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Abstract. This paper presents an algorithm to compute the value of
the inverse Laplace transforms of rational functions with poles on ar-
rangements of hyperplanes. As an application, we present an efficient
computation of the partition function for classical root systems.

1. Introduction

The aim of this work is to present an algorithm for a fast computation of
the partition function of classical root systems.

EXPLAIN WHAT WE DO.
Let U be a finite dimensional real vector space of dimension r. Denote

its dual vector space U ∗ by V .
Consider a set of elements

A = {α1, α2, . . . , αN}
of non zero vectors of V . We assume that the convex cone C(A) generated by
non-negative linear combinations of the elements αi is an acute convex cone
in V with non empty interior. ffdlnkvdgknb The elements ` in V produce
linear functions u 7→ `(u) on the complexified vector space UC. In particular
to the set A is associated an arrangement of hyperplanes

HC(A) :=
r⋃

i=1

{u ∈ UC| αi(u) = 0}

in UC and its complement

UC(A) :=

{
u ∈ UC

∣∣∣
r∏

i=1

αi(u) 6= 0

}
.

We denote by RA the ring of rational functions on UC with poles along
HC(A). Then each element φ ∈ RA can be written as P/Q where P is a
polynomial function on r complex variables and Q is a product of elements,
not necessarily distinct, of A.

In this work, we first present an algorithm to compute the value of the
inverse Laplace transform of functions in RA at a point h ∈ V . In other
words we study the value at a point h ∈ V of convolutions of a number of
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Heaviside distributions φ 7→
∫∞
0 φ(tαi)dt. The first theoretical ingredient is

the notion of Jeffrey-Kirwan residue residues [8]. Then DeConcini-Procesi [6]
proved that one can compute Jeffrey-Kirwan residue using maximal nested
sets (in short MNS), a combinatorial tool related to no broken circuit bases
of the set of vectors A.

The applications in view are the study of volumes of polytopes, the num-
ber of integral points in polytopes and, more generally, discrete or contin-
uous integration of polynomial functions over polytopes. Indeed, Szenes-
Vergne [12], refining a formula of Brion-Vergne [4], stated a formula for
volume and number of integral points in polytopes involving Jeffrey-Kirwan
residues [8].

In this paper, we describe an efficient algorithm for MNS computation,
for classical root systems. This algorithm for MNS gives rise to programs
for Kostant partition function for classical root systems (An, Bn, Cn and
Dn). The important point is that our programs are still extremely efficient
for volume and integral points of polytopes

ΠA(h) =

{
x ∈ R

N
∣∣∣

N∑

i=1

xiαi = h, xi ≥ 0

}

with huge coordinates in the initial data h.
Another remarkable fact is that our algorithm can work with formal pa-

rameters, thus giving the quasipolynomial counting the number of integral
points in ΠA(h) when h runs over the chamber it defines.

This paper is organized as follows. Section 2 introduces Laplace trans-
forms and polytopes. In Section 3, we recall Jeffrey-Kirwan residue and
its link with counting formulae. Maximal nested sets are described in Sec-
tion 4, as well as how they are related to Jeffrey-Kirwan residue. Section 5
describes our general algorithm for MNS computations. Details of particular
cases of the algorithm for root systems An, Bn, Cn and Dn are examined in
Sections 7–10.COMPARE

WITH LATTE,
WITH BALDONI-
DELOERA-
VERGNE, WITH
BECK-PIXTON
AND WITH
LOECHNER-
VERDOOLAEGE-
...

LATTE [10] and [11] ALSO NEW IMPLEMENTATION OF BARVI-
NOK’S ALGORITHM [3] The LattE team implemented Barvinok’s algo-
rithm

2. Laplace transform and polytopes

We start by briefly recalling the notations of the introduction, aiming to
relate the inverse of the Laplace transform with various counting formulae
for a polytope. A good introduction on this theme is the survey article [13].

2.1. Laplace transform. Let U be a finite dimensional real vector space
of dimension r with dual space V . We fix the choice of a Lebesgue measure
dh on V .

Consider a set
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A = {α1, α2, . . . , αn}
of non zero vectors of V .

For any subset S of V , we denote by C(S) the convex cone generated by
non negative linear combinations of elements of S.

We assume that the convex cone C(A) is acute in V with non empty
interior.

Let Vsing(A) be the union of the boundaries of the cones C(S), where S
ranges over all the subsets of A. The complement of Vsing(A) in C(A) is by
definition the open set Creg(A) of regular elements. A connected component
c of Creg(A) is called a chamber of C(A). Figures 1 and 2 represent slices of
the cones C(A3) and C(B3), where the dots represents the intersection of a
slice with a ray R

+α hence showing the chambers. Remark that the cham-
bers for B3 and C3 are the same (as roots in B3 and C3 are proportional).
In dimension 3, the root system A3 is isomorphic to D3.

e2 − e4

e2 − e3

e1 − e4

e1 − e2 e3 − e4

e1 − e3

Figure 1. The 7 chambers for A3

e1 + e3

e1

e1 + e2

e3e2e2 − e3 e2 + e3

e1 − e2

e1 − e3

Figure 2. The 23 chambers for B3

Consider now a cone C(S) spanned by a subset S of A and let p be a
function on C(S). We assume that p is the restriction to C(S) of a polynomial
function on V . By superposing such functions pi defined on cones C(Si),
we obtain a space LP(V,A) of locally polynomial functions on C(A). For
f ∈ LP(V,A), the restriction of f to any chamber c of C(A) is given by a
polynomial function.

The Laplace transform L(f) of such a function f is defined as usual.
Consider the dual cone C(A)∗ ⊂ U of C(A) defined by:
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C(A)∗ = {u ∈ U | 〈h, u〉 ≥ 0 for all h ∈ C(A)} .
Then for u in the interior of the cone C(A)∗, the integral

L(f)(u) =

∫

C(A)
e−〈h,u〉f(h)dh

is convergent. It is easy to see that the function L(f) is the restriction to
C(A)∗ of a function in RA. (Recall that RA is the ring of rational functions
P/Q on U where P is a polynomial function on U and Q is a product of
elements of A.) It is easy [4] to characterize the functions L(f) on U arising
this way.

Before stating the result we need to introduce some other notations.
Let ν be a subset of {1, 2, . . . , n}. We will say that ν is generating (re-

spectively basic) if the set {αi | i ∈ ν} generates (respectively is a basis of)
the vector space V .

Every basic subset is of cardinality r and we write Bases(A) for the set
of basic subsets. Given σ ∈ Bases(A) the associated basic fraction is the
fraction defined by

(1) fσ =
1∏

i∈σ αi
.

In a system of coordinates (depending on σ) on U where αi(u) = ui (for
i ∈ σ), such a basic fraction is simply of the form

1

u1u2 · · · ur
.

Define G(U,A) ⊂ RA as the linear span of functions 1
Q

i∈ν α
ni
i

, where ν is

generating and ni are positive integers. The following Proposition gives the
characterization we were speaking of and is easy to prove:

Proposition 2.1. [4] If f is a locally polynomial function on C(A), the
Laplace transform L(f) of f is the restriction to C(A)∗ of a function in
G(U,A). Reciprocally, for any generating set ν and every set of positive
integers ni > 0, there exists a locally polynomial function f on V such that

1∏
i∈ν αi(u)ni

=

∫

C(A)
e−〈h,u〉f(h)dh

for any u in the interior of C(A)∗.

We define the inverse Laplace transform L−1 : G(U,A) → LP(V,A) as
follows. For φ ∈ G(U,A), the function L−1φ is the unique locally polynomial
function that satisfies

φ(u) =

∫

C(A)
e−〈h,u〉(L−1φ)(h)dh
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for any u ∈ C(A)∗.
In the next Sections, we will explain the relation between Laplace trans-

form and enumeration of integral points of families of polytopes. We will
see in Section 4 that one can write efficient formulae for the inversion of
Laplace transforms in terms of residues, whose algorithmic implementation
is working in a quite impressive way, at least for low dimension.

2.2. Volume and number of integral points of a polytope. In this
Subsection we consider a sequence

A+ = [α1, α2, . . . , αN ]

of non zero elements of A. We assume that each element α ∈ A occurs
in the sequence. In particular N ≥ n. We introduce now the notion of a
partition polytope.

We consider the space R
N with its standard basis ωi and Lebesgue mea-

sure dx.
If x =

∑N
i=1 xiωi ∈ R

N with xi ≥ 0 (1 ≤ i ≤ N) then we will simply write
x ≥ 0.

Consider the surjective map A : R
N → V defined by A(ωi) = αi and

denote by K its kernel. Then K is a vector space of dimension d = N − r
equipped with a quotient Lebesgue measure dx/dh.

If h ∈ V , we define

ΠA+(h) =
{
x ∈ R

N |Ax = h;x ≥ 0
}
.

The set ΠA+(h) is a convex polytope. It is the intersection of the positive
quadrant in R

N with an affine translate of the vector space K. This polytope
consists of all positive solutions of the system of r linear equations

N∑

i=1

xiαi = h.

Remark 2.2. It might be appropriate to recall that any full dimensional
polytope P in a vector space E of dimension d, defined by a system of N
linear inequations

P = {y ∈ E | 〈ui, y〉+ λi ≥ 0}
(where ui ∈ E∗ and λi are real numbers), can be canonically realized as a
partition polytope ΠA+(h). Here A+ is a set of N elements in a vector space
of dimension r = N − d. Indeed, consider the diagram

E
i−→ R

N A−→ V = R
N/i(E)

where i : y 7→ ∑N
i=1 〈ui, y〉ωi and A is the projection map R

N −→ V . Let

αi be the images of the canonical basis ωi of R
N . Define A+ = [α1, . . . , αN ]

and consider the point h := A(
∑N

i=1 λiωi). Then the polytope ΠA+(h) is
isomorphic to P . Indeed, the points in ΠA+(h) are exactly the points xi

such that
∑N

i=1(xi − λi)A(ωi) = 0 with xi ≥ 0. By definition of the space
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V = RN/i(E), there exists y ∈ i(E) such that xi − λi = 〈ui, y〉. As xi ≥ 0,
this means exactly that 〈ui, y〉+ λi ≥ 0, so that the point y is in P .

More concretely, to determine the partition polytope Ax = b starting from

a polytope P given by QyT ≥ λ (where Q is a N × d matrix whose ith-row
is given by a vector ui ∈ E∗ and λ ∈ R

N) we choose among the elements
ui a basis of E∗. Thus after relabeling the indices and doing an appropriate
translation, we may assume the inequations of the polytope P are given in
the form





y1 ≥ 0
y2 ≥ 0
. . .
yd ≥ 0
CyT + λT ≥ 0

where
C is a r × d matrix,
λ ∈ R

r,
and y = (y1, . . . , yd) ∈ R

d.

Then the polytope P is isomorphic to the polytope defined by
{
x ≥ 0 | AxT = λT

}

where A is the r ×N matrix given by

A =

( −C︸︷︷︸
r×d

Ir︸︷︷︸
r×r

)
, Ir being the identity matrix.

Let us examine an example.

Example 2.3. Let P ⊂ R
2 be the polytope defined by the system of inequal-

ities: 



−x1 + 1 ≥ 0,
−x2 + 2 ≥ 0,

−x1 − x2 + 2 ≥ 0,
2x1 + x2 − 1 ≥ 0.

Choosing the basis u1 = (1, 0), u2 = (0, 1) and using the translation y1 =
−x1 + 1 and y2 = −x2 + 2 we can rewrite the system as:




y1 ≥ 0
y2 ≥ 0

C

(
y1

y2

)
+

(
−1
3

)
≥ 0

where C =

(
1 1
−2 −1

)
.

Therefore P is isomorphic to

ΠA+(h) =
{
y = (y1, . . . , y4) ∈ R

4, y ≥ 0
∣∣∣ −y1 − y2 + y3 = −1

2y1 + y2 + y4 = 3

}

with h =

(
−1
3

)
.

We continue with our review. If h is in the interior of the cone C(A), then
the polytope ΠA+(h) is of dimension d. It lies in a translate of the vector
space K, and this translated space is provided with the quotient measure
dx/dh.



PARTITION FUNCTIONS FOR CLASSICAL ROOT SYSTEMS 7

Definition 2.4. We write volA+(h) for the volume of ΠA+(h) computed
with respect to this measure.

Going on, suppose further that V is provided with a lattice VZ and that

A+ := [α1, α2, . . . , αN ]

is a sequence of non zero elements of VZ spanning VZ.
In this case, the lattice VZ determines a measure dZh on V so that the

fundamental domain of the lattice VZ is of measure 1 for dZh. However, for
reasons which will be clear later on, we keep our initial measure dh. We
introduce the normalized volume.

Definition 2.5. The normalized volume volZ,A+(h) is the volume of ΠA+(h)
computed with respect to the measure dx/dZh.

Remark 2.6. The reason for keeping our initial dh is that the root systems
Bn, Cn, Dn live on the same standard vector space V = Rn, where the most
natural measure is the standard one. This measure is twice the measure
given by the root lattice in the case of Cn and Dn.

If vol(V/VZ, dh) is the volume of a fundamental domain of VZ for dh,
clearly volZ,A+(h) = vol(V/VZ, dh)volA+(h).

Let now h ∈ VZ. A discrete analogue of the normalized volume of ΠA+(h)
is the number of integral points inside this polytope.

Definition 2.7. Let NA+(h) be the number of integral points in ΠA+(h),

that is the number of solutions x = (x1, . . . , xN ) of the equation
∑N

i=1 xiαi =
h where xi are non negative integral numbers.

We will see after stating Theorem 3.3 that functions h 7→ volA+(h) and
h 7→ NA+(h) are respectively polynomial and quasi-polynomial on each
chamber of C(A).

The following formulae (see for example [13]) compute the Laplace trans-
form of the locally polynomial function volA+(h) and the discrete Laplace
transform of the quasi-polynomial function NA+(h).

Proposition 2.8. Let u ∈ C(A)∗. Then:

(1)
∫
C(A) e

−〈h,u〉volA+(h)dh = 1
QN

i=1 αi(u)
.

(2)
∑

h∈VZ∩C(A) e
−〈h,u〉NA+(h) = 1

QN
i=1(1−e−〈αi,u〉)

.

3. Jeffrey-Kirwan residue

The aim of this Section is to explain some theoretical results due to Jef-
frey and Kirwan which are fundamental for our work. They described an
efficient scheme for computing the inverse Laplace transforms in the context
of hyperplane arrangements.

Let’s go back to the space of rational functions RA. It is Z-graded by
degree. Of great importance for our exposition will be certain functions in
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RA of degree −r. Every function in RA of degree −r may be decomposed
into a sum of basic fractions fσ (see Equation (1)) and degenerate fractions;
degenerate fractions are those for which the linear forms in the denominator
do not span V . Now having fixed a chamber c, we define a functional JKc(φ)
on RA called the Jeffrey-Kirwan residue (or JK-residue) as follows. Let

(2) JKc(fσ) =

{
vol(σ)−1, if c ⊂ C(σ),

0, if c ∩ C(σ) = ∅.
By setting the value of the JK-residue of a degenerate fraction or that of

a rational function of pure degree different from −r equal to zero, we have
defined the JK-residue on RA.

We may go further and extend the definition to the space R̂A which is
the space consisting of functions P/Q where Q is a product of powers of
the linear forms αi and P =

∑∞
k=0 Pk is a formal power series. Indeed

suppose that P/Q ∈ R̂A where we may assume that Q is of degree q, and
P =

∑∞
k=0 Pk is a formal power series with Pk of degree k. Then we just

define

JKc(P/Q) = JKc(Pq−r/Q)

as the JK-residue of the component of degree −r of P/Q. In particular if
φ ∈ RA and h ∈ V , the function

e〈h,u〉φ(u) =

∞∑

k=0

〈h, u〉k
k!

φ(u)

is in R̂A and we may compute its JK residue.
Let’s now make a short digression that should clarify why JK-residues

compute inverse Laplace transforms. Given σ ∈ Bases(A), we write C(σ)
for the cone generated by αi (i ∈ σ) and by vol(σ) > 0 for the volume of
the parallelotope

∑r
i=1[0, 1]αi computed for the measure dh. Observe that

vol(σ) = |det(σ)|, where σ is the matrix which columns are the αi’s.
Then for u ∈ C(A)∗ we have:

1

vol(σ)

∫

C(σ)
e−〈h,u〉dh = fσ(u).

In other words the inverse Laplace transform of fσ computed at the point
h ∈ C(A) is 1

vol(σ)χσ(h), where χσ is the characteristic function of the cone

C(σ). We state this as a formula:

1

vol(σ)
χσ(h) = L−1(fσ)(h).

Since the JK-residue can be written in terms of basic fractions, the fol-
lowing theorem [8] is not surprising:
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Theorem 3.1 (Jeffrey-Kirwan). If φ ∈ RA, then for any h ∈ c we have:

(L−1φ)(h) = JKc

(
e〈h, · 〉φ

)
.

Assume that Ψ : U → U is an holomorphic transformation defined on a
neighborhood of 0 in U and invertible. We also assume that αj(F (u)) =
αj(u)fj(u), where fj(u) is holomorphic in a neighborhood of 0 and fj(0) 6= 0.

If φ is a function in R̂A, the function Ψ∗φ(u) = φ(Ψ(u)) is again in R̂A.
Let Jac(Ψ) be the Jacobian of the map Ψ. The function Jac(Ψ) is calculated
as follows: write Ψ(u) = (Ψ1(u1, u2, . . . , ur), . . . ,Ψr(u1, u2, . . . , ur)). Then
Jac(Ψ)(u) = det(( ∂

∂ui
Ψj)i,j). We assume that Jac(Ψ)(u) does not vanish at

u = 0. For any φ in R̂A the following change of variable formula, which will
be useful in our calculations later on, holds:

Proposition 3.2. The Jeffrey-Kirwan residue obeys the rule of change of
variables:

JKc(φ) = JKc(Jac(Ψ)(Ψ∗φ)).

We conclude this Section by recalling the formula for NA+(h). We need
more notations.

Consider the dual lattice UZ = {u ∈ U | 〈u, VZ〉 ⊂ Z} and the torus
T = U/UZ. Choosing a basis {u1, . . . , ur} of UZ we may identify T with the
subset of U defined by the fundamental domain for translation by UZ:





r∑

j=1

tjuj





with 0 ≤ tj < 1.
Every element g in T = U/UZ produces a function on VZ by h 7→

e〈h,2π
√
−1G〉, where we denote by G a representative of g ∈ U/UZ. For

σ ∈ Bases(A) we denote by T (σ) the subset of T defined by

T (σ) =
{
g ∈ T

∣∣∣ e〈α,2π
√
−1G〉 = 1 for allα ∈ σ

}
.

This is a finite subset of T . In particular if σ is a Z basis of VZ, then this set
is reduced to the identity. More generally, consider the lattice Zσ generated
by the elements α in σ. If p is such that Zσ ⊂ pVZ, then all elements of
T (σ) are of order p.

For g ∈ T and h ∈ VZ, consider the Kostant function F (g, h) on U defined
by

(3) F (g, h)(u) =
e〈h,2π

√
−1G+u〉

∏N
i=1(1− e−〈αi,2π

√
−1G+u〉)

.

For example when g = 1,
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F (1, h)(u) =
e〈h,u〉

∏N
i=1(1− e−〈αi,u〉)

.

The function F (g, h)(u) is an element of R̂A. Indeed if we write

I(g) =
{
i
∣∣∣ 1 ≤ i ≤ N, e−〈αi,2π

√
−1G〉 = 1

}
,

then

(4) F (g, h)(u) = e〈h,2π
√
−1G〉 e〈h,u〉

∏
i∈I(g) 〈αi, u〉

ψg(u)

where ψg(u) is the holomorphic function of u (in a neighborhood of zero)
defined by

ψg(u) =
∏

i∈I(g)

〈αi, u〉
(1− e−〈αi,u〉)

×
∏

i/∈I(g)

1

(1− e−〈αi,2π
√
−1G+u〉)

.

If c is a chamber of C(A), the Jeffrey-Kirwan residue JKc(F (g, h)) is well
defined.

The following Theorem is due to Szenes-Vergne [12]. If the set A is
unimodular (that is all r×r minors of the matrix which columns are the αi’s
have determinant 0 or ±1), it is a reformulation of Khovanskii-Pukhlikhov
Riemann-Roch calculus on simple polytopes [9]. For a general set A, this
refines the formula of Brion-Vergne [4].

Theorem 3.3. Let c be a chamber of the cone C(A) and c its closure. Then:

(1) For h ∈ c we have

volZ,A+(h) = vol(V/VZ, dh)JKc

(
e〈h, · 〉
∏N

i=1 αi

)
.

(2) Assume that F is a finite subset of T such that for any σ ∈ Bases(A),
we have T (σ) ⊂ F . Then for h ∈ VZ ∩ c, we have

NA+(h) = vol(V/VZ, dh)
∑

g∈F

JKc(F (g, h)).

Let us explain the behavior of these functions on a chamber c. By defi-
nition, a quasi polynomial function on a lattice L is a linear combination of
products of polynomial functions and of periodic functions (functions con-
stants on cosets h + pL where p is an integer). We now show that the
normalized volume volZ,A+(h) is given by a polynomial formula, when h
varies in a chamber c, while NA+(h) is given by a quasi-polynomial formula
when h varies in VZ ∩ c.

The residue vanishes except on degree −r, so that
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JKc

(
e〈h,u〉

∏N
i=1 〈αi, u〉

)
=

1

(N − r)!
JKc

(
〈h, u〉N−r

∏N
i=1 〈αi, u〉

)

and as expected the normalized volume is a polynomial homogeneous func-
tion of h of degree N − r on each chamber.

Now if A is unimodular then the above defined set F is {1}. Hence the
number of integral points in the polytope ΠA+(h) satisfies

NA+(h) = JKc

(
e〈h,u〉

∏N
i=1(1− e−〈αi,u〉)

)

and is a polynomial of degree N−r which homogeneous component of degree
N − r is the normalized volume. More precisely, write

e〈h,u〉
∏N

i=1(1− e−〈αi,u〉)
=

e〈h,u〉
∏N

i=1 〈αi, u〉
×

∏N
i=1 〈αi, u〉∏N

i=1(1− e−〈αi,u〉)

where

∏N
i=1 〈αi, u〉∏N

i=1(1− e−〈αi,u〉)
=

+∞∑

k=0

ψk(u)

is a holomorphic function of u with ψ0(u) = 1. Consequently

NA+(h) = JKc

(
e〈h,u〉

∏N
i=1 〈αi, u〉

×
+∞∑

k=0

ψk(u)

)

=
N−r∑

k=0

1

(N − r − k)!
JKc

(
〈h, u〉N−r−kψk(u)∏N

i=1 〈αi, u〉

)
.

This will be the case of the root system An.
Finally in the non-unimodular case (for example for the root systems Bn,

Cn, Dn) the set F is no longer equal to {1}. Let us denote by ψg(u) =∑+∞
k=0 ψ

g
k(u) the series development of the holomorphic function ψg appear-

ing in formula (4). Then we see that JKc(F (g, h)) equals

JKc

(
e〈h,2π

√
−1G〉 e〈h,u〉

∏
i∈I(g) 〈αi, u〉

ψg(u)

)

= e〈h,2π
√
−1G〉

|I(g)|−r∑

k=0

1

(|I(g)| − r − k)!
JKc

(
〈h, u〉|I(g)|−r−k

∏
i∈I(g) 〈αi, u〉

ψg
k(u)

)
.

If g is of order p, the function h 7→ e〈h,2π
√
−1G〉 is constant on each coset

h+pVZ of the lattice pVZ, while the function h 7→ JKc

(
〈h,u〉|I(g)|−r−k

Q

i∈I(g) 〈αi,u〉 ψ
g
k(u)

)
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is a polynomial function of h of degree |I(g)| − r − k. Thus the function

NA+(h) =
∑

g∈F

JKc(F (g, h))

is given by a quasi polynomial formula when h varies in the closure of a
chamber. Note that its highest degree component is polynomial and is the
normalized volume as expected.

Example 3.4. Let us compute the normalized volume and number of integral
points for the root system of type B2, that is for A+ = B2 = {e1, e2, e1 +
e2, e1 − e2}. Fix a chamber c and an integral vector h = (h1, h2) in the cone
C(B2). Then the normalized volume expresses as

1

2!
JKc

(
(h1u1 + h2u2)

2

u1u2(u1 + u2)(u1 − u2)

)
.

Note that

u2
1

u1u2(u1 + u2)(u1 − u2)
=

1

u2(u1 + u2)
+

1

(u1 + u2)(u1 − u2)

(and similarly for quotients of u2
2 and u1u2), then we get that the normalized

volume is

1

2
JKc

(
h2

1

u2(u1 + u2)
+

h2
1 + 2h1h2 + h2

2

(u1 + u2)(u1 − u2)
− h2

2

u1(u1 + u2)

)
.

There are three chambers, namely c1 = C({e2, e1+e2}), c2 = C({e1, e1+e2}),
c3 = C({e1 − e2, e1}) (see Figure 3). Now let us compute Jeffrey-Kirwan
residues on chambers. As

JKc1

(
1

u2(u1+u2)

)
= 1, JKc2

(
1

(u1+u2)(u1−u2)

)
= 1

2 ,

JKc2

(
1

u1(u1−u2)

)
= 1, JKc3

(
1

(u1+u2)(u1−u2)

)
= 1

2 ,

we obtain

vol(ΠB2(h)) =
1

2
h2

1 if h ∈ c1,

vol(ΠB2(h)) =
1

4
(h1 + h2)

2 − 1

2
h2

2 if h ∈ c2,

vol(ΠB2(h)) =
1

4
(h1 + h2)

2 if h ∈ c3.

Remark that formulae agree on walls c1 ∩ c2 and c2 ∩ c3.
For the number of integral points, first remark that we have F = {(1, 1), (−1,−1)}.

Consequently NB2(h) is equal to the Jeffrey-Kirwan residue of f1 = F ((1, 1), h)
plus f2 = F ((−1,−1), h). Series fj (j = 1, 2) rewrite as fj = f ′j ×
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B2.eps

Figure 3. The 3 chambers for B2

eu1h1+u2h2/u1u2(u1 + u2)(u1 − u2) where

f ′1 =
u1

1− e−u1
× u2

1− e−u2
× u1 + u2

1− e−(u1+u2)
× u1 − u2

1− e−(u1−u2)
,

f ′2 =
u1

1 + e−u1
× u2

1 + e−u2
× u1 + u2

1− e−(u1+u2)
× u1 − u2

1− e−(u1−u2)
× (−1)h1+h2 .

Using series developments x
1−e−x = 1 + 1

2x + 1
12x

2 + o(x3) and x
1+e−x =

1
2x+ o(x2), we obtain that the number of integral points is the JK residue of

u1(1 + 3
2h1 + 1

2h
2
1)

u2(u1 − u2)(u1 + u2)
+

3
4 + h1h2 + 3

2h2 + 1
2h1

(u1 − u2)(u1 + u2)
+

u2(
1
2h

2
2 + 1

2h2)

u1(u1 − u2)(u1 + u2)

+(−1)h1+h2

1
4

(u1 + u2)(u1 − u2)

=
(1 + 3

2h1 + 1
2h

2
1)

u2(u1 + u2)
+

7
4 + 2(h1 + h2) + 1

2h
2
2 + h1h2 + 1

2h
2
1

(u1 − u2)(u1 + u2)
− (1

2h
2
2 + 1

2h2)

u1(u1 + u2)

+(−1)h1+h2

1
4

(u1 + u2)(u1 − u2)
.

We then obtain:
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NB2(h) = 1 +
3

2
h1 +

1

2
h2

1

if h ∈ c1,

NB2(h) =
1

4
h2

1 +
1

2
h1h2 −

1

4
h2

2 + h1 +
1

2
h2 +

7

8
+ (−1)h1+h2

1

8
if h ∈ c2,

NB2(h) =
1

4
h2

1 +
1

2
h1h2 +

1

4
h2

2 + h1 + h2 +
7

8
+ (−1)h1+h2

1

8
if h ∈ c3.

Remark that the functions NB2 agree on walls, and the formulae above are
valid on closure of the chambers.

Of course, our general method to implement Theorem 3.3 for root systems
is more systematic and will be explained in the course of this article.

Remark 3.5. In the case where A+ is an arbitrary set of vectors in VZ,
the straightforward implementation of Theorem 3.3 above is of exponential
complexity. Indeed we make a summation on the set F , which can become
arbitrarily large. Barvinok uses a signed cone decomposition to obtain an
algorithm of polynomial complexity, when the number of elements of A+ is
fixed, to compute the number NA+(h); the LattE team implemented Barvi-
nok’s algorithm ([11] and [10]) in the language C. Our work will be dealing
either with volumes of polytopes, where the set F does not enter, either with
partition function of classical root systems, where the set F is reasonably
small. Then we obtain a fast algorithm, implemented for the moment in
the formal calculation software Maple. This algorithm for these particular
cases can reach examples not obtainable by the LattE program.

In next Section 4 we will give the basic formula for JKc involving maximal
proper nested sets, as developed in [6], and iterated residues. These formulae
are implemented in our algorithms.

4. A formula for the Jeffrey-Kirwan residue

If f is a meromorphic function of one variable z with a pole of order
less or equal to h at z = 0 then we can write f(z) = Q(z)/zh, where Q(z)
is a holomorphic function near z = 0. If the Taylor series of Q is given
by Q(z) =

∑∞
k=0 qkz

k, then as usual the residue at z = 0 of the function

f(z) =
∑∞

k=0 qkz
k−h is the coefficient of 1/z, that is qh−1. We will denote

it by resz=0f(z). To compute this residue we can either expand Q in power
series and search for the coefficient of z−1, or employ the formula

(5) resz=0f(z) =
1

(h− 1)!
(∂z)

h−1
(
zhf(z)

) ∣∣∣
z=0

.

We now introduce the notion of iterated residue on the space RA.
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Let ~ν = [α1, α2, . . . , αr] be an ordered basis of V consisting of elements of
A (here we have implicitly renumbered the elements of A in order that the
elements of our basis are listed first). We choose a system of coordinates
on U such that αi(u) = ui. A function φ ∈ RA is thus written as a ratio-

nal fraction φ(u1, u2, . . . , ur) = P (u1,u2,...,ur)
Q(u1,u2,...,ur) where the denominator Q is a

product of linear forms.

Definition 4.1. If φ ∈ RA, the iterated residue Ires~ν(φ) of φ for ~ν is the
scalar

Ires~ν(φ) = resur=0resur−1=0 · · · resu1=0φ(u1, u2, . . . , ur)

where each residue is taken assuming that the variables with higher indices
are considered as constants.

Keep in mind that at each step the residue operation augments the homo-
geneous degree of a rational function by +1 (as for example resx=0(1/xy) =
1/y) so that the iterated residue vanishes on homogeneous elements φ ∈ RA,
if the homogeneous degree of φ is different from −r.

Observe that the value of Ires~ν(φ) depends on the order of ~ν. For example,
for f = 1/(x(y − x)) we have resx=0resy=0(f) = 0 and resy=0resx=0(f) = 1.

Remark 4.2. Choose any basis γ1, γ2, . . . , γr of V such that ⊕j
k=1αj =

⊕j
k=1γj and such that γ1 ∧ γ2 ∧ · · · ∧ γr = α1 ∧ α2 ∧ · · · ∧ αr. Then, by

induction, it is easy to see that for φ ∈ RA

resαr=0 · · · resα1=0φ = resγr=0 · · · resγ1=0φ.

Thus given an ordered basis, we may modify α2 by α2 + cα1, . . . , with the
purpose of getting easier computations.

The following lemma will be useful later on.

Lemma 4.3. Let ~ν = [α1, α2, . . . , αr] and fβ = 1
Qr

i=1 βi
be a basic fraction.

Then the iterated residue Ires~ν(fβ) is non zero if and only if there exists a
permutation w of {1, 2, . . . , r} such that:

βw(1) ∈ Rα1,

βw(2) ∈ Rα1 ⊕Rα2,

. . .

βw(r) ∈ Rα1 ⊕ · · · ⊕ Rαr.

Definition 4.4. Let ~ν = [α1, α2, . . . , αr] and let uj = αj(u). Choose a
sequence of real numbers: 0 < ε1 < ε2 < · · · < εr. Then define the torus

(6) T (~ν) = {u ∈ UC | |uj | = εj , j = 1, . . . , r}.
The torus T (~ν) is identified via the basis αj with the product of r circles

oriented as usual. The sequence εj is chosen in order that elements αq not in

⊕j
k=1Rαj do not vanish on the domain {u ∈ UC | |uk| ≤ εk, 1 ≤ k ≤ j ; |ui| =
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εi, i = j + 1, . . . , r}. This is achieved by choosing the ratios εj/εj+1 very
small. The torus T (~ν) is contained in U(A) and the homology class [T (~ν)]
of this torus is independent of the choice of the sequence of the ordered εj

(see [12]).
Choose an ordered basis e1, e2, . . . , er of V of volume 1 with respect to the

measure dh. For z ∈ UC, define zj = 〈z, ej〉 and dz = dz1 ∧ dz2 ∧ · · · ∧ dzr.
Denote by det(~ν) the determinant of the basis α1, α2, . . . , αr with respect to
the basis e1, e2, . . . , er.

Lemma 4.5. For φ ∈ RA, we have

1

det(~ν)
resαr=0 · · · resα1=0φ =

1

(2π
√
−1)r

∫

T (~ν)
φ(z)dz.

Thus, as for the usual residue, the iterated residue can be expressed as
an integral.

We now introduce the notion of maximal proper nested set, MPNS in
short.

De Concini-Procesi [6] prove that the set of MPNS is in bijection with
the so-called no broken circuits bases of A (with respect to a order to be
specified). This is helpful as the JK-residue can be computed in terms of
iterated residues with respect to these bases.

So we proceed in our overview.
If S is a subset of A, we denote by 〈S〉 the vector space spanned by S.

We say that S is complete if S = 〈S〉 ∩ A or in other words if any linear
combination of elements of S belongs to S. A complete subset S is called
reducible if we can find a decomposition V = V1 ⊕ V2 such that S = S1 ∪ S2

with S1 ⊂ V1 and S2 ⊂ V2. Otherwise S is said to be irreducible.

Definition 4.6. Let I be the set of irreducible subsets of A. A set M =
{I1, I2, . . . , Ik} of irreducible subsets of A is called nested, if given any sub-
family {I1, . . . , Im} of M such that there exists no i, j with Ii ⊂ Ij, then
the set I1 ∪ · · · ∪ Im is complete and the elements Ij are the irreducible
components of I1 ∪ I2 ∪ · · · ∪ Im.

Example 4.7. Let E be a n-dimensional vector space with basis ei (i = 1,
. . . , n). We consider the set

Kn = {ei − ej | 1 ≤ i < j ≤ n}.
These are the positive roots for a system of type An−1. The irreducible
subsets of Kn are indexed by subsets S of {1, 2, . . . , n}, the corresponding
irreducible subset being {ei − ej | i, j ∈ S, i < j}. For instance for n = 5 the
set S = {1, 2, 4} parametrizes the set of roots given by {e1 − e2, e2 − e4, e1 −
e4}.

A nested set is represented by a collection M := {S1, S2, . . . , Sk} of subsets
of {1, 2, . . . , n} such that if Si, Sj ∈ M then either Si ∩ Sj is empty, either
one of them is contained in another.
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Definition 4.8. A maximal nested set (in short MNS) M is a nested set
such that for every irreducible set I of A the set M ∪ I is no longer nested.

Assume now that A is irreducible, otherwise just take the irreducible
components. Then every maximal nested set M contains A. Let I1, I2, . . . ,
Ik be the maximal elements of the set M \ A. We see that the vector space
spanned by 〈I1〉⊕〈I2〉⊕· · ·⊕〈Ik〉 is of codimension 1 (Proposition 1.3 of [6]).

Definition 4.9. A hyperplane H in V is A-admissible if it is spanned by a
set of vectors of A.

Therefore to classify maximal nested sets (MNS) of an irreducible set A
we proceed by running over the set ofA-admissible hyperplanes, as described
in Figure 4.

• Take a hyperplane H spanned by a set of vectors of A.
• Break A∩H into irreducible subsets I1 ∪ I2 ∪ · · · ∪ Ik.
• For each irreducible Ii construct the set Mi = {M i

1, . . . ,M
i
ki
} of

maximal nested sets for Ii.
• Set Ci = {1, . . . , ki}.
• A maximal nested set is then given by the union M 1

c1 ∪M2
c2 ∪ · · · ∪

Mk
ck
∪{A} where c1 ∈ C1, . . . , ck ∈ Ck, and all of them are obtained

by letting ci vary.

Figure 4. Building of all MNS’s for a A-admissible hyper-
plane H

The whole algorithm will be described in details in Figure 6, Section 5.
It turns out that each maximal nested subset of A has r elements.

We describe now the notion of maximal proper nested subset of A.
Fix a total order on the set A. For example, we can choose a linear

functional ht on V so that the values ht(αi) are all distinct and positive.
Thus the value ht(α) is larger if α is deeper in the interior of the cone.

Let M = {S1, S2, . . . , Sk} be a set of subsets of A. In each Sj we choose
the element αj maximal for the order given by ht. This defines a map θ
from M to A.

Definition 4.10. A maximal nested set M is called proper if θ(M) is a
basis of V . We denote by P(A) the set of maximal proper nested sets, in
short MPNS.

If M = {I1, I2, . . . , Ir} is a maximal nested set, we transform M to a list
[θ(I1), . . . , θ(Ir)] using the total order on the elements θ(M); that is we have
ht(θ(I1)) < ht(θ(I2)) < · · · < ht(θ(Ir)). Observe that, if A is irreducible, for
every maximal nested set, Ir is always equal to A and θ(Ir) is the highest
element of A.
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So we have associated to every maximal proper nested set M an ordered

basis
−−−→
θ(M) = [α1, α2, . . . , αr] of elements of A. In all implementations, we

calculate
−−−→
θ(M) from a MNS M with the procedure ThetaMNS(M). We denote

by vol(M) > 0 the volume of the parallelepiped ⊕r
i=1[0, 1]αi with respect to

our measure, and by C(M) =
∑r

i=1 R≥0αi ⊂ C(A) the cone generated by
θ(M).

If v is a regular element of V , let

(7) P(v,A) = {M ∈ P(A) | v ∈ C(M)}.
The set P(v,A) depends only of the chamber c where v belongs.
We are now ready to state the basic formula for our calculations.

Theorem 4.11 ([6]). Let c be a chamber and let v ∈ c. Then, for φ ∈ RA,
we have

JKc(φ) =
∑

M∈P(v,A)

1

vol(M)
Ires−−−→

θ(M)
φ.

We will use also the corresponding integration formula.
Each maximal proper nested set M ∈ P(v,A) determines an oriented

cycle [T (
−−−→
θ(M))] contained in the open set U(A), as described in Definition

4.4.

Definition 4.12. Let c be a chamber. Define the oriented cycle:

H(c) =
∑

M∈P(v,A)

sign
(
det
(−−−→
θ(M)

)) [
T
(−−−→
θ(M)

)]
.

The following integral version of the theorem above will be useful.

Theorem 4.13. Let c be a chamber. Then, for φ ∈ RA, we have

JKc(φ) =
1

(2π
√
−1)r

∫

H(c)
φ(z)dz.

The following example should help clarifying the notions introduced.

Example 4.14. We consider the set K4 of positive roots for A3 (see Fig-
ure 5) defined by

K4 = {ei − ej | 1 ≤ i < j ≤ 4}.
We let V be the vector space generated by the elements in K4. Then V has
dimension 3 and we write an element of V as

a = a1e1 + a2e2 + a3e3 − (a1 + a2 + a3)e4.

We consider the height function defined by

ht(e1 − e2) = 10, ht(e2 − e3) = 11, ht(e3 − e4) = 12.

This choice gives the following order on the roots
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figure.A3.hyper4.eps

Figure 5. Hyperplanes for A3 with a = a1e1 +a2e2 +a3e3−
(a1 + a2 + a3)e4

e1 − e2 < e2 − e3 < e3 − e4 < e1 − e3 < e2 − e4 < e1 − e4.

Take an hyperplane H in V spanned by two linearly independent elements
of K4. Therefore it is the kernel of a linear form

∑
i∈IH

ai, where IH is a

proper subset of {1, 2, 3, 4}. The set of complementary indices gives the same
hyperplane. Thus each admissible hyperplane partitions the set of indices
{1, 2, 3, 4} in two sets Z1 and Z2, where Z1 := {i ∈ IH} and Z2 is the set
of complementary indices. In our example we have 7 choices of admissible
hyperplane corresponding to the following partitions:

H1 = {[1, 2, 3], [4]}, H2 = {[1, 2, 4], [3]}, H3 = {[1, 3, 4], [2]},
H4 = {[2, 3, 4], [1]}, H5 = {[1, 2], [3, 4]}, H6 = {[1, 3], [2, 4]},
H7 = {[1, 4], [2, 3]}.

Now observe that if the hyperplane Hi already contains the highest root e1−e4
then it cannot lead to a maximal proper nested set. Indeed we must get a
basis if we add the highest root to a set of vectors contained in Hi. Thus
H2, H3, H7 can be excluded. It remains to consider the hyperplanes H1, H4,
H5, H6.
Hyperplanes H1 and H4 give rise to two MPNSs each one, while H5 and
H6 give rise to only one. So we obtain a list of 6 maximal nested sets (as
described in Example 4.7, we identify an irreducible subset I with a subset
S of [1, 2, 3, 4]):
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M1 = {[1, 2], [1, 2, 3], [1, 2, 3, 4]}, M2 = {[2, 3], [1, 2, 3], [1, 2, 3, 4]},
M3 = {[2, 3], [2, 3, 4], [1, 2, 3, 4]}, M4 = {[3, 4], [2, 3, 4], [1, 2, 3, 4]},
M5 = {[1, 3], [2, 4], [1, 2, 3, 4]}, M6 = {[1, 2], [3, 4], [1, 2, 3, 4]}.

5. Search for maximal proper nested sets adapted to a vector

: the general case

Given a vector v in the cone C(A), we describe how to search for all
maximal proper nested sets belonging to P(v,A), without enumerating all
MPNS.

We use as height function a linear form that is positive and that takes
different values on all elements αi. Let H be a A-admissible hyperplane in
V , that is a hyperplane spanned by a set of vectors of A. Then the cone
C(A∩H) generated by the elements of A belonging to H is a cone with non
empty interior in H.

We have already seen that to list all the MPNS, we have to first list all
admissible hyperplanes H and then find the irreducible components J1, J2,
. . . , Js of A ∩H. Then we choose a MPNS Mi := {Ia

i } for Ji, and define
M = M1 ∪M2 ∪M3 ∪ · · · ∪Ms ∪ {A}.

Definition 5.1. All MNPS’s coming from a given A-admissible hyperplane
H are said attached to H.

As we have seen in Example 4.14 we can discard some of the hyperplanes
a priori, because they cannot lead to a maximal proper nested set. The next
Lemma examines the general situation. Let θ be the highest element in A
and H a hyperplane of A.

Lemma 5.2. There exists a maximal proper nested set M ∈ P(v,A) at-
tached to H, if and only if θ does not belong to H and if v belongs to the
cone generated by θ and A∩H.

Proof. The condition is necessary. Indeed v must belong to the cone gener-
ated by the elements θ(Ia

i ) and θ, and all the elements θ(Ia
i ) are in A ∩H.

Reciprocally consider the projection v − 〈u,v〉
〈u,θ〉θ, where u is the equation of

the hyperplane H. This can be written as v1 ⊕ v2 ⊕ · · · ⊕ vs, where each vi

is in the cone C(Ji). Let now Mi ∈ P(vi, Ji) be a MPNS in Ji. The element
vi belongs to C(θ(Mi)). We can write

v = tθ +

s∑

i=1

∑

Ia
i ∈Mi

tai θ(I
a
i )

with tai > 0. Thus we see that the collection M1 ∪ · · · ∪Ms∪A is a maximal
proper nested set in P(v,A). Moreover in this way we list all elements of
P(v,A). �
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Our search for maximal proper nested sets in P(v,A) will then be pursued
by constructing all possible admissible hyperplanes H for which v is in the
convex hull of C(A ∩ H) and θ. We denote by Hyp(v,A) the set of such
A-admissible hyperplanes.

The following easy Lemma lists some obvious conditions for the setHyp(v,A).
Let uH ∈ U be the normal vector to a A-admissible hyperplane, meaning
that H := {h ∈ V | 〈uH , v〉 = 0}.
Lemma 5.3. If H ∈ Hyp(v,A), then it satisfies the following conditions:

(1) 〈uH , θ〉 6= 0.
(2) 〈uH , v〉 × 〈uH , θ〉 ≥ 0.

Thus if a hyperplane H satisfies the above conditions we define

projH(v) = v − 〈uH , v〉
〈uH , θ〉

θ.

Hence to decide if H ∈ Hyp(v,A) we simply have to test if projH(v) is in
the cone generated by A ∩ H, which is done by standard methods. Our
search for the hyperplanes H ∈ Hyp(v,A) will also be considerably sped up
by the following Remark.

Proposition 5.4. Let H be a A-admissible hyperplane. Let u ∈ U be a
linear form on V which is non negative on A ∩H and on θ. If 〈u, v〉 < 0,
then H is not in Hyp(v,A).

Proof. Indeed if v was in the cone generated by A ∩H and θ, the value of
u would be non negative on v. �

The point of this Remark is that in classical examples of root systems, an
a priori description of the A-admissible hyperplanes is available, together
with the defining equations of the cone C(A∩H). This condition will allow
us to disregard right away many A-admissible hyperplanes.

Let us summarize the scheme of the algorithm in Figure 6. Recall that
we have as input a vector v, and as output the list of all MPNS’s belonging
to P(v,A).

We will explain our algorithm in more details for each classical root system
(see Sections 7–10).

6. Trees and order of poles

LetM be a maximally nested proper set of the systemA := [α1, α2, . . . , αN ].
In our algorithms, we will need to take an iterated residue with respect to a

basis
−−−→
θ(M) of a function of the form φ = P

QN
i=1 αi

, where P is a polynomial

function on U . It is thus important to understand the order of the poles of
the function obtained after performing a certain number of residues.

We associate to a maximally nested set M a tree T as follows. Let M =
{I1, . . . , Ir} be a maximally nested set. The vertices of T are the elements
of M and the edges are determined from the order relation by inclusion:
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check if v ∈ C(A)
for each hyperplane H do

check if v and θ are on the same side of H
if not, then skip this hyperplane
define the projection projH(v) of v on H along θ
write A∩H as the union of its irreducible components I1 ∪ · · · ∪ Ik
write v as v1 ⊕ · · · ⊕ vk according to the previous decomposition
for each Ij do

compute all MPNS’s for vj and Ij
collect all these MPNS’s for vj and Ij

end of loop running across Ij ’s
collect all MPNS’s for the hyperplane H

end of loop running across H’s
return the set of all MPNS’s for all hyperplanes

Figure 6. Algorithm for MPNS’s computation (general case)

the ends of the tree are irreducible sets with just one element and if A is
irreducible, the base is the set A. A subset S of M will be called saturated
if it contains all elements above elements of S in the tree order. Thus if
S contains an element s, it contains all the elements s′ of M which are
contained in s.

Example 6.1. The two MNSs named M1 and M5 described in Example 4.14
rewrite respectively as

[1, 2] [1, 3] [2, 4]

[1, 2, 3]

OO

and

[1, 2, 3, 4]

OO

[1, 2, 3, 4]

CC�����������������

[[77777777777777777

The algorithm implemented in our programs leads to the following result:

Proposition 6.2. Let T be the graph associated to an irreducible classical
root system. Then T is a connected tree for which every vertex is connected
to at most two other vertices.

We assume our total order on A to have the following property: if two
irreducible subsets I1 and I2 are contained in each other: I1 ⊂ I2 and dis-
tincts, then θ(I1) < θ(I2). This is the case for the order defining the highest
root as highest element of irreducible root systems, in all our examples.

From our order assumption, we obtain the following lemma.
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Lemma 6.3. Let M = {I1, I2, . . . , Ir} be a MPNS. Here we have numbered
our irreducible sets such that θ(I1) < θ(I2) < · · · < θ(Ir). Let k be an integer
smaller or equal to r. Then the set {I1, I2, . . . , Ik} is saturated.

Proposition 6.4. Let M = [I1, I2, . . . , Ir] be a maximally nested proper
family. Let [I ′1, I

′
2, . . . , I

′
r] be a reordering of the sequence [I1, I2, . . . , Ir]. We

assume that this reordering is compatible with the partial order given by
inclusion: if I ′j ⊂ I ′k then j < k. Let

~ν = [θ(I1), θ(I2), . . . , θ(Ir)]

and
~ν ′ = [θ(I ′1), θ(I

′
2), . . . , θ(I

′
r)].

Then we have Ires~ν = Ires~ν′
.

Proof. We prove this proposition by induction on r.
If A is irreducible, then necessarily Ir = I ′r = A and [I ′1, I

′
2, . . . , I

′
r−1]

is a reordering of the sequence [I1, I2, . . . , Ir−1]. Furthermore the families
{I1, I2, . . . , Ir−1} and {I ′1, I ′2, . . . , I ′r−1} are maximal proper nested sets for

A0 = ∪r−1
j=1Ij. The set A0 spans a codimension 1 vector space in V .

To prove that Ires~ν = Ires~ν′
, it suffices to test it on basic fractions fσ. Let

σ = {β1, β2, . . . , βr} be a basic subset of A. By Lemma 4.3, if Ires~νfσ 6= 0,
then the set σ ∩ 〈A0〉 is of cardinal r − 1, and there exists an element of σ,
say βr, of the form cθ + ξ where ξ belongs to 〈A0〉, c is a non zero constant
and θ is the highest element of A.

Let

~ν0 = [θ(I1), θ(I2), . . . , θ(Ir−1)]

and

~ν ′0 = [θ(I ′1), θ(I
′
2), . . . , θ(I

′
r−1)].

Then we have

Ires~νfσ =
1

c
Ires ~ν0

fσ∩〈A0〉

and

Ires~ν′
fσ =

1

c
Ires ~ν′0

fσ∩〈A0〉.

We conclude by induction.
WhenA is not irreducible, we writeA = ∪s

a=1Ja where Ja are irreducibles.
We have V = ⊕s

a=1〈Ja〉. Every basic subset σ of A is the union of basic
subsets for the irreducible sets Ja. Define

~νa = [θ(I i1
a ), θ(I i2

a ), . . . , θ(Ja)]

where [I i1
a , I

i2
a , . . . , Ja] is the subsequence of irreducible sets contained in Ja

extracted (with conserving order) from the sequence [I1, I2, . . . , Ir]. Simi-
larly let
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~ν ′a = [θ(I ′a
i1), θ(I ′a

i2), . . . , θ(Ja)]

where [I ′a
i1 , I ′a

i2 , . . . , I ′a] is the subsequence of irreducible sets contained in Ja

extracted from the sequence [I ′1, I
′
2, . . . , I

′
r]. Then, as the calculation takes

place with respect to independent variables, we have

Ires~ν(fσ) =

s∏

a=1

(Ires~νa
fσ∩〈Ja〉),

Ires~ν′
(fσ) =

s∏

a=1

(Ires~ν′a
fσ∩〈Ja〉).

Each of the vector space 〈Ja〉 is of dimension less than r, so that by induction
hypothesis Ires~νa

= Ires~ν′a
. This concludes the proof.

�

Let us now consider partial iterated residues. To a set ν of elements of
A, we associate the vector space

Hν := {u ∈ U | 〈α, u〉 = 0 for all α ∈ ν}.
A linear function α ∈ A produces a linear function on Hν by restriction.
If ~ν := [α1, α2, . . . , αk] is a sequence of elements of A, the partial iterated

residue

Ires~νφ := resαk=0 · · · resα1=0φ

associates to a rational function φ in RA a rational function on Hν of the
form G/

∏
i,αi 6=0 αi

ni where G is a polynomial function on Hν and α is the
restriction of α to Hν .

Let M be a MPNS and consider the tree associated to M . Given a sat-
urated subset S of M , we can define the iterated residue with respect to
this saturated set: we choose any order S := [I1, I2, . . . , Ik] on S com-
patible with the inclusion relation and define IresS := Ires~ν with ~ν =
[θ(I1), θ(I2), . . . , θ(Ik)]. With same proof as Proposition 6.4, this partial
residue depends only of the set S. We denote by HS the intersection of the
kernels of the elements α for α in S. It is also the intersection of the kernels
of the elements θ(Ik), as the set ν is a basic sequence in S.

Let φ be a function in RA of the form

φ =
P

∏N
i=1 αi

.

Let M be a MPNS and J1, J2, . . . , Jh be elements of M . We consider the sat-
urated subset S of M consisting of the elements of the tree strictly above

J1, J2, . . . , Jh. The iterated residue IresSφ is a function on HS . Denote by
ua the restriction of the function θ(Ja) to HS.
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Proposition 6.5. The pole of the linear function ua in the iterated residue
IresSφ is of order less or equal to |Ja| − dim 〈Ja〉+ 1.

See Figures 7 and 8 for an application of the Proposition.

Proof. Choose a vector space E such that

V = 〈J1〉 ⊕ · · · ⊕ 〈Js〉 ⊕E.

Let B =
⋃s

a=1 Ja and C = A \B.
Write C := {β1, β2, . . . , βq} and

φ = Pφ1φ2 · · · φsQ

with φa = 1
Q

α∈Ja
α and Q = 1

Qq
j=1 βj

.

For βj ∈ C, we write βj =
∑s

i=1 β
i
j + γj with βi

j ∈ 〈Ji〉 and γj ∈ E. The
element γj is necessarily non zero, as the set B is complete. Thus we write

1

βj
=

1

γj

(
1 +

Ps
i=1 βi

j

γj

)

and the iterated residue is by definition

IresS(φ) = IresS


P (φ1 · · ·φs)

q∏

j=1

1

γj

∞∑

k=0

(
(−1)k

∑s
i=1 β

i
j

γj

)k

 .

Here, when taking the residue, elements γj are considered as constants and
this sum is finite.

Consider the subset Ma of elements of M contained in Ja. This is a
MPNS for the set Ja. Let J+

a be the saturated subset of Ma consisting of
all elements of Ma different from Ja. Then J+

a has 〈Ja〉 − 1 elements. If
g = Pa

Q

α∈Ja
αnα , the iterated residue IresJ+

a
g is a Laurent polynomial in ua.

Now IresSφ is a sum of products of residues of the form IresJ+
a
ga where

ga = Pa
Q

α∈Ja
α and Pa is a polynomial. Thus we obtain a Laurent polynomial

in ua, a = 1, . . . , s (with coefficients rational functions on the vector space
E∗). Now the homogeneous degree of ga is greater or equal to −|Ja|. The
number of residues we are taken is equal to the dimension of 〈Ja〉 minus
1. So we obtain a function of ua of homogeneous degree greater or equal
to −|Ja| + dim 〈Ja〉 − 1. This means the pole in ua is less or equal to
|Ja| − dim 〈Ja〉+ 1. �

Let us consider the MPNS which tree representation is given by Figure 7.
Then orders of poles of its nodes are given by Figure 8.

Remark 6.6. In our program for calculating iterated residues for root sys-
tems of type A, we will reorder roots according to the tree order: we take
the residue first with respect to the elements θ(Ik) appearing at the end of
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[1, 2]
cc

HH
HH

HH
HH

H
[4, 5]

ii

SSSSSSSSSSSSSSSS [6, 7]
OO

[10, 11]
OO

[1, 2, 3]
ii

SSSSSSSSSSSSSSS
[4, 5, 6, 7]

OO

[9, 10, 11]
OO

[1, 2, 3, 4, 5, 6, 7]
OO

[8, 9, 10, 11]
55

jjjjjjjjjjjjjjj

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

Figure 7. Irreducible components of a MPNS in A10
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Figure 8. Order of nodes in the tree represented in Figure 7,
according to Proposition 6.5

the tree in arbitrary order, and we remove these variables. Then we take the
variables appearing at the end of the tree when we have removed these irre-
ducible sets. Here an irreducible set I is indexed by a subset S of [1, 2, . . . , n].
A subset S of cardinal 2, for example [1, 3], corresponds to the irreducible
set with one element (here e1 − e3). Thus given a MNS M represented
as M = {S1, S2, . . . , Sr} we will first take the residues with respect to the
roots θ(Ik), for sets Sk of cardinal 2, in arbitrary order, then with respect
to irreducible sets associated to sets Sk of cardinal 3, etc. The procedure of
ordering roots θ(Ik) coming from a MNS M = {Sj} according to the cardi-
nal of the set Sk is called OrderThetas. Furthermore we will at the same
time keep track of the order of pole for calculating an iterated residue of a
function φ = P/

∏N
i=1 αi in the procedure FormalPathAwithorders.

7. Volume and partition function for the system An−1

7.1. The formulae to be implemented. Let E be a n-dimensional vector
space with basis ei (i = 1, . . . , n) and consider the set
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Kn = {ei − ej | 1 ≤ i < j ≤ n}.
These are positive roots for a system of type An−1. The number of elements
in Kn is N = n(n−1)/2. Remark that Kn is also the set of vectors considered
in the complete graph with n nodes.

We let V be the vector space generated by the elements in Kn. Then V
has dimension n− 1 and it is defined by:

V =

{
v =

n∑

i=1

viei ∈ E
∣∣∣

n∑

i=1

vi = 0

}
.

In our procedures, a vector v of length n such that
∑n

i=1 vi = 0 will be called
a A-vector and written as v = [v1, v2, . . . , vn]. The lattice spanned by Kn is
simply

VZ =

{
h =

n∑

i=1

hiei ∈ Z
n |

n∑

i=1

hi = 0

}
.

It is well known and easy to prove that Kn is unimodular. The cone C(Kn)
generated by Kn is simplicial with generators the n − 1 simple roots e1 −
e2, e2 − e3, . . . , en−1 − en. This cone is described as:

C(Kn) = {A-vector v = [v1, v2, . . . , vn] | v1 + v2 + · · · + vi ≥ 0 for all i}.
Keep in mind that our vector v satisfies the condition

v1 + v2 + · · · + vn−1 + vn = 0.

We choose on V the measure dh determined by VZ.
Let v be in the cone C(Kn). We are interested to compute the volume

volZ,Kn(v) of the polytope

ΠKn(v) =

{
(xα)α ∈ R

N
∣∣∣x ≥ 0,

∑

α∈Kn

xαα = v

}
.

If h is a point in V with integral coordinates then we are also interested in
computing the number NKn(h) of integral points in ΠKn(h).

We apply formulae from Theorem 3.3. Since Kn is unimodular, the set F
can be taken as the identity F := {1} (Remark 3.5).

Since V is contained in E, then we have a canonical map E∗ −→ V ∗ given
by restriction. Define U = V ∗ as in the general setting. We identify U with
R

n−1 by sending u ∈ R
n−1 to u =

∑n−1
i=1 uie

i ∈ E∗, where ei is the dual basis
to ei. Thus the root ei − ej (1 ≤ i < j < n) produces the linear function
ui − uj on U , while the root ei − en produces the linear function ui.

We now give another definition.
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Definition 7.1. Let v =
∑n

i=1 viei ∈ V be a vector with real coordinates.
Let h =

∑n
i=1 hiei ∈ V be a vector with integral coordinates. Then for u ∈ U

define:

•

JA(v)(u) =
e

Pn−1
i=1 uivi

∏n−1
i=1 ui

∏
1≤i<j≤n−1(ui − uj)

.

•
KA(h)(u) =

∏n−1
i=1 (1 + ui)

hi+n−i

∏n−1
i=1 ui

∏
1≤i<j≤n−1(ui − uj)

.

Theorem 7.2. Let c be a chamber of C(Kn).

• For v ∈ c, we have

volZ,Kn(v) = JKc(JA(v)).

• For h ∈ Z
n ∩ c, we have

NKn(h) = JKc(KA(h)).

Proof. The first assertion is the general formula.
The function F (1, h)(u) = e〈h,u〉/

∏
α∈A(1− e−〈α,u〉) for the system Kn is

F (1, h)(u) =
e

Pn−1
i=1 uivi

∏n−1
i=1 (1− e−ui)

∏
1≤i<j≤n−1(1− e−(ui−uj))

.

Remark that the change of variable 1 + zi = eui preserves the hyperplanes
ui = 0 and ui = uj . After the change of variable, we get

(8) F (1, h)(u) =

∏n−1
i=1 (1 + zi)

hi+n−i

∏
1≤i<j≤n−1(zi − zj)×

∏n−1
i=1 zi

.

But zi = eui − 1 leads to dzi = euidui = (1+ zi)dui and hence we obtain the
desired exponent hi + n − i − 1 thanks to the formula involving Jacobians
in Proposition 3.2. �

In order to implement these formulae, we first have to describe the set
P(v,Kn) (Section 7.2), then calculate the iterated residue formulae associ-
ated to these paths (Section 7.3). After, we explain how these computations
fit together to get a global procedure for Kostant partition function for An−1

(Section 7.4). As a short digression, we will explain how we adapted our
program to deal with formal parameters (Section 7.5).

7.2. The search for maximal proper nested sets adapted to a vec-

tor. We now look for maximal proper nested sets adapted to a vector fol-
lowing the general method as outlined in Figure 6: we will begin by listing
all possible Kn-admissible hyperplanes.

The usual height function is
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ht(v) =

n−1∑

i=1

(n− i)vi

which takes the value 1 on all the simple roots, and hence the value j− i on
ei − ej . We deform ht slightly in order to have a function taking different
values on all roots: If two elements ei − ej and ek − e` are such that j − i =
`− k, we decide that ht(ei − ej) < ht(ek − e`) if i < k.

If P is a proper subset of {1, 2, . . . , n} and v is a A-vector, we denote by
〈uP , v〉 the linear form

∑
i∈P vi, and by HP the hyperplane

HP := {v ∈ V | 〈uP , v〉 = 0}.
We will shortly see that all Kn-admissible hyperplanes are obtained in

this way, that is giving a proper subset P of {1, . . . , n}. Observe that the
hyperplaneHP is equal to the hyperplaneHQ determined by the complement
Q of P .

We denote by

K(P ) := {ei − ej | 1 ≤ i < j ≤ n ; i, j ∈ P} ⊂ Kn.

Remark that K(P ) is the positive system of type A|P |−1, where the positivity
is induced by the lexicographic order.

Lemma 7.3. • The hyperplane HP is a Kn-admissible hyperplane.
• The set Kn ∩ HP is the union of K(P ) and K(Q), where Q is the

complement of P in {1, 2, . . . , n}.
• Every Kn-admissible hyperplane is of this form.

Proof. The first two assumptions are easy to see. We prove the third by
induction on n, the case n = 2 being trivial. Let H be a Kn-admissible
hyperplane. Let α be a root in H. Renumbering the roots, we may assume
that α = en−1−en. The map q sending ei to ei if i < n and en to en−1 sends
the set Kn \ {α} to Kn−1. The space H/Rα becomes a Kn−1-admissible
hyperplane. It is thus determined by a subset P ′ of {1, 2, . . . , n − 1}. If
P ′ does not contain n − 1, the hyperplane H is equal to the hyperplane
determined by the subset P ′ of {1, 2, . . . , n−1}. If P ′ does contain n−1, then
the hyperplaneH is equal to the hyperplane determined by P = P ′∪{n}. �

We now proceed to the detailed description of our algorithm.
Recall our description of an A-vector as an array v = [v1, v2, . . . , vn] with∑n
i=1 vi = 0. Referring to the Figure 6 we need to check if the vector is in

the cone C(Kn), that is
∑i

j=1 vj ≥ 0 for 1 ≤ i ≤ n−1. This is done by using
the procedure CheckVector(v), which gives an answer true or false.

For the system Kn the highest root θ is equal to

θ = [1, 0, . . . , 0,−1] ∈ R
n

and computed with the procedure theta.
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At this point, we need to list all hyperplanes that are in Hyp(v,Kn).
This is done in the procedure TwoSets(v), that we are about to describe.
As explained in Lemma 7.3, each hyperplane is determined by an equation∑

i∈I ai = 0. It therefore produces a set of two lists P , Q, where P = [i ∈ I]
and Q = [i /∈ I | 1 ≤ i ≤ n]. Note that P and Q are sorted. To verify that
such a hyperplane is in Hyp(v,Kn), we need to test if 〈uP , θ〉 is not zero (θ
is not in the hyperplane) and if 〈uP , v〉 × 〈uP , θ〉 is non-negative (θ and v
are on the same side of the hyperplane).

Furthermore, the procedure ProjH(v, H) constructs the vector

projH(v) = v − 〈uP , v〉
〈uP , θ〉

θ

that we represent as {[v1, P ], [v2, Q]}. Each of the vectors v1, v2 is a A-
vector (sum of coordinates equal to zero). So the last condition for H being
in Hyp(v,Kn) is that v1 ∈ C(K(P )) and v2 ∈ C(K(Q)).

Hence a hyperplane H is in Hyp(v,Kn) if it satisfies the series of condi-
tions:

〈uP , θ〉 6= 0 with Hvalue(theta(n), P) 6= 0,

〈uP , v〉 × 〈uP , θ〉 ≥ 0 with CheckSide(v, P) = true,

v1 ∈ C(K|P |−1) with CheckVector(v1) = true,

v2 ∈ C(K|Q|−1) with CheckVector(v2) = true.

The procedure CheckList(v, H) implements all these sub-routines. It is used
in the procedure TwoSets(v), computing all elements of Hyp(v,Kn).

We combine TwoSets with a procedure named TwoVector, to finally get
the procedure TwoVectors(v) determining all hyperplanes in Hyp(v,Kn)
and projections of v on these hyperplanes.

We now have to perform the next step of our algorithm. Let {[v1,K1], [v2,K2]}
be the output of TwoVectors(v). Then we construct the MNSs for [v1,K1]
and [v2,K2], and go on recursively until the procedure stops. These iterated
steps are done by the procedure Splits.

Finally the procedure MNSs(v), computing all MNSs for a given vector
v, works as follows. We begin by building the first seed of MNSs with the
procedure MNS1, containing the regularization of the result of TwoVectors.
We then call repeatedly the procedure AllNewMNSs, which performs the
regularization of the output of Splits.

7.3. Residues associated to maximal proper nested sets. An element
M in P(v,Kn) is represented as a collection M = {K1,K2, . . . ,Kn−1} of
(n− 1) subsets of [1, 2, . . . , n].
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As we have said in Remark 6.6 given a maximal proper nested set M :=

{K1,K2, . . . ,Kn−1} , we associate to it an ordered basis
−−−→
θ(M) of V (proce-

dure OrderThetas). If p = [α1, α2, . . . , αn−1] is the list of roots singled out
by our procedure, then α1 is an element associated to a set Ki of cardinal
2 and αn−1 = θ. We identify the root ei − en to the linear function zi on
C

n−1 and the root ei − ej to zi − zj .
Let h be a A-vector with integral coordinates. Let us consider the Kostant

function

KA(h)(z1, z2, . . . , zn−1) =

∏n−1
i=1 (1 + zi)

hi+n−i

∏
1≤i<j≤n−1(zi − zj)×

∏n−1
i=1 zi

defined in 7.1. To compute NKn(h), we will have to compute

resMφ := resαn−1=0resα2=0 · · · resα1=0φ

with φ = KA(h).
Using Proposition 6.5, we know in advance the order of the pole in αk = 0

of the function obtained after taking the first (k− 1) residues. These orders
are recorded in the procedure FormalPathAwithOrders.

If α1 = zi − zj , we can replace — after taking the residue at zi = zj — the
variable zi by the variable zj in all the other roots. Thus we get rid of the
variable zi. The procedure NewR does produce the ordered path resulting
from all these substitutions.

Recursively, we will have to compute the residue at zi0 − zj0 = 0 of an
expression

(9) f =
A(zi, i ∈ L)∏

i,j∈L;i<j(zi − zj)mi,j
∏

i∈L z
mi

i

,

where L is a list of indices taken in {1, . . . , n−1}. Denote by maxi the order
mi0,j0 of the root zi0 − zj0 (the exponent maxi is recorded in the procedure
FormalPathAwithOrders). Remark that computing the residue is exactly
the same as computing the coefficient of z of degreemaxi−1 of the expansion
of f × (zi0 −zj0)maxi at zi0 = z+zj0 . Let us describe in detail the procedure
ComputeRes, performing this task.

Let ej = mi0,j and ej = mj,i0 for j ∈ L \ {i0, j0}, and e0 = mi0 . Then
f × (zi0 − zj0)

maxi can be written as g × h×R where

g =
A(zi, i ∈ L)∏

i,j∈L;i,j 6=i0;i<j(zi − zj)mi,j
× 1∏

i∈L;i6=i0
zmi

i

,(10)

h =
1∏

j∈L;j 6=i0,j0
(zj − zi0)

ej
× 1

z
ei0
i0

,(11)

R = (−1)
P

j>i0
ej .(12)
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Let zi0 = z + zj0 . So to get the desired residue, we need to calculate

the expansion of g and h at z = 0. More precisely if g =
∑maxi−1

i=0 giz
i and

h =
∑maxi−1

i=0 hiz
i, then the coefficient of degree maxi−1 of f×(zi0−zj0)maxi

is simply R × ∑maxi−1
i=0 gihmaxi−1−i. Let us describe how the procedure

ComputeRes performs this task.
Rewrite the fraction h defined in Equation (11) as B × h̃, where

B =
1∏

j∈L;j 6=i0,j0
(zj − zj0)

ej
× 1

ze0
j0

,

h̃ =
1

∏
j∈L;j 6=i0,j0

(
1− z

zj−zj0

)ej
× 1(

1 + z
zj0

)e0
.

Consequently to expand h we only need to expand h̃. This is done in the
procedure CoeffBin using the binomial coefficients.

In the procedure CoeffFun we calculate the expansion at zi0 − zj0 = 0 of
the fraction

f × (zi0 − zj0)
maxi × ze0

i0
×

∏

j∈L;j 6=i0,j0

(zi0 − zj)
ej(13)

= g ×R× (−1)
P

j 6=i0,j0
ej .

Finally the procedure ComputeRes performs the sum over i ranging from 0
to maxi of

(S := (−1)
P

j 6=i0,j0
ej ) × B

× (the component of degree i of CoeffFun)
× (the component of degree maxi− 1− i of CoeffBin).

Rewrite this as the sum over i of
R

× (the component of degree i of CoeffFun) × R × S
× B × (the component of degree maxi− 1− i of CoeffBin),

or equivalently as
∑maxi−1

i=0 R × gi × hmaxi−1−i: this is exactly the desired
coefficient.

Remark 7.4. For residues along roots of type zi0 instead of zi0 − zj0 the
procedure ComputeRes also calls procedures srCoeffFun and srCoeffBin,
similar to CoeffFun and CoeffBin.

7.4. The procedure MNS KostantA. We finish the Section dedicated to
An−1 by giving the global outline of the procedure MNS KostantA(v) com-
puting the Kostant partition number of a vector v lying in the root lattice.
We begin by slightly deforming v so that it lies on no admissible hyper-
planes, with the command v′ := DefVector(v, n). We compute all MPNSs
for v′ with the procedure MNSs(v′).
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Given such a MPNS M = {Sk}, we extract highest roots of its irreducible
components with the call R := ThetaMNS(M). We obtain a set R where each
element of R is a root represented as [i, j] together with the cardinal of the
set Sk it comes from. We then transform this set R into a path p keeping
track of order of poles by setting p := FormalPathAwithOrders(R).

Finally we compute the residue associated to this path with the command
OneIteratedResidue(p, v, n). Summing all these residues over the set of
MNSs, we obtain thanks to Theorem 7.2 the desired partition number for v.

Let us describe in detail the procedure OneIteratedResidue(p, v, n) com-
puting the iterated residue along a path p for a vector v lying in the root
lattice for An−1. We first compute Kostant fraction (second item of Def-
inition 7.1, procedure KostantFunctionA). After, we replace in the path
all roots zi − zn by zi (with Kpath). We also build a upper bound for the
orders of the roots mij (with Multiplicity). Keep in mind that the expo-
nent maxi needed in the residue calculation is computed a priori, and our
computation seems quite optimal.

Then we compute iteratively the residues, using the procedure ComputeRes
(Section 7.3). Remark that at each step we have to update the list of orders
(with MultRoots) and the list of remaining variables (with ListOfVariables).

7.5. Parametrized version of the algorithm. Our algorithm can work
with formal parameters, only needing slight modifications of procedures.
This has been implemented in a program named Para.KostantA.MNS. We
are then able to compute directly the polynomial h 7→ NKn(h) giving the
number of integral points in the polytope ΠKn(h), on the chamber deter-
mined by h. As a consequence we can easily get the Ehrhart polynomial
t 7→ NKn(th1, . . . , thn) of the polytope. See [7].

Now let us outline how works this modified program. Given an ele-
ment h = (h1, . . . , hn) of the root lattice for An−1, we want to compute
the Kostant partition function for the vector (h1, . . . , hn), when h varies in
Z

n ∩ c .
Recall that we have to perform the residue at zi0 − zj0 = 0 of the fraction

defined in Equations (8) and (9).
Remark that the numerator of the fraction Ka(h) contains terms of the

form (1 + zi)
hi+n−i that we must formally expand.

For any parameter b, we write at zi0 = z + zj0 ,

(1 + zi0)
b = (1 + zj0)

b


1 +

maxi−1∑

j=1

(
b

j

)(
z

1 + zj0

)j

+O(zmaxi).

Hence, for any parameter b, the procedure CoeffFun (see Equation (13))
now computes the expansion at zi0 − zj0 = 0 of the fraction
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f ×


ze0

i0
×

∏

j∈L;j 6=i0,j0

(zi0 − zj)
ej




×


1 +

maxi−1∑

j=1

(
b

j

)(
zi0 − zj0
1 + zj0

)j

× (1 + zj0)

maxi−1.

For the residue along a root of type zi0 instead of zi0 − zj0 , the procedure
srCoeffFun has been modified in a similar way.

8. The type Bn

8.1. The formulae to be implemented. Consider a vector space V with
basis e1, e2, . . . , en. We choose on V the standard Lebesgue measure dh.

Let

Bn = {ei | 1 ≤ i ≤ n} ∪ {ei − ej | 1 ≤ i < j ≤ n} ∪ {ei + ej | 1 ≤ i < j ≤ n}.
Then Bn is a positive roots system of type Bn and generates V .

We denote by U the dual of V . The lattice VZ generated by roots is equal
to Z

n.
The cone C(Bn) is simplicial and spanned by the n simple roots e1 − e2,

e2 − e3, . . . , en−1 − en, en. A vector v = [v1, v2, . . . , vn] is in C(Bn) if and
only if it satisfies the inequations v1 + · · ·+ vi ≥ 0 for all i = 1, . . . , n.

Let v be in the cone C(Bn). Consider the polytope

ΠBn(v) =

{
(xα)α ≥ 0

∣∣∣
∑

α∈Bn

xαα = v

}
.

If h is a point in V with integral coordinates, we are interested in computing
the number NBn(h) of integral points in ΠBn(h).

Let UZ be the lattice dual to VZ. We identify the torus T = U/UZ =
R

n/Zn to (S1)n by

(u1, u2, . . . , un) 7→
(
e2π

√
−1u1 , . . . , e2π

√
−1un

)
.

If G is a representative of g = (g1, g2, . . . , gn) ∈ T , and h =
∑n

i=1 hiei in VZ,

then e〈h,2π
√
−1G〉 is equal to

∏n
i=1 g

hi

i = gh.
As the set Bn is not unimodular, the sets T (σ) are not reduced to 1.

Example 8.1. Let σ be the basic set {e1 +e2, e1−e2} for B2. Then T (σ) =
{(1, 1), (−1,−1)}.

We now determine a set F containing all sets T (σ).

Lemma 8.2. Let σ be a basic subset of Bn. Assume g ∈ T (σ). Then all
the coordinates of g are equal to ±1. Furthermore, if g is not 1, there are
at least two coordinates of g which are equal to −1.



PARTITION FUNCTIONS FOR CLASSICAL ROOT SYSTEMS 35

Proof. We prove this by induction on n. For B2, we have seen this by direct
computation.

Let σ be a basic subset of Bn. Assume first that σ contains a root ei.
Up to renumbering, we may assume that this root is en. Then the basis σ
produces a basis σ′ of Bn−1 by putting en = 0. Let g = (g1, g2, . . . , gn) in
T (σ). We see that g′ = (g1, g2, . . . , gn−1) is in T (σ′). Thus, by induction
the first n − 1 coordinates of g′ are equal to ±1. But since en is in σ we
get 1 = gn. Remark that g 6= 1 if and only if g′ 6= 1, hence by induction
hypothesis g′ has at least two coordinates not equal to 1.

Consider now the case where σ does not contain any root ei. Up to
renumbering, it contains a root en−1 − en or en−1 + en.

Let us examine first the case where σ contains the root α = en−1 − en.
Let g = (g1, g2, . . . , gn−1, gn) in T (σ). This implies gn−1 = gn. Consider the
map q sending ei to ei if i < n and en to en−1. Then q sends σ \ {en−1− en}
to a basis σ′ of Bn−1. The element g′ = (g1, g2, . . . , gn−1) is easily seen to
belong to T (σ′). Indeed if α equals ei ± ej with 1 ≤ i < j < n, this is by
definition. On the other hand q(ei ± en) = ei ± en−1 and gn−1 = gn imply
that gig

±1
n−1 coincides with the value of gig

±1
n . By induction hypothesis, all

coordinates of g′ are equal to ±1. Moreover g 6= 1 if and only if g ′ 6= 1, so
that g is of the wanted form.

Finally, the same argument works if σ contains α = en−1 + en by consid-
ering the map q sending ei to ei if i < n and en to −en−1. �

Definition 8.3. If I is a subset of {1, 2, . . . , n} with at least two elements,
we consider the set F (I) := {(g1, g2, . . . , gn) | gi = −1, i ∈ I; gj = 1, j /∈ I}.

We define F ⊂ T to be the finite subset of T union of such sets F (I)
together with the identity (1, 1, . . . , 1).

Let v =
∑n

i=1 viei ∈ V be a vector with real coordinates and h =∑n
i=1 hiei ∈ V a vector with integral coordinates. We will compute the

normalized volume of ΠBn(v) and the number of integral points in ΠBn(h)
using Theorem 3.3.

Thus we introduce the function JB(v) on U defined by:

JB(v)(u) =
e

Pn
i=1 uivi

∏n
i=1 ui

∏
1≤i<j≤n(ui − uj)

∏
1≤i<j≤n(ui + uj)

.

For g = (g1, g2, . . . , gn) ∈ F and h ∈ VZ ∩ C(Bn) the Kostant fraction (3) is
the function on U defined by:

qB(g, h)(u) =

∏n
i=1 g

hi

i e
Pn

i=1 uihi

∏n
i=1(1− g−1

i e−ui)×∏1≤i<j≤n(1− g−1
i gje−(ui−uj))

× 1∏
1≤i<j≤n(1− g−1

i g−1
j e−(ui+uj))

.

We have then
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Theorem 8.4. Let c be a chamber of C(Bn).

• For any v ∈ c, we have

volZ,Bn(v) = JKc (JB(v)) .

• For any h ∈ VZ ∩ c, the value of the partition function is given by:

NBn(h) =
∑

g∈F

JKc(qB(g, h)).

As in the case of An, we will use the change of variable 1 + zi = eui to
compute more easily NBn(h). However, let us note that this transformation
does not leave the hyperplane ui + uj = 0 fixed. This hypersurface is trans-
formed into the hypersurface zi + zj + zizj = 0. So we use the expression of
JKc as an integral over the cycle H(c) defined in Theorem 4.13. This cycle
is stable by the transformation eui = 1 + zi which is close to the identity.

Thus define the following function on U :

KB(g, h)(z) =

∏n
i=1(1 + zi)

hi+2n−i−1 ×∏n
i=1 g

hi

i∏n
i=1(1 + zi − gi)×

∏
1≤i<j≤n(1 + zi − gigj(1 + zj))

× 1∏
1≤i<j≤n(1 + zi)(1 + zj)− gigj

.

Performing the change of variables eui = 1 + zi on the function qB(g, h)(u)
and computing the Jacobian, the Theorem 3.3 becomes:

Theorem 8.5. Let c be a chamber of C(Bn).

• For any v ∈ c, we have

volZ,Bn(v) = JKc (JB(v)) .

• For any h ∈ VZ ∩ c, the value of the partition function is given by:

NBn(h) =
∑

g∈F

1

(2π
√
−1)n

∫

H(c)
KB(g, h)(z)dz.

As in the case of type A, in order to implement these formulae we first
have to describe the set P(v,Bn) (Section 8.2), then we will explain how the
integral over the cycle H(c) is calculated similarly as to an iterated residue
formula associated to these paths (Section 8.3), using an estimate of the
order of poles. Finally we explain how these computations fit together to
get a global procedure for Kostant partition function for Bn (Section 8.4).

8.2. The search for maximal proper nested sets. A height function is

ht(v) =
n∑

i=1

(n+ 1− i)vi

which takes value 1 on all simple roots. We will deform ht later on in order
to have a function taking different values on roots.
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We now proceed to describe hyperplanes for Bn. If P = [P+, P−] are
two disjoints subsets of {1, 2, . . . , n}, we denote by 〈uP , v〉 the linear form∑

i∈P+ vi −
∑

j∈P− vj. Consider the hyperplane

HP = {v ∈ V, 〈uP , v〉 = 0}
in V . It is equal to the hyperplane determined by the reverse list [P −, P+].
Thus to each set P = {P+, P−} of two disjoint sets P+, P− such that at
least one is non empty, we associate a hyperplane HP .

We denote by Z the complement of P+∪P− in {1, 2, . . . , n} and by B(Z)
the subset of Bn defined by

B(Z) = {ei | i ∈ Z} ∪ {ei ± ej | 1 ≤ i < j ≤ n ; i, j ∈ Z}.
This is the positive roots system of type B|Z|, with the positivity induced
by the lexicographic order.

Let K(P+, P−) be the subset of Bn defined by

{ei − ej | 1 ≤ i < j ≤ n ; i, j ∈ P+}
∪ {ei + ek | i ∈ P+, k ∈ P−}
∪ {ek − e` | 1 ≤ k < ` ≤ n; k, ` ∈ P−}.

Remark that by defining fi = ei if i ∈ P+ and fk = −e|P−|−k+1 if k ∈ P−,

the set K(P+, P−) coincides with

{fi − fj | 1 ≤ i < j ≤ n; i, j ∈ P+}
∪ {fi − fk| i ∈ P+, k ∈ P−}
∪ {fk − f` | 1 ≤ k < ` ≤ n; k, ` ∈ P−}.

Thus the set K(P+, P−) is a positive roots system of type A|P+|+|P−|−1.

However the positivity is induced by the lexicographic order on P + and the
reverse lexicographic order on P−.

Observe also that HP is the vector space spanned by K(P+, P−)∪B(Z).

Lemma 8.6. • The hyperplane HP is a Bn-admissible hyperplane.
• The set Bn ∩HP is the union of B(Z) and K(P+, P−).
• Every Bn-admissible hyperplane is of this form.

Proof. The first two assumptions are easy to see. We prove the third as-
sumption by induction on n, the case n = 2 being trivial. Let H be a
Bn-admissible hyperplane and let α be a root in H. There are 3 possibil-
ities for α: up to renumbering roots, we can consider the cases α = en,
α = en−1 − en and α = en−1 + en.

In the first case, the map q sending ei to ei if i < n and en to 0 maps
the set Bn \ {α} to Bn−1. The space H/Rα becomes a Bn−1-admissible

hyperplane. It is thus determined by P ′ = [P
′+, P

′−], where P
′+ and P

′−



38 M.W. BALDONI, M. BECK, C. COCHET, M. VERGNE

are two disjoint sets contained in {1, 2, . . . , n− 1}. Then the hyperplane H
is equal to the hyperplane determined by [P ′+, P ′−].

In the second case, the map q sending ei to ei if i < n and en to en−1

sends the set Bn\{α} to Bn−1. The space H/Rα becomes a Bn−1-admissible

hyperplane. It is thus determined by P ′ = [P
′+, P

′−]. If neither P
′+ nor

P
′− contain n− 1, the hyperplane H is equal to the hyperplane determined

by [P
′+, P

′−]. Otherwise assume that for example P
′+ contains n−1. Then

the hyperplane H is equal to the hyperplane determined by [P +, P−], where

P+ = P
′+ ∪ {n} and P− = P

′−.
In the third case, the map q sending ei to ei if i < n and en to −en−1

sends the set Bn\{α} to Bn−1. The space H/Rα becomes a Bn−1-admissible

hyperplane. It is thus determined by P ′ = [P
′+, P

′−]. If neither P
′+ nor

P
′− contains n−1, the hyperplane H is equal to the hyperplane determined

by [P
′+, P

′−]. Assume that P
′+ contains n− 1. Then the hyperplane H is

equal to the the hyperplane determined by [P+, P−], where P+ = P
′+ and

P− = P
′− ∪ {n}. �

We now give a detailed description of our algorithm computing maximal
nested sets.

We describe a vector as an array v = [v1, v2, . . . , vn]. To check if v is in

the cone C(Bn), we need to verify if
∑i

j=1 vj ≥ 0 for 1 ≤ i ≤ n. This is done
by the procedure CheckBvector, which returns the answer true or false.

For the system Bn the highest root θB(n) is equal to

θB(n) = [1, 1, 0, 0, 0, . . . , 0].

We recall here that P is divided in two sets P+ ∪ P−, one of them being
non empty. The first task is to list the hyperplanes in Hyp(v,Bn). This set
of hyperplanes is obtained by the command line AllPossibleBwalls(v).
The input of this procedure is the vector v. The output is a set of elements
P = {P+, P−}, where P+ = [i1, i2, . . . ip] and P− = [j1, j2, . . . , jq] are two
ordered disjoint lists made from indices taken in {1, . . . , n}, with at least
one of P+ or P− being non empty. Let 〈uP , v〉 =

∑
i∈P+ vi −

∑
j∈P− vj be

the normal vector to HP . Then as stated in Lemma 5.3 we need to test if
〈uP , θ

B(n)〉 is not zero and if 〈uP , v〉 × 〈uP , θ
B(n)〉 is non-negative.

We therefore construct the vector

projH(v) = v − 〈uP , v〉
〈uP , θB(n)〉θ

B(n).

This vector is represented as {[v1, P
+], [v2, P

−], [w,Z]}. The sum of coor-
dinates of v1 is equal to the sum of the coordinates of v2. Now Z is the
ordered list [k1, k2, . . . , k`] of complementary indices to P+ ∪ P− and

w = [projH(v)[k1], . . . , projH(v)[k`]].

Remark that equations of the cone C(K(P+, P−)) can be given on the
convenient form v1 ⊕ v2 ∈ C(K(P+, P−)) if and only if CheckBvector(v1)
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and CheckBvector(v2) are true. Equations of the cone C(B(Z)) are given
in the form w ∈ C(B(Z)) if and only if CheckBvector(w) is true.

Thus the condition that H is in Hyp(v,Bn) is equivalent to the series of
conditions:

〈uP , θ
B(n)〉 6= 0,

〈uP , v〉 × 〈uP , θ
B(n)〉 ≥ 0,

CheckBvector(v1) = true,

CheckBvector(v2) = true,

CheckBvector(w) = true.

Those five conditions are checked by the command line CheckBwall(v, H),
that gives an answer true or false.

Remark 8.7. Of course, we can first construct all disjoint subsets P +,
P− of {1, 2, . . . , n} and test these 5 conditions successively on all of them.
However it is highly desirable to throw away a priori a great number of these
partitions by noticing the following restrictive conditions on the possible lists
to be considered.

Let {P+, P−} = {[i1, i2, . . . ip], [j1, j2, . . . , jq]} be a set of two disjoint sub-
set of {1, 2, . . . n} represented as lists with strictly increasing indices. Let
Z = [k1, k2 . . . , k`] be the list of complementary indices to P+ ∪ P− in
{1, . . . , n}. The following linear forms are positive on the cone C(K(P +, P−))
generated by K(P+) and K(P−):

vi1 + vi2 + · · ·+ vis ≥ 0 for all 1 ≤ s ≤ p,

vj1 + vj2 + · · ·+ vjt ≥ 0 for all 1 ≤ t ≤ q,

as well as

vk1 + vk2 + · · ·+ vks
≥ 0 for all 1 ≤ s ≤ `.

Remark that all the above linear forms take positive values on θB(n). We
employ Lemma 8.6. Thus if v[i1] < 0, the index i1 cannot start the list P+

of an element {P+, P−} in AllPossibleBwalls(v) and we reject all such
{P+, P−}.

Similarly assume that we have constructed a list of indices [i1, i2] satisfying
conditions v[i1] ≥ 0 and v[i1] + v[i2] ≥ 0. Then if v[i1] + v[i2] + v[i3] < 0, a
list starting with [i1, i2, i3] cannot be the first three indices of the component
P+ of an element {P+, P−} in the set AllPossibleBwalls(v) and we skip
it right away.



40 M.W. BALDONI, M. BECK, C. COCHET, M. VERGNE

This achieves the description of the procedure AllPossibleBwalls. We
now have to perform the next step of our algorithm.

As for type A we build MNSs iteratively. At each step we get a set of
partial MNSs, to which we will apply recursively our algorithm.

Remark that after Lemma 8.6 the intersection of a Bn-admissible hyper-
plane HP with Bn is the union of a system of type A and a system of type
B.

The part of the MNS coming from the subsystem of type A is computed
with the procedure AddAnests. It performs a reordering of the result of a
call to the procedure MNSs described in Section 7.2.

The part of the MNS coming from the subsystem of type B is com-
puted with the procedure Bsplits, calling the previously described proce-
dure AllPossibleBwalls.

Procedures AddAnests and Bsplits are enclosed in MoreNSs, thus giving
a new iteration of the process. After regularization of the result we hence
get a procedure named AllNewNSs, performing a new step in the building
of MNSs.

Finally the procedure B MNSs, computing MNSs for a given vector v for
type B, is the following. First, we use a procedure named B NS1 to calculate
the first seed of all MNSs. After, repeated calls to the procedure AllNewNSs
build the desired MNSs.

8.3. Residues associated to maximal proper nested sets. A proper
maximal nested set M gives rise to an ordered basis αi, and a cycle H(M).
We need to compute

∫

H(M)
KB(g, h)(z)dz

where

H(M) := {z, |〈αi, z〉| = εi}.
The function z 7→ KB(g, h)(z) is deduced from the function qB(g, h)(u) in

the space R̂A by the change of variable eui = 1+zi. Thus its denominator is a
product of factors, either of the form zi corresponding to the root ui, either of
the form zi−zj corresponding to the root ui−uj or zi+zj+zizj corresponding
to the root ui+uj . We denote by u(z) the point with coordinates ui satisfying
eui = 1 + zi.

We start integrating our functionKB(g, h)(z) over the smaller circle |〈α1, z〉| =
ε1 keeping the other variables fixed. By our condition on the cycle, the
function we integrate has poles on the domain |〈α1, z〉| ≤ ε1 only when
α1(u(z)) = 0. If α1(u(z)) = ui − uj or α1(u(z)) = ui, the poles are ob-
tained for zi = zj or zi = 0. If α1(u(z)) = ui + uj, the pole on the domain
|〈α1, z〉| <= ε1 is obtained for zi = −zj/(1 + zj). Thus we compute the
integral over the circle by the residue theorem in one variable, and proceed.
From the general theory, the poles of the function we obtain, replacing zi
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by one of the value above are again of the same form with respect to the
remaining variables, as easily checked.

As in case An−1, for a root α = ui (resp. α = ui ± uj) we can replace
after taking the residue at α = 0 the variable zi by 0 (resp. by ∓zj) in all
other roots. Thus we get rid of the variable zi. The procedure FormalPathB
does produce the ordered path resulting from all these substitutions.

In the case of B we compute the residue, by directly checking the order
of the pole at α = 0, and then using differentiation. In the near future, we
will complete the program in a version with parameters. The function will
be locally polynomial with polynomial coefficients depending of the parity
of the integers hi.

8.4. The procedure MNS KostantB. We finish the Section dedicated to
Bn by giving the global outline of the procedure MNS KostantB(v) comput-
ing the Kostant partition number of a vector v lying in the root lattice of
Bn. We begin by slightly deforming v so that it lies on no wall, by set-
ting v′ := DefVectorB(v, n). We then compute all MNSs for v ′ with the call
B MNSs(v′) (Section 8.2). For every MNS M , we extract the list R of highest
roots of its irreducible components by setting R := BthetaMNS(M). We sort
these roots by their height with the command line R′ := BorderThetas(R, n).

Then for every g in F we do the following. We transform the list of roots
R′ into a path p by setting p := FormalPathB(R′).

Remark that our procedures are designed to take residues along positive
roots, using the fact that res−α = −resα for any root α. The sign that
appears (more precisely −1 to the power the number of negative roots in
the path p) is computed with the procedure PathSign(p, n).

The iterated residue along the path p is then obtained by the command
line OneIteratedBresidue(p, g, v, n). Let us briefly describe its implemen-
tation. We first compute Kostant fraction (second item of Definition 7.1,
procedure KostantFunctionB). Then for every root of the path we apply
the procedure ComputeOneResidue (Section 8.3) and update the order of
the pole with a procedure named OrderPoleB.

Finally summing all products PathSign(p, n)×OneIteratedBresidue(p, g, v, n)
over the sets of g’s and of M ’s, we get the desired result.

Remark 8.8. Let us fix a list R′ = [α1, . . . , αn] of ordered roots coming
from a MNS, and an element g. We say that R′ and g are compatible if the
following condition is satisfied. If indices of monomial(s) of αk have not yet
occured among indices of roots α` with ` < k, then g must satisfy gαk = 1
(that is gig

±1
j = 1 if αk = ei ± ej and gi = 1 if αk = ei). Remark that the

iterated residue for g and for the path p associated to R′ is zero if g and
R′ are not compatible. Hence summing only over g’s that are compatible
with a given list R′ saves useless computations. The check of compatibility
is performed by the procedure ListAndGAreCompatible(R′, g, n).
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9. The type Cn

Consider a vector space V with basis e1, e2, . . . , en. We choose on V the
standard Lebesgue measure dh.

Let

Cn = {2ei | 1 ≤ i ≤ n} ∪ {ei − ej | 1 ≤ i < j ≤ n} ∪ {ei + ej | 1 ≤ i < j ≤ n}.
Then Cn is a positive roots system of type Cn, and generates V . Remark
that elements of Cn and Bn are proportional, so they determine the same
hyperplane arrangement and same chambers.

Let L be the lattice defined by Ze1 ⊕ Ze2 ⊕ · · · ⊕ Zen. We remark that
the lattice VZ generated by Cn is the sublattice of index 2 in L consisting of
all elements v = [v1, v2, . . . , vn] with integral coordinates and such that the
sum

∑n
i=1 vi is an even integer. A Z-basis of VZ is for example

Z(e1 − en)⊕ Z(e2 − en)⊕ · · · ⊕ Z(en−1 − en)⊕ Z(2en).

The dual lattice UZ is the lattice of vectors γ = (γ1, γ2, . . . , γn) such that
γi are half integers and such that γi + γj is an integer for all i, j. The set
UZ/Ze1⊕· · ·⊕Zen is of cardinal 2 with representative elements (0, 0, . . . , 0, 0)
and (1/2, . . . , 1/2).

As before, we identify the torus T̃ = U/(Ze1 ⊕ · · · ⊕ Zen) = R
n/Zn to

(S1)n by

(u1, u2, . . . , un) 7→
(
e2π

√
−1u1 , . . . , e2π

√
−1un

)
.

Then
T = T̃ /{±1} = U/UZ.

Let G be a representative of g = (g1, g2, . . . , gn) ∈ T̃ and h =
∑n

i=1 hiei
in VZ. Then e〈h,2π

√
−1G〉 is equal to

∏n
i=1 g

hi

i = gh. This function is well

defined on T = T̃ /{±1} since
∑n

i=1 hi is even.
For σ a basic subset of Cn, define

T̃ (σ) =
{
g ∈ T̃

∣∣∣ e〈α,2π
√
−1G〉 = 1 for allα ∈ σ

}
.

As the set Cn is not unimodular, sets T̃ (σ) are not reduced to 1.

Lemma 9.1. Let σ be a basic subset of Cn. Then T̃ (σ) ⊂ {±1}n.

Proof. We prove by induction on n that if σ is basic then the condition
g = (g1, . . . , gn) ∈ T̃ (σ) forces g2

i = 1 (1 ≤ i ≤ n). In other words gα = 1
for all long roots α. If so then gi = ±1 for all i. The base of the induction,
that is C2, is straightforward and we omit it. We thus proceed considering
various possibilities for our σ.

If there exists a long root in σ we may assume that this long root is 2en.
We embed the system Cn−1 in Cn via the first (n − 1) coordinates. Then
the basis σ of Cn produces a basis σ′ of Cn−1 consisting of roots {ei ± ej ∈
σ | 1 ≤ i < j ≤ n − 1}, of roots {2ei ∈ σ | 1 ≤ i ≤ n − 1} and of roots
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{2ei | ei ± en ∈ σ; i 6= n}. It is easy to see that elements (g1, g2, . . . , gn−1)

are in T̃ (σ′). Indeed g2
i = 1 if ei ± en ∈ σ as gig

±1
n = 1 and g2

n = 1; and
similarly g2

i = 1 if 2ei ∈ σ. Thus by induction we obtain g2
i = 1 for every i.

Now assume that there is no long root in σ. We may assume that there
is a root of the form en−1 − en or en−1 + en.

In the first case, consider the basis σ ′ of Cn−1 consisting of roots {ei±ej ∈
σ | 1 ≤ i < j ≤ n− 1} and of roots {ei ± en−1 | ei ± en ∈ σ}. It is easy to see

that elements (g1, g2, . . . , gn−1) are in T̃ (σ′). Indeed for example gig
±1
n−1 = 1

if ei± en−1 ∈ σ′, as gig
±1
n = 1 and gn = gn−1. Thus by induction hypothesis

we obtain g2
i = 1 for all i 6= n. Since gn = gn−1, we also obtain g2

n = 1.
The second case is similar. �

Let v =
∑n

i=1 viei ∈ V be a vector with real coordinates and h =∑n
i=1 hiei ∈ V a vector with integral coordinates and such that

∑n
i=1 hi

is even. We will compute the normalized volume of ΠCn(v) and the num-
ber of integral points in ΠCn(h) using Theorem 3.3. We will use the JK
residue with respect to the measure dh associated to the basis e1, e2, . . . , en.
However, the normalized volume volZ,Cn(h) is computed for the measure
determined by the lattice spanned by Cn which is of index 2 on ⊕n

i=1Zei.
We introduce the function JC(v) on U defined by:

JC(v)(u) =
e

Pn
i=1 uivi

∏n
i=1 2ui

∏
1≤i<j≤n(ui − uj)

∏
1≤i<j≤n(ui + uj)

.

For g = (g1, g2, . . . , gn) ∈ {±1}n the Kostant fraction (3) is the function
on U defined by:

qC(g, h)(u) =

∏n
i=1 g

hi

i e
Pn

i=1 uihi

∏n
i=1(1− e−2ui)×∏1≤i<j≤n(1− g−1

i gje−(ui−uj))

× 1∏
1≤i<j≤n(1− g−1

i g−1
j e−(ui+uj))

We have then

Theorem 9.2. Let c be a chamber of C(Cn).

• For any v ∈ c, we have

volZ,Cn(v) = 2 JKc (JC(v)) .

• For any h ∈ VZ ∩ c be a vector with integral coordinates and such
that

∑n
i=1 hi is even, the value of the partition function is given by:

NCn(h) =
∑

g∈{±1}n

JKc(qB(g, h)).

In the second formula, there should be a multiplication by a factor 2 as
the volume of the fundamental domain of the lattice spanned by Cn is 2.
However, we should sum only on T = T̃ /{±1}. Thus the two factors of 2
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compensate. In fact, we will indeed sum over T represented as {±1}n−1×{1}
and multiply the result by the constant 2.

As in the case of Bn, we will use the change of variable 1 + zi = eui to
compute more easily the formula for NCn(h). As explained in the case of Bn

we need to use the integral formulation of the Jeffrey-Kirwan residue.
Thus define

KC(g, h)(z) =

∏n
i=1(1 + zi)

hi+2n−i ×∏n
i=1 g

hi

i∏n
i=1((1 + zi)2 − 1)×∏1≤i<j≤n(1 + zi − gigj(1 + zj))

× 1∏
1≤i<j≤n(1 + zi)(1 + zj)− gigj

.

Performing the change of variables eui = 1 + zi on the function qC(g, h)(u)
and computing the Jacobian, the Theorem 3.3 becomes:

Theorem 9.3. Let c be a chamber of C(Cn).

• For any v ∈ c, we have

volZ,Cn(v) = 2 JKc (JC(v)) .

• For any h ∈ VZ∩ c a vector with integral coordinates hi with
∑n

i=1 hi

even, the value of the partition function is given by:

NCn(h) =
∑

g∈{±1}n

1

(2π
√
−1)n

∫

H(c)
KC(g, h)(z)dz.

Similarly we will sum over T represented as {±1}n−1 × {1} and multiply
the result by the constant 2.

The cycle H(c) associated to a chamber c containing a regular element
v =

∑n
i=1 viei is the same cycle that we computed in the preceding section

for Bn . Hence we can reuse most of procedures from the type Bn. Paths
are the same, and the residue calculations are the same. More precisely, the
only two changes are in the computation of the set G (procedure GC(n)) and
in the computation of the Kostant function (procedure UCKostant). This
terminates the case of Cn.

10. The type Dn

10.1. The formulae to be implemented. Consider a vector space V with
basis e1, e2, . . . , en. We choose the standard Lebesgue measure dh.

Let

Dn = {ei − ej | 1 ≤ i < j ≤ n} ∪ {ei + ej | 1 ≤ i < j ≤ n}.
Then Dn is a positive roots system of type Dn, and generates V .

We remark that the lattice VZ generated by roots of Dn is the same
lattice than the lattice generated by the roots of Cn. It is of index 2 in
L := Ze1⊕Ze2 ⊕ · · · ⊕Zen and consists of elements v = [v1, v2, . . . , vn] with
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integral coordinates and such that the sum
∑n

i=1 vi is an even integer. The

group T = U/UZ is thus the quotient of T̃ = U/Ze1 ⊕ · · · ⊕ Zen, obtained

by identifying g and −g, that is T = T̃ /{±1}. As in section 9, we identify

the torus T̃ = U/(Ze1 ⊕ · · · ⊕ Zen) = R
n/Zn to (S1)n by

(u1, u2, . . . , un) 7→
(
e2π

√
−1u1 , . . . , e2π

√
−1un

)
.

Consider the set F = {±1}n ⊂ (S1)n. For σ a basic subset of Dn, define

T̃ (σ) =
{
g ∈ T̃

∣∣∣ e〈α,2π
√
−1G〉 = 1 for allα ∈ σ

}
.

Lemma 10.1. Let σ be a basic subset of Dn. Then T̃ (σ) is contained in F .

Proof. Basic subsets of Dn are basic subsets of Cn so that we can choose the
same set F = {±1}n. �

Let v =
∑n

i=1 viei ∈ V be a vector with real coordinates and h =∑n
i=1 hiei ∈ V a vector with integral coordinates and such that

∑n
i=1 hi

is even. We will compute the normalized volume of ΠDn(v) and the number
of integral points in ΠDn(h) using Theorem 3.3.

Thus we introduce the function JD(v) on U defined by:

JD(v)(u) =
e

Pn
i=1 uivi

∏
1≤i<j≤n(ui − uj)

∏
1≤i<j≤n(ui + uj)

.

For g = (g1, g2, . . . , gn) ∈ {±1}n the Kostant fraction (3) is the function
on U defined by:

qD(g, h)(u) =

∏n
i=1 g

hi

i × e
Pn

i=1 uihi

∏
1≤i<j≤n(1− g−1

i gje−(ui−uj))

× 1∏
1≤i<j≤n(1− g−1

i g−1
j e−(ui+uj))

.

We have then

Theorem 10.2. Let c be a chamber of C(Dn).

• For any v ∈ c, we have

volZ,Dn(v) = 2 JKc (JD(v)) .

• For any h ∈ VZ ∩ c be a vector with integral coordinates and such
that

∑n
i=1 hi is even, the value of the partition function is given by:

NDn(h) =
∑

g∈{±1}n

JKc(qD(g, h)).

We use the change of variable 1 + zi = eui to compute more easily the
formula for NDn(h) and thus introduce integration over a cycle.

Thus define



46 M.W. BALDONI, M. BECK, C. COCHET, M. VERGNE

KD(g, h)(z) =

∏n
i=1(1 + zi)

hi+2n−i−2 ×∏n
i=1 g

hi

i∏
1≤i<j≤n(1 + zi − gigj(1 + zj))

× 1∏
1≤i<j≤n(1 + zi)(1 + zj)− gigj

.

After performing the change of variables eui = 1 + zi on the function
qD(g, h)(u) and after computing the Jacobian, the Theorem 3.3 becomes:

Theorem 10.3. Let c be a chamber of C(Dn).

• For any v ∈ c, we have

volZ,Dn(v) = 2 JKc (JD(v)) .

• For any h in VZ ∩ c a vector with integral coordinates hi and such
that

∑n
i=1 hi is even, the value of the partition function is given by:

N(Dn, h) =
∑

g∈{±1}n

1

(2π
√
−1)n

∫

H(c)
KD(g, h)(z)dz.

As for types A and B, in order to implement these formulae we first
have to describe the set P(v,Dn) (Section 10.2). We finish to explain the
implementation of case D in Section 10.3, using the fact that types B and
D are similar.

10.2. The search for maximal proper nested sets. A height function
is

ht(v) =

n∑

i=1

(n− i)vi

which takes value 1 on all simple roots. We will deform it later on in order
to have a function taking different values on roots.

We now proceed to describe hyperplanes for Dn. If P = [P+, P−] are
two disjoints subsets of {1, 2, . . . , n}, we denote by 〈uP , v〉 the linear form∑

i∈P+ vi −
∑

j∈P− vj. Consider the hyperplane in V defined by

HP = {v ∈ V, 〈uP , v〉 = 0}
and remark that it is equal to the hyperplane determined by the reverse list
[P−, P+]. Thus to each set P = {P+, P−} of two disjoint sets P+, P− such
that at least one is non empty, is associated a hyperplane HP .

We denote by Z the complement of P+∪P− in {1, 2, . . . , n} and by D(Z)
the subset of Dn defined by

D(Z) = {ei ± ej | 1 ≤ i < j ≤ n; i, j ∈ Z}.
This is the positive roots system of type D|Z|, with the positivity induced
by the lexicographic order.

Let K(P+, P−) be the subset of Dn defined by
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{ei − ej | 1 ≤ i < j ≤ n; i, j ∈ P+}
∪ {ei + ek | i ∈ P+, k ∈ P−}
∪ {ek − e` | 1 ≤ k < ` ≤ n; k, ` ∈ P−}.

As we observed in Section 8.2 for Bn, by defining fi = ei if i ∈ P+ and
fk = −e|P |−k+1 if k ∈ P−, the set K(P+, P−) is a positive roots system of
type A|P+|+|P−|−1. Here the positivity is induced by the lexicographic order

on P+ and the reverse lexicographic order on P−.
Observe also that HP is the vector space spanned by K(P+, P−)∪D(Z).

Lemma 10.4. • The hyperplane HP is a Dn-admissible hyperplane.
• The set Dn ∩HP is the union of D(Z) and K(P+, P−).
• Every Dn-admissible hyperplane is of this form.

Proof. The first two assumptions are easy to see. We prove the third as-
sumption by induction on n, the case n = 2 being trivial. Let H be a
Dn-admissible hyperplane. For any root α = ei ± ej in Dn, denote by α̂ the
root α̂ = ei ∓ ej . We have two possibilities: either whenever a root α is in
H then also α̂ is in H; or there exists a root α in H such that α̂ is not in H.

In the first case, since H has dimension n− 1, there exists precisely one
index i0 ∈ {1, . . . , n} such that the set of roots {ei ± ei0 | i < i0} ∪ {ei0 ±
ei | i > i0} is not a subset of H. Hence H is determined by [P +, P−] where
P+ = {i0} and P− = ∅.

In the second case, up to renumbering roots we can assume that α =
en−1 − en or α = en−1 + en. Let us first examine the case when α =
en−1 − en. The map q sending ei to ei if i < n and en to en−1 maps
the set Dn \ {α, α̂} to Dn−1. The space H/Rα becomes a Dn−1-admissible

hyperplane. It is thus determined by P ′ = [P
′+, P

′−], where P
′+ and P

′−

are two disjoint sets contained in {1, 2, . . . , n − 1}. If neither P
′+ nor P

′−

contain n − 1, the hyperplane H is equal to the hyperplane determined by
[P

′+, P
′−]. Otherwise assume that for example P

′+ contains n − 1. Then
the hyperplane H is equal to the hyperplane determined by [P +, P−], where

P+ = P
′+ ∪ {n} and P− = P

′−.
Now if α = en−1 + en then the map q sending ei to ei if i < n and en

to −en−1 sends the set Dn \ {α, α̂} to Dn−1. The space H/Rα becomes a

Dn−1-admissible hyperplane, thus determined by P ′ = [P
′+, P

′−]. If neither

P
′+ nor P

′− contain n−1, then the hyperplane H is equal to the hyperplane
determined by [P

′+, P
′−]. Assume now that for example P

′+ contains n−
1. Then the hyperplane H is equal to the the hyperplane determined by
[P+, P−], where P+ = P

′+ and P− = P
′− ∪ {n}. �

10.3. The procedure MNS KostantD. Most of procedures from type Bn

are kept unchanged. More precisely iterated residue calculation, estimate
of the order of poles and global procedures coordinating computations are
exactly the same as for type Bn.
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The only serious adaptations to the case of Dn appears in the procedure
CheckDvector(n, v). In fact now we check that

v1 + · · ·+ vi ≥ 0 for 1 ≤ i ≤ n− 1,

v1 + · · ·+ vn−1 + vn ≥ 0 and is even,

v1 + · · ·+ vn−1 − vn ≥ 0 and is even.

Other modifications are in procedures that are parent of CheckDvector.
For example the procedure CheckDwall works exactly as CheckBwall, but
now calls CheckDvector instead of CheckBvector. See Section 8.2.

11. Performance of the programs

In this Section, we describe several tests of our programs implementing
the above algorithms for types An, Bn, Cn, Dn. We also compare with five
previous algorithms: raw force using nested loops, raw force using extraction
of coefficients of polynomials, Latte’s implementation of Barvinok’s algo-
rithm [11], its refinement Barvinok by Beyls-Bruynooghe-Loechner-Seguir-
Verdoolaege’s [3], Baldoni-DeLoera-Vergne’s algorithm using special permu-
tations [2].

Let us begin by describing the two raw methods.
As partition function counts the number of integral points in a bounded

area of the space, we can simply enumerate all possible cases. Let us describe
what happens in the case of the number of non-negative integral solutions
x ∈ R

6 of the equation
∑6

i=1 xiΦi = v, where Φi are the columns of the
matrix

Φ =




1 0 0 1 0 1
−1 1 0 0 1 0
0 −1 1 −1 0 0
0 0 −1 0 −1 −1




of positive roots for A3, and v =
∑4

i=1 viei ∈ R
4 is in VZ ∩ C(A3). Remark

that this number of solutions is the same as the number of non-negative
integral solutions y ∈ R

6 of the equation
∑6

i=1 yiΦ
′
i = v′, where

Φ′ =




1 0 0 1 0 1
0 1 0 1 1 1
0 0 1 0 1 1


 and v′ =




v1
v1 + v2

v1 + v2 + v3


 .

Thus Kostant partition for the vector v can be computed with the nested
loops described in Figure 9.

Although several refinements (by examining more carefully bounds for
loops) can save time, this raw method is untractable if the size of coordinates
of the vector v′ augments (say, two digits). Note that there are as many loops
as the number of positive roots in the algebra, and as many linear conditions
to check as the rank of the algebra.
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for y1 from 1 to v1 do
for y2 from 1 to v1 + v2 do

for y3 from 1 to v1 + v2 + v3 do
for y4 from 1 to v1 do

for y5 from 1 to v1 + v2 do
for y6 from 1 to v1 do

if y1 + y4 + y6 = v1
and y2 + y4 + y5 + y6 = v1 + v2
and y3 + y5 + y6 = v1 + v2 + v3
then add 1 to the number of solutions

end of loops on y.

Figure 9. Nested loops for Kostant partition function for A3

The second method to which we compared our algorithms comes from
the second point in Proposition 2.8. More precisely Kostant partition func-
tion for the previously defined v for A3 is the coefficient of the monomial
yv1
1 y

v1+v2
2 yv1+v2+v3

3 in the polynomial

3∏

i=1

(
u∑

k=0

yk
i

)
×

2∏

i=1

(
u∑

k=0

yk
i y

k
i+1

)
×
(

u∑

k=0

yk
1y

k
2y

k
3

)

coming from the columns of the matrix Φ′, where u = max{v1, v1 + v2, v1 +
v2+v3}. This method is faster than the previous one but still explodes when
size of coordinates of v′ augments.

All these various methods helped us to verify our algorithms on various
examples.

PUT THE EXPLAINATION FOR COMPUTATION ON CUBES.
NOW PUT TABLES WHERE WE COMPARE DIFFERENT METH-

ODS.
A WORD ON COMPOSITE METHODS?
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