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onditions for the nonemptiness of the three planar sums transportation polytope

1y given together with several open problems.

A survev of ¢

1. Introduction

p be natural numbers and let A ={al, B=1[byland C= fc,]be real
and mxn respectively. The three planar Swns
le (4, B.O)1s defined as the set T(A, B, C) of all
] satisfying the system of

{ .oon.onand
matices of tvpe AXp, MAp
e poriation polviope 101 trip
! {hree-dimensional matrices X =le

nonpegative real

Calahions

:i‘,:U/,L\ (j=1,2,....1 k=12 o), (h

\j =p, =1 2....m k=1,2 e R

\.; =0, U= oy =1, 2 e IR

~cuveral pracnical problems can be formulated as optimization problems %7
-

 For examples of such i

L4 B Cy for appropriatels chosen matrices A, 8. C
1966), Junginger (1972 and

22 Schell (1935, Haley (1963), Schmud (
, Werko (1982).
Mhemuin usnose of this paper 1s 10 nrovide a survey of 1

qecessary conditions il

ohairioos 4 ~ ~ | .
0 < B Cfor T(4. B, C) 1o be nonempty and (© indicaie »
ar= interest in this problem.

me open i

Sneod s mooed thar o may serve Lo stimul

(North-Holland)

1986, Elsevier Science Publishers B.V.
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) 2. Obvious necessary conditions

Let M={1,2,...,m}, N={1,2,...,n} and P=

{1,2,...,p}. It follows diree
g | from the constraints (1.1)-(1.3) that the conditions
,’4 |

I 4 z0, by =0, ¢; =0 for allieM,jeN,keP;

Z Ay = E b

for all ke P;

are necessary for the nonem

ptiness of 7(A, B, C). Henceforth we shall assume
these obvious necessary co

th:
nditions are satisfied by 4, B, C.

3. The Schell conditions

In 1955, Schel} gave an example dem

. tions are not sufficient to ensure that T
martrices

onstrating that the obvious necessary conc
(A, B, C)is nonempty. Indeed, although th

A={a,]= [ : SJ.

B=[b,vu=[§ ;]

‘ Cte=|7 ¢

{ satisfy all of the obvious necessary conditions

the corresponding polyiope
T(4,B,C) is empty since any A= [x] belonging to T(A, B, C) would have to

satisfy
pe Xp=a=1,
- Xip<bp=1,
,\’1”+X”2=C”:4.
| .
- J Based on this example, Schel]

introduced a new set of necessary crnditions for
the nonemptiness of T(A4, B, ).

[t is easy to see that for each Xe 7(4, B, C) the inequality

! XUkSrﬁin{a/k, b[/(! Cl'j (31)
i must hold for each (i, J,

KYe MXNXP, We will denote the right hand side of (3.1

7.

i i JjeN ieM (2.

T ; Y b= ) Cyj for all /e Mr; (o
ke P JeN

- Yo=Y a; for all jenN (o

T ] ieM keP

by M- By taking th
obtain that if T(4, B

= Yr
i ieZM

Similarly, we have

blkg Z r

JeEN

CU‘S Z n

as necessary conditio
Schell also noticed
V- HwefixieM,,

v Xajk =

aeM
unplies that

X;/k = a/k -

Similarly, we have
X’Jk = b.‘k -

')(ljk = CU' -

Denoting the numbe

max (O, 14

by M, we have
X‘,jkzl\/[,j,

Again, by summing

tions, that if TA, I

Z Majl
aeM

Z Miak
aeN




sk

5 ' )
2., ph It follows dlreq[y

N

CAg g

keP; (2‘1)

(2,2)
(23
(2.4

nceforth we shall assume thy
., B, C.

¢ the obvious necessary condi-
ynempty. Indeed, although the

the corresponding polytope
to T(4, B, C) would have to

set of necessary conditions for

e inequality

3.0

note the right hand side of (3.1)
g

By taking the sum of the inequa

b\ /7!,/,'(- .

\prain that if T(A, B, C) is nonempty, then

ijf_ Z Mijks jEN,kEP.
ieM

5'\milar1y, we have

by L Mijks ieM,keP,;

jeN
CU,.<. Z m[/‘/‘-, iEM,jEAN
ke P

4s necessary conditions for the nonemptiness of T(4, B, O).
<chell also noticed that the upper bounds 7 induce non

1 we fix ieM,jeN and ke P, the constraint

N

T Xk =k
aes M

anpiies that

Mok -

Z Xajk =ik~ Z

xlj/(:a/k_ )
aeM\ (i} ae M\ {i}

Similarly, we have

Xipk = bik - Y Mgk >
aeN )
Yok =€y~ Z Mg
qe B k)

Denoting the number

max 10, ap- L

ae M\ U}

My Dk~
iy '\I‘/\v we have

X Z M, jeM,jeN, ke P.

\wain, by summing and using (1.1)-(1 J3) we
that if T(A, B,C) is nonempty, then the inequalities

oS,
v ; oo .
C MySais Y Moo jeN, keP,
ceM aeM
T Mg sbu=s Y Mg ieM, keP;
@<V aeN
T o Y
L Mye=6y= Y M ieM,jeN
cef ae P

trivial lower bounds on ¥ {

have, together with the previous condi-

lities (3.1) over jeM and using (1.1) we

PR o L. oo 92

Sl D TN

R

T T

-

(3.2)

(3.3)

(3.4)
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must hold. We will call these conditions the Schel/ conditions,

An immediate question is whether the Schell conditions are sufficien; 10 ensy.
that 74, B, C) is nonempty. Mordvek and Viach (1967) gave an examp
demonstrating that they are not. Indeed, a little calculation shows that for 4, g,

C given by

(14
S
4 1 26

A= ,B=7I,
4 1
4 1 6 2

2

4 1 6
3 2
(1

C:

ol T SO

1 I 1
1 I
1 I 1
1 11
1 I

— e

I 1
I 1
I 1
I 1
I 1

all lower bounds M, are equal to 0 and all upper bounds my are equal to 1. Ther
it is easy to verify directly that all of the Schell conditions are satisfied. Neverthele-
7(4, B, C) is €mpty since any X e 7(A4, B, C) would have to satisfv the relation:

Tp+Xp=cj+cy =2 for all je {1, 2,3, 8},

YiptXps ap =1 foralljel4,s, 6, 7},

8 8
X Xjpt Y X2 = b+ by =13,
s=1 Jj=1

which it clearly cannot.

4. The Haley conditions

The idea of Schell was further developed by Haley (1963) who noticed that the
lower bounds M, induce a new tighter set of upper bounds by a similar procedur?
to that by which the upper bounds my induced the lower bounds M. Moreover.
these new upper bounds induce r.ew lower bounds, and so on. Formally, we can
describe the procedure as follows:

Let M,fk =, m,?k= o forall (i, /, k)e MxNxpP and define by induction

.

Therefore the limits

The three-dimen

I A 3
rlominimp, = L
L G G~
"lz ax i " Qi — Z
,‘I,/k m 1 ijks Yj ae M)

It is easy to see that if Xe T(A

0 | Lo<
/\/[UksA\/[,ij v DX =

H:

. r
gkt = lim M7, h
r—o

cxist and

Hy=xy<hy, foral

Hence, by summing over i (ove
following necessary conditions - le
cmptiness of 7(A, B, C):

]'[U‘ksajks Z h//k,
ieM te M

Zv}{w\'s})/ks E hi/ﬁ”

JEN JEN

¥ H . <c. < S /7“/,,;,.

et =ty =

kep Kep

The previous example shows on
since in this case H,; =0 and B
are satisfied.

Problem 1. Haley (1963) claims th
are stationary, i.e. there exists an :
This is certainly true if all entries
for real matrices?

5. The Mordvek-Vlach condition:

The previous example suggests t.
which may be. tighter than the boy
dividual variables. For IcM, JcC
X(I,J,K) by




i

The three-dimensional planar transportation problem

AR

. )
v . r rod
ell c.0(zd1110n5. N . s =m1n{m,’,k, Q- Y ‘ M b= Y ’ M, cij— Mija 1
onditions are sufficient to ensure ’ aeM\{i} ae N\LJ) ae PA LK) s
Viach (1967) gave an example . 3 © b ) , . ,
: -V max | M, QG — m ik Mgk Cjj— i m,

~ , / \ ’ =max{{ ks Yk k k ko Lt ya (>

iculation shows that for A, B ang s v SR ey T aei Y e
[( is easy 1O S€€ that if Xe T(A4, B, C), then

0 | ‘ 2
M,jk—<—M:jk5 e SX S S M S M

S

.cofore the limits :

her
Hljk:: lim 1\4,;,(, h[/k:z lim m{/k
r— o oo
ot and
HU,\,sx,jksh,/k for all (i, j, k) e M X NXP. ‘
{{ence, by summing over i (over j, over k) and using (1.1)=(1.3) we obtain the E
jollowing necessary conditions - let us call them the Haley conditions - for the non-

CmpLness of T(A4, B, O):

Y H,jksa/ksvz By, JEN KeP; (4.1
eM ieM

:r bounds m,, are equal to 1. They V Hp<bg< Y hy, €M keP, (4.2)

ynditions are satisfied. Nevertheless &N JEN

;ould have to satisfy the relations Y Hysc= Y Aijk» ieM,jeN. (4.3)
ke P ke P

2,38},
I'i¢ previous example shows once again that these conditions are not sufficient, ;

4, 5,6, 7},
anee n this case A =0 and hy=1 for all i, j, k and hence conditions (4.1)-(4.3)
are satistied. B

963) claims that if 7(A4, B, C)+ 9, then the sequences m,’j,\, M,;k
Sk and My =M, forall r>s.

onal numbers. Is this true

Problem 1. Haley (1
are stationary, i.e. there exists an s such that m,"jk =m

[hus iy certainly true if all entries of A, B and C are ratl

tor real matrices? 7 ) 5 N
e S 0r
Lo e Ao :
_ 5. The Mordvek-Viach conditions I e
- Haley (1963) who noticed that the : iions ;
(pper bounds by a similar procedurt i _ '
d the lower bounds M, . Moreove, [_hC previous Vexample suggests that bounds on sums of variables can be obtam.ed
unds, and so on. Formally, we cat ~hich may b@ tighter than the bounds obtained by summing the bounds of the in-
feidual variables, For /M, JCM, KC P define A(J. K), B, K), Cl,J) and
Nl J. Ky by
/% P and define by induction /. K} by
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A(JrK)zz Z ajky
Jjelkek

BULK)=Y ¥ by,

ielkek

CLNH=Y ¥ ¢y,

iel jed

XLJL,K)=Y ¥ ¥ xp.

ieljelkek
It follows directly from (1.1)-(1.3) that
X, J, K)=min{A(J, K), B(I,K), CU, J)}
for every Xe T(A, B, C) and every /, J, K. Since
XM, J,K)y=A(J,K), X(I, N,K)=B(I, K), X(I,J, P)=C(I, J)

for each X'eT(A, B, C), we obtain the following necessary conditions for the
nonemptiness of 7(A, B, C):

AW K)y= ¥ min{A(J, K), B({i}, K), C({i}, )}, (5.1)
ieM

B(I, K)= ) min{A({/j}, K), BU, K), CU, {j ]}, (3.2)
JEN

CU, Ny= ¥ min{A(J. {k}), BU, {k}), CU J)} (5.3
keP

for each /ICM, JCN, KCP.

Note that matrices A, B and C from the previous example, which passed the
Haley conditions, fail to pass conditions (5.1)-(5.3). On the other hand, the matrices
0
1
1

, B=

1 0
A=10 1
1 1

|
0, C=
1

[ )

1 I i
1 0 1
0 I 0

[ R

constructed by Smith (1975) pass all of conditions (5.1)-(5.3) and fail to pass th
Haley conditions. Thus, conditions (5.1)-(5.3) are not sufficient to ensure thal
T(A, B, C) is nonempty.

Nevertheless, conditions (5.1)-(5.3) are sufficient for the class of T(A, B, C) witl
min{m, n, p)<2. The case min(m, n, p)=1is trivial - the obvious necessary condi
tions are also sufficient. Assume that A, B, C with p=2, m=2, nz=2 satisfy (5.
and consider the system

(=1,2,...,n),

The three-dime

O=y;=c; (i=1,2,

For K= {1} the condition (5.1)

m
L a;< Y min {b,l,
Jjed =1 J
Since
i m
v —
Lap = Z b,

condition (5.5) is sufficient for
Yemelichev-Kovalev-Kravtsov (

xljl :.yu ’ xul = C/j_yu

we obtain an Xe T(A, B, O).
Motzkin (1952) observed that
generated by elements of A4, B, (
tions (5.1)-(5.3) are, for this cas
a nonnegative integer solution t

6. The Mordavek-Viach conditio

Since conditions (4.1)-(4.3) di
{(5.1)-(5.3) do not imply conditic
and develop an analegue of the

Let us set
A

M°(Sy=m%S)=< B
c

M%(8)=0 and m®(S)=co for otl

m™*Y(S) = min zmin I
U, v

M H(S) = max {max

u v

where the minimum and maxim:
Maximum over all disjoint subset
and maximum over W are meant
W of the complement of S in M
We shall prove by induction t.

MUS)=MY(S)=...
for gy ScM:-:NxP. Here 2

1A




)}

VK), XU T, PY=CW, )

2 necessary conditions for the

iy, ), 6
LD (5.2)

us example, which passed the
On the other hand, the matrices

:5.1)-(5.3) and fail to pass the
not sufficient to ensure that

or the class of 7(4, B, C) with
- the obvious necessary condi-

[T | 1
v=4,mz2, n=2 satisfy (5.1)

¢
¢

The three-dimensional planar transportation problem

DsyyEcy (=12 mij=1,2n).

por K= {1} the condition (3.1) gives

m
Y oap= _5: min {bu, Z/CU} for all JCN. (5.5)

sinee

n m

}: a/l = Z bll ’

j=1 =1
_ondition (5:3) s sufficient for the existence of a solution [y;] to (3.4) - see
chev-Kovalev-Kravtsov (1981) or Gale (1957). Setting

yemeli
X1 =Y X2 =Cij =Yy
e obrain an X e T(4, B, O).
viotzkin (1952) observed that all the extreme points of 7(A4, B, C) lie in
senerated by elements of A4, B, C if and only if min(m, n, p)<2. Therefore, condi-
qons (5.1)-(5.3) are, for this case, also necessary and sufficient for the existence of
1 nonnegative integer solution to (1.1)-(1.3) with integer right hand sides

the ring

. The Mordvek-Vlach conditions 11

Since conditions (4.1)-(4.3) do not imply conditions (5.1)-(5.3) and conditions
(5.1)-(5.3) do not imply conditions (4.1)-(4.3) it is natural to combine both ideas
and develop an analogue of the Haley iterative procedure for sums of variables,

Let usmset A(J, K), whenever S=MxJxK,
MO(S)=m°(S)=< B(l,K), whenever S=IxNxK,
C(,J), whenever S=/XJx P.

w'(S$)=0 and m®(S) = for other SCMXNXP and define by induction

m”'(S)=min {min (m"(U)+m"(V)],min[m" (SU W) - M (W)L,
UV W )

M"T(S) =max {r{/m;( MUY+ MV, méix (M(SUW)=m' ()] fl
. / )
where the minimum and maximum over U, V' are meant to be the minimum and
maximum over all disjoint subsets U, ¥ of S satisfying UU V=S, and the minimum
and maximum over W are meant to be the minimum and maximum over all subsets
W of the complement of S in MXNXP.
We shall prove by induction that if X' T(A4, B, C), then

MYUS)=M'(S)=... =X(S)=... <m'(S)=m"(S) (6.1)

for all SCMxNxP. Here X(S) denotes the suml ; ies-tui- Obviously

e e e e s g STy

o T, A T -
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MO(S)SX(S)smo(S). Assume that M (Q)<X(Q)=m'(Q) for all QCMxviP
and consider an arbitrary SCM XN x P. It is clear from the definition of m"* ()
that either

m" T US)=m (Up)+m' (V) (6.2,
for some U, Vo C S satisfying UyN V=0, U, U V;=S, or

m™NSy=m " (SU Wy) — M (W,) (6.3
for some W,C(MxNxP)\S. From our assumption it follows that

X(Uy)

<sm"(Uy), X(Vy) =m"(Vy),

X(SU W) =m'(SU W), X(Wy)y=M"(n5).
Since X(-) is additive we have

X(S)=X(Uy) + X(Vy)sm (Up) +m"(Vy)=m" " 1(S)
in case (6.2) and

X(S)ZX(SU WO)—X(WO)S”Z("‘U(S)

in case (6.3). The monotonicity of the sequence {m’(S)} is obvious directly from
the definition. It can be verified analogously that

MUS)=M'(S)=<... = X(S5).
Now it is clear that if 7(4, B, C) is nonempty, then for each SC M x N x P the limit:

a(S): = lim M’(S), B(S): = lim m"($)

exist and
a(S)= X (S)=pB(S) (6.4

for each X'e T(4, B, C). Therefore, both the existence of limits (S) and B(S) and
the validity of the inequality

a(S)y<p(S) (6.5

for each SCM x Nx P are necessary for the nonemptiness of 7(A, B, C).
[t follows directly from the definition of m" and M that for each one-elemeni
set {{i./, k)} and each r there is an s such that s> and

m (G opsmi, MG, D =M. (6.6

Therefore, every 4, B, and C which satisfy (6.5) also satisfy the Haley cnnditions:
It turns out that the Mordvek-Vlach conditions I are also implied by condition
(6.5). Indeed, the Moravek-Vlach conditions I can be restated in the following form
- see Haley (1967):

The three-dimen.

A(J,K)=sB(, K)y+C

Here [ stands for the complemen
and K for the complements of J
for each SCMXNXP, then

A, Ky=M (M x J x
<m*(MxJx
=m(IxNxi

=m®IxNxi

Problem 2. Is the existence of the
(6.5) sufficient for the nonemptir

Remark. The procedure described
blems. Let fand g be extended re
where X is a nonempty (not nece

—®=f(S)< ™, f(B)=
—2<g(S)= >, g@) =

and consider the problem of dete
lunction y on T satisfving the ine

S($)=x(S)=g(S)
for each SeT. Define

MS)=£(S), m™(S) =,

m’“($)=mm{inf[m’
U, v

M 1(S) = max {sup Y
U v

where the infima and suprema ove;
{0 the minima and maxima descrit
-'see Moravek and Vlach (1968) - 1t
(6.8), then there exist limits

a(S): = lim M"(S),

r=-o0

and a(S)< B(S) for each SeT.




D= m(Q) for all QCMx il

- from the definition of m’*!

§

(6.2)
=S, or

(6.3
ion it follows that
n’(Vy),
VT (W,).
)=m"TL(S)

7°(S)} is obvious directly from

yreach SCMXNXPthe limits
)

(6.4)
e of limits a(S) and £(S) and

(6.5)

stiness of T(A, B, C).
M’ that for each one-element
and

M. (6.6)

satisfy the Haley conditions.
‘e also implied by conditions
-estated in the following form
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AW, K)=B(U,K)+C(, J) forallI,J, K. 6.7)

[ stands for the complement of I in M. Similarly we shall use tbe notation .J
Hijre;\’ ;or the complements of Jin N and K in P respectively. Now, if a(S) = S(5)
fr:r each SCMXNX P, then

A, K)=MA M xIxK)saMxJxK)<p(MxJXK)
<m*MxIxK)sm'(IxIxK)+m' (IxJxK)
<mP(UxNXK)=M°UxTxK)+m’(IxJx P)—=M°(Ix Ix K)
<mPUxNxK)+m®(IxJxP)=B{, K)+CU, J).

.

.

) -
coblem 2. [s the existence of the limits a(S) and B(S) together with the validity of }

. -

P . -
(6.3) sufficient for the nonemptiness of T(4, B, C)?

remark. The procedure described in this section can be applied to more general pro\-/
wiems. Let fand g be extended real-valued functions defined on an aigebra TC2

where X is a nonempty (not necessarily finite) set. Assume that
—o=f(§)<=, fD) =0,
—w<g(S)=x, g(@)=0
and consider the problem of determining whether or not there exists an additive
runction x on T satisfying the inequalities
f(S)=x(S)=32(9) (6.8)
for each SeT. Define
MOS)=/(S), m*(S)=g(S),

m”*1(S)=min {inf [m(U)+m’ (V)], 12f [m (SUW)—M'( W)]E
U v

M7 (S) = max &}IB[M’(U) + M (V)] sup [MT(SU W) = ()]

e

where the infima and suprema over {, ¥ and W are defined in a manner analogous
to the minima and maxima described in the beginning of this sectlo'n. It tur.ns‘ gut
~see Moravek and Vlach (1968) - that if there exists an additive function x satistying
(6.8), then there exist limits

a(S): = lim M'(S), B(S): = lim m'(S)

ro o r—w

and «(S) =< B(S) for each SeT.

L IR R
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7. The Smith conditions I 1

0 2 0 1

. 1 0 0 0 O

If follows directly from (1.1)-(1.3) that 000 0 0
AV K)y=X{, J,K)+ X[, J, K), C=1]100 00

- 4 1 0 00

C, =X, J,K)+ X, J, K). 01 0 1 1

Hence, for 4(/, J, K) defined by pass all of the Haley conditions an

conditions (7.1) for I={1,5}, J=
Instead of the Haley bounds w

a’jk: =a({(i).j’ k)})v

on the individual variables or tt
and every bound on X(/, J, K) and X(J, J, K) gives a bound on 4(/, J, K). IxJx K. The former gives the cc

Smith (1973) used the Haley lower and upper bounds on the invidual variable
to obtain the following necessary conditions for the nonemptiness of 7(A4, B. C:

A, J,Ky=B,K)+C({,J)— A, K)
we have

A, 1, Ky=x,7, K)+ X, J, K)

all, J, Ky+a(l, J,R):

for all 1, J, K; the latter gives the

H(,J, K)y+H(, J,Kys4(,J, K)<h(, ], K)+h(, J, K) (7.5
. . . a( X TxK)+a(Ix Jx
for all 7, J, K. Here the notation is used in a way analogous to that of Section .
Obviously, the conditions (7.1) imply the Mordvek-Vlach conditions I because - forall 7, J, K.
see (6.7) - the latter are equivalent to A(L. J, K)=0. It is also not difficult - s¢ Because of the subadditivity of
Smith (1973) - to verify that the Haley conditions are a subset of the conditions are at least as tight as conditions
(7.1). Smith {1973) gave an example demonstrating that the conditions (7.1) are i~ least as tight as conditions (7.1).
fact tighter than both the Haley conditions and the Mordvek-Vlach conditions |.
Indeed, the matrices Froblem 3. Are conditions (7.2) ¢
I 11 1 1t 1 1 Prob ..
lem 4, .
1000 1 1 1 m 4. Are conditions (7.1) ¢
e ; 00 8 8 ? (1) Itis shown in the next section t
= 0 0 ’ Morévek-Vlach conditions 11.
1 11 1 0 0 O
I 11 1 1 1 1
L 8. The Smith conditions II
e 1l Stating the Moravek-Vlach con
1 00 00 0O
’ 1 00 00 00 A(J, K)y=B(I, K)+ C(.
B=|1020 00 1 1}, 01, by symmetry, in the form
Ity 11 1 1
1 11 11 1 1 B, K)=<A(J,K)+C(
111 1 1 11

g Sani:




K)

zives a bound on A(/, J, K).
r bounds on the invidual variable
r the nonemptiness of 7(A, B, Cy;

h(LL T K)+ (L J, R) (7.1

ay analogous to that of Section S,
‘avek-Vlach conditions | because -
)=0. It is also not difficult - see
ons are a subset of the conditions
ing that the conditions (7.1) are ip
the Mordvek-Vlach conditions |,
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(102010 3)
1 0 0 0 0 0 O
00000T1 0
c=11000 00 2],
4 1 0 0 0 0 2
0o 2 0 1 2 2 0
LOIOII4OJ

~yss all of the Haley conditions and the Mordavek-Vlach Conditions I but fail to pass

Londitions (7.1) for I={1,5}, J={1,7}, K={6,7}.
[nstcad of the Haley bounds we can use in the same manner the bounds

api=al{hi, D, By =B, 4, ©)})

on the individual variables or the bounds a(-), B(-) for the sets /X Jx K and
j. =K. The former gives the conditions

all, J, Ky+a(l, J, Ky=ad, J, Ky= B, J, Ky + B, J, K) (7.2)
ror all £, J, K; the latter gives the conditions
aU X IXK)+a(IxJxK)y<sA(, J, K)sBUXxT<K)+B(IxIxK) (7.3)
orall 1, J, K.
Because of the subadditivity of £ and superadditivity of «, the conditions (7.3)

are at least as tight as conditions (7.2) and because of (6.6) conditions (7.2) are at
least as tight as conditions (7.1).

Problem 3. Are conditions (7.2) or (7.3) tighter than conditions (7.1)?
Problem 4. Are conditions (7.1) or (7.2) or (7.3) sufficient?

[t is shown in the next section that all of conditions (7.1)-(7.3) follow from the
Moravek-Vliach conditions II.

8. The Smith conditions II

Stating the Mordvek-Vlach conditions I in the form

A(J, KyY<BU, K)Y+ C( J)

or, by symmetry, in the form

B, K)<A(J,K)Y+C(, Ty or C <A, K)+ Bl K)

e

L VR TR
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we see that the sums of the right hand sides of (1.1)-(1.3) are always over sets i
the form of cartesian products. Smith (1973) extended these conditions to sums ove
more general sets. To restate these conditions let us take UCNXP, VCMxp
WCMXN and define Q,(U), Q,(V) and Q5(W) by

QI(U):{(i’jv k)l[(./’ k)EU},
O ={,j, k)|, k)eV},
Os(W)={(, ), k)| (i, j)e W}.

Now the second set of the Smith conditions can be restated in the following form:
For 7(A, B, C) to be nonempty it is necessary that

AUY=B(V)Y+ C(W) whenever Q(U)CO-(V)U Qy(W), (8.1
B(V)y<sAU)Y+C(W) whenever Q,(V)C QO (U)U Qy(W), (8.2:
C(W)<AU)+B(V) whenever Q:(W)C Q(U)YU O:(V). (8.3

To see the necessity, observe that A(U)=X(Q(U)), B(V)=X(0:(V)), anc
C(W)=X(Qy(W)).

It 1s straightforward that these conditions include the Moravek-Vlach condition:
[ - it suffices to take U=JxK, V=IxK and W=]xJ and noted that Q,(L)=
MXJIXK, Q:(V)=IxNxK and Qy(W)=IxJxP. The example in the previou
section shows that the Mordvel-Vlach conditions [ are a proper subset of the condi
tions (8.1)-(8.3) since it fails to satisfy (8.3) for

U={(1,1), (1,5), (1,6), (1,7), 3,5), (3,6), 3,7),
(5,5), (5,6), (5.7, (7,1), (7,5), (7,6), (7.7)},
V={11), (1,2), (1,3), (1,4), (2,2), (2,3), (2,9),
(4,2), 4,3), (4,4), (5,2), (5,3), (5.9}},
Ww={(1,1), (1,3), (1,5), (1,7), 2,1), 2,7), (4,1}, (4,7), (5,1), (5.7}

Moreover, the conditions (8.1)-(8.3) do not follow from the Haley condition:
since this example passes all of the Haley conditions.

We shall prove now that the conditions (8.1)~(8.3) follow from ¥
Moravek-Vlach conditions II. In fact, we shall prove it for the conditions (8.3) onl-
since (8.1) and (8.2) follow in a similar way,

Let us assume that the Mordvek-Vlach condition II are satisfied for given 1. 5
and C. If Q;(W)YCQ(UYU O,(V), then for each (i, /)€ W there is a set J\ﬂ,_/CF
such that

keK;=(j,k)el,

keK;=(i,k)eV.

The three-dirm.

Let us set
Si= U {yx{
(U, ye W
Sp= U i<ty
(ij)e W
Obviously
O;(W)=8,US,,

Hence, for sufficiently large s :

cCW)= Y M({

(hewWw

sa((U {i} x

L)

=m IS U S
=m"(Q,(U))-
=m'(Q;(U))-

:m( U

kel

= ¥ »n
(. kyel

= A(U)+B(V
‘ G. Rote observed recently tha
ttens (7.3), (7.2) and (7.1) follc
Indeed, it follows from const
m Y IxIxKysm'
m N IxIx K)y=m’
m T MxIxK)<n
Therefore, the sum
M (IxIxK)+ M
does not exceed the value
m IXNXK)+m'(

Al the same time




~(1.3) are always over setsv iy
these conditions to sums gy
15 take UCNXP, VCMxp

:stated in the following form.

“0:(VUOyW), 8.
20U Os(W), (8.
20, (U (). (8.3

(U)), B(V)=X(Q:V)), ang

1e Moravek-Vlach conditiong
"xJ and noted that Q,(U)=
The example in the previoys
» a proper subset of the condi-

(3.7,
(7,7},
(2,4),
, (4,1, 4.7, 5,1, (5,71}

v from the Haley conditions

.1)-(8.3) follow from the }

t for the conditions (8.3) only,

[ are satisfied for given A4, B
,Jj)e Wthere is a set K;CP

Let US set
Sie= U i x U =Ky,
(LeWw
Syi= {i} x{J} <K,
Ljew
Ob\iOUSly

0,(W)=S,US, 515=0, S;CQU), 5T

for sufficiently large s and r we have

Henve.
comr= T i x x| U st xe)
,yew \GeW
—<—a’<U{i}X{j}XP>=a(51U52)5/8(51U52)
()

=m TS,V S)=m NSy +m (S
<m"(Q,(U)) =M (Q{IN\S)+m (O (V) — M(Q-(VI\S2)
<=m"(Q(U))+m'(Q:(V))

(U Mx{j}x{k})m’( U (i) xNx k)

S kyel (i, KYe V
< ¥ mWMx{jyx{kh+ L m®({i} x Nx {k})
(j,k)el i,k eV
=AU+ B(V).

G. Rote observed recently that this method can also be u
(7.3), (7.2) and (7.1) follow from the Morivek-Vlach conditions I1.

sed to prove that condi-
tons
Indeed, it follows from construction of m” and M’ that

m I Ix K)y=m (IXNxK)=M"(IxJxK),

m T Fx Ix Ky=m (T Jx Py—= M (IxJ %K),

m T HM X Ix K)y=m T IxIx K)+m " X IX K.
Theretore, the sum

M (IXxTxK)+ M (IxJxK)
does not exceed the value

M (Ix Nx K)+m (IxJxP)y—m' " MxJxK).

At the same time

AT T
3 T s R e B —m s ae
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m (IxNx K)y=m®(Ix NxK)=B(l, K),

m (IxJx Py=m’(IxJxPy=C(, J).
Moreover,

m UM IxKy=MO(MxJIx K)=A(J, K),
provided the Moravek-Vlach conditions II hold.

Consequently,

MIxIxK)y+ M (TxJxK)=A4(,J,K)
for all r and hence

a(IxIxK)+a(IxJxKy=A4(,J, K).
The remaining part of (7.3), i.e. the inequality

Al J, Ky=BUxTxK)+p(IxJxK)

can be obtained in a similar way.
Conditions (7.2) now follow from superadditivity of « and subadditivity ot .

Finally, since
Hy<a({i}x{j}x{k}),
h,ijﬁ({i} X {j} X {k})s

we obtain (again by superadditivity of & and subadditivity of f) the Smith condl-
tions 1.

Problem 5. Do the Haley conditions follow from conditions (8.1)-(8.3)?

Problem 6. What are the relations between conditions (8.1)-(8.3) and condition:
(7.1), (7.2) and (7.3)?

Problem 7. Are conditions (8.1)-(8.3) sufficient?

9. The Smith conditions III

The Smith conditions II can be enhanced by bounds on the individual variables
in the same manner as the Moravek-Vlach conditions I have been enhanced in ob-
taining the conditions (7.1) and (7.2). For example, using the Haley bounds as sug
gested in Smith (1973) we obtain from (8.3) the following conditions: If T(A, B. C)
is nonempty, then for each U, ¥V and W satisfying O;(WHYC Q(UYU Qx(V) we

have

where

The three-dimen

,  Whenever (
{0, whenever (

_ {1, whenever (
Uy =
0, whenever (

I, whenever (
W, =
0, whenever (

To see the necessity, observe t

m.om p

d=3 ¥ T xuluy-

i=ly=1k=1

and that Qy(W)C W (U)UQ(V

The resultant conditions imply

Mordvek-Vlach conditions [ and

Problem 8. Whar are the relati
Mordvek-Vlach conditions 117

Problem 9. Are the Smith condit
Problem 10. The problems anal

resulting from the bounds Qi an

10. Some other problems

It is easy to verify that the pol

m-1 m
a=m
1
D I ]
C= :
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kS m n P . m n p
1 Y L Y Hplugrog—wpsd=< Y 3} hplgperve=—wy) o (9.1
1 i=1j=lk=1 i=lj=1k=1
o oahere _ 1P m.p m n - .
A=Y ¥ apuy+ Y oY byup— Y ¥ CijWij» : L
) j=lk=1 i=lk=1 i=1j=1 5
), _ (1, whenever (/, KyeU,
“k= 10, whenever (j, k)ge U,
_ (1, ~whenever (i, k)e V,
Y =10, whenever (i, k)& V, ©
(1, whenever (i, jYe W,
Y= )0, whenever (i, )& W,
To see the necessity, observe that
_omomop
A=Y ¥ ¥ xplug+uvg—w;
_ ilj=tk=1 ) i
. A 1nd that Q(W)C W, (UYUJQ(V) ensures nonnegativity of Uy + Uig = W - : i
f @ and subadditivity of 4. The resuftant conditions imply all of the Smith conditions [ and II, all of the il ]
\joravek-Vlach conditions I andﬂ all of the Haley conditions. :
problem 8. What are the relations between the Smith conditions III and the !
vioravek-Vlach conditions I1?7 ';
ivity of 8) the Smith condi. - i
problem 9. Are the Smith conditions III sufficient? '_‘
I
. ! .. |.II
ditions (8.1)-(8.3)? Problem 10. The problems analogous to the previous two for the conditions i
resulting from the bounds a,; and [y, instead of Hy and Ay, . '
s (8.1)-(8.3) and conditions : I
10. Some other problems |
It is easy to verify that the polytope T(4, B, C) defined by the matrices .'L i
m—-1 m .. m n R S
: : : ity o
_ r‘n 1 l , B= : : a2l st
X he individ . : : n | [
5 on the individual variables m | 1 n=1 n n ', 1
I have been enhanced in ob- ; i
ng the Haley bounds as sug- p 1 ... 1 |53 b
ng conditions: If T(4, B, C) : C- : : : i l
Qs (W)CQUYU Qs(V) we p 1 .1y el
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degenerate to a point, namely to the point X'=[x,;] with

(0, ifi=m, j=1, k=1,
=90, if (i, /, K)eM xN’'x P,
!, otherwise
where M'=M\ {m), N'=N\{1} and P =P\{1}.

If T(A, B, C) is nonempty and if the Haley lower bounds are equal to the cor
responding Haley upper bounds, then T(A4, B, C) has one point only. The example
demonstrates that the converse js not true. Mordvek and Vlach (1970) applied th:
Haley device of lower and upper bounds to certain flow problems in networks and
gdve necessary and sufficient conditions for the existence of a unique feasible flow.

Problem 11. Characterize those A, B and C for which T(4, B, () degenerates inic
a point.

It is not difficult to verify that m+n+ p— | equations of system (1.1)-(1.3) follow
from the remaining equations and that the rank of the subsystem

Y Xu=ay, jeN, kep:
teM

Z’\/i/k:blk7 iEIM/,kEP;

JEN

Y Xpu=c,, ieM, jeN
KeEP

1s equal to
mptnp+mn-m-n—p+1,

Therefore, the dimension of 7(4, B, C) cannot exceed (m—1)n—-1)(p~1). At the
same time, 7(A, B, C) with

Gy =m, by =n, =0
forall i, j, k contains a point X all components of which are positive (e.g. Xy =1k

Consequently, the dimension of this polytope is equal to (m—=1)n-1)p-1)

Problem 12. Do there exist matrices 4, B and C such that the dimension ©f
T(A, B, C) is g for each integer g between 0 and (m - 1)(n — Dp-1)?

Since the matrix of the systerm (1.1)-(1.3) is not totally unimodular whenever
min(m, n, p)>2, it is possible to construct an example of a nonempty 7(A, B, O
with integer 4, Band C which has no integer point. For example, T(A, B, C) with

The thriee

consists of one noninteger pc

0+ 0
01
o [0 00
=00 0 0
bt o
0 0 4
0 ¢ 0
10 ¢
£ 00
[’YIJ’K}(.)J_%
00 0
00 0

D. de Werra (1978) showed

aﬂ :0132... zﬂjp,
b,] :bc: =b,p,

then 7(4, B, C) with nonnega
only if

Z Cljspajlv jE}‘

ieM

Y c;=pby, ied
JEN

Problem 13. Characterize thos:
Contains an integer point.

Problem 14. The nonemptine:
algorithm in time polynomial i
IS there an algorithm to decide v
of arithmetic operations and co
P? In other words, is there a .




xijk] with ’:'y

el

).
~er bounds are equal to the ¢q,
has one point only. The exampj,
vek and Vlach (1970) applied the
2 flow problems in networks ang
istence of a unique feasible flow

hich T(A, B, C) degenerates ingg

tions of system (1.1)~(1.3) follq,
of the subsystem

eed (m—D(n—1)(p-1). At the

which are positive (e.g. X =1).
equal to (m—~ 1 )n - Dp-1D.

C such that the dimension of
m=Dn-10)(p-1)?

it totally unimodular whenever
nple of a nonempty T(A, B, O
. For example, T(A4, B, C) with

— e e
—_ e e

—_ e D O =

— s = = OO
O = = e e

[ - =)

—_—0 = O = O

= A.ji‘i‘_;’:j

_asists of one noninteger point only, namely of the point X' =[xy ] with

0 4+ 0 4) 000 0 |
10400 oog? :
, 0000 R 1
|,lel] = 0O 0 0 0] [XUZ] - 0 _é_ ZL 01’
1100 1400
0 0 4 4 00 3 1
(0 + 0 ¥
1040
£ 00 4
fsl=1o 4+ 4 0
0000
L0 0 0 0

4j=4ap= =i,
b” :bIZ: zb,p,
en T(A4, B, C) with nonnegative integer 4, B and C has an mteger point if and
only if
Z C,-/-Spaj], jGN,
e M
c;jspby, ieM. k
jeN \
ize t} ices ™ for which T(4, 8, C)
Problem 13. Characterize those integer matrices 4, B and C for which T(4, &,
20NIains an integer point

Problem 14. The nonemptiness of T(4, B, C) can be decided by the ellipsoid
algorithm in time polynomial in the length of the binary encoding gf A, Band C.
Isthere an aleorithm to decide whether T(A, B, C) is nonempty in whxc:h. the numbef
of arithmeticuoperations and comparisons is bounded by a polynomial 1‘n m, n, and
27 In other words, is there a genuinely polynomial algorithm to decide whether
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T(A, B, C) is nonempty. See Megiddo (1982) for the concept of genuinel;
polynomial algorithm.
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There are (at least) three motiva
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it provides a useful framework for
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Introduction

The theory of graph grammars
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