P has a rank function r(·) satisfying r(F ) = dim(F )−1 for any face F ,
and is both atomic and coatomic. Two polytopes with isomorphic face lattices
are combinatorially equivalent.

Let R denote either ZZ , Q, A (the real algebraic numbers over Q) or IR.

IIS Realizability problem for R: Given a clutter C over a finite ground set
of cardinality m, does there exist an infeasible linear system {Ax ≤ b}, with
A ∈ Rm×n and b ∈ Rm, such that the sets in C index the IISs of this system?

In the above definition, infeasibility is meant with respect to IR and n is free. If
such a system exists, the clutter C is IIS-realizable. The IIS Realizability problem
is obviously equivalent to that of recognizing IIS-hypergraphs. In the sequel we
also consider the restricted version of the IIS Realizability problem in which the
right-hand side of the linear system is fixed, namely, in which b = −1l.

Steinitz problem for R: Given a lattice L, does there exist a polytope P ⊂ IRd

with vertices in Rd such that the face lattice of P is isomorphic to L?

If the answer is affirmative, L is realizable as a polytope. In this case d can be
assumed to be the dimension of L. P can be given either as a (complete) list of
vertices or facets. See [9] for related material.

Theorem 6. The IIS Realizability problem is at least as hard as the Steinitz
problem.

Proof. We show that for any instance of the Steinitz problem we can construct
in polynomial time a special instance of the above-mentioned restricted IIS Re-
alizability problem such that the answer to the first instance is affirmative if
and only if the answer to the second instance is affirmative. Since face lattices
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of polytopes need to be ranked as well as atomic and these properties can be
checked in polynomial time, we focus attention on this type of lattices.

Given an arbitrary instance of the Steinitz problem defined by a ranked
atomic lattice L, we construct the following special instance of the restricted
IIS Realizability problem with b = −1l. Suppose L contains k atoms and m
coatoms. Label arbitrarily the coatoms with the sets {1}, . . . , {m} and the atoms
with the sets C1, . . . , Ck, where Ci includes all the elements in the labels of the
coatoms that contain the corresponding atom. Define C = {C1, . . . , Ck} and
C := {C1, . . . , Ck}, where Ci = {1, . . . , m} \ Ci. Thus the arbitrary choices of
the labeling just correspond to a permutation of coordinates and hence do not
change the structure.

If the original instance of the Steinitz problem has a positive answer, there
exists a polytope P such that L is the face lattice of P . According to the remark
following Theorem 2, this polytope can be expressed in the special form P =
{y ∈ IRm′ |yA = 0, y1l = 1, y ≥ 0}, with A ∈ IRm′×n and suitable m′, n.
Hence m′ > m, the number of facets, and {Ax ≤ −1l} is the infeasible system
associated to P .
Since the face lattice of a polytope is coatomic, each face of P can be identified
with the set of facets it is contained in. If these sets corresponding to all faces
are ordered by set inclusion, one obtains a lattice L′ which is anti-isomorphic to
the face lattice of P . The meet is defined by intersection. It is easy to see that
the lattice L(C) is isomorphic to L′. The atoms correspond to the facets of P
and the coatoms to its vertices.
By construction, each set Ci (atom of L) corresponds to a vertex vi of P . All
facets of P are defined by inequalities of the form yi ≥ 0. Up to relabeling of the
coatoms in the definition of C, the facet defined by yi ≥ 0 can be identified with
{i}. Thus Ci = {j ∈ {1, . . . , m} | vi

j = 0} and Ci is the support of the vertex vi.
By Theorem 2, each Ci corresponds to an IIS of the associated infeasible system
{Ax ≤ −1l} and hence C is IIS-realizable with the restricted type of right-hand
side and with a polytope as alternative polyhedron.

Conversely, suppose that the corresponding instance of the restricted IIS
Realizability problem with b = −1l defined by C has a positive answer and
consider the alternative polyhedron P = {y ∈ IRm |yA = 0, y1l = 1, y ≥
0} with A ∈ IRm×n. As seen above, each Ci corresponds to the support of a
vertex of P and each Ci corresponds to the set of facets that this vertex lies
on, i.e., L(C) is anti-isomorphic to the face lattice of P . Now the vertex-facet
incidence information encoded in C and the fact that L is atomic, imply the
whole structure of the lattice L. Therefore L(C) is anti-isomorphic to L and
hence P is a realization of L. ut

Given polynomials f1, . . . , fr, g1, . . . , gs, h1, . . . , ht ∈ ZZ [x1, . . . , xl], the prob-
lem to decide whether the polynomial system f1 = · · · = fr = 0, g1 ≥ 0, . . . , gs ≥
0, h1 > 0, . . . , ht > 0 has a solution in Rl = A

l is called the Existential theory
of the reals (ETR). ETR is polynomial time equivalent to the Steinitz problem
for 4-Polytopes over A [28]. (All polytopes realizable over IR are realizable over
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A .) Moreover, ETR is polynomial time equivalent to the Steinitz problem for
d-Polytopes with d + 4 vertices over A [24]. Since ETR is easily verified to be
NP-hard, the same is valid for the general Steinitz problem (over A ) and for the
IIS Realizability problem.

According to Theorem 2.7 of [9], for R = Q or A , to decide whether an
arbitrary polynomial f ∈ ZZ [x1, . . . , xl] has zeros in Rl, where l is a positive
integer, is equivalent to solve the Steinitz problem for R. For R = Q, it is not even
clear whether the Steinitz problem (and therefore the IIS Realizability problem)
is decidable since finding roots in R = Q of a single polynomial f ∈ ZZ [x1, . . . , xl]
is the unsolved rational version of Hilbert’s 10th problem. By the well known
theorem of Matiyasevic, there does not exist an algorithm for deciding whether
f has roots in ZZ . By the quantifier elimination result of Tarski, the problem
is decidable for R = A . Note that, unlike IR, A admits a finite representation.
For R = A , it is unkown whether the Steinitz problem is in NP. See [23, 8] and
references therein for this and related issues.

4 Feasible Subsystem (FS) Polytope

Consider an infeasible system Σ : {Ax ≤ b} and let [m] = {1, . . . , m} be the set
of indices of all inequalities in Σ. If I denotes the set of all feasible subsystems
of Σ, ([m], I) is clearly an independence system and its set of circuits C(I)
corresponds to the set of all IISs. We denote by PFS the polytope generated by
the convex hull of all the incidence vectors of feasible subsystems.

Let us first briefly recall some definitions and facts about independence sys-
tem polytopes. To any independence system (E, I) with the family of circuits
denoted by C(I) we can associate the polytope P (I) = P (C(I)) = conv({y ∈
{0, 1}|E| |y is the incidence vector of an I ∈ I}). The rank function is defined
by r(S) = max{|I| | I ⊆ S, I ∈ I} for all S ⊆ E. For any S ⊆ E, the rank
inequality for S is

∑
e∈S ye ≤ r(S), which is clearly valid for P (I). A subset

S ⊆ E is closed if r(S ∪ {t}) ≥ r(S) + 1 for all t ∈ E − S and nonseparable if
r(S) < r(T ) + r(S − T ) for all T ⊂ S, T 6= ∅. For any set S ⊆ E, S must be
closed and nonseparable for the corresponding rank inequality to define a facet
of P (I). These conditions generally are only necessary, but sufficient conditions
can be stated using the following concept [21]. For S ⊆ E, the critical graph
GS(I) = (S, F ) is defined as follows: (e, e′) ∈ F , for e, e′ ∈ S, if and only if
there exists an independent set I such that I ⊆ S, |I| = r(S) and e ∈ I, e′ /∈ I,
I − e+ e′ ∈ I. It is shown in [21] that if S is a closed subset of E and the critical
graph GS(I) of I on S is connected, then the corresponding rank inequality
induces a facet of the polytope P (I). See references in [15].

4.1 Rank-Facets of the FS Polytope

As PFS is an independence system polytope, it is full-dimensional if and only
if there are no trivially infeasible inequalities in Σ. The inequalities yi ≥ 0 are
facet defining for all 1 ≤ i ≤ m. Moreover, it is easy to verify that for each i the
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inequality yi ≤ 1 defines a facet of PFS if and only if there is no IIS of cardinality
2 that includes i and PFS is full-dimensional.

In fact, Parker [26] began an investigation of the polytope associated to the
Min IIS Cover problem, considering it as a special case of the general set
covering polytope (see references in [15]). Since there is a simple correspondence
between set covering polytopes and the complementary independence system
polytopes [21], the results in [26] can be translated so that they apply to PFS .

Let S be an arbitrary IIS of Σ, ASx ≤ bS be its corresponding subsystem,
and

∑
i∈S yi ≤ r(S) = |S| − 1 the corresponding (rank) IIS-inequality. Since

the complementary covering inequality
∑

i∈C yi ≥ 1 induced by every IIS C is
proved to be facet defining in [26], we have:

Theorem 7. The IIS-inequality arising from any IIS defines a facet of PFS .

We give here a geometric proof (based on the above-mentioned sufficient con-
ditions [21]), which is simpler than that of [26] and which provides additional
insight into the IIS structure.

Proof. It is easy to verify that IIS-inequalities are valid for PFS . Since the critical
graph corresponding to any IIS is clearly connected (in fact, a complete graph),
we just need to show that every IIS is closed.
a) First consider the case of maximal IISs, i.e. with |S| = n + 1.
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For each i ∈ S, consider the unique xi = A−1
S\{i}bS\{i}. By the proof of

Theorem 5, we know that x1, . . . , xn+1 are affinely independent. If di := (xi−x̂)
for all i, 1 ≤ i ≤ n + 1, where x̂ := 1

n+1

∑n+1
i=1 xi, d1, . . . , dn+1 are also affinely

independent. Clearly
∑n+1

i=1 di = 0 and the di’s generate IRn. Since each xi

satisfies exactly n of the n + 1 inequalities in S with equality and aixi> bi

(otherwise S would be feasible), we have x̂ ∈ {x ∈ IRn |ASx ≥ bS }, i.e., x̂
satisfies the reversed inequalities of the IIS. In fact, x̂ is an interior point of the
above “reversed” polyhedron.
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According to Theorem 3, deleting any inequality from an IIS yields a feasible
subsystem that defines an affine cone. For maximal IISs, we have n + 1 affine
cones Ki := xi+K ′

i, where K ′
i = {x ∈ IRn |AS\{i}x ≤ 0} for 1 ≤ i ≤ n+1. Note

that the ray generated by di and passing through xi, i.e., Ri := {x ∈ IRn |x =
xi + αdi, α ≥ 0}, is contained in Ki because we have

AS\{i}(αdi) = αAS\{i}(xi − x̂) = α(bS\{i} − AS\{i}x̂) ≤ 0,

where we used the fact that AS\{i}x̂ ≥ bS\{i}. Now consider an arbitrary in-
equality ãx ≤ b̃ with ã 6= 0. We will verify that H := {x ∈ IRn | ãx ≤ b̃} has
a nonempty intersection with at least one of the Ki’s, 1 ≤ i ≤ n + 1. Thus, for
any t ∈ E − S we have rank(S ∪ {t}) = rank(S) + 1 = n + 1, which means that
the IIS defined by S is closed.

Since d1, . . . , dn+1 generate IRn and
∑n+1

i=1 di = 0, we have
∑n+1

i=1 ãdi =
ã(

∑n+1
i=1 di) = 0 and therefore ã 6= 0 implies that we cannot have ãdi =

0 ∀i, 1 ≤ i ≤ n + 1. Thus there exists at least one i, such that ãdi < 0.
But this implies that Ri ∩ H 6= ∅. In other words, Ki ∩ H 6= ∅ and this proves
the theorem for maximal IISs.

b) The result can be easily extended to non-maximal IISs, i.e., with |S| < n+1.
From Theorem 5 we know that P := {x ∈ IRn |Ax ≥ b} = L + Q with Q ⊆ L⊥.
Since P is full-dimensional (x̂ is an interior point), n = dim(P ) = dim(L) +
dim(Q) and dim(Q) = rank(AS) = |S| − 1 < n imply that dim(L) ≥ 1.

Two cases can arise:
i) If the above-mentioned ã is in lin({a1, . . . , am}) = L⊥, the linear hull of the
rows of A, then since dim(L⊥) = dim(Q), we can apply the above result to L⊥.
ii) If ã 6∈ lin({a1, . . . , am}) = L⊥, then the projection of H= := {x ∈ IRn | ãx =
b̃} onto L yields the whole L and therefore H = {x ∈ IRn | ãx ≤ b̃} must
have a nonempty intersection with all the cones corresponding to the maximal
consistent subsystems of {ASx ≤ bS}. ut
It is worth noting that closedness of every IIS makes PFS quite special among
all independence system polyhedra, since the circuits of a general independence
system need not be closed.

The separation problem for IIS-inequalities is defined as follows: Given an
infeasible system Σ and an arbitrary vector y ∈ IRm, show that y satisfies all
IIS-inequalities or find at least one violated by y.
In view of the trivial valid inequalities, we can assume that y ∈ [0, 1]m. Moreover,
we may assume with no loss of generality, that the nonzero components of y
correspond to an infeasible subsystem of Σ.

Proposition 1. The separation problem for IIS-inequalities is NP -hard.

Proof. We proceed by polynomial time reduction from the decision version of
the Min IIS problem, which is NP -hard according to Theorem 4. Given an
infeasible system Σ : {Ax ≤ b} with m inequalities, n variables and a positive
integer K with 1 ≤ K ≤ n + 1, does it have an IIS of cardinality at most K?
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Let (A, b) and K define an arbitrary instance of the above decision problem.
Consider the particular instance of the separation problem given by the same
infeasible system together with the vector y such that yi = 1− 1/(K +1) for all
i, 1 ≤ i ≤ m.

Suppose that Σ has an IIS of cardinality at most K which is indexed by the
set S. Then the corresponding IIS-inequality

∑
i∈S yi ≤ |S| − 1 is violated by

the vector y because

∑
i∈S

yi =
∑
i∈S

(1 − 1
K + 1

) = |S| − |S|
K + 1

> |S| − 1,

where the strict inequality is implied by |S| ≤ K. Thus the vector y can be
separated from PFS .

Conversely, if there exists an IIS-inequality violated by y, then

∑
i∈S

yi = |S| − |S|
(K + 1)

> |S| − 1

implies that the cardinality of the IIS defined by S is at most K.
Therefore, the original infeasible system Σ has an IIS of cardinality at most

K if and only if some IIS-inequality is violated by the given vector y. ut

In [21] the concept of generalized antiwebs, which includes as special cases
generalized cliques, generalized odd holes and generalized antiholes, is intro-
duced. Necessary and sufficient conditions are also established for the corre-
sponding rank inequalities to define facets of the associated independence system
polytope.

Let m, t, q be integers such that 2 ≤ q ≤ t ≤ m, let E = {e1, . . . , em} be a fi-
nite set, and define for each i ∈ M = {1, . . . , m} the subset Ei = {ei, . . . , ei+t−1}
(where the indices are taken modulo m) formed by t consecutive elements of E.
An (m,t,q)-generalized antiweb on E is the independence system having the fol-
lowing family of subsets of E as circuits:

AW(m, t, q) = {C ⊆ E |C ⊆ Ei for some i ∈ M, |C| = q}.

As mentioned in [21], AW(m, t, q) corresponds to generalized cliques when m = t,
to generalized odd holes when q = t and t does not divide m, and to generalized
antiholes when m = qt+1. The rank inequality induced by a generalized antiweb∑

i∈E yi ≤ bm(q − 1)/tc defines a canonical facet of the independence system
polytope P (AW(m, t, q)) if and only if m = t or t does not divide m(q − 1) [21].

In the case of PFS , the ground set is the set of indices of inequalities in the
infeasible system Σ under consideration.

Proposition 2. No facets of PFS are induced by generalized cliques other than
simple IISs (i.e., m = t = q).
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Proof. We invoke the following result (Proposition 3.15 of [21]). For any S ⊆ E,
let CS = {C ∈ C |C ⊆ S} denote the family of circuits of the independence
system induced by (E, I) on S. Then the rank inequality

∑
e∈S ye ≤ r(S) induces

a facet of P (C) if and only if S is closed and the rank inequality induces a facet
of P (CS). Hence it suffices to consider the case S = E and CS = AW(m, t, q)).

It is easy to verify that the only (m, t, q)-generalized antiwebs that can arise
in IIS-hypergraphs are those with q = t. Suppose that q < t and consider E1,
an arbitrary circuit C ∈ AW(m, t, q) with C ⊆ E1 and an arbitrary element
e ∈ E1 \ C. By definition of AW(m, t, q), any q subset of E1 is a circuit. This
must be true in particular for all subsets containing e and q − 1 elements of C.
But then C cannot be closed because r(C ∪ {e}) = r(C) and thus we have a
contradiction to the fact that all IISs are closed (Theorem 7). Hence the only
generalized cliques that can arise are those with m = t = q, that is, in which the
whole ground set E is an IIS. ut

The generalized antiwebs which are not ruled out by the above proof, i.e,
AW(m, t, q) with q = t, clearly correspond to simple circular sequences of IISs
of cardinality t given by the subsets Ei, i ∈ M , of the definition. For t = q = 2, it
is easy to see that the only possible cases that can arise as induced hypergraphs
of IIS-hypergraphs are those with m = 4 and m = 2. In fact, we conjecture that
no other (m, t, q)-generalized antiwebs can occur besides the cases m = t = q
with q ≥ 2, m = 4 and t = q = 2 as well as the trivial cases in which q = 1.
In this respect it is interesting to note that the remark following Theorem 5
implies that the lineality spaces L associated to all the IISs Ei, i ∈ M , in any
given generalized antiweb are identical. Therefore we can assume that they are
all maximal IISs contained in L⊥ and exploit the special geometric structure
of such IISs revealed by the proof of Theorem 7. An intermediate step would
then be to show that no sequence of more than 3 such successive IISs Ei can
occur without other additional IISs involving t nonsequential elements. In the
case m = 5 and t = 2, this observation is clearly valid.

Besides settling the above-mentioned issue, we are investigating other rank
and non-rank facets of PFS . For rank facets, it is also of interest to consider the
extent to which the sufficient condition involving connectedness of the critical
graph could also be necessary. By enumerating all independence systems on at
most 6 elements, we have verified that all cases with rank facets different from
IIS-inequalities and with a nonconnected critical graph occur in independence
systems which cannot be realized as PFS .

For non-rank facets, we can specialize some known facet classes for general
independence system polytopes and set covering polytopes, e.g., the class of all
facets (0, 1, 2)-valued coefficients characterized in [7]. A simple example of PFS

polytope with such a non-rank facet is as follows. The original system contains
six inequalities in three variables. In addition to the rank inequalities defined
by the five maximal IISs ({3456}, {2345}, {1346}, {1246}, {1245}) and to the
trivial (0, 1)–bounding inequalities, the single additional constraint x1 + x2 +
x3 + 2x4 + x5 + x6 ≤ 5 is required to provide the full description.
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We have also constructed numerous examples of facets of PFS having coefficients
larger than 2. These examples come from full descriptions of small-to-medium
size problems which we have analyzed using the software PORTA.
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