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1 Introduction

Very lousy for the moment.

The aim of this article is to give my insights on how tools of localization
in equivariant cohomology not only provide beautiful mathematical formu-
lae, but also help in algorithmic computations. I mostly center around my
favorite themes: quantification of symplectic manifolds and algorithms for
polytopes, and I neglect many other applications. Thus I will discuss several
mathematical objects related to Lie group actions on a manifold M which
can be described by integral formulae of equivariant cohomology classes, as
the equivariant volume of Hamiltonian manifolds, and the equivariant index
of (transversally elliptic) operators. In cases of compact manifolds, these
integrals can be described by the AB-BV fixed point formulae (also called
abelian localization formula), similar to the Atiyah-Bott Lefschetz formulae
for elliptic operators. In the case of equivariant volume of non compact man-
ifolds, or the equivariant index of transversally elliptic operators, there are
not always fixed point formulae available (the action of the group could be
free). Thus, and for other reasons (EXPLAIN), it is also important to write
"delocalized formulae”.

More generally, we explain the use of equivariant integrals in the sense of
generalized functions, and their localization (for good cases) in the sense of
Witten non abelian localization. The use of equivariant cohomology classes
with generalized coefficients is not only absolutely necessary when dealing
with non compact problems, but also very powerful in ”localizing” problems
on a (compact or non compact) Hamiltonian manifold. So we have to use of
localization and delocalization as the yin and yang principle...

new impulse to research on some open questions....

intersection number on toric manifolds, a proof (among others) of Guillemin-
Sternberg conjecture, etc...

I will insist also that we can ”compute” (with computer) effectively these
quantities. Inspired by these new theorems, we implemented algorithms for
various problems such as computing the value of the convolution of large
number of Heaviside distributions at a point, Kostant partitions functions,
local Euler-MacLaurin formula for a rational simplex, etc... These applica-



tions to polytopes have elementary proofs, but it was through interaction
with Hamiltonian geometry that some of these tools were discovered.

For lack of space, I could include only central references to the topics
discussed in this text. For more bibliographical comments, references and
motivations, one might consult [?],[14], [26],]?] [?] and my home page (no-
tably, the text called "Exégese” ) at math.polytechnique.fr/cmat/vergne/

SAY THE LAST SECTION IS INDEPENDENT.

THANKS TO BERLINE, BRION, DUFLO, BALDONI, POPESCU-PAMPU

CITE SAwin 77

2 Baby Examples

Some formulae in mathematics condense a very long information in very short
expressions.

2.1 Geometric progressions

The most striking formula perhaps is the one that sums a very long geometric
progression:

For a straightforward calculation of the left hand side for a given value
q, one needs to know the value of the function ¢* at all the 10001 integral
points of the interval [0, 10000], while for the right hand side one needs only
the value of this function at the end points 0, 10000. We will say informally
that this sum localizes at the end points.

0 1 3 4 9] 6 10000

The short formula (here A, B, i are integers)

B A
; q q q q
1 l: = — J—
(1) ;q 1—q+1—q*1 1—qg ' 1-—g¢



is related to the following equalities of characteristic functions:
x([4,B]) = X([A o)) + x(]B, o0]) = x(R)
= X(R) = x(] = 00, A]) = x(]B, 0]).
We draw the picture of the last equality.

— . T T SR S—
B

A B — A B — A

Figure 1: Decomposition of an interval

Then to sum ¢° from A to B, we first sum ¢’ from —oo to oo and subtract
the two sums over the integers strictly less than A and over the integers
strictly greater than B. Thus, if

00 A-1 00
So=>_q¢,  Sa=>4q,  Sp=)» q,

1=—00 B+1

we get formally, or, setting ¢ = e?™, in the sense of generalized functions on
the unit circle,

(2) SZSo—SA—SB.

For a value ¢ # 1, the first sum Sy is 0 as follows from (1 — ¢)Sy = 0,
while S, Sp are just geometric progressions and we come back to the short
formula (1).

Formula (2) illustrates a very simple example of Paradan’s localization
of elliptic operators, which we describe in Section 5. Indeed, Formula (2)
is an example of the decomposition of the equivariant index of an elliptic
operator on the Riemann sphere in a sum of indices of 3 transversally elliptic
operators (see Example 9).

2.2 Integration over a interval

Let me write the following ” continuous analogue” of summation of a geomet-
ric series: the integration of an exponential '** (¢ € R) on an interval:

B GidA  Li¢B
(3) I(¢) := / ey = ” + e here A < B are any real numbers.
A —1 ]



This formula illustrates a very simple example of the ” Atiyah-Bott-Berline-
Vergne” (AB-BV) localization formula (also called abelian localization) that
we will state in Section 4, Theorem 4. Indeed, the fundamental theorem of
calculus:

/A f(@)de = f(B) — f(A)

is a very simple example of 7 AB-BV localization formula” !!.
If we break the integral (3) according to Figure 1, we get:

(4) 1(¢) = Io(¢) — La(9) — 15(¢)

with -
Ih(¢) = / ¢ dx = 6y(¢), the Dirac function at 0,

o0

A 00
I4(9) ::/ e du, I5(9) ::/ e .

—00 B

The three functions In(¢), I4(¢), [5(¢) are generalized functions of ¢, with
values for ¢ # 0 respectively equal to 0, ei‘M%, ei‘wﬁ.

The equality (4) above illustrates a very simple case of Witten’s non
abelian localization formula (see Section 4, Example 7).

2.3 Integration over polyhedra
Trapezoid.

Figure 2: The Trapezoid H



Consider the trapezoid H in the plane R?, with vertices A := [3,1], B :=
3,3],C :=[4,3],D := [6,1]. Try to compute

]H(¢1,¢2) ;:/ ei(¢1x1+¢2z2)d$1dm2.
H

To do it by hand, best to use a primitive:

ei(¢1x1+¢2x2)dmldx2 — ld (ei(¢>1$1+¢2x2) ¢2d$2 - ¢1d$1) .
2 1912

Use Stokes formula and obtain an integral on the boundary of H (which con-
sists of 4 edges) of an exponential, apply again Stokes formula in dimension
1, and we obtain the result, a priori as a sum of 8 expressions. They combine
beautifully. The function Iy is a sum of 4 terms, each corresponding to a
vertex:

edid1+id2 e3ip1+3ig2 eid1+3ig2 e0id1+id2
+ + + .
— P12 G201 O1(P1 — @2) (P2 — P1)

This formula illustrates again an example of AB-BV localization formula.
The tool of equivariant cohomology on a manifold (the Hirzebruch surface
of complex dimension 2 described in Example 14 in Subsection 7.2), which
projects on the polytope H by the moment map, allows us to do these iterated
Stokes computations in just one step and to come right away at Formula (5).
Remark that this final result involves only the value of the function e*®®
at the four vertices of H and the tangent cone at these four vertices: the
linear forms in the denominator in each of the four terms corresponding to
the vertex v are the directions of the edges passing through v (with some
sign).

Formula (5) is a special case of Brion’s formulae for integrating or sum-
ming exponentials on polytopes (see [13] for elementary proofs, via cone
decompositions).

(5)  Tu(¢1,¢2) =

A strip.

Consider now the strip S with edge [A, B] and 2 infinite horizontal edges
starting at A, B. The polyhedron S has just two vertices A, B. We may
compute the integral Ig(¢1, ¢2) == [ e (P121+6222) oo .



Figure 3: The Strip S

This is a generalized function, analytic when ¢1¢s # 0, given by Formula
(5) provided we suppress in it the third and fourth terms corresponding to
C,D. We get

e3iP1+id2 e3101+3i¢2

— P12 * G201

However, Ig is not an analytic function and is not determined by its value

on {¢1¢2 # 0}. Denote

(6) Is(01, ¢2) =

00 0
Y. (¢) = / e dux, Y_(¢) := / e dzx.
0 —00
Writing the characteristic function of interval [A, B] as a difference, as in
Figure 1, we get the more precise formula

(7)
Is(pr, ¢2) = =Y (¢1)Y_ (o) =™V (41) Y, ()€™ Yy (1) 00 (2).

Remark that we have replaced ;71 by Y, (¢1) and % by Y+(¢2) in Formula
(6), and we added another term equal to 0 when ¢y # 0.

Formula (7) illustrates a simple example of the technique of non abelian
localization formula in non compact spaces. This technique is necessary to
obtain a proof of Guillemin-Sternberg conjecture for discrete series. Indeed
this example arises when describing the restriction to SO(4) of a discrete
series of the non compact group SO(4,1), the Kirwan polytope being this
strip S. We will discuss this example in Section 6.



2.4 Inverse problem

The inverse problem is: given a short expression for a sum, compute an
individual term of the sum.
Here is an example. Consider the following product of geometric progres-

sions G = (3°72,¢1)° (X272 B2 (O, d¥gh)? given by the short expression:
1 1 1
(1=q)* (1 —q2)* (1 — qug)®

We might want to compute the coefficient c(a, b) of ¢?¢} in G. If @ > b, an
iterated application of the residue theorem in one variable leads to

ea:meb:rg
c(a,b) = resg,—9 (resmlzo (1— e=1)3(1 — e—a2)3(1 — 6—(x1+x2))3> '

S(Qh Q2) =

This is easily computed. Let
(b+1)(b+2)(b+3)(b+4)(b+ 5)(7a® — Tab + 2b* + 21a — 9b + 14)

Then we obtain
(8) Ifa > b, thenc(a,b) = g¢g(a,b).
(9) Ifa <0, thenc(a,b) = ¢g(b,a).

This inverse problem occurs when solving linear diophantine inequations
(see Subsection7.3). Guillemin-Sternberg conjecture (see Section 6) is an ex-
ample where a similar inverse problem has an answer in geometric terms. We
will discuss in Section 7 a residue theorem (Theorem 13) in several variables
in order to solve this problem efficiently.

2.5 Stationary phase

Let M be a compact manifold of dimension n, f a smooth function on M
and dm a smooth density. Consider the function

F(t) ::/ et dm,.
M

The major contribution to the value of its integral when t tends to oo arise
from the neighborhood of the set C' of critical points of f. We indicate a proof,

8



as we will sketch a very similar proof for Witten’s non abelian localization
formula, see Section 4. Consider the image of M by the map z = f(m) and
the push-forward of the density dm. Then F(t) = [, e"* f.(dm). Choose a
function x equal to 1 in the neighborhood of the set C' and supported near
C'. Then F(t) = Fo(t) + R(t) where

Fo(t)i= [ e p(dm), RO = [ @1 = xdm).

R(t) is the Fourier transform of a smooth compactly supported function, and
thus decreases rapidly at co. It is not hard to show that, if f has a finite
number of non degenerate critical points,

F(t) ~ Fo(t) ~ Z i) Z ap it~ 2t

peC i>0

where the constants a,; can be computed in function of f,dm near p € C.
Asymptotically, the integral "localizes” at a finite number of points p.

When f(m) is the Hamiltonian of an action of the circle group S! :=
{e?™9} on a compact symplectic manifold M of dimension 2¢ and dm the
Liouville measure, then Duistermaat-Heckman [27] showed that f.(dm) is
locally polynomial on f(M) and that

(10) P(t) =Y eWa,qt"

peC

This is referred to as the exact stationary phase formula (or D-H formula).

Example 1 Let us give a simple example. Take the (dilated) sphere M :=
{22 + y* + 22 = A%} with Liouville measure dm = %% The function
f = x 1s the Hamiltonian of the rotation around the axe x. The critical

points of f are the points [+A,0,0]. We can see immediately that f.(dm)

is the characteristic function of the interval [—A, A]. We obtain again the
formula: F(t) = fj‘A pite g — €A L et

it it

3 Equivariant differential forms

Let M be a manifold with an action of the circle group S!. The Atiyah-
Bott fixed point formula for the equivariant index of an elliptic operator on

9



HV

Figure 4: Projecting the sphere 22 + 3% + 22 = A2

M was obtained via localization for kernels of operators on M near fixed
points of the action. In particular, Atiyah-Bott formula explains the Weyl
formula for characters of a compact Lie group K. Our original motivation
with Nicole Berline was to explain its continuous analogue, that is the very
similar Harish-Chandra formula for the Fourier transform of a coadjoint or-
bit of K (the symplectic manifold attached to the Weyl character via Kir-
illov orbit method) and more generally Rossmann formula [44] (for the non
compact coadjoint orbit attached to a discrete series character). We under-
stood Rossmann fixed point formula via a Stokes formula for integrals of
equivariant forms ([15]). That is was possible to condense certain integrals
on M in short formulae localized near ”fixed points” was already transpar-
ent from Bott residue formulae ([20]), and D-H stationary phase formula.
The corresponding cohomological tool (a deformation of de Rham complex
with use of vector fields) which lies beyond was formalized independently
by Berline-Vergne ([15]) and Witten ([53]) with different motivations. SAY
SOMETHING FOR ATTYAH-BOTT. We discovered later that this complex
was already known by Henri Cartan in an algebraic context. However, this
revival of ”de Rham” theory of equivariant cohomology in analytic terms was
very fruitful, in particular in order to work on non compact spaces or allow-
ing stationary phase type of arguments. Duistermaat-Heckman formula on
loop spaces, as formally suggested by Atiyah, gave a new impulse on index
theorems. In this text, we will emphasize the point of view of equivariant

10



forms with generalized coefficients.

3.1 Equivariant forms

We first take a C'*°-point of view. Let G be a Lie group acting on a manifold
N. I do not assume for the moment that either N or G are compact. It is
difficult for the moment to push things very far when G is not compact. A
puzzling example is Kashiwara’s fixed point formulae [31] for a discrete series
attached to a coadjoint orbit N of a real semi-simple Lie group G (the fixed
points belonging not to N, but to the closure of N in a specific compact
space). Here the work of Libine [37] shows that equivariant cohomology
together with new ideas on deformation of Lagrangian cycles in cotangent
spaces help explain these formulae.

I keep the notation N for non necessarily compact manifolds, and M for
compact manifolds. Similarly a compact group will be denoted by the letter
K while G will be an arbitrary real Lie group. The letters T, H will be
reserved for a torus. Here a torus is a compact connected abelian Lie group,
thus just a product of circles groups {€*™®=}. In this case, I take as basis of
the Lie algebra t, elements J, such that exp(¢qJ,) := €*™% (¢, € R). The
gothic german letters g, €, t,h etc.. denote the corresponding Lie algebras,
g, & t*, b* the dual vector spaces, J* the dual basis to a basis J,, etc.. The
letter ¢ denotes an element of g.

For ¢ € g, we denote by V¢ the vector field on N generated by the
infinitesimal action of —¢. At a point x of N, V,¢ := % exp(—ep) - x|.—o. Let
A(N) be the algebra of differential forms on N (with complex coefficients),
d the exterior derivative. If V' is a vector field, let +(V') be the contraction
by V. If v := Z?:SN vy is a differential form on an oriented manifold N,
then the integral of v over N is by definition the integral of the top term of
v [ NV = / ~ Vldim ~] (provided the integral is convergent).

A smooth map « : g — A(N) is called an equivariant form, if @ commutes
with the action of G' on both sides. The equivariant de Rham operator D
([53],[15]) is viewed as a deformation of the de Rham operator d with the
help of the vector field V¢. It is defined on equivariant forms by:

(D(@))(¢) == d(a(9)) — u(Vo)a(9),

u being a parameter in C. Then D? = 0. When u = 0, we recover the usual
differential d. Here we fix u = 1. An equivariant form « is equivariantly

11



closed if Da = 0. The cohomology space, denoted by H>(g, V), is as usual
the kernel of D modulo its image. This is only Z/2Z graded in even and odd
forms.

The integral of an equivariant differential form is very naturally defined as
a generalized function. Take F'(¢) a test function on g, then fg a(P)F(p)do

is a differential form on N. If it is integrable on N, then [ @ is defined by

([ aras = [ / o(6)F(6)do.

3.2 Hamiltonian spaces

Examples of equivariantly closed forms arise immediately in Hamiltonian
geometry.

Let N be a symplectic manifold with symplectic form 2. By definition,
the action of G on N is Hamiltonian with moment map p : N — g* if, for
every ¢ € g, d({(¢p,p)) = (V) - Q. Thus the zeroes of the vector field V¢
(that is the fixed points of the one parameter group generated by ¢) are
the critical points of (¢, y).

The equivariant symplectic form Q(¢) := (¢, u) + is a closed equivariant
form. A particularly important closed form for us is e*¥®) . If dim N = 2¢,
then S .

UP) — i) (1 0+ @ R @) ]
2! ¢!

Let M be a K-Hamiltonian manifold of dimension 2¢. By definition, the

equivariant symplectic volume of M is the function of ¢ € € given by

1 : : Qf
Lo (@) i906) _ / ioutm) Y
volpr(¢) Qin)’ /Me Me A

(volps(0) is the symplectic volume of M). The last integral, according to
Duistermaat-Heckman exact stationary phase formula [27], localizes as a sum
of integrals on the connected components of the zeroes of V¢. If this set of
zeros is finite, we obtain the D-H formula:

ei(.n(p))

11 1 =
(11) voly (6) Zw ek

12



where L,(¢) is the endomorphism of 7,M determined by the infinitesimal
action of ¢ at p. As the action comes from a compact group, there is a well-
defined polynomial square root of the function ¢ +— detrp, ar L,(¢), the sign
being determined by the orientation.

Equivariant volumes of non compact Hamiltonian spaces.
Let us point out some examples of non compact manifolds N where the
equivariant symplectic volume exists in the sense of generalized functions.

o TSt
The simplest example is the manifold 7*S'. If [¢ t] is a point of
T*S' with ¢t € R, the Liouville form is w = tdf and Q = dw. S!

acts by rotations and we take g := RJ with VJ := —27dy. Thus
e P = 21 4 idt A df), and

voly (6]) = / TGt — 5o (2mh).
R

This is consistent with the fact that the action of S on T*S! is free,

so that the set of zeros of V(¢.J) is empty when ¢ # 0.

e Coadjoint orbits. Let G be a real Lie group. Recall (Kostant [34])
that when N := G is the orbit of an element \ € g* by the coadjoint
representation, then N has a unique structure of G-Hamiltonian space,
such that the moment map is just the inclusion map N — g*. Then
the equivariant volume voly(¢) is (usually) defined as a generalized
function on g. This is just the Fourier transform of the G-invariant
Liouville measure supported on G\ C g*.

When M is a coadjoint orbit of a compact Lie group K, Harish-Chandra
gave a fixed point formula for voly(¢), now seen as a special case of
D-H formula (11). Rossmann [44] and Libine [37] extended Harish-
Chandra’s formula to the case of closed coadjoint orbits of reductive
(non compact) Lie groups, involving delicate constants at fixed points
at ”infinity” defined combinatorially by Harish-Chandra and Hirai and
topologically by Kashiwara.

Here is an example. Consider the group SL(2,R) with Lie algebra g
with basis

13



1 0 01 0 1
n=(o %) = (10) a=(N o)

The one-parameter group generated by .J3 is compact, while those gen-
erated by J; and .J; are non compact. The manifold

N ={GJ' + &P+ &J% 6 -6 — & =N,6 >0}

is a coadjoint orbit. Then the generalized function voly (¢;.J; + ¢aJo +
¢3.J3) is given by an invariant locally L;-function, analytic outside ¢? +

5~ 9i=0.

M ool

VOlN(qngg) = Z¢3 s VOlN(qlel) = ‘¢1’ .

CHECK

The formula for the generator J3 of a compact group action is in agree-
ment with ”fixed point formula philosophy” and coincides with what
would be D-H formula: there is just one fixed point A.J? for the action.

The formula for J; is not so easy to explain within a general framework.
Indeed the non compact group exp(¢;.J;) acts freely on N, however the

14



value of the generalized function voly(¢;.J;) is non zero although there
are no fixed points on N. In [36], N is embedded in the Riemann sphere
M = P;(C) as an open hemisphere, and a subtle argument of deforma-
tions to fixed points of J; in M "explain” the formula for voly(¢;J;).
formula.

e Symplectic vector spaces. Let (V, B) be a symplectic vector space
of dimension 2¢ and consider the linear action of the Lie group G :=
Sp(V, B) on V. Then

1 )
voly (¢) = (2n) /velw”’wdv

exists as a generalized function. For a point ¢ € g, such that the eigen-
values {a;} of the action of ¢ on V¢ are all non zero, roughly voly (¢) =
L_ . But the choice of the square root of dety ¢ = Hfﬁl a; involves

2¢
V H'L:l a;

delicate constants depending if the {a;} are real, imaginary or complex.
REFERENCE HORMANDER CHECK PAGE

A remark. For all examples of non compact symplectic spaces given
above, the form () is exact. Indeed, if N := T*M is a cotangent bundle to
a G-manifold M, then Q = dw, with w the Liouville form pdq. Similarly if
N := (V, B) is a symplectic vector space, then Q = dw with w = B(v, dv).
In de Rham cohomology, the closed form e is congruent to 1. Similarly the
form € is congruent to 1 in H*(g, N). The following obvious formula
will be important in Section 4.

Proposition 2 Assume that 0 = dw, where w is a G-invariant 1-form.

Then Q(¢) = Dw(¢p) and

%) =14 D(By)(¢), with By(¢) := iw A (Z %)

k=1

3.3 Equivariant cohomology groups

The result of the integration of an equivariant form a(¢) with C*° coefficients
on a non compact space is often defined in the generalized sense, as we just

15



saw. It is thus natural to consider more generally the C~*°-point of view
where a(¢) is a generalized function of ¢ ([26]). This allows us to consider
push-forward of equivariant forms from vector bundles to the base, etc .. ..
Also the C*° point of view encompasses the rational point of view arising
right away in any localization theorem and that we already saw appearing in
our baby examples. For example the rational function f—; may be extended
at 0 as the generalized function ijF e*dz (the side F to be determined by
the local problem). Also generalized functions supported at 0 like the Dirac
function dy(¢) occur when studying free actions.

Thus we may define several types of equivariant cohomology groups, de-
pending of our aims. I have already introduced H*°(g, N). Now I introduce
two other equivariant cohomology groups.

Cartan’s complex. The first one is equivalent to the topological equivari-
ant cohomology, defined via classifying spaces. Here we consider, for a K-
manifold N, the space AP’ (€, N) of equivariant forms a(¢) depending poly-
nomially of ¢. The cohomology group is H?°! (¢, N). This is a Z-graded group,
where element of £ have degree two, and forms their exterior degree. A basic
theorem of H. Cartan is the following: If K acts on a compact manifold M
with finite stabilizers, then (¢, M) = H*(M/K).

Details on Cartan’s theory and further developments can be found in the
stern monograph (which contains treasures) of Duflo-Kumar-Vergne [26], or
in the attractive book of Guillemin-Sternberg [28].

This de Rham point of view for topological equivariant cohomology seems
to be adapted only to smooth spaces. However, the use of equivariant
Poincaré dual allows us to work also on algebraic varieties, where Joseph poly-
nomials and Rossmann localization formula (see [45]) are important tools.
For lack of space, I will not pursue this topic. Let me also mention the
theory of equivariant Chow groups, initially due to Totaro and developed
by Edidin-Graham and Brion (see [23]), for algebraic actions on algebraic
varieties defined over any field.

Generalized coefficients. An equivariant form a(¢) with C~*° coef-
ficients is a generalized function on g with values in A(N). Thus for any
smooth function F' with compact support, the integral fga(¢)F (p)do is a
differential form on N. If N := e, an equivariant form with C~*°-coefficients
is just an element of (C~>°(g))“, that is an invariant generalized function on
g. The operator D is well defined. For example if S* := {|z| = 1} is the cir-
cle acted on by rotation, then Q(¢.J) := do(4)% is an equivariant form with

z

16



C~ coefficients such that DQ = 0. We denote the corresponding cohomol-
ogy group by H~>°(g, N). Some basic theorems on H~>°(g, N) are proved in
26].

If N is non compact, it is important to consider the case where the form
fg a(@)F(¢)dg is rapidly decreasing at oo (our non compact manifold N will
be most of the time a vector bundle over a compact base, and this notion
is well defined). We denote by H~°%9¢(g, N') the corresponding cohomology
group.

Integration is well defined on these cohomology groups. The first inte-
gration [, (@) is well defined on H*°!(¢, M) if M is compact oriented and
gives us an invariant polynomial on €. The second integration [, a(¢) is well
defined on H~°>9¢(g, N) and gives us an invariant generalized function on

g.

3.4 Reduction of symplectic spaces

Let N be a Hamiltonian K-manifold. Assume that £ € £* is a regular value
of the moment map p and let K¢ be the stabilizer of {. Then K acts
with finite stabilizers in p=*(§) so that p~'(¢)/ K¢ is a symplectic orbifold,
called the reduced space at £ and denoted by N¢,.q. If & = 0, we simply
denote it by N//K := pu~'(0)/K. When N is a projective manifold, then
Kirwan [33] shows that N//K is the quotient in the sense of Mumford’s
Geometric invariant theory (GIT). By considering the symplectic manifold
Q = N x (K - (=¢)) (the shifting trick), we may always consider reduction
at 0.

If 0 is a regular value, Kirwan associates to an equivariant closed form
a(¢) on N a cohomology class acq on N//K: a(p)|,-1(0) is equivalent to the
pull-back of ¢4 Kirwan’s map x : H;(N) — H*(N//K) is surjective [33],
at least when N is compact.

4 Witten’s non abelian localization
Let M be a K-manifold. Let k € A'(M) be a K-invariant 1-form. Let
(12) C:={x € M;(ks,Vp,¢) =0, for all¢ € ¢}.

Witten considers the exact equivariant form Dk(¢p) = —(k, V) + dk.
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Then for any test function F'(¢) on £, the integral

(13) | a@r@io= [ [ oares

localizes on C' when a tends to oco.
Paradan systematized this localization, by a partition of unity argument.
Indeed, the following theorem is immediate to prove.

Theorem 3 (Paradan) Let x be a K-invariant function on M supported on
a small neighborhood of C' and such that x =1 on a smaller neighborhood of
C. Then

Par(¢) := x — idxf e"“Prrkda
0

is a closed equivariant form in A=>°(g, M) supported near C. Furthermore,
we have the equation in A=°(g, M):

Par =1+ DB with B := (1 — x)i / e"“Prrda.
a=0

The equation is immediate to verify. The fact that forms f;:o e"PA\da con-
verges against a test function T'est(¢) at each point © € M not in C' follows
from standard estimates on Fourier transforms.

In particular, the integral I(¢) := [, a(¢) of a closed equivariant form
with C*-coefficients can be replaced by [, a(@)Par(¢) which is localized in
an integral supported near C'. As application, we recover the exact stationary
phase, or the AB-BV localization formula, with the following tool. For a
Slaction with generator J, we choose x := (V.J,?), where (,) is an S'-
invariant Riemannian metric on M and we can use Paradan’s partition of
unity argument in a very elementary way as described in [50]. We state AB-
BV in the case of isolated fixed points (this formula is also called abelian
localization, as it concerns essentially an action of S' on M).

Theorem 4 (/53],[15],[4]) Let S* acting on M with isolated fized points. Let
a(@) be a closed equivariant form with C*° coefficients. Then

1 ) iyo(9)
W /MO&(¢) = Z detTpM Lp((b).

pe{fixed points}
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CHECK

The most important application of Witten deformation method (13) takes
place in the following context. Assume that M is a compact Hamiltonian
manifold with moment map p : M — €. We choose a K-invariant identifica-
tion £ — ¢ and a K-invariant Riemannian metric on M. Then the following
vector field Vi with V,,u := exp(—eu(m)) - m is a K-invariant vector field
and k := (Vp,?) is a K-invariant form. In this case the set C' (Formula
(12)) is the set of critical points of the invariant function [|u||* on M. One
connected component of C'is the set p~1(0) of zeros of the moment map (if
not empty). Recall that x=1(0)/K is the reduced space M//K.

The following theorem follows from Witten’s deformation argument. It
is referred to as "non abelian localization formula” as the group K is not
assumed to be a torus. Let me point out that Witten non abelian localization
formula is powerful also for torus actions.

Theorem 5 (Witten) Let M be a compact Hamiltonian K-manifold and
a(p) a equivariantly closed form with polynomial coefficients. Assume that 0
1s a reqular value of the moment map. Then

iQ(e) _ (9;—\dime iQyen
/E( /M %) 0 (8))dg = (2im) ™ Evol(K) /M e

Let me explain the meaning of the first integral. Let Iy (¢) := [,, €@ a(¢).
This is an analytic function on € with at most polynomial growth. We com-
pute [, e I);(¢)d¢ in the sense of Fourier transform. This Fourier trans-
form is a polynomial near 0 (this is part of the theorem). The meaning of
Je Ini(¢)d¢ is the value of this polynomial at & = 0.

The theorem above is used to compute integrals on reduced spaces. In-
deed the right member of the equality in the theorem above is an integral
of a cohomology class over the reduced space M//K of M, which is diffi-
cult to compute. Instead, we first compute an equivariant integral on the
original space M (easy to do thanks to the usual reduction to the maximal
torus 7" and the AB-BV localization formula, and we obtain I)/(¢) as a sum
of polynomials functions on t multiplied by imaginary exponential functions
and divided by product of linear forms. Then we have to compute the value
of the Fourier transform of Ij;(¢) at the point 0.

We stated the theorem for the reduction at 0, so this is the reason why
only the component p~*(0) of C' occurs in this formula. By the shifting trick,
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we can also compute by a similar method integrals on reduced spaces at any
point of reduction &.

In Subsection 7.1, we will explain how the value of the Fourier transform
of the inverse of product of linear functions can be computed efficiently at
any point £ € t*.

Many important symplectic manifolds arise as reduction of symplectic
manifolds. Atiyah-Bott using Yang-Mills theory constructed the moduli
space M, of flat bundles over curves of genus g, as a symplectic reduction
of an infinite dimensional manifold. Later Jeffrey-Kirwan [30] and Alekseev-
Malkin-Meinrenken [1] gave finite dimensional reduction models. Applica-
tions on intersection numbers on M, have been obtained using Witten’s
theorem and diverse refinements ([30], [1]). Ourselves, we give results on
toric manifolds and computation on polytopes in Section 7, inspired by this
theorem.

Remark 6 We may also consider the case where N is non compact with
proper moment map (and conditions to assure convergence). There is also a
doubly-equivariant version of this theorem which allows to compute equivari-
ant integrals on reduced manifolds (when the original manifold N is acted on
by two commuting groups Ky, Ks).

Witten’s theorem has been reproved and sharpened by many authors
([29],[49], [40],[?]). Let me comment on Paradan’s method which gives precise
information on contributions of all connected components of C, the set of
critical points of ||u||?. This refinement is necessary for applications such as
asymptotic behavior of Witten’s integral [39], Guillemin-Sternberg conjecture
for discrete series (see Section 6), jumps [43] of symplectic volumes by flips,
etc....

We write C' = UCr where Cr are the connected components of C. The
set u~1(0) is one connected component (if non empty). If C};, is a connected
component of the set of fixed points of the action, then Cy;, is also a com-
ponent of C'. In general, the structure of Cr is a mixture of these cases
and inducing. Consider Paradan’s form Par (in Theorem 3) supported near
C. Write Par := ), Parp where Parp is supported on a small neighbor-
hood of a connected component Cr of C. The formula for Par may look
awesome. However it is possible to determine it ”concretely” near each con-
nected component. Assume (for simplicity) that Cr is smooth with normal
bundle Ng. Imbedding a neighborhood of Cr in Ng, we may consider Parp
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as a compactly supported form on the non compact space Np. It is then
almost uniquely determined by the fact that it is congruent to 1. Replace
the form k := (Vu,?) (vanishing on Cr) by its smallest homogeneous com-
ponent ’ in the normal direction. Then consider the form P’ := ¢/”*" (which
is with C*° coefficients, but over the non compact space Ng) so that P'Parp
makes sense. As Parp = 1+ DBp (in Np), P = 1+ DB’, we obtain
Parp = P'+ D(Bp P’ + B'Parg). It remains to see that Br P’ is in the space
A7odec(g Np). The two extreme cases are when K acts (infinitesimally)
freely on Cy := p~*(0), or when C), := {p} is a fixed point for the action
of K, with moment image £ # 0. In both cases, we easily identify Parp as
equivalent to e’P*' a C'* form congruent to 1 on the normal bundle, similar
to the ones described by Formula (2) in Subsection 3.2. The general case is
a mixture of these cases and inducing.

A 0 A g
—_— —
) A

Figure 5: Decomposition of equivariant volumes

Example 7 Return to Ezample 4 of the sphere M = {2 + y* + 2* = A%},
with moment map pu(x,y,2) = x. The critical values of x* are 0, A, —A. The
set of critical points has three connected components. The circle Cy drawn
in black in Figure 5 and {p*},{p~}. The normal bundle to Cy is identified
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to T*S' and the normal bundle to p*,p~ to R%. The forms Parp are easily
identified to forms given by Formulae (2) for T*S' or the symplectic space

R?. Let
1

v (9) = %/Meiﬂ(cﬁ)'
We obtain v (¢) = vo(P) + vp- (@) + vp+ (@) with

1 o
UO<¢> = % M elQ(qb)ParCO (¢) = / eld)xdm’
1 . -A
Vp- (@) = % y em(‘ﬁ)Parpf(qS) - _ /_OO ¢
1 ) oo o
00) = 5= [ EOOPane(0) = [

Thus we reobtain our decomposition of I(¢) = LAA e*dx as the sum (4) of
3 generalized functions given in Section 2.

5 Index of transversally elliptic operators

Consider a compact even dimensional oriented manifold M. For simplic-
ity we assume M provided with an almost complex structure. We choose
an Hermitian metric [|£[|* on T"M. For [x,&] € T*M, the symbol of the
Dolbeaut-Dirac operator &+ 8 is the Clifford multiplication c(&) on AT M

It is invertible for £ # 0, since c¢(£)? = —||¢||>. Let € be an auxiliary Vector
bundle over M, then cg([z,&]) = ¢(§) ® Ide, defines an element of the K-
group of T*M. Assume that a compact group K acts on M and £. Now the
topological index Index(cg) of cg € Ki(T*M) is an invariant function on K
(which computes the equivariant index of the K-invariant operator dg +52)
Atiyah-Bott-Segal-Singer expresses Index(cg)(k) (k € K) in function of the
fixed points of k on M. We constructed (see [14]) the equivariant Chern char-
acter ch(¢, &) of the bundle £ and the equivariant Todd class Todd(¢, M)
such that (for ¢ small)

(14) Index(cg)(exp ¢) = (Ziﬂ)_(dimM)ﬂ/Mch(gzﬁ,S)Todd(gb, M).

For ¢ = 0, this is Atiyah-Singer formula (in the conventions of [14],
ch(0, ), Todd(0, M) are not exactly ch(£), Todd(M) so this is why unfortu-
nately factors (2im) arrive.) Formula (17) is a ”delocalization” of the A-B-B-S
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formula. The delocalized index formula can be adapted to new cases. Indeed
in the following two contexts, the index exists in the sense of generalized
functions but cannot be always computed in terms of fixed point formulae.

e Index of transversally elliptic operators.

e L?-index of some elliptic operators on some non compact manifolds
(as in Narasimhan-Okamoto, Parthasarathy, Atiyah-Schmid, Connes-
Moscovici, etc...).

Recall Atiyah’s definition of transversally elliptic operators [3]. Let N be
a K-manifold and 77 N be the conormal bundle to K-orbits. The symbol of
a transversally elliptic pseudo-differential operator S defines an element o (.S)
of K (T%N) (we say briefly that an element of K (75 N) is a transversally
elliptic bundle map). The index of the operator S (the virtual vector space
of K-finite solutions of S) is a generalized function on K. In [17], we gave a
cohomological formula for the index of S in function of o(S) € K (T5N), as
an equivariant integral on T*N in the spirit of the delocalized formula (17).
This formula was strongly inspired by Bismut’s ideas on delocalizations [19]
and Quillen superconnection formalism.

The following example shows that, contrary to the melancholic remark of
Atiyah about his work on transversally elliptic operators (page 6, vol 4, [2]),
there are many transversally elliptic bundle maps of great interest.

Consider a K-Hamiltonian manifold N with moment map p. Consider
the form x := (V i, 7). The analogue of Witten’s deformation is the bundle
map

(15) Cue(x,€) = c(x, & + k) ®1dg,,

QUESTION PARADAN :IL ME SEMBLE QUE JE DOIS METTRE + car
ma definition de I'application moment n’est pas la meme !! (COMMENT
DECIDER 7?) defined by Paradan [?]. Remark that ¢, ¢(x,&) is invertible
except if £ = —k,. If furthermore [z,£] € Ty N, this implies £ = 0, k, = 0.
Indeed, in our identification of T*M with TM, k, is tangent to Kx while &
is normal.

A related operator is defined by Braverman [22]. When N is compact,
cue is transversally elliptic and equal in K-theory to the elliptic symbol cg,
via the deformation c(x,& + ak,) ® 1g, for a € [0, 1].
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Paradan’s construction may also define a transversally elliptic element for
some non compact manifolds.

Proposition 8 [/1] Consider a K-Hamiltonian manifold N with proper mo-
ment map p. Assume that the set C of critical points of the function ||u|)*
is compact. Then c, ¢ is transversally elliptic on T*N with support the zero
section [C,0].

Conjecture: The index of ¢, ¢ is given (for ¢ small) by the formula

(16)  Index(c,¢)(exp ¢) = (2im) = WmM/2 [ ch(p, £)Todd(p, N)Par(¢)

N
and similar formulae for Index(c, ¢)(sexp ¢) with s-¢ = ¢ at any point s of
K.

When M is compact, Formula (16) is true, as it reduces to Formula (17)
since Par(¢) is equal to 1 in cohomology. But even in this case, Formula (16)
has strong implications,as the symbol c¢ is broken to several parts according
to the connected components of C'.

000000000000000000O0CO0OO0
PN &

—A 0 A x

00000 00000O0

—-A-1 A+1

Figure 6: Decomposition of equivariant indices
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Example 9 Return to Example 7. Let A be a positive integer. We identify
P (C) to My = {z? +y* + 22 = A%} by the map

21* — |zo|? R(1%2) S(2172)
21> + 12" ol + 2 |al + |2

21, 22] = (A );

the action (€292, z5) becoming the rotation around the axe x. We consider
the Dolbeaut-Dirac operator Doy on Pi(C) with solution space @j+k:2ACz{z§.
Twisting the action by e*™4, its equivariant index is Z?:_ A q* with ¢ =
e*™?. We may deform Daa = Do+ Dy+ + D, in the sum of 3 transversally
elliptic operators with support [Co, 0], [p*,0], [p~,0], that is each operator is
supported on a connected component of the critical set of ||u||*>. Near Cy,
to compute the index of Dy, we are led to compute the set of solutions of
the Dolbeaut operator on the complex manifold C/Z = S* x R (the action of
St = R/Z being by translations) and we get all function €*™ for any k € 7Z.
Thus

IndexDg = Z q~.

k=—o0

Near the fixed points p™,p~, we get the index of the operators [Ei] (see [3])
on C (shifted). We obtain

IndexDys = — ¢,
k=(A+1)
—A-1

IndexD,- = — Z q~.
k=—0o0

The equality
IndexDsp = IndexDg + IndexD,+ + IndexD,,-
is Formula (2) in Section 2.

It might happen that the integral [, ch(¢,€)Todd(¢, N) over a non com-
pact manifold N is already convergent (in the generalized sense), and as
P =1 in cohomology, it might happen (after checking convergence of the
boundary term) that the following equality holds

Tndex(cyg ) (exp @) — (2ir)~@mN)/2 / ch(g, £)Todd(é, N).
N
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This is indeed the case for discrete series. To be precise, we have to rephrase
our theorem in the spin context. If N is an even dimensional oriented spin
manifold, and £ a twisting bundle, we denote by o(§) the Clifford action of
& € T*M, on spinors, and by o¢ the symbol of the twisted Dirac operator
Dg. If M is a compact K-manifold, the equivariant index of D¢ is given by
a formula similar to (17)

(17) Index(og)(exp ¢) = (2imr)~(dmM)/2 /M ch(¢, E)A(¢, M),

where the A equivariant class replaces the equivariant Todd class.

If N is a K-Hamiltonian manifold with proper moment map p, under the
same hypothesis as in Theorem 8, the bundle map o, ¢(z, &) = o(+£,) ®1g,
is transversally elliptic and its equivariant index is a generalized function on
K.

Let G be a real reductive Lie group with maximal compact subgroup K.
We assume that the maximal torus 7" of K is a maximal torus in G. Let
N := G\ be the orbit of a regular admissible elliptic element \ € £*. Harish-
Chandra associates to A a representation of G, realized as a L?-index of the
twisted Dirac operator D). The moment map p for the K-action on N is
the projection G\ — ¥ and is proper. Furthermore the set C'is very easy to
compute in this case, it is connected and consists of the compact orbit K - \.

Theorem 10 (Paradan [42]) The character of discrete series ©(\) re-
stricted to K is the index of the transversally elliptic element o, ., on N.

Here £, is the Kostant line bundle G' x ) Cy on N = G/G()). A calculation
of the index of 0, ¢, (which is supported near K'\) leads immediately to
Blattner’s formula for O%(\)|f.

6 Quantization and symplectic quotients

Let N be a G-manifold (N, G non necessarily compacts), and £ a G-equivariant
bundle on N with G-invariant connection V. We can then construct the
closed equivariant form ch(¢, £) ([16],]21]). For simplicity, I assume the ex-
istence of a G-invariant complex structure (see exact formulations in [48]).
Then I conjectured (under additional conditions that i do not know how to
control)
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Conjecture: There exists a representation Q(N,E) of G such that the
character Trg(ne)(g) is given by the formula

(18) Tro(v.e)(exp ¢) = (2im)~(@mN/2 / ch(¢, £)Todd(¢, N)
N

for ¢ small (and similar formulae near any elliptic point s of G).

Thus, via integration of equivariant cohomology forms, it should be pos-
sible to define a push-forward map from a generalized K-theory of vector
bundles with connections on G-manifolds N (with some conditions such that
a "quotient N//G” is compact) to R~>°(G).

Remark 11 When N s a coadjoint admissible reqular orbit of any real al-
gebraic Lie group G and L the Kostant line bundle (more precisely only £? is
a line bundle), Formula (18) (with the A class instead of the Todd class) be-
comes Kirillov’s universal formula [32] for characters (proved by Kirillov for
compact and nilpotent groups, by Duflo, Rossmann, Khalgui, Vergne, etc, for
any real algebraic group). If N,G are compact, Formula 77 (with 121) is the
equivariant index formula for the Dirac operator twisted by €. Thus Formula
18 (modified as in [48]) is a fusion of the universal character formula, and
of the formulae of Atiyah-Segal-Singer for indices of twisted Dirac operators.

Let now (M, (2) be a symplectic manifold with Hamiltonian action of a
compact group K. We assume the existence of a K-equivariant line bundle
L on M with connection V of curvature equal to —if2 (in other words, M
is prequantizable in the sense of [34]). We take an almost complex structure
compatible with 2, as in Guillemin-Sternberg (see [38]). Then we denote
Q(M, L) simply by Q(M). This is a canonical finite dimensional (virtual)
representation QQ(M) of K, the quantification of the symplectic manifold M.
Levels of energy of the elements ¢ € ¢ in Q(M) should be the ”quantum”
version of the level of energy of the Hamiltonian function (u, ¢) on M (see [51]
for survey). Guillemin-Sternberg [?] conjectured in 1982 that the multiplicity
of the irreducible representation V¢ of K (of highest weight £ € t& C £) in
the representation Q(M) is equal to Q(M;,eq) and proved it for the case
of Kaehler manifolds. This is summarized by the slogan: ”Quantification
commutes with Reduction”. In other words, when £ = 0, we should have the
equality

/K Trgn (k)dk = /M //Kch(ﬁ//K)Todd(M//K).
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Although thanks to Atiyah-Bott Lefschetz formula, a fixed point formula
exists for Trgn (k), it is difficult to extract Guillemin-Sternberg conjecture
directly from this formula. Thus this conjecture (fundamental for the credo

of quantum mechanics) remained unproved for years. Witten’s inversion
formula [54]

iQ(p) do = (2i dim ¢ (K 1Qred e
/k</Me o(6))d = (2im) ™ Evol( >/ .

M//K

is in strong analogy with this conjecture. In particular, apart from factors of
2im, the form e®¥d is just ch(L£//K). So it gave a new impulse to research on
this question. Shortly after Witten’s article, Meinrenken and I, we produced
independently proofs in line with Witten’s argument for the special (and
relatively easy) case of the torus. Later, Meinrenken and Sjamaar [38] used
in a very subtle way Atiyah-Bott Lefschetz formula, and symplectic cutting,
to produce a proof for any compact K-Hamiltonian manifold.

Clearly the conjecture make sense even for a non compact Hamiltonian
K-manifold N, if the moment map is proper, whenever a Hilbert space Q(N)
can be constructed, let’s say via L?-cohomology.

With the help of his deformation via the transversally elliptic operator
our,, Paradan [42] can prove this conjecture (in the spin context) when
N = G\ is an admissible coadjoint orbit of a reductive real Lie group G and
K a subgroup of G such that the moment map p : N — € is proper. This
is the case when K is the maximal compact subgroup of G. In particular,
irreducible representations @? (of highest weight & — pe) of K occurring in
the discrete series ©Y(\)|x are such that £ lies in the interior of the Kirwan
polytope p(N)Nt;. This is a strong constraint on representations appearing
in @G<)\) | K-

Here is the drawing for the restriction of the representation ©%(\) of
SO(4,1) to SO(4). The black dots are the & such that ©X (&) occurs in
O%(\) (they all occur with multiplicity 1).
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7 Applications

7.1 Convolution of Heaviside distributions and cycles
in the complement of a set of hyperplanes

To numerically compute integrals on reduced spaces, we need to compute the
value at a point of t* of the convolution of Heaviside distributions supported
on the lines RT3 (with 8 € t*). This becomes algorithmically hard if there
is a large number of convolutions. Some ideas coming from Jeffrey-Kirwan
[29], Brion-Vergne [?], Szenes-Vergne [46],[47], de Concini-Procesi [25] have
led to progress on this topic.

Let us consider a set B := {fi,...,5,} of linear forms (3, on a vector
space V' (of dimension r) all in a open half-space of V*. We assume that the
set B span V*. By definition, an element ¢ € V* is regular if it does not lie
in a cone spanned by (r — 1) elements of B. The convolution H of Heaviside
distributions of all the half lines R 3, is a locally polynomial function on
V* and is continuous on the cone Cone(B) spanned by B. Our problem is to
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compute H () at a particular point £ € V*. In principle, H(§) is given by
the following limits of integrals (on the non compact ”cycle” V' of dimension
r, and in the sense of Fourier transforms):

1

H() = 1131(22‘%)_’”/Ve_’“’”> T Gt dv
i=1\Pis

where € is in the dual cone to Cone(B).
Consider the complement of the hyperplanes defined by B in the com-
plexified space V:

V(B) :={v € Vg; (v, 5) # Ofor all § € B}.

Jeffrey-Kirwan introduced a residue calculus on the space of functions de-
fined on V(B). A rational function on V(B) is of the form R(v) = ===

?:1<5iyv>ni
where @(v) is a polynomial. The following theorem is a result of Jeffrey-
Kirwan ideas, refined by Brion-Vergne and Szenes-Vergne. We still denote

by dv the holomorphic r form dv; A --- A dv, on V¢.

Theorem 12 Let & € V* be reqular. There exists a compact oriented cycle
Z(&,B) of dimension r contained in V (B) such that for any rational function
R on V(B)

lim [ e "CYR(v +i€)dv = / e SV R(v)dv.

The homology class of Z(&, B) depends only of the connected component
¢(§) of the set of regular points of V* containing . If R is rational and
homogeneous of degree —r, then the Fourier transform of R is a constant on
each connected component ¢ of the set of regular points of V*. On ¢(§), this
constant is (2im) ™" [, g R(v)dv.

Szenes-Vergne [47] gave a formula for the cycle Z(¢, B).

Theorem 13 (Szenes-Vergne). Let & € t* be reqular. Write £ =1, m;[3;
where all m; are strictly positive. Then

Z(&,B) = {veV(B); Zlog |(m;Bi, v)|maB; = —€}.
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This description of Z(&, B) is strongly related to mirror symmetry and
quantum cohomology, but this is still highly mysterious for us.

We gave a simple algorithm (further simplified by De Concini-Procesi
[25]) to compute the homology class of Z(&, B) as a disjoint union of tori, so
that integration is simply the algebraic operation of taking ordinary iterated
residues. Indeed if T'(e) C V(B) is a compact torus of the form (in some

coordinates (vi,vq,...,v,) € C":= V)
T(€) :={v e V(B);|v.] =€, fora=1,...,r},
with € 1= [67 << €3 << -+ << €] a sequence of increasing real numbers
(here €; << €3 meaning that €, is significantly greater than €, see [47] for pre-
cise definitions), then the integration on T'(€) of a function F'(vy, v, ..., v;)
with poles on the hyperplanes B is
1

Qin)y /T(e) F(v1,v9,...,0.)dv = res,, —qres,, g €Sy —o F(v1,0q,...,0,)d,
where each residue is taken assuming that the variables with higher indices
have a fixed, nonzero value.

Let me explain why this algorithm is efficient for computing the covolution
H(&) of a large number of Heaviside distributions in a vector space of small
dimension. The usual way to compute H (&) would be by induction on the
cardinal of ¥ (the divide and conquer method 77). Here we fix £ and we
compute the cycle Z(&, B) (depending of &) by induction on the dimension
of V. It can be done quite quickly using the maximal nested sets of De
Concini-Procesi, at least for classical root systems [6].

7.2 Intersection numbers on Toric manifolds

Let T be a torus of dimension r acting diagonally on N := C" with weights
B = [(1,02,...,0.]. We assume that the cone Cone(B) spanned by the
vectors f3, is an acute cone in t* with non empty interior. The moment map
p: C" — ¢ for the action of T is pu(z1, ..., 2,) = > oy |2a|*Ba. The reduced
space at a point §& € Cone(B) is Ny = p1(£)/T. It is an orbifold if & is
regular. The space N is still provided with a Hamiltonian action of the full
diagonal group H := (S')" with Lie algebra b := {>__, v,J,}. The image
of N¢ under the moment map for H is the convex polytope

P(&) = {Z maja € h*;xa > O;Zxaﬁa = f}
a=1 a=1
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Computing the volume of the polytope P(£) is the same as computing the
symplectic volume of Ng.

Example 14 :Hirzebruch surface. Let C* := {[z1, 29, 23, 24]}. We con-
sider the action of T := S' x S' on C* with weights ¢1, da, d1 + ba, P1.
Let k = 3JF + 2J5. Then N, := {[z1, 22, 23, 24]; |21|> + |22|> + |23> =
3;|23]? + |24? = 2} /T and

P(k) := {[w1, 29, 23, 24] > 0520 J" + 20 + 23(J" + J?) + 240 = 3T 4+ 2%},

The polytope H C R?, considered in Subsection 2.3, Figure 2, is isomorphic
]P)(Oﬂn D O}p1(1)).)

The T-equivariant cohomology of N is S(t*). If £ is regular, Kirwan map
gives a surjective map x(Q) := Qreq from S(t*) to H*(N¢). The following
theorem allows us to compute integral on reduced spaces.

Theorem 15 [}7] Let & € t* be reqular and Q € S(t), then

e 06)
/Ng (@) = (2im) /Z@,@ T G ™

Remark 16 This theorem can be proved directly. Let us see why it could
also be seen as a special case of Witten’s formula. It is easy to see that
both members are 0 when () is homogeneous of degree different from n — r
(the complex dimension of the orbifold N¢). Thus, we choose @) homoge-
neous of degree (n —r). Let us compute on N := C" the equivariant integral
fN Q(¢)e™™9) . Computing the integral ng e*¥rea(), .q over the reduced space is

the same (up to multiplicative constants) as computing the Fourier transform
of the equivariant integral on N at the point of reduction £&. Now, as Qreq 1S
of top degree, ng e red (), 0 = ng Qreqa- On the other hand,

iQ¢) _ i1 (Ba®)|zal? -
[ @@ =q) | « T deedye

a=1

is (up to multiplicative constants) just % By Theorem 12, the value
. Q

at & of the Fourier transform of the rational function T . Can be calculated

as an integral over the cycle Z(&,B).
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If Q(¢p) = (4,£)" ", the cohomology class Q.4 is just the symplectic
form of N¢,eq. This way we obtain the formula:

Corollary 17 Let £ € t* be regular, then

) i)
I(N;) = —— — do.
voltNe) = /Z(w) T G ™

We recall that the homology class of the cycle Z (£, B) is computed recur-
sively so that the preceding integral is easily calculated by iterated residues.

7.3 Polytopes and computations

Of course, all theorems on toric varieties as integration of characteristic
classes, equivariant Kawasaki-Riemann-Roch formulae, etc..., have a trans-
lation in the world of polytopes. With Brion, Szenes, Baldoni, Berline, we
carefully gave elementary proofs of the corresponding theorems on polytopes,
even if our inspiration came from equivariant cohomology on Hamiltonian
manifolds. A pleasant (?7) survey of some topics around counting integral
points in polytopes is in [52].

The most convenient setting is that of partition polytopes: Let B :=
181, - .., Bn] be a sequence of linear forms on a vector space V' of dimension r
strictly contained in a half-space of V*. If £ € V*, the partition polytope is

Ps(8) = {x = [1, 22, .., 2] ER™2; > 0; > wff; = £}
i=1

Any polytope can be realized as a partition polytope.

Example 18 The transportation polytope. We consider two sequences
(71,72, ..., Tkl [c1, ¢, ... ci| of positive numbers with Y r; = Zj cj. Then
Transport(k, £, r, ¢) is the polytope consisting of all real matrices with k rows
and n columns, with non negative entries, and with sums of entries in row 1
equal to r; and in column j equal to c;. This is a special case of a network

polytope (see [7],[8]) .

The volume of Pg(§) is easily seen to be equal to the value at £ of the
convolution of the Heaviside distributions supported on R*3;. The volume of
Transport(k, £, r, ¢) necessitates the convolution of k¢ Heaviside distributions
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in a space of dimension k+¢—1. For example Beck-Pixton could compute the
volume of Transport(k, £, r, ¢) for k = 10, ¢ = 10, for special values r; = ¢; = 1
(thus convoluting 100 linear forms in a 19 dimensional space) in 17 years
(scaled on 1 Ghz processor) ([12]) .

Theorem 19

c \N—T <£> ,U>n—r
vol(Pg(&)) = (2im) (=) /Z(g,zs) T, (5. 0) dv.

By De Concini-Procesi recursive determination of Z(&, B), this formula is
expressed as a sum of iterated residues.

Assume the ; span a lattice A in V*, and that £ is in A. The discrete
analogue of the volume of Pg(§) is the number Np(&) of integral points in the
rational polytope Pp(£). A fundamental result of Barvinok [9] asserts that
Np(€) can be computed in polynomial time, when n is fixed.

The function Ng(§) associates to the vector ¢ the number of ways to
represents the vector £ as a sum of a certain number of vectors g; is also
called the (vector)-partition function of B. There is also an integral formula
([46]) on the cycle Z (&, B) for this number of points. It has many interesting
applications, for example information on jumps of the partition function
from chamber to chamber (see also [?]). For example, the appearance of
the 5 linear factors in g(a,b) (Formula 8 of Subsection 2.4) follows from our
calculations. However, except for relatively good systems B, this formula does
not allow polynomial time computations. A general program for computing
number of points of general rational polytopes following Barvinok’s algorithm
is done in Latte [35]. For unimodular systems B (as networks) or systems not
too far from unimodularity (as root systems), our programs based on iterated
residues are more efficient, in particular for the transportation polytopes [7]
or for B any classical root system of semi-simple Lie algebras. It leads to the
fastest computation of Kostant partition function, weight multiplicities c;\“
tensor product multiplicities ¢ , of classical Lie algebras of small rank, but
the bit size of the weights A, i, v can be very large (cite [6], [24].)

Finally, let me describe the local Euler-MacLaurin formula which was
conjectured by Barvinok-Pommersheim [11]. It was after observing the anal-
ogy of this conjecture with the local property of the non-abelian localization
theorem that I fully realized the beauty of this conjecture. Nicole Berline
and I, we proved it by elementary means.
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Let P be a convex polytope in R™. For simplicity we assume that P has
integral vertices. The detailed statement for any rational convex polytope
and what we really mean by ”depending only on” is in [18]. Let F be the
set of faces of P (from dimensions 0 (vertices) to n (the polytope P itself)).
For each face F' of P, we denote by N (P, F') the normal cone to P at F' (it
is a cone with vertex 0 of dimension equal to the codimension of F).

Theorem 20 (Local Euler-MacLaurin formula.). There exist constant co-
efficients differential operators Dg (of infinite order) depending only of the
normal cone N (P, F) such that, for any polynomial function ® on R™, then

> 2= [ Dr(@)

EepPnzn FeF

The operators D have rational coefficients and can be computed in poly-
nomial time when n and the order of the expansion are fixed (with the help
of Barvinok signed decomposition of cones and LLL short vector algorithm.)

The local properties of Dr means that if two polytopes P and P’ look
the same in the neighborhood of a generic point of F', then the operators Dp
for P or P’ coincide. This is very similar to Paradan’s localization formula
near any Cp.

Let E(P)(t) := number of pointsin (tP N Z™) (for ¢ non negative integer)
be the Ehrhart polynomial of P Then E(P)(t) = Y7 et ", with ey =
vol(P). Using our local theorem, we hope to implement for rational simplices
a poly-time algorithm (when £ is fixed, but n not fixed) to compute all the
coefficients e; for ¢ < k . The fact than e; with ¢ < k could be computed in
polynomial time was obtained recently by Barvinok [10].
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