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Abstract. The aim of this paper is to present a flexible approach for the efficient compu-
tation of the mixed volume of a tuple of polytopes. In order to compute the mixed volume,
a mixed subdivision of the tuple of polytopes is needed, which can be obtained by embed-
ding the polytopes in a higher-dimensional space, i.e., by lifting them. Dynamic lifting is
opposed to the static approach. This means that one considers one point at a time and only
fixes the value of the lifting function when the point really influences the mixed volume.
Conservative lifting functions have been developed for this purpose. This provides us with
a deterministic manipulation of the lifting for computing mixed volumes, which rules out
randomness conditions. Cost estimates for the algorithm are given. The implications of
dynamic lifting on polyhedral homotopy methods for the solution of polynomial systems
are investigated and applications are presented.

1. Introduction

The aim of this paper is to present an algorithm for computing the mixed volume of a tuple
of polytopes. Although the motivation for this paper stems from the polyhedral homotopy
methods for sparse polynomial systems, our approach is of independent interest, see
Section 9 of [25] for other applications of volume and mixed-volume computation. The
algorithm is developed from a geometric viewpoint. Recently, much research has been
devoted to the computation of the mixed volume.
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Definition 1.1. Themixed volume Vn(P) of ann-tuple of polytopes

P = (P1, P2, . . . , Pn)

is

Vn(P) :=
∑

I⊂{1,2,...,n}
(−1)n−#I voln

(∑
i∈I

Pi

)
, (1)

where voln(P) equals the volume ofP andP1+ P2 = {x+ y|x ∈ P1, y ∈ P2}.

If all polytopes inP are identical, thenVn(P, P, . . . , P) = n! voln(P). The mixed
volume is multilinear and invariant under a shift of the polytopes. See, e.g., Chapter 4
of [9] for more on mixed volumes.

Note that formula (1) is in general not a good way for computing mixed volumes.
In [52] Verscheldeet al. showed how the recursion formula, used in [3] for computing
the mixed volume, is already useful for solving practical problems, despite its combi-
natorial implementation. Based on an idea of Betke [4], a more flexible approach for
the computation of the mixed volume has been presented by Huber and Sturmfels in
[30]. We henceforth call their approach the lifting method. In [10] and [18] Canny and
Emiris applied it to the efficient computation of sparse mixed resultants. The exploitation
of symmetry relations has been examined in [50], which led to the development of the
symmetric lifting method.

The idea of this paper is to apply the concepts of incremental convex hull constructing
algorithms, see [12], [15], [25], [28], and [43]. In a lifting method all points are lifted,
i.e., embedded into an(n + 1)-dimensional space. See [4] for the application on two
polytopes and [45] for the generalization to tuples of polytopes. Afterward, the faces of
the lower hull of the lifted points need to be computed. This is a static approach. By
dynamic lifting, a point is only lifted when it is sure to belong to the subdivision, which
is achieved by placing (or pushing) the point with respect to a regular subdivision, see
[35]. This offers a flexible computational tool to investigate which points influence the
mixed volume.

For polynomial systems the mixed volume of the Newton polytopes of the polynomials
gives an upper bound for the number of isolated solutions [3], see Section 4. In [30] a so-
called polyhedral homotopy method based on lifting has been presented, which enables
all isolated solutions of a polynomial system to be computed. The approach presented in
this paper offers a flexible computational tool to investigate which coefficients can have
an influence on the number of solutions of the system. Hereby an algorithm is presented
for incrementally solving polynomial systems, which tends to be more stable than the
static polyhedral homotopy continuation.

This paper consists of four parts. The first part is devoted to the case of computing a
regular triangulation for one polytope. In the second part the dynamic lifting algorithm is
generalized to the computation of the mixed volume. The impact on polynomial system
solving is discussed in the third part. This paper concludes with a section summarizing
the main properties of the algorithms investigated.
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2. Dynamic Construction of Regular Triangulations

This part describes the dynamic lifting algorithm applied to one polytope. Its structure
is as follows. After some preliminary definitions, the basic version of the algorithm is
sketched. The following subsections describe the key steps in this algorithm. Some cost
estimates are given in the final subsection.

2.1. Regular Triangulations

For completeness we start with some well-known definitions [34]. We assume the points
to be vectors in Euclidean spaceEn, equipped with the standard inner product〈·, ·〉.

Definition 2.1. Given a setA ⊆ En. The dimensionof A equalsd, denoted by
dim(A) = d, if A contains at mostd + 1 points c0, c1, . . . , cd such thatc0 − cj ,
j = 1, 2, . . . ,d, are linearly independent. For a finite setA ⊂ En, the convex hull
of A, denoted by conv(A), is the smallest convex set that containsA. Thepolytope P
of A is defined byP = conv(A). A faceof a polytopeP is the intersection of hyper-
planes which define half-spaces that contain the polytope entirely. The polytope itself is
considered as atrivial face. All other faces, the empty set included, areproper faces. A
vertexof a polytope is a face of dimension zero. A face of dimensionk is called ak-face.

Definition 2.2. Given a polytopeP in n-dimensional space, with dim(P) = d. A facet
∂P of P is a face ofP, with dim(∂P) = d−1.∂P is defined as the intersection ofP with
one hyperplane that defines a half-space which containsP entirely and is characterized
by its inner normalγ :

1. ∀x, y ∈ ∂P, 〈x, γ 〉 = 〈y, γ 〉.
2. 〈·, γ 〉 attains its minimum at∂P, i.e.,〈y, γ 〉 > 〈x, γ 〉, ∀x ∈ ∂P, ∀y 6∈ ∂P.

Since the functional〈·, γ 〉 is constant on∂P we denote〈∂P, γ 〉 := 〈x, γ 〉, for one
x ∈ ∂P. The facet itself is denoted by∂γ P = conv(∂γ A), with ∂γ A = {x ∈ A | 〈x, γ 〉 =
miny∈A〈y, γ 〉}.

Definition 2.3. Thelower hullof a polytopeP consists of all facets∂γ P with γn > 0.

The following definitions are based on the definitions in [30] and in [35]. See Lecture 5
of [56] for a more detailed mathematical background.

Definition 2.4. Given a set of pointsA ⊂ En, a subdivision S of Aconsists of a
collection of cellsS= {C1,C2, . . . ,Cm}, with Ck ⊂ A, ∀k, which satisfies:

1. dim(Ck) = n.
2. conv(Cl ) ∩ conv(Ck) is a proper face of both conv(Cl ) and conv(Ck), l 6= k.
3.
⋃m

k=1 conv(Ck) = conv(A).
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Fig. 1. The construction of a regular triangulation by lifting.

See [25] and [15] for references on how subdivisions can be computed by means of a
lifting function.

Definition 2.5. A lifting functionω lifts every point of a setA,ω: A→ E: a 7→ ω(a).
This yields thelifted point

â=
(

a
ω(a)

)
.

The set of lifted points is denoted bŷA. The lifted polytope is denoted bŷP =
conv(Â). The collection of lifted cellŝC is denoted bŷS. Note that lifted points are also
sometimes referred to asweightedpoints.

For every lifting function a subdivision is induced by associating the cells with the
projected facets∂γ P̂ of the lower hull ofP̂, P = conv(A). As each cellC is characterized
by the inner normalγ of Ĉ = ∂γ P̂, the cellC can be denoted byCγ , see Fig. 1.

Definition 2.6. A subdivision S = {C1,C2, . . . ,Cm} of A is calleda regular sub-
divisionwhen there is a lifting functionω which inducesS. It is denoted bySω.

Note that in [30] a regular subdivision is called acoherentsubdivision.
As mentioned in the introduction the usefulness of subdivisions lies in the volume

computation. Given a subdivisionSof a polytopeP, its volume can be computed by

voln(P) =
∑
C∈S

voln(C). (2)

The computation of the volumes of the cells is straightforward for special subdivisions:

Definition 2.7. A subdivisionS is calleda triangulation, and therefore denoted by
4 = {C1,C2, . . . ,Cm} when #Cj = n + 1, ∀ j , i.e., conv(Cj ) is an n-dimensional
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simplex. A triangulation4 is said to bea regular triangulationif it can be induced by a
lifting functionω.

For cellsC = {c0, . . . , cn} of a triangulation we have

voln(C) = 1

n!
| det(c1− c0, . . . , cn − c0)|. (3)

Other applications of triangulations, e.g., Voronoi diagrams, can be found in [15] and
[43].

A regular triangulation is denoted as4ω. It can be computed by random lifting func-
tions. See [16] for an algorithm to construct a regular triangulation, with the assumption
that the lifted points are in general position. An implementation of this algorithm in three
dimensions has been presented in [19].

Proposition 2.8(see [30]). If the lifting functionω is chosen sufficiently at random,
then the induced subdivision is a triangulation. This holds even for integer lifting func-
tions.

In practice it is often desired to exploit the structure of the polynomial system (see
Section 4 for the relationship between polynomials and subdivisions) and to construct a
special subdivision, e.g., a symmetric one, like in [50]. In this case, the assumption of
randomness, which does not take the additional constraints of the system into account,
cannot be relied upon. The aim of dynamic lifting is to provide a deterministic lifting
algorithm which enables the construction of subdivisions with a special geometry.

2.2. The Dynamic Lifting Algorithm

The basic version of an incremental construction of a regular triangulation is described
in Algorithm 2.9. There we writê4x

ω for the set of lifted cells which containx in
the triangulation for the points that are already processed. The general notation is the
following. Let Sω be a regular subdivision ofA and considerx ∈ A. DenoteSx

ω = {C ∈
Sω| x ∈ C}. Analogously,Ŝx

ω = {Ĉ ∈ Ŝω| x̂ ∈ Ĉ}.

Algorithm 2.9. The dynamic lifting algorithm:

Input: A. a set of points
Output:4ω, ω. a regular triangulation of A

4ω := {C0}; compute an initial cell
ω := 0; with lifting value =0
E := C0; the points already processed
B := ∅; the set of interior points
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while E 6= A do invariant: 4ω is a triangulation of E
x ∈ A\E; choose next point
E := E ∪ {x}; to be processed
if x ∈ 4ω ∃?C ∈ 4ω: x ∈ conv(C)
thenB := B ∪ {x}; update the set of interior points
else ω := ω(4̂ω, x); determine next value

x̂n+1 := ω; of the lifting function
4x
ω := NewFacets(4ω, x); compute new facets
4ω := 4ω ∪ 4x

ω; update the lower hull
end if;

end while;
∀x ∈ B: x̂n+1 := ω + 1. lift out the interior points

There are five subalgorithms in Algorithm 2.9:

1. Compute an initial cellC0.
2. Choose the next pointx to be processedx ∈ A\E.
3. Check whether a pointx already belongs to the triangulationx ∈ 4ω, i.e., whether

there is aC ∈ 4ω such thatx ∈ conv(C).
4. Give a point the lifting valueω(4̂ω, x).
5. Compute the set of new cells in the triangulation4x

ω.

The initialization steps for Algorithm 2.9 are described in the next section. In order to
achieve a simple update of the triangulation, i.e., like4ω := 4ω ∪ 4x

ω, it is necessary
to apply special lifting functions, defined in Section 2.4. In Section 2.5 a pivoting mech-
anism and an efficient data structure are presented to compute the new cells. To control
the condition of the lifting, the regular triangulation will be made flat, as described in
Section 2.6. In the last section it is proven that this algorithm runs in polynomial time
in #4ω.

2.3. Computation of an Initial Cell and Vertices

At this early stage of computation, degeneracy, i.e., dim(A) < n, should be detected.
By characterizing the degenerate case, an initial cell can be computed by the Greedy
Algorithm, see p. 212 of [27]. Algorithm 2.10 formulates this algorithm.

Algorithm 2.10. Computation of an initial cell:

Input: A ⊂ En.
Output:C = {c0, c1, . . . , ci }, a collection of linearly independent points.

If dim(A) = n, theni = n, otherwisei < n.

1. Letγ 6= 0. If ∂γ A = ∂−γ A, then dim(A) < n.
Otherwise, takec0 ∈ ∂γ A andc1 ∈ ∂−γ A, c1 6= c0. This yieldsC := {c0, c1}.

2. Fori from 2 ton do the following. Letγ 6= 0: 〈cj − c0, γ 〉 = 0, for j = 1, 2, . . . ,
i − 1. If ∂γ A = ∂−γ A, then dim(A) < n. Otherwise, if〈∂γ A, γ 〉 6= 〈c0, γ 〉, then
takeci ∈ ∂γ A, else takeci ∈ ∂−γ A. This yieldsC := C ∪ {ci }.

Except for nongeneric choices ofγ the points inC are vertices.
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An implementation of Algorithm 2.10 is now described. If0 ∈ A, we can take
c0 := 0. Then the procedure for computing an initial cellC consists of findingn linearly
independent vertices of the point setA. The determination of the directionsγ ’s is as
follows. It is natural to take the first direction along the first coordinate axis. Thei th
directionγ is not explicitly chosen as in Algorithm 2.10, but equivalently a change of
coordinates is performed such that thei th unit vector can be chosen asγ . The change of
coordinates is done by a unimodular transformationU that preserves the firsti − 1 unit
vectors and mapsci−1 to the(i − 1)th unit vector (modulo a scalar multiple). By these
orthogonality assumptions, the next pointci can be chosen by taking the point with the
largesti th component.

Example 2.11. Consider the matrixM whose columns contain the points ofA. Because
0 6∈ A, letc0 = (1, 0)t and perform an affine shift withc0, so that0 ∈ A′. Letγ = (1, 0)t ,
thenc1 corresponds to the third column inM ′, which has the largest (underlined) first
component. This yieldsc1 = (4, 2)t .

M =
[
1 3 4 2 0
0 0 2 4 2

]
→ M ′ =

[
0 2 3 1 −1
0 0 2 4 2

]
.

The unimodular transformation

U =
[

1 −1
−2 3

]
gives U M ′ =

[
0 2 1 −3 −3
0 −4 0 10 8

]
.

In Step 2 the maximum with respect toγ = (0, 1)t equals 10. Since we maintained the
positions of the points in the matrix, the pointc2 of the initial cell is the fourth column
of the original matrixM . Because the unimodular transformation is volume preserv-
ing and at each step the maximum value along the coordinate axis has been taken
(see the underlined entries in the matrices), the cell will have a volume as large as
possible.

Note that the steps in Algorithm 2.10 can be used for searching an optimal point to
be added next. Optimal means that this point has a large contribution to the volume. To
achieve this goal approximately, we propose to choose a certain direction randomly and
then compute a vertex with respect to that direction. This corresponds to the principle
of randomized incremental constructions, see [12] and [28].

Once Algorithm 2.10 terminates with an initial cellC0, the volume computation
problem is nondegenerate. For an efficient computation of the volume, the nonvertex
points of the remainder point setA\C0 can be omitted in advance, as those points
will have no influence on the volume. A vertex of a polytope can be considered as the
solution of a linear optimization problem, see [46] and p. 184 of [27]. In [26] a feasibility
problem is proposed for computing an irredundant representation of a polytope. Let
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A = {a1, a2, . . . ,am}, to solve the membership questionx ∈ conv(A) we use the
following:

min µ0+ µ1+ · · · + µn

subject to



m∑
i=1

λi ai j + µj xj = xj , j = 1, 2, . . . ,n,

m∑
i=1

λi + µ0 = 1,

λi ≥ 0, i = 1, 2, . . . ,m,
µj ≥ 0, j = 0, 1, . . . ,n.

(4)

It has as a trivial feasible but not optimal solution allµj = 1 and allλi = 0. If the
problem has an optimal feasible solution, with allµj = 0, for j = 0, 1, . . . ,n, thenx
can be written as a convex combination of the other points inA, the coefficients in this
combination are given by theλi ’s and thusx ∈ conv(A).

The vertex set ofA can be computed by repetitive application of (4):

Algorithm 2.12. Computation of the vertex set:

Input: A. a set of points
Output:V the vertex set

V := A; initialization
while A 6= ∅ do enumerate points in A

choosex ∈ A; next point to be checked
A := A\{x}; update A
if x ∈ conv(V\{x}) to decide, solve(4)

thenV := V\{x}; update V
end if;

end while.

So, an option has been added to Algorithm 2.9. One can start with all points or compute
the vertices first. In the latter case, the test∃? C ∈ 4ω: x ∈ conv(C) in Algorithm 2.9
is always false. For the choice of the next point to be processed in the latter case, we
observe the following. Forn = 2 it can be guaranteed that the number of cells in the
subdivision will be minimal. Forn > 2 it is still necessary to choose the point along a
random direction to achieve this goal approximately.

2.4. Conservative Lifting Functions

The purpose of this section is to introduce special lifting functions which allow the
dynamic construction of a regular triangulation.

Lemma 2.13. GivenŜω = {Ĉγ }, considerx 6∈ conv(Cγ ). Choose a lifting valueω(x)
so that〈̂x, γ 〉 > 〈Ĉγ , γ 〉. Let S′ω be the induced subdivision of Cγ ∪ {x}, thenŜω ⊂ Ŝ′ω.
For each new cell C∈ S′ω\Sω: x ∈ C.



Mixed-Volume Computation by Dynamic Lifting Applied to Polynomial System Solving 77

Fig. 2. A conservative lifting ofx: the cells in the subdivision are preserved.

Proof. As 〈̂x, γ 〉 > 〈̂c, γ 〉, ∀̂c ∈ Ĉγ , γ still attains its minimum at̂Cγ , so Ĉγ ∈ Ŝ′ω.
HencêSω ⊂ Ŝ′ω. The second statement is trivial to prove.

Figure 2 illustrates the application of Lemma2.13 and introduces the concept of
conservative lifting.

Definition 2.14. Let Ĉγ be a cell. Consider a pointx. Letω(x) = x̂n+1 so that〈̂x, γ 〉 >
〈̂c, γ 〉, ∀̂c ∈ Ĉγ , thenω is called aconservative lifting with respect tôCγ . Let Ŝω be a
regular subdivision. Ifω is a conservative lifting with respect to each cellĈγ ∈ Ŝω, then
ω is called aconservative lifting with respect tôSω.

This kind of lifting preserves the cells in the subdivision, so it isconservative. The
advantage of using conservative lifting functions lies in the simplicity of placing [12],
[15], [35] the points in the triangulation: no deletion or modification of existing cells
is required. By using different orders of placing the points, anyplaceabletriangulation
can be obtained. Note however that not every regular triangulation is placeable, see [35].
Theorem 2.15 implies that a regular triangulation can always be maintained by successive
applications of a conservative lifting function with respect to a regular triangulation, on
a pointx.

Theorem 2.15. Let Sω be a regular subdivision of A induced byω. Consider a point
x, lifted conservatively with respect tôSω. Let S′ω be the regular subdivision of A∪ {x},
thenŜω ⊆ Ŝ′ω. For each new cell C∈ S′ω\Sω: x ∈ C. If ∃Cγ ∈ Sω: x ∈ conv(Cγ ), then
Ŝω = Ŝ′ω.

Proof. By applying Lemma 2.13 successively on all individual cells in the subdivision,
the theorem is proven. It is sufficient to see that, for anyĈγ , 〈̂x, γ 〉 > 〈Ĉγ , γ 〉.

The efficient computation of the new cellŝS′ω\Ŝω is the topic of Section 2.5. The last
statement of Theorem 2.15 shows that a nonvertex point inside the convex hull of one of
the cells can belifted out.
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An explicit formula for constructing an optimal conservative lifting function is given
by the following:

Proposition 2.16. LetĈγ be a cell. Then the lowest lifting value obtained by a discrete
conservative lifting function is given by

ω(Ĉγ , x) := max

(
1 ,

(
〈Ĉγ , γ 〉 −

∑n
k=1 xkγk

γn+1

)
+ 1

)
. (5)

Given a regular subdivision̂Sω. The lowest lifting value obtained by a conservative
lifting function is given by

ω(Ŝω, x) := max
Ĉγ ∈̂Sω

ω(Ĉγ , x). (6)

The lifting described in Proposition 2.16 is the one applied in Fig. 2.

2.5. Computation of New Cells by Pivoting

The aim of this section is the efficient computation of new cells and to show how a
triangulation can always be obtained. It leads to the implementation of the subalgorithm
NewFacetsof Algorithm 2.9. We need the following fundamental lemma (Carath´eodory,
see, e.g., [34] and [56]).

Lemma 2.17. Let C= {c0, c1, . . . , cn} be a cell, spanning the n-dimensional simplex
conv(C). Consider a pointx. Then

x ∈ conv(C) ⇔ ∃λk: x =
n∑

k=0

λkck,

n∑
k=0

λk = 1,

λk ≥ 0, k = 0, 1, . . . ,n, (7)

i.e., x can be written as a convex combination of the points in C. Moreover, this repre-
sentation is independent of the order of the points inside C.

Computation of theλk’s can be done by solving a linear system. Consider the set of
shifted points{c1 − c0, . . . , cn − c0, x − c0} to be the columns of the matrixM . Solve
the homogeneous linear system defined byM3 = 0. The existence of a solution is
guaranteed by dim(C) = n and the uniqueness is guaranteed by #C = n+ 1.

To decide whetherx ∈ P, apply the following:

Theorem 2.18(Carathéodory). Let 4 be a triangulation of the polytope P, then
x ∈ P⇔ ∃C ∈ 4: x ∈ conv(C).

Lemma 2.17 gives a simple computable criterion to implement the membership test
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Fig. 3. Given a simplex defined byC = {c0, c1, c2} and three possible point configurations:x ∈ conv(C),
addingy to conv(C) leads to two new simplices, while forz there is only one new simplex.

x ∈ conv(C). As illustrated in Fig. 3, computing the decomposition ofx with respect to
the points inC provides additional information indicating which new cells arise. So, it
also illustrates conditions (8) in Lemma 2.19.

Lemma 2.19. Let Sω = {Cγ } andĈγ = {̂c0, ĉ1, . . . , ĉn}. Consider̂x, x̂ =∑n
k=0 λk̂ck,

with
∑n

k=0 λk = 1andx̂n+1 such that〈̂x, γ 〉 > 〈Ĉγ , γ 〉.Let S′ω be the induced subdivision
of Cγ ∪ {x}. Then the new cellŝC ∈ Ŝ′ω\Ŝω are given by

{̂c0, . . . , ĉk−1, x̂, ĉk+1, . . . , ĉn} where λk < 0. (8)

Proof. First bring the cell̂Cγ in a diagonal form̂C′γ , by a shift and a transformation:

ĉ′k = T (̂ck − ĉ0), ĉ′k ∈ Ĉ′γ : ĉ′0 = 0 and̂c′k is thekth unit vector,k = 1, 2, . . . ,n. Then

x̂ =
n∑

k=0

λk̂ck ⇔ x̂− ĉ0 =
n∑

k=0

λk̂ck −
(

n∑
k=0

λk

)
ĉ0, because

n∑
k=0

λk = 1

⇔ x̂′ = T (̂x− ĉ0) =
n∑

k=0

λkT (̂ck − ĉ0)

⇔ λk = x̂′k, k = 1, 2, . . . ,n, λ0 = 1−
n∑

k=1

x̂′k.

Due to Lemma 2.13 all new cells containx. Since a cell hasn+ 1 points we need only
consider the case thatx replaces oneck. There are two cases.
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Case1: x̂′ replaceŝc′0. The inner normalδ of this facetCδ satisfies

k 6= 0, l 6= 0, 〈̂c′k, δ〉 = 〈̂c′l , δ〉 ⇔ δl = δk,

〈̂x′, δ〉 = 〈̂c′1, δ〉 ⇔ δ1

(
n∑

k=1

x̂′k

)
+ x̂′n+1δn+1 = δ1

⇔ δ1

(
1−

n∑
k=1

x̂′k

)
= x̂′n+1δn+1

⇔ λ0 =
x̂′n+1δn+1

δ1
.

Cδ is a cell ofS′ω if Ĉδ is in the lower hull. The inner normal of a facet in the lower hull
satisfiesδn+1 > 0 and〈̂c′k, δ〉 < 〈̂c′0, δ〉 ⇔ δk < 0, for all k 6= 0. Thus{x, c1, . . . , cn} ∈
S′ω\Sω, if and only ifλ0 < 0.

Case2: x̂′ replaceŝc′k, k > 0. For the inner normalδ we compute

l 6= k, 〈̂c′l , δ〉 = 〈̂c′0, δ〉 ⇔ δl = δ0,

〈̂x′, δ〉 = 〈̂c′0, δ〉 ⇔ x̂′kδk + x̂′n+1δn+1 = 0

⇔ λk =
x̂′n+1δn+1

δk
.

If Ĉδ is part of the lower hull, then〈̂c′k, δ〉 > 〈̂c′0, δ〉 ⇔ δk > 0. Thus{c0, . . . , ck−1,

x, ck+1, . . . , cn} ∈ S′ω\Sω, if and only ifλk < 0.

Lemma 2.19 enables the computation of new cells if the triangulation consists of one
simplex. If the triangulation consists of several simplices a direct and simple approach
for computing4̂x

ω is successively applying Lemma 2.19 to all cells in the subdivision.
Afterward, it must be checked whether each new cell corresponds to a facet of the lower
hull of conv(Â). An obvious way to do this is by computing the inner products of their
normal with all the other points.

Better ways to avoid the computation of spurious cells use a kind of minimalist data
structure, like in [16]. The triangulation is stored as a list of cells. Each cellCγ is
characterized byn+ 1 vertices and an inner normalγ . For each vertex there is a pointer
to the neighboring cell, which can be obtained by replacing that vertex by another one,
see Fig. 4. Note that in Fig. 4 each vertex appears only once and that no null pointers are
drawn.

The application of Lemmas 2.17 and 2.19 requires the solution of a linear system
M3 = 0, defined after Lemma 2.17. As this has to be done for each new point to
be added to4, the factorization matrix for the firstn columns ofM can be stored.
This reduces the solution of a linear system to a back substitution, which requires only
O(n2) operations, whereas the factorization of ann-dimensional matrix requiresO(n3)

operations.
To decide for a new pointx whetherx ∈ 4, Theorem 2.18 can be implemented

by enumerating all cellsC and computing the decomposition ofx with respect to the
vertices ofC. A better way is to exploit the neighborship relation. Starting with one cell
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Fig. 4. Four connected cells.

C, e.g., the initial cell, walk towardx along one chain of cells as pictured in Fig. 5. One
ends either with a cellC with x ∈ conv(C) or with a cell close tox. For each cell in the
chain the representationx = ∑k λkck is computed. Ifx 6∈ conv(C), then someλk < 0
is chosen and the walk continues at the cell to which the pointer associated to the vertex
xk, corresponding toλk, points to. The walk stops when a null pointer associated to a
vertex withλk < 0 is encountered.

The data structure can be used for the determination of the new cells in two ways.
The walk described above finishes with one cell close tox. With Lemma 2.19 one
new cell is determined. The neighboring new cells can be determined by considering the
neighboring points on the edge of the triangulation and by computing their decomposition
with respect to this one new cell which containsx. Alternatively, all outer cells, i.e., those
with vertices with null pointer, while computing the decompositionx = ∑k λkck, can
be enumerated. The vertices withλk < 0 and null pointer at vertexck yield the new cells
due to Lemma 2.19.

Fig. 5. An efficient walk from the simplex defined byC = {c0, c1, c2} to the pointx = (7, 4)t . The lifting
values are indicated by the big numbers. Only three instead of nine simplices need to be visited. The dashed
arrow represents an alternative path.
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To compare the cost of both alternatives the number of decompositions which have
to be determined has to be counted. Such a decomposition is needed for each cell in the
walk. As a conclusion, we can state that the walk will be fruitful when the triangulation
contains inner points, like the case in Fig. 5. When all nonvertex points have been
eliminated in advance, such a walk can be more expensive than the simple enumeration
of all outer cells.

2.6. Flattening a Regular Subdivision

Section 2.4 provided lower bounds on the lifting for a new point to be added to the
triangulation. This section deals with specifying operational upper bounds on the lifting,
necessary to counter the following numerical problems. With fixed-point arithmetic, the
lifting value might cause an overflow, see Fig. 2 for how the lifting becomes steeper and
steeper. With floating-point arithmetic, the rounding errors which occur while solving
an ill-conditioned linear system might produce an erroneous result.

To control the condition of the lower hull̂A, we present theflatteningof a regular
subdivision. This involves a modification of the lifting function and provides an extension
of the basic version of the dynamic lifting algorithm, as described in Algorithm 2.9.

Definition 2.20. A cell Ĉ is calledflat, if all lifting values are zero. A subdivision is
calledflat, if all its cells are flat.

The subdivision induced by a zero lifting consists of one cell with normal(0, . . . ,0, 1).
A subdivisionS induced by a conservative lifting function is associated with zero lifting
and this lifting is used for the following steps of the dynamic lifting algorithm. This
process is calledflatteninga subdivision.

As flattening is performed several times a list of regular triangulationsS0, S1, S2, . . . ,

where Si is a regular subdivision of the setA(i ) such thatωi
|A(i−1) ≡ 0 and Si−1 is

a subdivision of one cell (= A(i−1)) of the subdivisionSi , is obtained. This can be
interpreted as reversing the order of refinement, as defined in [35].

All Si together form the subdivision which is computed with the pivoting algorithm
together with the variant of checking normals. Usually the other variants using the data
structure do the same. However, in very special situations these variants compute an
even finer subdivision. This detail is discussed in Section 3.7 as well. We assume that
this final subdivision is induced by a lifting function, but because of the flattening this
lifting is never computed explicitly.

From an implementational point of view the flattening only changes the lifting values,
but all old cells remain stored. The pivoting algorithm, presented in the previous section,
only requires the lifting to be conservative and has no other demands on the lifting
function. So, flattening does not alter the algorithm for computing new cells.

Concerning the flattening mechanism, there is a bound on the maximal lifting value
that needs to be set. Each time this bound is exceeded after determining the value of the
conservative lifting function for the new point, the whole subdivision will be flattened.
For reasons of simplicity, this bound can be set to one. The second alternative is to invoke
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the flattening automatically, when numerical problems occur during the update. With an
exception handling mechanism like in Ada this can be implemented in a straightforward
way. The third alternative is to flatten after each update, so that a lifting value equal to
one can be taken for each new point.

2.7. Complexity and Cost Estimates

The complexity model used is the binary Turing machine, see [21] for complexity theory.
The complexity of volume and mixed-volume computation is known to be #P-hard, see
[13], [14], and [25]. In the theory of computational convexity, the following important
result has been derived:

Proposition 2.21[25]. When the dimension n is fixed, the volume of a polytope can be
computed in polynomial time in the input size.

The idea of this result is based on linear programming, which can be used to derive,
in polynomial time, a description of the polytope in terms of an inequality system,
representing its facets. Once the facets are given in this representation, by an enumeration
of the facets with respect to a common point of the polytope, the volume can be computed,
straightforwardly by calculating determinants when the polytope is simplicial. Note that
it is crucial here to considern as a constant number.

In this section the cost for the optimal, average, and worst case is measured by
counting the number of arithmetical operations in the important steps of the dynamic
lifting algorithm. Fixed-point arithmetic is assumed throughout. Evidence is provided
that the algorithm runs in polynomial time. The results are interpreted empirically in
Section 4.3.1.

Lemma 2.22. Given a finite set of points A⊂ En. The computation of an initial cell
requires O(n3) operations.

Proof. Computing an initial cell is equivalent to computingn linearly independent
vectors, which can be brought back to the triangulation of a matrix withn rows.

For the following, it is assumed that the problem is nondegenerate. Here we denote
A′ = A\C, whereC is an initial cell.

Lemma 2.23. The cost of checking whether a point belongs to a triangulation4
requires at least O(n2), at most O((#4)n2), and on average O((#4)n) arithmetical
operations.

Proof. As the factorization matrices are stored, only the solving of a triangular system
is required for each cell. This requiresO(n2) arithmetical operations for one cell. In the
optimal case the decomposition (see Lemma 2.17) of one cell can suffice, while in the
worst case all cells need to be considered, which takes timeO((#4)n2). In the average
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case assume a uniform distribution of the cells in4 and start the walk (see Fig. 5) at the
center of4. Each path only goes through one facet of the starting cell. Hence, the path
will on average only cross(1/n)th of the cells in4, which takes timeO((#4)n).

Lemma 2.24. The cost of adding a pointx to a triangulation4 requires at least
O((#4x)n3+n2),at most O((#4x)n3+ (#4)n2),and on average O((#4x)n3+ (#4)n)
arithmetical operations, with4x the collection of new cells.

Proof. Factorization matrices are computed only once, each time a new cell is con-
structed. So, for all cases, timeO((#4x)n3) is needed. In the optimal case only one
decomposition has to be computed, which takes timeO(n2), while for the worst case all
cells in4 need to be considered, which takes timeO((#4)n2). The average cost bound
is derived by application of Lemma 2.23.

Theorem 2.25. The construction of a placeable triangulation4 of a point set A⊂ En

takes at least O((#4)n3+(#A′)n2), at most O((#4)n3+(#A′)(#4)n2), and on average
O((#4)n3+ (#A′)(#4)n) arithmetical operations.

Proof. Factorization matrices are computed only once, each time a new cell is con-
structed. So, for both cases, timeO((#4)n3) is needed. In the optimal case, at each step,
at least one decomposition needs to be computed. Because there are #A′ steps in the
algorithm, this takes timeO((#A′)n2). HenceO((#4)n3 + (#A′)n2) is obtained as the
cost in the optimal case. In the worst case, at each step, forj = 1, 2, . . . ,#A′, all cells in
the corresponding triangulation4( j ) need to be considered. Applying Lemma 2.24 for
each step, a total number ofO(

∑#A′
j=1(#4( j ))n2) arithmetical operations is needed. As

#4( j ) ≤ #4, for j = 1, 2, . . . ,#A′, O((#4)n3 + (#A′)(#4)n2) is obtained as a bound
for the cost in the worst case. In the average case application of Lemma 2.23 yields
O((#4)n3+ (#A′)(#4)n).

Theorem 2.25 indicates the bottleneck of the algorithm: determining the cells in4 for
which pivoting yields new cells. All cost bounds contain three important factors which
influence the general cost of the algorithm. On the input side we have the number of
points #A′ and the dimensionn of the problem. On the output side the complexity of the
facet structure of the lifted polytope plays a role, as the number of cells #4 is also taken
into account. This number of cells can be influenced by the choice of the lifting function.
It is natural to assume that a random lifting will induce a triangulation with an average
number of cells. In the dynamic lifting algorithm a random placeable triangulation is
obtained by adding the points in a random order.

Note that the number of cells can grow exponentially, and #4 À n3, with the bound
for #4 given byO((#A)bn/2c), see p. 92 of [43] for more precise bounds on the number
of facets. Still, the bound is polynomial in the output size. The cost with respect to the
space of the dynamic lifting algorithm is proportional to the number of cells, as the list
of cells is maintained during the computations.
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3. Dynamic Construction of Regular Simple Mixed Subdivisions

This part deals with the application of the dynamic lifting algorithm to the general case.
Therefore we first need to extend the definitions of Section 2.1 to the case of several
polytopes. Algorithm 2.9 can be applied in a straightforward manner, by means of the
Cayley trick, as explained in the second section. However, the other sections consider
a more complicated generalization of Algorithm 2.9. The third section deals with the
degeneracy check by the computation of an initial mixed cell. In the fourth section the idea
of Betke is elaborated explicitly with fans, which leads to a powerful computational tool
for the computation of the mixed volume by means of static lifting. Conservative lifting
functions are extended to the general case in the fifth section. In the sixth section the
connectivity of the mixed cells is conjectured and the main kernel of the dynamic lifting
algorithm is presented. The idea of unfolding cells with the same normal is described in
the seventh section. The computational complexity of the problem and cost estimates of
the algorithm are treated in the last section of this part.

3.1. Regular Simple Mixed Subdivisions

Definition 3.1. LetA be a tuple of point sets with a respective tuple of polytopesP.
Assume that the sets inA are ordered in the following way:

A = (A1, . . . , A1︸ ︷︷ ︸
k1

, A2, . . . , A2︸ ︷︷ ︸
k2

, . . . , Ar , . . . , Ar︸ ︷︷ ︸
kr

)

P = (
︷ ︸︸ ︷
P1, . . . , P1,

︷ ︸︸ ︷
P2, . . . , P2, . . . ,

︷ ︸︸ ︷
Pr , . . . , Pr )

with
r∑

i=1

ki = n. (9)

The tuplesA andP are said to beunmixedwhenr = 1, semimixedwhen 1< r < n,
andfully mixedwhenr = n.

Let C = (C1,C2, . . . ,Cr ), Ci ⊂ Ai , be a cell. The volume ofC is written as
voln(C) = voln(conv(C)) where the following conventions are used:

conv(C) = conv(C1+ C2+ · · · + Cr ) ⊂ En, (10)

type(C) = (dim(C1), dim(C2), . . . ,dim(Cr )) ∈ Nr . (11)

Given a tuple of point sets, based on a subdivision of the Minkowski sum, Definition 2.4
can be extended in the following way, see [30]:

Definition 3.2. Assume the union of the setsAi in A = (A1, A2, . . . , Ar ) affinely
spansEn. A subdivisionof A is a collectionS = {C1, . . . ,Cm} of m cells Cj =
(Cj 1,Cj 2, . . . ,Cjr ), Cji ⊂ Ai , satisfying:

1. dim(Cj ) = n for j = 1, . . . ,m.
2. conv(Cj )∩ conv(Ck) is a proper common face of conv(Cj ) andconv(Ck), j 6= k.
3.
⋃m

j=1 conv(Cj ) = conv(A).
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The subdivision is calledmixedif the following additional property holds:

4.
∑r

i=1 dim(Cji ) = n for all cellsCj ∈ S.

The subdivision is calledfine mixedif:

5.
∑r

i=1(#(Cji )− 1) = n for all cellsCj ∈ S.

Note that the fifth item in Definition 3.2 represents an additional property, not implied
by the previous ones.

Definition 3.3. A cell C is calledmixedwhen it has a contribution to the mixed volume.

If the subdivision is mixed, then all cellsC with type(C) = (k1, . . . , kr ) are mixed,
see [30]. For computation of the mixed volume, it is sufficient that the collection of the
mixed cells is fine mixed, which is weaker than the last part of Definition 3.2.

Definition 3.4. A mixed subdivision is called asimple mixed subdivisionwhen, for all
mixed cellsCj ,

∑r
i=1(#(Cji )− 1) = n.

In Example 3.7 a regular simple mixed subdivision is given for which the subdivision
is not fine mixed.

Definition 3.5. A cell C which is mixed and satisfies #Ci = ki + 1, i = 1, . . . , r , is
calledsimple mixed.

Definition 3.6. A subdivisionS of a tupleA = (A1, A2, . . . , Ar ) is calledregular if
there is a tupleω of lifting functions,ω = (ω1, ω2, . . . , ωr ), so that the cells ofSare the
facets of the lower hull of

∑r
i=1 conv(Âi ).

As before, a regular subdivision induced by a liftingω is denoted bySω and the
cells byCγ , as they are facets∂γ (

∑r
i=1 conv(Âi )) characterized by their inner normal

γ . In [48] a mixed subdivision induced by a lifting function is called acoherent mixed
subdivision(CMD) and a regular fine mixed subdivision is called atight coherent mixed
subdivision(TCMD). For the relationship with fiber polytopes, see [5].

Given a mixed subdivision, it is sufficient to consider only the mixed cells, as shown
in [30], to compute the mixed volume:

Vn(P) =
∑

C ∈ 4ω
type(C) = (k1, . . . , kr )

k1! · · · kr ! voln(C). (12)

Given a simple mixed cellC ∈ S, C = (C1,C2, . . . ,Cr ), with Ci = {c0i , c1i , . . . , cki i },
i = 1, 2, . . . , r . Its volume can be computed by

voln(C) = 1

k1! · · · kr !
|det(c11−c01, . . . , c1i−c0i , . . . , cki i−c0i , . . . , ckr r−c0r )|. (13)
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Fig. 6. The polytopesP1 andP2 with their sum. The big numbers indicate the values of the lifting function.
The mixed cells can be found as parallelograms (with one side dashed and one side solid) in the subdivision
of P1 + P2.

In case the subdivision is not mixed, a recursive scheme as presented in [50] can be
applied for computation of the mixed volume.

The following example illustrates the definitions.

Example 3.7. Consider the following tuple of lifted point sets:

Â = (Â1, Â2) =


0
0
1

 ,
2

0
0

 ,
0

2
1

 ,


1

0
0

 ,
0

1
0

 ,
2

1
0

 ,
1

2
0


 .

The polytopes in the tupleP = (P1, P2) and the sumP1 + P2 are shown in Fig. 6. The
two mixed cells in the subdivision of̂A are

2
0
0

 ,
0

2
1

 ,


0

1
0

 ,
1

2
0




and 
0

0
1

 ,
2

0
0

 ,


1

0
0

 ,
0

1
0


 ,

with respective inner normalsγ1 = (1,−1, 4) andγ2 = (1, 1, 2). The other two unmixed
cells are Â1 ,


0

1
0


 and


2

0
0

 , Â2

,
with respective inner normalsγ3 = (1, 0, 2) andγ4 = (0, 0, 1). This subdivision is not
fine mixed as the second component of the last cell contains too many points. Note that
by giving the rightmost point ofP2 lifting value> 0, the subdivision becomes fine mixed.
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However, we only need to have a simple mixed subdivision and the mixed volume can
be computed by

Vn(P) = 1! · 1!
1

1! · 1!
vol2(Cγ1) + 1! · 1!

1

1! · 1!
vol2(Cγ2) = 4 + 2 = 6.

In Fig. 6 in the subdivision ofP1 + P2 the unmixed cells can be found as the cells with
respectively either all sides dashed or all sides solid. Their volumes equal respectively
vol2(P1) = 4/2! and vol2(P2) = 4/2!. Adding the volumes of all cells yields vol2(P1+
P2) = 10. Note how formula (1) can be applied:Vn(P) = vol2(P1 + P2)− vol2(P1)−
vol2(P2) = 10− 2− 2= 6.

3.2. The Cayley Trick

In this section Algorithm 3.8 presents a geometric description of the so-calledCayley
trick. This geometric description is due to Sturmfels, as mentioned in [29]. See [22],
[23], and [31] for other references.

Algorithm 3.8. The Cayley trick:

Input:A = (A1, A2, . . . , Ar ), a tuple of point sets∑r
i=1 ki = n.

Output:4ω. a regular fine-mixed subdivision ofA

Ãi :=
{(

a
ei−1

) ∣∣∣∣ a ∈ Ai

}
;

construct extended point sets with
e0 = 0 andei = i th unit vector inEr−1

Cω:= Triang

(
conv

(
r⋃

i=1

Ãi

))
; construct a regular triangulation

4ω := {C | ∃C̃ ∈Cω: π(C̃) = C}. π projects to original coordinates

An example for the first step of Algorithm 3.8 is given in Fig. 7.

Fig. 7. The polytopesP1 andP2 are shown on the left. On the right is the big polytope as the convex hull of
the extended point sets.
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Denoteπ̂ as the projection map that forgets the additional coordinates introduced
by the Cayley trick, but which keeps the lifting coordinate. Following the notations of
Algorithm 3.8, we state the following proposition.

Proposition 3.9. Let Ĉω be a regular triangulation ofÃ. Then4̂ω = π̂(Ĉω) is a
regular fine-mixed subdivision ofA.

Proof. The projection̂π copies the liftingω onÃ ontoA. As the extended coordinates
are the same for all points which belong to the same component, there is a one-to-one
correspondence between the cellsĈγ ∈ Ĉω and π̂(Ĉγ ) ∈ 4̂ω. The property of fine
mixed is obtained becauseCω is a triangulation.

In the following sections we describe an approach to avoid calculation of the cells
that do not contribute to the mixed volume.

3.3. Computation of an Initial Mixed Cell

The aim is to detect the degeneracyVn(P) = 0 by computing a mixed cell

C = (C1,C2, . . . ,Cr ),

with Ci = {c0i , c1i , . . . , cki i } ⊂ Ai . A straightforward approach could be to apply
Algorithm 2.10 to compute, from each setAi in A, ki linearly independent points with
respect to a common origin. However, this approach is only sure to work when, for each
Ai , dim(Ai ) = n, as is illustrated in the following example.

Example 3.10. Consider the following tupleA = (A1, A2), n = 2= r :

A =
({(

0
0

)
,

(
3
0

)
,

(
1
2

)}
,

{(
0
0

)
,

(
1
0

)})
. (14)

The first two points ofA1 should not be taken, because then there is no other linearly
independent point left inA2 to choose. ThereforeA2 must be considered first.

Ordering the sets according to their dimension is only enough whenever theAi ’s lie
in complementary affine spaces. However, for the applications we have in mind, the
sparsity of the vectors also plays an important role, as is illustrated in the following
example.

Example 3.11. Consider the following tupleA = (A1, A2), n = 3, r = 2, with the
type of mixture given by (1, 2):

A =


0
0
0

 ,
1

0
0

 ,
0

2
0

 ,


0

0
0

 ,
1

0
0

0
0
1


 . (15)

Both sets have the same dimension. The last point of the first setA1 must be chosen,
otherwise no initial mixed cell can be found.
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The instrument to deal with sparse vectors is provided in the following definition.

Definition 3.12. Given a setA ⊂ En. Consideri ∈ {1, 2, . . . ,n}. Theoccurrence of i
with respect to Ais occ(i, A) = #{a ∈ A|ai 6= 0}. Considerx ∈ En. Theoccurrence ofx
with respect to Ais occ(x, A) = minxi 6=0 occ(i, A), if x 6= 0whereas occ(0, A) = #A+1.
This extends to the tuple of setsA = (A1, A2, . . . , Ar ): theoccurrence of i with respect
to A is occ(i,A) = ∑r

j=1 occ(i, Aj ) and theoccurrence ofx with respect toA is
occ(x,A) =∑r

j=1 occ(x, Aj ).

Example 3.13. Consider again the tupleA of Example 3.11. The vector(8 2 1 8 2 1)
gives the respective occurrences of the respective vectors with respect toA, as listed in
the order in which they appear in (15), i.e., occ((0 0 0)t ,A) = 8, occ((1 0 0)t ,A) = 2,
etc.

The key step for an algorithm for computing an initial mixed cell is presented in
Algorithm 3.14.

Algorithm 3.14. Computation of thei th component of an initial mixed cell:

Input: i , ki , current component
E ⊆⋃i−1

j=1 Aj , set of chosen points
R = (Ai , . . . , Ar ) with remainder ofA{

0 ∈ Aj , #Aj = dim(Aj )+ 1,
dim(Aj ∪ E) ≤ dim(Aj+1 ∪ E).

invariant conditions

Output:Ci , i th component of cell
E,R. updated sets

Ci := {0}; initialization
for j from 1 toki do

choosex ∈ Ai such that
(1) dim(E ∪ {x}) > dim(E) linearly independent
(2) x has minimal occurrence with respect toR take sparsity into account

of all possible choices which satisfy (1);
exit when no suchx can be found;
Ci := Ci ∪ {x}; E := E ∪ {x}; Ri := Ri \{x}; update Ci , E andR

end for.

Algorithm 3.14 has to be appliedr times, each time respecting the invariant conditions
given in the input specification. When the algorithm terminates with a componentCi ,
#Ci ≤ ki , then no linearly independent points could be found and the problem is de-
generate. Proposition 3.15 provides a formal guarantee for Algorithm 3.14. The proof
interprets Algorithm 3.14 as the computation of one nonzero term in the expansion of
the permanent of a matrix inZn×n

2 . See [53] for an efficient algorithm for computing
permanents of degree matrices.

Proposition 3.15. If Algorithm3.14yields a Ci with #Ci ≤ ki , then Vn(P) = 0.
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Proof. Without loss of generality, the sparsest case can be focused, i.e., all vectors in
A are unit vectors, denoted byei . For notational convenience,r = n is assumed. WithA
the following matrixM can be associated:Mi j = 1, if ej ∈ Ai , otherwiseMi j = 0. So,
the i th row of M representsAi , for i = 1, 2, . . . ,n. ThenVn(P) = 0⇔ per(M) = 0.
When Algorithm 3.14 is iterated on each row, it picks from each row exactly one element
on that column for which in the following rows there are a maximum number of zeros.
Only when per(M) = 0 will the algorithm not find enough nonzero elements.

By computing the vertex set of each separate point set in the tuple, those points which
will certainly not influence the mixed volume, regardless of the subdivision used to
compute it, can also be eliminated.

3.4. Normal Fans and Mixed Cells

Powerful tools to investigate the combinatorial structure of polytopes and subdivisions
arefans. Based on this abstraction, we present a major algorithmic cornerstone of both
the static and dynamic lifting algorithm. General definitions can be found in Lecture 7
of [56]. Here we reformulate the definitions using our notations.

Definition 3.16. Let A ⊂ En, then

K (A) = {γ ∈ En | ∀x, y ∈ A: 〈x, γ 〉 = 〈y, γ 〉}
is the normal cone1 on A. Let A ⊂ B, then

K (A, B) = {γ ∈ K (A) | ∀y ∈ B\A, ∀x ∈ A: 〈y, γ 〉 < 〈x, γ 〉}
is the normal cone on A with respect to B.

Definition 3.17. Let A ⊂ En, then

N j (A) = {K (∂γ A, A) | dim(∂γ A) = j }
is the normal cone complex of the j-faces∂γ A ofconv(A). If A is a lifted polytope, the
normal cone complex of thej -faces of the lower hull of conv(A) will be denoted by
N j
∨(A). Thenormal fanN (A) of A is the set of all normal cone complexesN j (A), for

j = 0, 1, . . . ,n.

As the definition is given for point sets, it extends naturally to polytopes. We refer to
p. 193 of [56] for an alternative definition of normal fans.

Definition 3.18. Given two normal cone complexesF andG. Theircommon refinement
is defined as

F ∧ G := {K ∩ K ′ | K ∈ F , K ′ ∈ G}.
Theroot of a normal cone complexF is defined by

⋂
K∈F K .

1 Cone = Kegel, both in German and Dutch.
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Fig. 8. The normal complexesN 1∨(P̂1) andN 1∨(P̂2), with P1 and P2 as in Fig. 7. The circles around the
intersection points indicate the mixed cells.

In [4] Betke proposed a new idea for the computation of mixed volumes based on
lifting and normal fans. See also Lemma 2.1.5 of [25]. In [45] this idea has been gener-
alized to more than two polytopes. Note that the idea of intersecting normal cones also
appeared in [8]. Here we reformulate the idea in the following theorem.

Theorem 3.19. Given Â = (Â1, Â2, . . . , Âr ), a tuple of lifted point sets, with∑r
i=1 ki = n, see(9). The normals in the common refinement

∧r
i=1N

ki∨ (Âi ) of the

normal cone complexes of the ki -faces of the lower hull ofconv(Âi ) are the outer
normals of the facets of the lower hull ofconv(Â1+ Â2+ · · · + Âr ). These facets deter-
mine the mixed cells in the subdivision ofA.

Example 3.20. Theorem 3.19 is illustrated in Fig. 8, on the same polytopes that have
been used to illustrate the Cayley trick. The lifting is assumed to be linear. The lifted
squareP̂1 has four 1-faces. The corresponding normal cones are two-dimensional and
share the one-dimensional normal coneK (P̂1) which defines the root, drawn as a point.
For the triangle there are three normal cones of 1-faces. They are two-dimensional and
have one common one-dimensional normal cone, drawn as a point. The intersection
points in Fig. 8 represent the normals that span the cones ofN 1

∨(P̂1) ∧N 1
∨(P̂2). These

normals define the mixed cells in the subdivision.

In [10], [18], and [30] the idea of Betke has been used to compute all mixed cells. Here
the algorithm suggested by Theorem 3.19, and in [10] and [18] described as the lift-and-
prune algorithm, is elaborated and presented to prepare the dynamic lifting algorithm.

Given a tuple of lifted point setŝA = (Â1, Â2, . . . , Âr ), any lifted cellĈγ of a regular
subdivision can be characterized by its inner normal as

Ĉγ = (∂γ Â1, ∂γ Â2, . . . , ∂γ Âr ). (16)

Since conv(Ĉγ ) = conv(
∑r

i=1 ∂γ Âi ) is a facet of the lower hull, the functional〈·, γ 〉
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attains its minimum over̂Ai at ∂γ Âi , i.e.,

〈̂a, γ 〉 = 〈̂b, γ 〉, ∀̂a, b̂ ∈ ∂γ Âi , i = 1, 2, . . . , r, (17)

〈̂a, γ 〉 > 〈̂b, γ 〉, ∀̂a ∈ Âi \∂γ Âi , ∀̂b ∈ ∂γ Âi , i = 1, 2, . . . , r. (18)

Algorithm 3.21 presents a way to compute all mixed cells by searching for feasible
solutions to the constraints (17) and (18). The algorithm enumerates all possible com-
binations ofki -faces, with proper feasibility tests to limit the search space. The order of
enumeration is organized so that mixed cells which share some faces also share a part
of the factorization work to be done to solve the system defined by (17).

Conditions (17) and (18) are used in the following way. After choosing aki -face
Ĉi = {̂c0i , ĉ1i , . . . , ĉki i } of Âi , it is checked whether(Ĉ1, . . . , Ĉi ) can lead to a mixed
cell in the induced subdivision. In thei th step we already have the upper triangular
matrix M1, with κ rows, originating from the vectors(̂cj ν − ĉ0ν)

t , ν = 1, 2, . . . , i − 1,
j = 1, 2, . . . , kν , with κ = ∑i−1

ν=1 kν . Then this matrixM1 is extended with new rows
defined by the vectors(̂cj i − ĉ0i )

t , j = 1, 2, . . . , ki . By making row combinations
and pivoting, we obtainM1 := L · M1 with entriesM1 = (mkl), such thatmµl = 0,
µ = κ+1, . . . , κ+ki , l = 1, 2, . . . , κ. A unimodular transformationU yields an upper
triangular form:M1 := U · M1. Condition (17), withν = 1, 2, . . . , i , is then equivalent
to M1γ = 0. If M1γ = 0 implies γn+1 = 0, then conv(Ĉ1) + · · · + conv(Ĉi ) lies in
a hyperplane perpendicular to the lifting axis and hence(Ĉ1, . . . , Ĉi ) cannot be part of
any mixed cell. This concludes the first feasibility test.

For the second feasibility test, the rows of the matrixM2 are extended with the
vectors(̂ai − ĉ0i )

t , âi ∈ Âi \Ĉi , since, in (18), it is sufficient to consider onlŷb = ĉ0i .
In the i th step we useM1γ = 0 to eliminateκ + ki unknowns, which reduces the
dimension of the space of inequalities ton − κ − ki . If the system of inequalities
M2γ ≥ 0 implies−γn+1 ≥ 0, then conv(Ĉ1) + · · · + conv(Ĉi ) is not a lower facet
of conv(Â1 + · · · + Âi ) and hence(Ĉ1, . . . , Ĉi ) cannot be part of any mixed cell. The
test whetherM2γ ≥ 0⇒ −γn+1 ≥ 0 is equivalent to determining whether the vector
(0, . . . ,0,−1) belongs to the cone spanned by the vectors in the columns ofM2. The
Farkas lemma (see, e.g., [56]) deals with this problem and can be worked out by linear
programming.

Algorithm 3.21. Shared factorizations subject to inequality constraints:

Input: (k1, k2, . . . , kr ), n =∑r
i=1 ki , type of mixture

(Â1, Â2, . . . , Âr ), lifted point sets
(̂F1, F̂2, . . . , F̂r ). ki -faces of lower hull ofconv(Âi )

Output:Ŝω = {Ĉ ∈ Ŝω | Vn(C) > 0}. collection of lifted mixed cells

At level i , 1≤ i < r :
DATA and INVARIANT CONDITIONS:
(M1, κ): M1γ = 0 6⇒ γn+1 = 0, equalities(17)

κ =∑i−1
j=1 kj upper triangular up to rowκ

(M2, κ): M2γ ≥ 0 6⇒ −γn+1 ≥ 0 inequalities(18)
dim(M2) = n− κ still feasible and reduced
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ALGORITHM:
for eachĈi ∈ F̂i do enumerate over all ki -faces

Triangulate(M1, κ, Ĉi ); ensure invariant conditions
if M1γ = 0 6⇒ γn+1 = 0 test for feasibility with respect to(17)
thenEliminate(M1,M2, κ, Ĉi , Âi ); eliminate unknowns

if M2γ ≥ 0 6⇒ −γn+1 ≥ 0 test for feasibility with respect to(18)
then proceed to next leveli + 1;

end if;
end if;

end for.
At level i = r :

Computeγ : M1γ = 0;
Merge the new cells with the list̂Sω.

Note that (18) had to be weakened to≥ type inequalities in order to be able to compute
also subdivisions that are not mixed. This also explains the merge operation at the end.
The feasibility tests in the algorithm allow an efficient computation of the mixed cells.
As an alternative to these feasibility tests we refer to similar criteria which can be verified
by means of linear programming, as presented by Emiris and Canny in [18].

In Algorithm 3.21 a lot of face–face combinations that do not lead to mixed cells
need to be tested. For semimixed tuples of polytopes, it might often be beaten by the
Cayley trick and it is certainly not the appropriate tool for the unmixed case. The dynamic
lifting algorithm applies Algorithm3.21with a relatively small input set, which assures
its efficiency.

3.5. Conservative Lifting Functions Applied to Mixed Cells

A linear lifting functionω is face structure preserving, i.e., there is a one-to-one cor-
respondence between the faces∂γ Ai of Ai and the faces of the lower hull of̂Ai . For a
generic choice of linearω a mixed subdivisionA is induced. However, in the context of
dynamic lifting a nonlinear lifting is more appropriate.

Analogously to Definition2.14, we define conservative lifting functions. DenoteŜω

as the collection of mixed cells in the regular subdivision ofA = (A1, A2, . . . , Ar ) and
Ŝ(i )ω as the corresponding regular subdivision ofAi , i = 1, 2, . . . , r .

Definition 3.22. Let Ĉγ = (Ĉ1, Ĉ2, . . . , Ĉr ) be a cell. Consider a pointx with respect
to Ĉi . Let ω(x) = x̂n+1 so that〈̂x, γ 〉 > 〈Ĉi , γ 〉, thenω is called aconservative lift-
ing with respect to the ith component of̂Cγ . If ω is a conservative lifting with respect
to all cells in Ŝ(i )ω and with respect to thei th component of all cells in̂Sω, thenω is
called aconservative lifting with respect tôS(i )ω and with respect to the ith component
of Ŝω.

Analogously to Proposition2.16, optimal discrete lifting functions can be defined.



Mixed-Volume Computation by Dynamic Lifting Applied to Polynomial System Solving 95

Proposition 3.23. Consider a pointx with respect to Ai . Then the lowest possible value
of a discrete conservative lifting function is given by

ωi (Ŝω, Ŝ(i )ω , x) := max

(
ωi (Ŝ

(i )
ω , x), max

Ĉγ ∈ Ŝω

ωi (Ĉγ i , x)

)
, i = 1, 2, . . . , r, (19)

where, on the right-hand side, formulas(5) and(6) are applied respectively.

Analogously to the unmixed case, the mixed cells are preserved by conservative
lifting. Denote the collection of mixed cells in the regular subdivision of(A1, . . . , Ai ∪
{x}, . . . , Ar ) by Ŝ′ω and the corresponding subdivision ofAi ∪ {x} by Ŝ′

(i )
ω .

Lemma 3.24. Considerx with respect to Ai . Let dim(Ai ∪ {x}) < n. Let x be lifted
conservatively with respect to the ithcomponent of̂Sω. ThenŜω ⊆ Ŝ′ω. If x ∈ conv(Ai ),

thenŜω = Ŝ′ω, otherwise, ∀Ĉγ ∈ Ŝ′ω\Ŝω, Ĉγ = (Ĉ1, . . . , Ĉi , . . . , Ĉr ): x̂ ∈ Ĉi .

Proof. Due to the conservative lifting ofx, for eachĈγ ∈ Ŝω, 〈·, γ 〉 still attains its
minimum atĈγ , soĈγ ∈ Ŝ′ω. The proof of the second statement is trivial.

Lemma 3.25. Considerx with respect to Ai . Let dim(Ai ∪ {x}) = n. Let x be lifted
conservatively with respect to the ith component of̂Sω and with respect tôS(i )ω . Then

Ŝω ⊆ Ŝ′ω andŜ(i )ω ⊆ Ŝ′
(i )
ω . If x ∈ conv(Ai ), thenŜω = Ŝ′ω, otherwise, ∀Ĉγ ∈ Ŝ′ω\Ŝω,

Ĉγ = (Ĉ1, . . . , Ĉi , . . . , Ĉr ): x̂ ∈ Ĉi andĈi belongs to the lower hull ofconv(Âi ∪ x̂).

Proof. The statements concerning the mixed cells can be derived from Lemma3.24.
BecausêCγ belongs to the lower hull of conv(Â1+ Â2+ · · · + Âr ), its componentŝCi

belong to the lower hull of conv(Âi ).

Note that in special cases it may happen that no new mixed cells are obtained (Ŝω = Ŝ′ω)
althoughx 6∈ conv(Ai ).

Lemma3.25uses the change of the normal cone complexN ki∨ (Âi ) by adding a point
x. Observe thatN kj

∨ (Âj ), j 6= i , do not change. Ifx 6∈ conv(Ai ), then Â′i = Âi ∪ {x}
has new facets in the lower hull in comparison witĥAi , which gives new cells inS′(i )ω .

The new facets in the lower hull generate newki -faces. Some of them areki -faces of
old facets. Others are new. The normal cone of one oldki -faceC is modified:K (C, Â′i ) ⊂
K (C, Âi ). Instead ofK (C, Âi ) ∈ N ki∨ (Âi ) we haveK (C, Â′i ) ∈ N ki∨ (Â′i ). The normal
cones of the newki -facesK (C, Â′i ) are new elements ofN ki∨ (Â′i ).

The analogue definition for flattening corresponds to Definition2.20.
Computing new mixed cells can be done by lifting the new pointx conservatively and

applying Algorithm3.21, where the input for thei th component can be restricted to the
newki -faces that contain̂x. It is important to note that even a simple mixed subdivision
cannot be guaranteed, because we are only dealing with the collection of mixed cells.
See Section3.7for how to deal with this fact.
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3.6. Incremental Construction with Connectivity

In this section the analogue pivoting mechanism of the dynamic lifting algorithm for the
general case is described. Here we conjecture that in a regular subdivision, all mixed
cells are connected. Therefore, we first investigate the modification of the normal cone
complexes by the addition of a new point more carefully.

Assume that dim(Aj ) = n for all j = 1, . . . , r . There is a subdivisionS(i )ω of Ai

induced byωi . In addition to the normal cone complexN ki∨ (Âi ) we consider, for each
facet∂γ Âi in the lower hull ofÂi , the normal cone complexN ki∨ (∂γ Âi ). For eachki -face
C of ∂γ Âi there is a coneK := K (C, ∂γ Âi ) ∈ N ki∨ (∂γ Âi ). If C is a common face of
two facets∂γ1 Âi and∂γ2 Âi , thenK (C, ∂γ1 Âi ) ∩ K (C, ∂γ2 Âi ) ⊂ K (C, Âi ) ∈ N ki∨ (Âi ).
We consider the root

∧
K∈N ki

∨ (∂γ Âi )
K of the normal cone complex. Since∂γ Âi is a facet

of the lower hull, the root is generated by the outer normal−γ of ∂γ Âi .

Adding a pointx 6∈ conv(Ai ) to Ai gives rise to new facets∂γ Â′i in the lower hull
and thus gives rise to new normal conesK (∂γ Â′i ) and new normal cone complexes
N ki∨ (∂γ Â′i ) and new roots. This process can be visualized nicely with an example.

Example 3.26. Consider again the same polytopes as in Fig.8. On the left in Fig.9
the normal cone complexesN 1

∨(P̂1) andN 1
∨(P̂2) are drawn in a way that the intersection

points are put above the corresponding mixed cells of the induced subdivision of(P1, P2).
Since the induced subdivisionsS(1)ω1

andS(2)ω2
consist only of one cell, respectively, the

complexesN 1
∨(P̂1) andN 2

∨(P̂2) are already the complexesN 1
∨(∂γ P̂i ) for the cells∂γ P̂i in

the subdivision of̂Pi . On the right the point(3, 1)t has been considered with respect toP2

and amended after lifting it conservatively. A new cellC2 is obtained, soS′(2)ω2
= {C1,C2}.

Thus two roots are drawn. Two conesK1 ∈ N 1
∨(Ĉ1) andK2 ∈ N 1

∨(Ĉ2) have a nonempty
intersection which is drawn as the line between the two roots. The conservativeness of
the lifting is reflected by the fact that the intersection points in the left picture also exist
in the right picture.

Fig. 9. The normal cone complexesN 1∨(P̂1) andN 1∨(P̂2), with the same subdivision ofP1+ P2 as in Fig.8,
are shown on the left. The roots of the normal cone complexes have been placed so that intersections between
dashed and thick lines lie above the mixed cells. On the right, one point has been amended toP2.



Mixed-Volume Computation by Dynamic Lifting Applied to Polynomial System Solving 97

In Fig.9 it is seen that the three mixed cells are connected to each other. The argument
presented in the following sentence is due to Pedersen. By considering the corresponding
construction with normal cone complexes, passing from one intersection point to another
one becomes possible by going back to the roots. For a polytope it is obvious that all
faces areconnected to each other, i.e., for each pair ofk-facesF, F∗, there is a path of
k-facesF( j ), j = 0, . . . , s, such thatF(0) = F, F(s) = F∗, dim(F( j ) ∩ F( j+1)) ≥ k − 1,
j = 0, . . . , s− 1. The notion of connectivity of mixed cells is more complicated.

Definition 3.27. Let Sω be the induced subdivision ofA. Denote the collection of lifted
mixed cells inŜω by Ŝω. Two mixed cellsĈ, D̂ ∈ Ŝω areconnected to each otherif
there is a path from̂C to D̂: a sequence of mixed cellŝC( j ) ∈ Ŝω, j = 0, 1, . . . , s, exists
such that̂C(0) = Ĉ andĈ(s) = D̂, with

dim(Ĉ( j )
i ∩ Ĉ( j+1)

i ) ≥ ki − 1, ∀i = 1, . . . , r, j = 0, . . . , s− 1. (20)

Ignoring the lifting values, the mixed cellsC and D are said to beconnected to each
other. If all mixed cells inŜω are connected to each other, thenŜω isconnected. Ignoring
the lifting values,Sω is connectedif all its mixed cells are connected to each other.

The following conjecture was first stated by Pedersen [42]:

Conjecture 3.28. Let Sω be the induced subdivision ofA and letSω be the set of mixed
cells. ThenSω is connected.

For n = 2, Pedersen has given a proof, based on normal fans. His idea has been shown
on the left of Fig.9.

Algorithm 3.29allows the exploitation of the connectivity of the mixed cells. It is
important to note that this only happens when4̂(i )ω 6= ∅, for full-dimensional polytopes.
Also, as long as Conjecture3.28remains unproven, this part of the algorithm remains
heuristic, but this can be directly switched off by omitting the test on4̂(i )ω = ∅ and
applying Algorithm3.21with all lower ki -faces instead of only the neighboring ones.
Furthermore, note that, for Algorithm3.29, it is sufficient that this conjecture holds for
anyplaceableregular mixed subdivision.

Algorithm 3.29. The dynamic lifting algorithm to compute new mixed cells:

Input: (k1, k2, . . . , kr ), n =∑r
i=1 ki , type of mixture

(Â1, Â2, . . . , Âr ), lifted point sets
(̂F1, F̂2, . . . , F̂r ), ki -faces of lower hull ofconv(Âi )

(4̂(1)ω , 4̂(2)ω , . . . , 4̂(r )ω ), facets of lower hull ofconv(Âi )

Ŝω = { Ĉ ∈ Ŝω | Vn(C) > 0 }, collection of mixed cells
x, i . a point to add to Ai

Output:(Â1, . . . , Âi ∪ {̂x}, . . . , Âr ), updated lifted point sets
(̂F1, . . . , F̂i ∪ F̂x

i , . . . , F̂r ), updated ki -faces
(4̂(1)ω , . . . , 4̂(i )ω ∪ 4̂(i )xω , . . . , 4̂(r )ω ), updated regular triangulations
Ŝω ∪ Ŝx

ω. updated collection of mixed cells
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COMPUTEF̂x
i :

x̂n+1 := ω(Ŝω, 4̂(i )ω , x, i ); lift the point conservatively
Âi := Âi ∪ {̂x}; update lifted points set
if 4̂(i )ω = ∅ update triangulation of Ai

then
if dim(Ai ) < n

thenF̂x
i := EnumerateFaces(Âi , ki , x̂); new ki -faces

else4̂(i )xω := Initial Facets(Âi , x̂); initial facets of lower hull
F̂x

i := EnumerateFaces(4̂(i )xω , ki , x̂); new ki -faces
4̂(i )ω := 4̂(i )ω ∪ 4̂(i )xω ; update the lower hull

end if;
else4̂(i )xω := NewFacets(4̂(i )ω , x̂); apply Algorithm2.9

F̂x
i := EnumerateFaces(4̂(i )xω , ki , x̂); new ki -faces
4̂(i )ω := 4̂(i )ω ∪ 4̂(i )xω ; update the lower hull

end if.

COMPUTEŜx
ω:

if 4̂(i )ω = ∅
thenŜx := Algorithm 3.21(F̂1, . . . , F̂

x
i , . . . , F̂r ); new mixed cells

elseŜx
ω := ∅; exploit neighborship relations

for all cellsC ∈ Sω do apply the connectivity
F̂′xi := NeighboringFaces(C, F̂x

i ); neighbored new ki -faces
if F̂′xi 6= ∅ then

for all j in {1, . . . , r }\{i } do
F̂′j := NeighboringFaces(C, F̂j ); apply the connectivity

end for;
Ŝ′xω := Algorithm 3.21(F̂′1, . . . , F̂

′x
i , . . . , F̂

′
r ); new mixed cells

Ŝx
ω := Ŝx

ω ∪ Ŝ′xω ; update mixed cells
end if;

end for;
end if.

The idea is to apply Algorithm2.9to compute the newki -faces ofÂi ∪ {̂x} after adding
a point x to Ai . The new mixed cells will be computed by repeated applications of
Algorithm 3.21which is called for each old mixed cell which is neighbored to a newki -
face. Algorithm3.21is called with the following small input set: LetC = (C1, . . . ,Cr )

be the old mixed cell.̂F′xi are those newki -faces which have a common(kj − 1)-face
with Ĉi . F̂′j , j 6= i , are thekj -faces which share a common(kj − 1)-face withĈj . In

practice, it turns out to be efficient to put the new facesF̂′xi in front of the argument list
of Algorithm 3.21, in order to avoid to make face–face combinations which lead to other
mixed cells, not containing any of the new faces.

In the beginning, when only the initial cell and some other cells exist, Algorithm3.21is
called with all newki -faces. Note that, when dim(Ai )becomesn, due to the consideration
of x, Initial Facetsfirst computes one initial cell and then applies Algorithm2.9 to all
other points inAi . Note that #Ai might be larger than dim(Ai ). The newki -faces are
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computed byEnumerateFaces, which applies either to the whole list̂Ai or to the new
cells in4(i )xω .

Algorithm 3.29combines the advantages of both the Cayley trick (Algorithm3.8)
and the generalization of Betke’s idea (Algorithm3.21), because it allows exploitation
of the neighborship relations, so that many spurious face–face combinations can be
preventeda priori, as opposed to the feasibility tests in Algorithm3.21. This implies
that Algorithm3.29provides an efficient solution to the unmixed, semimixed, and fully
mixed case.

3.7. Unfolding Cells with the Same Inner Normal

For the unmixed case, we mentioned in Section2.6that, due to flattening, different cells
could get the same inner normal. Because the cells are stored as before, this fact does
not influence the computation of new cells or the computation of the volume. However,
for static polyhedral continuation, i.e., the approach presented in [30], all cells need to
have a different inner normal.

For dynamic polyhedral continuation, see Section4.2, the following approach can be
applied. The solutions which correspond to the existing cells have to be extended to the
enlarged system, and therefore they can all use thesamehomotopy, generated by the
sameinner normal. In order to compute the solutions which correspond to the new cells,
the points which belong to those new cells with the same inner normal can be relifted,
by exploiting the data structure and by application of conservative lifting functions. In
Fig. 10 theunfoldingof cells is pictured on a small example.

The application to this unfolding method is straightforward when the Cayley trick is
used to compute the mixed volume. However, when only the mixed cells are computed
in Algorithm 3.29, we still have to rely on the recursion mechanism described in [50]
to deal with the case when some mixed cells are not exactly of type(k1, k2, . . . , kr ).
So, there is a tradeoff on the bound to be set for the lifting value. If the bound is low,
flattening will occur frequently, which leads to relifting afterward.

Fig. 10. A triangulation4 is shown on the left. The big numbers indicate the values of the lifting function. In
the middlê4 has been flattened and new cells which containx = (3, 1)t have been added. The two new cells
have the same inner normalγ = (−1, 0, 2). The modification of the lifting is displayed on the right. Here the
two new cells have a different inner normal. The arrow indicates the order of traversing the new cells while
relifting.
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3.8. Complexity and Cost Estimates

Like volume computation, the problem of mixed-volume computation is known to be #P-
hard, see [14] and [25]. The analogue result as in the unmixed case from computational
convexity is given by the following proposition.

Proposition 3.30[25]. When the dimension n is fixed, the mixed volume of a tuple of
polytopes can be computed in polynomial time in the input size.

By application of the Cayley trick, Theorem2.25can be extended in a straightforward
way. Again it is assumed that the problem is nondegenerate.

Theorem 3.31. Given a tuple of points setsA = (A1, A2, . . . , Ar ). Denote m=
n + r − 1. Let #A = ∑r

i=1 #Ai andA′ = A\C, with C a cell. The construction of a
placeable fine-mixed subdivision S ofA takes at least O((#S)m3 + (#A′)m2), at most
O((#S)m3 + (#S)(#A′)m2), and on average O((#S)m3 + (#S)(#A′)m) arithmetical
operations.

Note that #S stands for the cardinality of the whole subdivision, with mixed as well as
unmixed cells included. The Cayley trick becomes more expensive whenr increases.

The cost of the static lifting method, based on the idea of Betke, has been investigated
in great detail in [14] and in [17] and [18]. Following these approaches, a bound on the
complexity of linear programming is needed. Therefore, the following result (see [24])
is used.

Theorem 3.32 (Karmarkar’s Projective Algorithm Runs in Polynomial Time).
Karmarkar’s algorithm can be adapted to solve the general linear programming problem
in O(nL) steps, where the average step-complexity is O(n5/2L). The required precision
is O(L).

Fixed-precision calculation is assumed, so the factorL is omitted in what follows.
Recall the following notations:̂Fi denotes theki -faces of the lower hull ofPi and the
collection of mixed cells in the subdivisionSω is denoted bySω.

Theorem 3.33. Letεi ∈ [0, 1] be the probability of success that a ki -face inF̂i passes
the feasibility test. On average, computing the collection of mixed cellsSω requires
O(
∏r

i=1(#F̂i )εi [in + (n− i )7/2]) arithmetical operations.

Proof. In order to computeSω all face–face combinations need to be considered. This
explains the product of the cardinalities of theki -faces with their respective probabilities.
At level i , it takes timeO(in) to perform the elimination step in Algorithm3.21. Ap-
plying Theorem 3.32, the average time needed to solve a linear programming problem
in dimensionn− i is given byO((n− i )7/2).

Note the practical importance of this elimination step in Algorithm3.21, as it allows
reduction of the dimension of the second feasibility test. The asymptotic complexity
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for the dynamic lifting algorithm is the same as given in Theorem3.33, although in
practice Algorithm3.21can benefit from sharing factorizations, i.e., at leveli all face–
face combinations of one branch can use the result of the same elimination step, while in
Algorithm 3.29these factorizations have to be computed again, each time the algorithm
is invoked with a new point.

4. Impact on Polynomial System Solving

4.1. The Theorem of Bernshteı̌n

Computation of the full solution set of a polynomial systemF = ( f1, f2, . . . , fn) in
n unknowns is often required in many applications. The third section provides some
examples. Homotopy continuation methods have proven to be reliable for this purpose,
see [36] for an introduction. The system to be solved is embedded into a family of
systems, the so-called homotopy, which defines paths of solutions from known solutions
to the desired solutions to be traced numerically by continuation methods. Recently,
polyhedral homotopy methods have been presented [30], [52] for computation of all
isolated roots of sparse Laurent polynomial systems inCn

0, with C0 = C\{0}.

Definition 4.1. A Laurent polynomial fis defined as

f (x) =
∑
ca∈A

caxa, ca ∈ C0, xa = xa1
1 xa2

2 · · · xan
n , A ⊂ Zn, #A <∞.

The setA is thesupportof f , A = supp( f ). Its convex hull,P = conv(A), is theNewton
polytopeof f .

Definition 4.2. A Laurent polynomial system Fis defined by a tuple of Laurent poly-
nomials,F = ( f1, f2, . . . , fn). The tuplesA andP collect respectively the supports and
Newton polytopes:

A = (A1, A2, . . . , An), Aj = supp( f j )

P = (P1, P2, . . . , Pn), Pj = conv(Aj )
, j = 1, 2, . . . ,n.

The relationship between tuples of polytopes and systems of polynomial equations
has been given by Bernshteˇın, see [3].

Theorem 4.3. Let F be a system of n Laurent polynomials with supportA and the
associated tuple of Newton polytopesP. Then for almost all choices of the coefficients
the system F has exactly as many roots inCn

0 as Vn(P).

Canny and Rojas presented a refined version of this theorem in [11]. They named
the mixed volume of the Newton polytopes the BKK bound, named after its inventors,
Bernshteˇın [3], Kushnirenko [33], andKhovanskiˇı [32]. See Chapter 4, Section 27, of
[9] for more on the importance of mixed volumes in algebraic geometry. In [44] more
refinements of the theorem are presented. Instead of the above definitions which might
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Fig. 11. The regular triangulation is shown on the left. The corresponding polynomial system and the induced
homotopy are displayed at the right.

look artificial, a Newton polytope can be related to a Laurent polynomial via an amoeba,
see Chapter 6, Section 1, of [23], which models the asymptotic behavior of the roots.
In [8] Newton polyhedra have been applied to compute the local uniformization for all
branches of a curve defined by a system of equations inn-dimensional space.

4.2. Incremental Polyhedral Continuation

In [30] another constructive proof of Bernshteˇın’s theorem has been presented, intro-
ducing the concept of polyhedral continuation for computing all isolated solutions of
F(x) = 0. Here we illustrate the idea of incremental polyhedral continuation with a
small example.

Example 4.4. In Fig. 11 a regular triangulation of a polynomial system with the ran-
domly chosen complex coefficients is shown. The triangulation4ω also subdivides the
systemF in initial form systems Fγi , which are subsystems ofF whose exponent vectors
all belong toCγi , i = 1, 2, . . . ,#4ω. The induced homotopŷF can be used directly to
extend the solutions of the initial form systemFγ2 to the systemF . In order to extend the
solutions corresponding to the subsystemFγ1, a transformation needs to be used, defined
by the components of the inner normalγ1:

γ1 = (1,−1, 3) = 3×
(

1

3
,
−1

3
, 1

)
, x1← x̃1t1/3, x2← x̃2t−1/3, (21)

which leads to the homotopy

Hγ1 (̃x1, x̃2, t) =
{

x̃3
1 x̃3

2 + c11̃x3
1t1+ c12̃x3

2 + c13 = 0,

x̃3
1 x̃3

2 + c21̃x3
1t1+ c22̃x3

2 + c23 = 0.
(22)

For t = 0,Hγ1 (̃x, 0) = Fγ1 (̃x) and, fort = 1,Hγ1 (̃x, 1) = F (̃x). So, by lettingt vary
from 0 to 1, the desired solutions can be computed.
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This example illustrates the advantages of the induced homotopy obtained by the
dynamic lifting algorithm: all lifting values are as low as possible which leads to a
well-conditioned homotopy whose solution paths are weakly nonlinear and hence less
expensive to track numerically than with a homotopy induced by a random lifting func-
tion.

4.3. Computational Experiences

After having done all this hard work ourselves, it is now time to put the computer to
work. The algorithms presented above have been implemented in Ada, with the aid of
the Verdix Ada System (VADS). All modules and programs are compiled and executed
on a DECStation 5000/240. Except for the linear program solver, we have worked with
integer calculus, because we are dealing with Newton polytopes.

4.3.1. The Nine-Point Problem. A long-standing problem in mechanism design has
been the problem of finding all four-bar linkages whose coupler curve passes through nine
prescribed points. Recently, in [55], for the first time a complete solution has been given.
In [39] an efficient homotopy has been designed by exploiting its product-decomposition
structure.

In [39] the unknowns of this system are grouped in two 6-tuplesz= (n, n̂, x, x̂,a, â)
andw = (m, m̂, y, ŷ, b, b̂). The coordinates of the precision points are defined by the
numbersδi andδ̂i , for i = 1, 2, . . . ,8. The ninth precision point lies in the origin. The
first four equations are

n = ax̂, n̂ = âx, m= b̂y, m̂= b̂y, (23)

and the remaining eight equations have the following form:

fi (z,w) = γi (z,w)γ̂i (z,w)+ γi (z,w)γ 0
i (z,w)+ γ 0

i (z,w)γ̂i (z,w) = 0, (24)

i = 1, 2, . . . ,8,

where the polynomialsγi (z,w), γ̂i (z,w), andγ 0
i (z,w) can be written in terms of linear

ones:

γi (z,w) = qi (z)ri (w)− qi (w)ri (z), (25)

γ̂i (z,w) = ri (z)pi (w)− ri (w)pi (z), (26)

γ 0
i (z,w) = pi (z)qi (w)− pi (w)qi (z), (27)

wherepi , qi , andri are defined as

pi (z) = n̂− δ̂i x, qi (z) = n− δi x̂, ri (z) = δi (̂a− x̂)+ δ̂i (a− x)− δi δ̂i , (28)

pi (w) = m̂−δ̂i y, qi (w) = m−δi ŷ, ri (w) = δi (̂b− ŷ)+δ̂i (b−y)−δi δ̂i . (29)

By the first four equations (23), the unknownsn, n̂, m, andm̂ can be replaced by their
respective right-hand sides into the remaining eight equations (24). The resulting system



104 J. Verschelde, K. Gatermann, and R. Cools

is unmixed and consists of eight equations of degree seven. Hence the total degree, i.e., the
product of all degrees of the polynomials, equals 78 =5,764,801. This substitution blows
up the total degree (originally equal to 2448 = 1,048,576), and the bestm-homogeneous
Bézout bound (from 286,720 to 645,120,m = 4), but leaves the BKK bound unchanged.
The fact that all polytopes in the system are the same makes it easier to handle.

Now we give the results of our program on this eight-dimensional problem. In the
system there are 259 terms, but only 158 of them lead to vertices. The time needed to
verify this was less than 3 minutes (163 cpu sec.). For a random addition of the points,
there are 13,339 simplices in the triangulation, computed in about 36 minutes (2162 cpu
sec). The volume equals 83,977 divided by 8!. Computation of the volume, given the
triangulation, costs about 1.3 minutes (75 cpu sec.).

The cost bounds for the dynamic lifting algorithm, as derived in Section2.7, will be
checked on this example. The time for the computation of the volume, given the triangu-
lation4, corresponds toO((#4)n2). Multiplication byn givesO((#4)n3), yielding 600
cpu sec. (75 cpu sec.×8) as the total cost for all factorizations. By dividingO((#4)n2)by
#4 and multiplying by #A′, the cost for computing the additional decompositions in the
optimal case is given by 0.8 cpu sec. (75 cpu sec./13,339×(158−9)). In the worst case,
multiplying O((#4)n2) by #A′ yields 11,175 cpu sec. (75 cpu sec.×(158−9)) as the to-
tal cost for computing all decompositions. In the average case, dividingO((#A′)(#4)n2)

by n yields 1397 cpu sec. (11,175/8). After adding the factorization and decomposition
costs the following inequality is obtained: 601< 2,162< 11,775, while the average cost
bound equals 1997 cpu sec., which is quite close to the actual computing time. Note that
the latter time contains not only the arithmetic operations, but also the overhead caused
by, e.g., memory management.

The purpose of this example is to demonstrate the complexity of volume computation,
and not to claim that this leads to an efficient approach for solving this system. It is worth
noting that the BKK bound 83,977 is less than 286,720, which is the bound for the number
of the solutions which the brute-force technique in [55] was based on. As explained in
[39], the product-decomposition structure of the system should be exploited in order to
solve it more efficiently.

4.3.2. A PUMA Robot. The hand position and orientation of a PUMA robot can be
modeled [37] by the following:

x2
1 + x2

2 − 1 = 0,
x2

3 + x2
4 − 1 = 0,

x2
5 + x2

6 − 1 = 0,
x2

7 + x2
8 − 1 = 0,

0.004731x1x3 − 0.3578x2x3 − 0.1238x1 − 0.001637x2 − 0.9338x4 + x7 − 0.3571= 0,
0.2238x1x3 + 0.7623x2x3 + 0.2638x1 − 0.07745x2 − 0.6734x4 − 0.6022= 0,

x6x8 + 0.3578x1 + 0.004731x2 = 0,
−0.7623x1 + 0.2238x2 + 0.3461= 0.

The total degree of this system equals 128. By partitioning the set of unknowns in
Z = {{x1, x2}, {x3, x4, x7, x8}, {x5, x6}}, the 3-homogeneous B´ezout bound equals 16.
The BKK bound equals 16, which is the exact number of isolated roots of this system.
The remarkable fact of this system is thatany initial mixed cell has volume 16.
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4.3.3. Camera Motion from Point Matches. The following system models the displace-
ment of a camera between two positions in a static environment, with the coordinates of
the matched points as given in [17]. The coordinates of the frames have been scaled, i.e.,
all components have been divided by 1000. In [20] this problem has been formulated
using epipolar geometry.

−3.6d1q1 + 4.1d1q2 + 2.0d1q3 + 0.1d1 + 4.1d2q1 + 1.8d2q2 + 3.7d2q3 − 0.2d2

+2.0d3q1 + 3.7d3q2 − 4.0d3q3 + 0.3d3 + 0.1q1 − 0.2q2 + 0.3q3 + 5.8 = 0,
−2.140796d1q1 − 3.998792d1q2 + 3.715992d1q3 − 0.2828d1 − 3.998792d2q1

−1.575196d2q2 − 3.998792d2q3 + 3.715992d3q1 − 3.998792d3q2 − 2.140796d3q3

+0.2828d3 − 0.2828q1 + 0.2828q3 + 5.856788= 0,
0.3464d1q1 + 0.1732d1q2 − 5.999648d1q3 − 0.1732d1 + 0.1732d2q1 − 5.999648d2q2

−0.1732d2q3 + 0.3464d2 − 5.999648d3q1 − 0.1732d3q2 − 0.3464d3q3 − 0.1732d3

−0.1732q1 + 0.3464q2 − 0.1732q3 + 5.999648= 0,
−5701.3d1q1 − 2.9d1q2 + 3796.7d1q3 − 1902.7d1 − 2.9d2q1 − 5698.7d2q2

+1897.3d2q3 + 3803.3d2 + 3796.7d3q1 + 1897.3d3q2 + 3803.3d2 + 3796.7d3q1

+1897.3d3q2 + 5703.1d3q3 + 0.7d3 − 1902.7q1 + 3803.3q2 + 0.7q3 + 5696.9 = 0,
−6.8d1q1 − 3.2d1q2 + 1.3d1q3 + 5.1d1 − 3.2d2q1 − 4.8d2q2 − 0.7d2q3 − 7.1d2

+1.3d3q1 − 0.7d3q2 + 9.0d3q3 − d3 + 5.1q1 − 7.1q2 − q3 + 2.6 = 0,
−d1q1 − d2q2 − d3q3 + 1 = 0.

The total degree of this system equals 64. By partitioning the set of unknowns as{{d1,
d2, d3}, {q1, q2, q3}}, the 2-homogeneous B´ezout bound 20 is obtained, which equals
the mixed volume and the exact number of isolated solutions. The system is semimixed,
i.e., there are only three different support sets. Therefore, it can be handled efficiently
with the Cayley trick and, by exploiting the connectivity conjecture, the dynamic lifting
algorithm computes the mixed volume more efficiently than the static lifting algorithm.

4.3.4. An Inverse Position Problem. This system occurs as Example 3.3 in [53] and
has been described in [54]. It represents an inverse position problem for six-jointed robot
arms. 

c2
1 + z2

21+ z2
22− 1 = 0,

z2
31+ z2

32+ z2
33− 1 = 0,

z2
41+ z2

42+ z2
43− 1 = 0,

z2
51+ z2

52+ z2
53− 1 = 0,

c1z33− c2 + z21z31+ z22z32 = 0,
−c3 + z31z41+ z32z42+ z33z43 = 0,
−c4 + z41z51+ z42z52+ z43z53 = 0,
−c1 + z51z61+ z52z62+ z53z63 = 0,

−c1e2z32+ d2z21+ d3z31+ d4z41+ d5z51− e1z22+ e2z22z33+ e3z32z43

−e3z33z42+ e4z42z53− e4z43z52+ e5z52z63− e5z53z62− p61 = 0,
c1e2z31+ d2z22+ d3z32+ d4z42+ d5z52+ e1z21− e2z21z33− e3z31z43

+e3z33z41− e4z41z53+ e4z43z51− e5z51z63+ e5z53z61− p62 = 0,
c1d2 + d3z33+ d4z43+ d5z53+ e2z21z32− e2z22z31+ e3z31z42

−e3z32z41+ e4z41z52− e4z42z51+ e5z51z62− e5z52z61− p63 = 0.

The total degree of this system equals 1024. The 2-homogeneous B´ezout number equals
320, with partition of the unknowns, computed in [53],

Z = {{z21, z23, z41, z42, z43}, {z31, z32, z33, z51, z52, z53}}.
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A better root count is provided by the BKK bound which equals 288. For any random
complex choice of the parameters, there are only 16 finite regular solutions. This example
illustrates the difficulty the dynamic lifting algorithm has when the factorizations cannot
be shared (see the last paragraph of Section3.8).

4.3.5. A Heart-Dipole Problem. The following problem has been presented as a heart-
dipole problem, see [38] and [40]. The original problem description can be found in
[41]. 

a+ b = 0.6325,
c+ d = 0.8465,

ta+ ub− vc− wd = 0.1245,
va+ wb+ tc+ ud = 5.3452,

at2 − av2 − 2ctv + bu2 − bw2 − 2duw = 1.4352,
ct2 − cv2 + 2atv + du2 − dw2 + 2buw = 0.9896,

at3 − 3atv2 + cv3 − 3cvt2 + bu3 − 3buw2 + dw3 − 3dwu2 = 0.3464,
ct3 − 3ctv2 − av3 + 3avt2 + du3 − 3duw2 − bw3 + 3bwu2 = 3.1345.

The right-hand sides of the equations are the parameters of the system and have been
chosen at random. The total degree of this system equals 576. When partitioning the
set of unknowns intoZ = {{a, b, c, d}, {t, u, v, w}}, the 2-homogeneous B´ezout bound
equals 193. The BKK bound equals 121. In [38] the number of solutions with a generic
choice of the parameters, the so-called coefficient-parameter bound, is reported to equal
32. However, there is a type error in the formulation of the system, as presented in [38], so
that for the original problem, presented in [41] and in [40], there can be only four regular
solutions, for random right-hand sides. There are only two real symmetrical solutions.
Note that in [40], this system has been reduced to a quadratic univariate equation.

4.3.6. Butcher’s Problem. The next system belongs to the POSSO test suite, available
at the site gauss.dm.unipi.it by anonymous ftp.

zu+ yv + tw − w2− 1/2w − 1
2 = 0,

zu2+ yv2− tw2+ w3+ w2− 1/3t + 4/3w = 0,

xzv − tw2+ w3− 1/2tw + w2− 1/6t + 2/3w = 0,

zu3+ yv3+ tw3− w4− 3/2w3+ tw − 5/2w2− 1/4w − 1
4 = 0,

xzuv + tw3− w4+ 1/2tw2− 3/2w3+ 1
2tw − 7/4w2− 3/8w − 1

8 = 0,

xzv2+ tw3− w4+ tw2− 3/2w3+ 2/3tw − 7
6w

2− 1/12w − 1
12 = 0,

−tw3+ w4− tw2+ 3/2w3− 1/3tw + 13/12w2+ 7/24w + 1
24 = 0.

This example clearly illustrates the efficiency of the mixed volume as root count. The
total degree equals 4608. The 4-homogeneous B´ezout number equals 1361. With the
algorithm presented in [49] a set structure, which yields the generalized B´ezout number
605, can be obtained. The BKK bound equals 24 and can be computed in less than 1
minute. There are five isolated solutions and a component of solutions:t = −1 = w,
z= 0= y, andu, v ∈ C.
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Table 1. Characteristics of the polynomial systems.

Description of
Characteristics

Section the applications n r d B Vn(P) N

4.3.1 Nine point 8 1 5,764,801 645,120 83,977 8,652
4.3.2 PUMA robot 8 8 256 16 16 16
4.3.3 Camera 6 3 64 20 20 20
4.3.4 Inverse position 11 11 1,024 320 288 16
4.3.5 Heart dipole 8 8 576 193 121 4
4.3.6 Butcher 7 7 4,608 605 24 5
4.3.7 Cyclic n-roots 5 5 120 108 70 70

6 6 720 504 156 156
7 7 5,040 3,960 924 924
8 8 40,320 20,352 2,560 1,152

4.3.7. The Cyclic n-Roots Problem. The following application belongs to a family of
systems which have been presented in [2], [6], and [7]. The general formulation goes as
follows: 

fk(x) =
n∑

i=1

k∏
j=1

x(i+ j )modn, k = 1, 2, . . . ,n− 1,

fn(x) =
n∏

j=1

xj − 1.

In Table1 the performance of the mixed volume as root count, compared with the B´ezout
bounds, can be seen. This application also demonstrated the #P-hardness of the problem
of mixed-volume computation. Augmenting the dimensionn leads to a significantly
harder problem.

Note that when the system has to be solved, it is better to apply the following trans-
formation: yi = xi /xn, i = 1, 2, . . . ,n − 1, after dividing thekth equation byxk

n, for
k = 1, 2, . . . ,n, as proposed in [17]. Here, the last unknownyn only appears in the
last equation, which means that the system can be solved more efficiently. However, the
original formulation has been used here for solving the system.

4.3.8. Execution Times. In Table1 the characteristics of each application are summa-
rized. The meaning of the columns is as follows. The first and second columns provide
a label and a short description of the application. The following columns respectively
list the dimensionn, the number of different polytopesr in the tuple, the total degree
d, a generalized B´ezout boundB, the mixed volumeVn(P), and the number of isolated
solutionsN in Cn

0.
Table2 lists the number of mixed cells #4 and the cardinality #C of the triangula-

tion of the polytope used in the Cayley trick. The second part of the table contains the
execution times for solving the applications. It should be stressed that these timings are
only meaningful in relative comparison to each other and that they are only meant to
give an idea of the performance of the current implementation of the algorithms. There
are three stages in solving a polynomial system by polyhedral homotopy continuation.
First, there is the computation of the mixed volume which can be done by either the
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Table 2. Cardinalities and execution times for root counting and solving.

Cardinalities Times for root counting and solving (cpu. sec.)

Section #4 #C mvc dmvc Cayley sphc dphc cont.

4.3.1 13,339 — — 2,162.0 — — — —
4.3.2 1 580 3.5 5.3 27.1 11.5 8.0 14.2
4.3.3 12 392 6.4 27.3 14.3 46.2 46.7 51.3
4.3.4 17 — 669.1 4,282.0 — 1,036.1 1,938.0 1,920.2
4.3.5 36 — 101.4 349.0 — 763.6 509.1 668.0
4.3.6 4 1,867 53.2 67.0 109.3 77.3 49.2 109.1
4.3.7 14 166 0.6 0.7 1.7 77.4 53.2 26.0

25 1,109 5.5 6.8 28.7 337.2 217.6 181.7
124 13,180 84.1 90.3 1,010.7 9,322.3 5,400.3 2,192.4
268 — 853.7 882.9 — — — —

static lifting algorithm (mvc), the dynamic lifting algorithm (dmvc), or the Cayley trick
(Cayley). The second stage consists of solving a system with randomly chosen coeffi-
cients. Timings are given for the static (sphc) and dynamic (or incremental) polyhedral
homotopy continuation (dphc) methods. Finally, timings for the third and last stage, the
continuation to the target system (cont.), are listed. A “—” in the table indicates that the
computations on our DS 5000/240 were too expensive to perform.

It can be seen that the dynamic lifting algorithm often requires more work than the
static lifting algorithm. This is due to the fact that in the dynamic lifting algorithm,
the factorizations cannot be shared (see the last paragraph of Section3.8). However, in
general this additional work pays off because the polyhedral continuation can be done
more efficiently, as dynamic lifting is very capable in controlling the magnitude of the
lifting values.

5. Conclusions

Three different algorithms have been investigated for computing mixed volumes by
means of mixed subdivisions: the Cayley trick, static, and dynamic lifting. The key
idea of the paper is the presentation of conservative lifting functions which allow the
construction of regular triangulations without the randomness assumption, generally
required by all other approaches. This has led to the construction of well-conditioned
polyhedral homotopies for computing all isolated solutions to polynomial systems, which
provides an important elaboration of the ideas presented in [30].

The Cayley trick is efficient when either it is desired to compute all cells, i.e., also the
cells that do not contribute to the mixed volume, or when the system is semimixed and
the total number of cells compared with the number of mixed cells is not exponentially
large. The fact that the lifting function is again ruled out can be considered an advantage.
The disadvantage of this approach is that, for fully mixed systems, the number of mixed
cells is much less than the total number of cells. Note that the space complexity of
the Cayley trick can be overcome by using reverse enumeration methods, developed by
Avis and Fukuda, see [1]. However, these techniques cannot be applied to remove the
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randomness assumption on the lifting function and hence offer less control on the growth
of the lifting values than the dynamic lifting algorithm.

For fully mixed systems, the lifting method, based on Betke’s idea, allows only the
computation of the mixed cells and has to be preferred. The static lifting algorithm, with
randomized lifting and with properly worked out feasibility tests, provides a very efficient
way to compute mixed subdivisions and mixed volumes. It is used in the dynamic lifting
algorithm which turns out to be less efficient, due to the fact that factorizations can no
longer be shared. Nevertheless, the extra work done by the dynamic lifting algorithm
pays off when it comes to constructing polyhedral homotopies for solving polynomial
systems. The efficiency of both the static and dynamic lifting algorithms depends largely
on the efficiency by which the feasibility tests can be worked out, which is determined
by the efficiency of the linear programming solver. So, linear programming forms the
computational bottleneck of both algorithms.

Another important conclusion of this project is that computing the mixed volume
is in practice no harder than solving the system by tracking all solution paths. The
incremental aspect of solving polynomial systems, in [51] applied for computing the
solutions inside a bounded domain, also provides more insight into the complexity of
homotopy continuation for this problem, see [47] for the complexity analysis of B´ezout’s
theorem.

Finally, some important open problems can be mentioned. First, there is the proof of
the conjecture on the connectivity of the mixed cells. Furthermore, from an algorithmical
point of view, it would be interesting to develop algorithms, analogous to the flipping
mechanisms proposed in [16], which transform placeable (mixed) subdivisions into any
desired regular (mixed) subdivisions, with, e.g., either a minimum or a maximum number
of cells. Last, but not least, the BKK bound does not provide an exact root count for many
applications. It would be worthwhile to develop a systematic approach to reformulate
problems to an equivalent formulation with a lower mixed volume, e.g., like was done
with the cyclicn-roots problem.
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Determinants. Birkhäuser, Boston, MA, 1994.

24. P. Gritzmann and V. Klee. Mathematical programming and convex geometry. In P. M. Gruber and
J. M. Wills, editors,Handbook of Convex Geometry, volume A, chapter 2.7, pages 627–674. North-Holland,
Amsterdam, 1993.

25. P. Gritzmann and V. Klee. On the complexity of some basic problems in computational convexity: II.
Volume and mixed volumes. In R. Schneider, T. Bisztriczky, P. McMullen, and A. I. Weiss, editors,
Polytopes: Abstract, Convex and Computational, pages 373–466. Kluwer, Boston, MA, 1994.

26. P. Gritzmann and B. Sturmfels. Minkowski addition of polytopes: computational complexity and applica-
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