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An account of Valiant’s theory of p-computable versus p-definable polynomials, an arithmetic
analogue of the Boolean theory of P versus NP, is presented, with detailed proofs of Valiant’s
central results.

1. Introduction

The most important development in complexity theory during the past decade is the
theory of P versus NP (Cook, 1971; Karp, 1972; see Garey & Johnson, 1979, for an
account). The class P of “feasible” problems—solvable in polynomial time—is compared
with the (probably) much larger class NP, which seems to include most computational
problems that come up in practice. Some insight on Cook’s fundamental hypothesis
“P# NP” is provided by “polynomial-time reductions”. This approach singles out the
“hardest” problems in NP—one of them is the satisfiability problem for propositional
formulas—and shows that Cook’s hypothesis is actually equivalent to proving that
satisfiability is not in P.

This tutorial presents Valiant’s (1979a, 1982) arithmetic analogue of the Boolean
theory. The objects now are not Boolean functions or decision problems, but (families of)
multivariate polynomials over an arbitrary ground field. The notion of p-projection
(somewhat more stringent than reduction) now singles out the hardest polynomials
among the p-definable ones (corresponding to problems in NP); the permanent is such a
-“p-complete” family of polynomials (in characteristic different from two). (The terms
“Cook’s hypothesis” and “Valiant’s hypothesis” were coined by Strassen, 1986.) The
Boolean problem of computing integer permanents is # P-complete; at least as hard as
~ NP-complete (Valiant, 1979b).

Now Valiant’s central hypothesis is that some p-definable polynomials are not
p-computable (corresponding to problems not in P). Valiant’s hypothesis implies that the
permanent is not p-computable (in characteristic different from two). As early as 1913,
Polya and Szegd considered the problem whether the permanent can be expressed as the
determinant of a matrix. Valiant’s hypothesis could now be proven by an appropriate
~answer to this classical question: If the permanent is not a gp-projection of the
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determinant, then the permanent is not gp-computable (and hence not p-computable).
Here “gp” stands for “quasi-polynomial time” 2'°¢"*", rather than polynomial time n
for input size n.

In the wake of NP-completeness, a number of techniques have been devised to deal
with NP-complete problems in some sense different from the immediate one: approximate
solutions, probabilistic algorithms and estimates, average case analysis, and, on a
different level, relativisation techniques.

Valiant’s arithmetic theory might have impact on computer algebra in several ways.
First, once the inherent difficulty of some problems is accepted, one may try to devise
techniques similar to the ones mentioned above that circumvent the problems that are
unavoidable in the straightforward approach.

Second, it may shed light on difficulties that have been observed in practice. An
example is the computation of iterated partial derivatives: expressions have been noted to
become unmanageably large after some partial derivatives are taken, and Caviness &
Epstein (1978) give examples involving exponentials where the memory required increases
exponentially. Valiant (see section 4) shows that iterated partial derivatives of harmless
(i.e. p-computable) polynomials may become p-complete.

Third, the whole development makes it clear that “straight-line programs” may be an
advantageous data structure for representing multivariate polynomials. In theory, this
approach is strictly more powerful than the popular “sparse representation”, because the
latter is a special case to which the former can be efficiently converted (Kaltofen, 1986),
but the straight-line representation can handle special polynomials with a very large
number of nonzero coefficients, e.g. determinants of polynomial matrices. Von zur
Gathen (1985) (for testing irreducibility) and Kaltofen (1986) (for ged’s and factoring)
have shown theoretical feasibility of this approach, by solving standard problems of
symbolic manipulation in this data structure in random polynomial time. In the sparse
representation, irreducible factors may have a length which is more than polynomial in
the input size (von zur Gathen & Kaltofen, 1985). Kaltofen’s powerful results show that
this unpleasant phenomenon does not happen in the straight-line representation.
Freeman et al. (1986) report implementation of a system based on this approach, in LISP
with an interface to MACsyMA. Many symbolic manipulation packages, such as MACSYMA,
only allow expressions as representations of polynomials. Some newer languages, such as
Maple, have a “remember”” option which is closer to using programs as representations.

Fourth, it is a well-known experience in “structured vs general computation” (Borodin,
1982) that the additional structure in algebraic computation (over Boolean computation)
may give us the power to prove lower bounds for which we lack the tools in the Boolean
context. In our case, it is a tantalising problem whether Valiant’s arithmetic analogue of
“P# NP” is easier to prove than Cook’s hypothesis concerning Boolean problems. As
noted above, Valiant’s hypothesis would follow from the appropriate answer to a classical
mathematical question, namely whether the permanent can only be expressed as the
determinant of a matrix with huge increase in size. This might be proved by purely
algebraic means, or, over finite ficlds, by combinatorial methods. Von zur Gathen (1987)
goes a tiny step in this direction.

The tutorial is organised as follows. In section 2, we consider several measures of
computational complexity for polynomials: straight-line program complexity (with non-
scalar and division-free variants), expression size, and depth (=parallel time for straight-
line programs). The p-computable polynomials are defined as those that have “feasible”
straight-line programs (i.e. of polynomial length) and reasonable (polynomially-bounded)
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degree. Under the more generous constraint of quasi-polynomial length, programs and
arithmetic expressions (=formulas) become equally powerful.

In section 3, we prove “universality” of the determinant: every polynomial of
gp-bounded expression size can be expressed as the determinant of a small matrix. An
emphasis of this tutorial are detailed proofs in this section, and section 5.

Section 4 introduces the notion of p-definable polynomials, and gives several
characterisations. If, on input the binary encoding of an exponent vector, a deterministic
polynomial-time Turing machine can decide whether the coefficient of the corresponding
monomial is zero or one (and no other coefficients occur), then the polynomial is
p-definable. The set of p-definable polynomials is closed under operations such as taking
partial derivatives, integrals, and coefficients, while the p-computable ones are not, under
Valiant’s hypothesis.

Section 5, the piéce de résistance, shows that the permanent (in characteristic different
from two) and the Hamiltonian cycle polynomial are p-complete.

All results of this tutorial are due to Valiant, unless otherwise attributed.

2. The Model of Computation

Let F be a field, and x4, .. ., x, indeterminates over F. Following Strassen (1972), we
consider arithmetic (straight-line) programs over F (or “arithmetic circuits) with inputs
X1, - - - X,. Formally, such a program is a sequence P= (P4, ..., P;) of either arithmetic
operations P; = (w;, j;, k;) or inputs P,e Fu{x,, ..., x,}. For each i <[ of the first case,
w;e{+, —, *,/} is a binary operation, and j;, k; <i are numbers of previous instructions.
We will usually only consider.the result sequence (u,, . . ., ;) of such a program P, defined
by u; = P; in the second case, and

U; = U;, 0,4y,

otherwise. We stipulate that no division by the rational function zero occurs. The length
of the program is the number of arithmetic operations used. The program computes the
rational function w,€ F(xq, ..., x,). For a given rational function fe F(x,, ..., x,), the
complexity L§(f) of fis the smallest length of programs that compute f.

ExampLE 2.1. P,=x,, P,=x,, Py=(*1,1), P,=(*2,2), Ps=(+,3,4) describes a
program of length 3, with result sequence (x;, x,, x%, x3, x? 4+ x2). The program computes

“f=x2+x2, so that (/) < 3, for any field F. O

The notion of “polynomial time” is a stable and mathematically satisfying property of
algorithms which, in theoretical computer science, seems a good approximation to the
distinction between the “feasible” algorithms—those that can be executed in practice on
reasonably large inputs, and for which increased computer speed increases the range of
solvable problems correspondingly—and the infeasible ones. The goal of the material
presented here is to investigate this notion in an algebraic context.

Thus we consider families f= (f,),.n Of polynomials

f;,EF[Xl, L) xli(n)]’

and want to know: Is I%(f,) a polynomial function of n? Trivially, I%(f,) is not
polynomial for examples like f,=x2"" or f,=x,+...4+X,.. We will see that the
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permanent family—which has small degree and few variables—is a candidate for also not
having polynomial complexity. Some results take on a nicer form if we are somewhat
more generous and allow “quasi-polynomial time”, i.e. 2'°¢"*" operations for input size n.

In order to develop the theory of p-computable polynomials, we introduce three other
measures of complexity: division-free complexity, depth, and expression size. Although of
some interest by themselves, in the context of this exposition they only serve as technical
means to derive results about the natural measure L*.

As an aside, we first want to mention the non-scalar complexity L§(f), which will not be
used in the sequel (Ostrowski, 1954; see Strassen, 1984, for an overview). Here in a
program as above, u;, and u,, are allowed to be arbitrary linear combinations over F of
1, X45. - ., X, Uq, - . -, ;1. Thus only non-scalar multiplications and divisions contribute
to the cost of a program. As an example, suppose that there exists i€ F such that i2 = —1.
Then the program with

ug = (x; +ixy) * (x; —ix;)

computes = x?+x2, and thus [%(x?+ x3) = 1. However, if —1 has no square root in F,
then no such one-liner exists, and I5(x? +x32) = 2.

If FK are fields and fe F[x,, ..., x,], then L%(f) < I%(f); similarly for I'*. The
above example shows that inequality may hold. The non-scalar complexity is a very
satisfying measure, where powerful tools like Strassen’s (1973a) degree bound sometimes
fulfil the complexity theorist’s dream: asymptotically matching upper and lower bounds.

It is a pleasant surprise that divisions actually do not help much, at least for rational
functions of small degree:

PROPOSITION 2.2. Let f=g/he F(xy, . . ., X,) be a rational function, and g, he F[x,, . . ., x,]
relatively prime polynomials of degree at most d. If f can be computed by a program of
length I, then g and h can be computed by a program without divisions of length polynomial
indandl. O

This was proven by Strassen (1973b) for the case h=1, and by Kaltofen (1986) in
general; Borodin et al. (1982) deal with finite F. As an example, Gaussian elimination can
be converted to a division-free program of size O(n°) computing the determinant of an
n x n-matrix.

In the sequel, we will only consider the computation of polynomials. As a consequence
of Proposition 2.2, we may consider only division-free programs (where w;e {+, —, *}, in
the above notation), and define the division-free complexity Ly(f) as the smallest size of
division-free programs that compute f. We usually leave away the qualifier “division-
free”.

We first note that for “general” multivariate polynomials, Ly is exponential in the
degree d and the number n of variables (Strassen, 1974).

THEOREM 2.3. Let F be an infinite field, d, neN, P < F[x,, .. ., x,] the vector space of all
polynomials of degree at most d, and

p= dimFP=<n;d>.

Then

(i) YieP Ly(f)<3p.
() 3feP Ly(f) > p.
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PROOF.

(1) One can compute each of the p monomials of degree at most d in length p: first
those of degree 0, then degree 1, etc. Then f can be computed as the sum of its
monomials in the stated length.

(ii) The set of all programs with a fixed format of length /, but allowing arbitrary
choices of constants in the programs, forms a vector space over F of dimension at
most /. A dimension argument proves (ii). [

(ii) actually holds for “almost all” polynomials, in the strong sense of algebraic
geometry. In the following lower bounds, we only consider d = n for simplicity.

THEOREM 2.4. Let F be an arbitrary field, and n>=2. There exists a polynomial
feF[xy,...,x,] of degree at most n such that Lg(f) > 22"/10n.

Proor. For infinite F, the claim follows from Theorem 2.3(ii). For finite F, one uses a
counting argument similar to the Shannon—Lupanov lower bound for Boolean circuits
(see Savage, 1976). O

Using the more refined methods of number theory and algebraic geometry in Strassen
(1974) and Heintz & Sieveking (1980) one can show that there exist polynomials f of
degree n in n variables with all coefficients either 0 or 1 such that Lg(f) > 2"/n. One also
obtains lower bounds for specific polynomials with integer or algebraic coefficients. As an
example, let d>2, n>3, and for i =(iy, .. ., i,)e N, let

i)=Y id 'eN

1<j<n

be the integer with “d-ary representation™ i. Let

f= Y B X xmeClxy, .. ., X, ]

ie{0,..,d—1)n

ar 1/2
Le(7)> <n log d) '

Then

Continuing the general development, we define the depth of a program (P, ..., P) as
the length d of a longest chain 1<i; <i, < --- <i, of “consecutive steps”, i.e. where
w,e{+, —, */} and either j; or k; is from {ij, ..., i,_,} for every I, 2<I<d. The depth

. is the parallel execution time'of the program. For a polynomial f, the depth Dg(f) is the

smallest depth of (division-free) programs that compute f.

EXAMPLE 2.5.
1. Let f=x,x, -"-x,. Then Lpg(f)=n—1, and Dg(f)=[logn]|. Here, as in the
remainder of this tutorial, log means log,.
2. Let F be infinite, and f= x2". Then Lg(f) = Dp(f)=n. O

The set of arithmetic expressions (or “formulas™) over Fu{x,,..., x,} is defined
inductively as follows. Every element from Fu {x,, .. ., X,} is an expression, and if ¢, and
¥, are expressions, then so are (¢, +¢,) and (¢, * ¢,). The size of an expression ¢ is the

_number of + and * used to build it. ¢ obviously represents a polynomial

val(p) e F[x,, . . ., x,]. For a polynomial f, the expression size Ep(f) is the smallest size of

_ expressions ¢ with val(p) =/
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ExXAMPLE 2.6. The two expressions
(g *xp)+(x2%x5)) and  ((x; +(%x,)) * (x +(—1)*x3))

both represent = x?+x2 (assuming that i* = —1). The sizes are 3 and 5, respectively. (1

An analogue of Proposition 2.2 holds, stating that one would not gain a lot by allowing
divisions (Brent, 1974; see Borodin & Munro, 1975, section 6.3).

ProPoSITION 2.7. For any fe F[x,, . . ., x,] of degree d, we have

() Dp(f) < Le(f) < Ex(f),
(i) Dp(f) = O(og(d- Lg(/))log d),
(iii) log Ex(f) < De(f) = O(log E¢(f))-

PrOOF. (i) is trivial, (i) is in Hyafil (1979) and (iii) in Brent (1974). (The big O in (iii) is
meant to imply the existence of a universal constant ¢ such that Dp(f) < clog Ex(f)
provided Eg(f) =2, and similarly for (ii).) O

In fact, a much stronger statement than (ii) is true: f can be computed by a program of
simultaneous length O(d®(Ly(/))*) and depth O(log(d - Lg(f)) - log d) (Valiant et al., 1983;
Miller et al., 1986, prove a variant of this result). This is an instance where the additional
structure of arithmetic computations (here: degree) yields results which we do not have
for Boolean computations; the Boolean analogue “P = NC?” is unlikely to be true. Von
zur Gathen (1986) discusses general parallel arithmetic computations.

In order to study asymptotic complexity, we consider families f= (f,),n 0f polynomials
with f,€ F[xy, . . ., X,;]. For the determinant, we have v(n) = n®, and variables x;; with
1<i,j<n

ExaMPLE 2.8.
sum: SUM,, = x,+ -+ +x,,
product: PROD, = x, - - * x,,,
power sum: POWERSUM, = x]+ - - - +x,
determinant: DET, = det((x;;); <i, j<n)»
permanent: PER, = per((x;)): <i, j<n)-

Recall that

per((xij)) = Z X1,a(1)  *n,am)>

geSymy

where the sum is over the symmetric group Sym,, of all n! permutations of {1, ..., n}.

To include the elementary symmetric functions o; ,€ F[x;, . . ., X,] (having degree i, for
0<i<n), we have to change their natural enumeration by pairs (i, n) into a linear
enumeration. One possibility is to use

ELSYMM,, =0; ,€F[xy, ..., x,]1 S F[xy, ..., X,]

_ n+1 4

LLx, 1% +%xp, X1 X0, .

for the unique i, n such that

Thus the first polynomials are
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Permanents were introduced by Binet (1813) and Cauchy (1813). They occur naturally
in several areas: in combinatorics, they describe the number of perfect matchings in a
graph, and the number of solutions to the related probléme des ménages and probléme des
rencontres. An account of the exciting story of van der Waerden’s conjecture on
permanents of doubly stochastic matrices is given in van Lint (1982). In geometry, the
metric on symmetric powers of matrices is described by permanents (see Blokhuis &
Seidel, 1984). The encyclopedic volume by Minc (1978) gives an overview of the history
and classical results about permanents, together with a complete bibliography up to 1977.

Both the determinant and permanent are special cases of the following construction.
Let G < Sym, be a subgroup of the symmetric group, y: G —C a character, and AeC"*"
an n x n-matrix over C. Then

df(A) = ZG X(O')Al,auf ’ ’An,a(n)

defines the Schur function belonging to y. When G = Sym,, and y is irreducible, then d¢ is
the immanent defined by y. For the permanent, we take y = 1, and for the determinant,
x = sign. (The complexity of immanents is hard to determine; see Hartmann (1983) for
some results.)

A function t: N— N is p-bounded (respectively qp-bounded) if there exists a constant c
such that #(n) <n° (t(n) < 2U°*"°, respectively) for all n>3. Thus p-bounded stands for
“polynomially-bounded”, and a gp-bounded (for “quasi-polynomial”) function is allowed
to grow faster than any polynomial, but much slower than any exponential function 2"
for e > 0. (We ignore the values of ¢(n) for n<2.)

A family f'= (f,)nen of polynomials with f, € F[xy, . . ., X, is

p-computable,
p-expressible,
gp-computable,
qp-expressible,

respectively, if and only if v(n) and deg(f,) are p-bounded functions of n, and

Lg(f,) is p-bounded,
Eg(f,) is p-bounded,
Lg(f,) is gp-bounded,
Eg(f,) is gp-bounded,

respectively. We consider a family “feasible” if it is p-computable; this is the analogue for
polynomials of the Boolean class P. The notions with “gp” have nicer stability properties
than “p” (Proposition 2.10, Corollaries 3.2 and 5.5).

Restricting the degree is quite reasonable over infinite fields, e.g. over @, where the
binary representation of the value of a polynomial like x*" has exponential length even for
small inputs. In a different setting—over varying finite fields—natural problems like the
trace, testing for quadratic residuosity, or factoring polynomials, lead to polynomials of

large degree, which can nevertheless be computed efficiently (von zur Gathen & Seroussi,
1986).

ExampLE 2.9. The families SUM, PROD, and POWERSUM are p-expressible. DET is

- p-computable, using Gaussian elimination and Proposition 2.2. That ELSYMM is
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p-expressible follows from Reif (1986) if F has a primitive nth root of unity for infinitely
many n, and from Eberly (1984) for arbitrary infinite F. [J

The fastest known algorithm to compute the permanent is due to Ryser (1963) and
based on a principle of inclusion and exclusion: Let neN, N= {1,...,n}, and
x = ((xy);, jen) be an n x n-matrix of indeterminates over F. For I < N, let y, be the matrix
obtained from x by replacing the columns i with i I by zero columns, and g, the product
of the row sums of y,. Then

perx= Y (=1 Y gq;.
0<i<n ISN
#I1=i
This formula shows that L,(PER) = 0(n2") and E¢(PER) = O(n?2"). In particular, it is not
known whether PER is gp-computable.

We remark that for depth or formula size, the non-scalar model I’ may not be
appropriate. One example is an algorithm of Kung (1976) which computes x" over an
algebraically closed field with non-scalar depth two. As another example, the sum formula
for the n x n-determinant gives a program of non-scalar depth [log, ] (and exponential
length). In our model, it is known but not trivial that the determinant can be computed in
depth O((log n)?) and polynomial length (Csanky, 1976; Borodin et al., 1982; Berkowitz,
1984; Chistov, 1985). Proposition 2.7 (iii) and the above results imply the best known
upper bound 29" on the expression size of the determinant; polynomial expression
size¢ would be a major (unexpected) result. Therefore, it seems that the nice relation
D ~log E may not hold for the non-scalar model. (Intuitively, it seems unfair to neglect
the huge fan-in in the non-scalar program of depth log n for the determinant.) Kalorkoti
(1985) shows that E(DET,) = Q(n3).

PROPOSITION 2.10. Let f be a family of polynomials. Then

f p-expressible = f p-computable =
f gp-computable <> f gp-expressible.

Proor. The only non-trivial claim, namely “=" in the double implication, follows from
Proposition 2.7 (ii) and (iii). O

In section 4 we will introduce the class of “‘p-definable” families, to which all “naturally
occurring” families of polynomials seem to belong. However, Valiant conjectures that
many p-definable families are not feasible:

VALIANT’S HYPOTHESIS. Over any field, there exist p-definable families of polynomials which
are not p-computable (Fig. 1). '

As for other similar conjectures in theoretical computer science, our civilisation does
not seem ready for proofs of Valiant’s hypothesis.

A fruitful approach to understanding such conjectures has been to introduce a notion
of “reduction” (here: projection) and then exhibit specific “complete” candidates, which
are “hardest” within their class. We will see that PER is p-complete, and thus Valiant’s
hypothesis is equivalent to the conjecture that PER is not p-computable (over a field of
characteristic different from two; in characteristic two, PER = DET is p-computable).
Going back to Proposition 2.10, we note that the second implication is not reversible.
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p-definable

p-computable

p—expressible .
e PROD DET

Fig. 1.

For neN, let m,=[logn]? f,=PER, =permanent of a m,xm,matrix of (m,)?
indeterminates. Then Lg(f,) = O(log? n2°*"), and f=(f,).,cn 1S gqp-computable. If
Le(PER,) >2", then Lg(f,)>2"¢’", and f is not p-computable. This example hinges on
Valiant’s hypothesis. Scaling the polynomials of Theorem 2.4 as above gives polynomials
which are provably gp-computable and not p-computable.

It would be interesting to know whether the first implication can be reversed. This
seems unlikely, since an affirmative answer would imply

f p-computable = Di(f,) = O(log n),

a result which I consider unlikely to be true.

One sees how much easier life gets by using ‘“quasi-polynomial” rather than
“polynomial”: we do not have to distinguish between “expressible” and “computable”
any more.

OPEN QUESTION 2.11.
(i) Prove that there exists a p-computable family which is not p-expressible.
(ii) Prove that DET is not p-expressible. (Or prove that it is p-expressible. But not both,
please! Or prove that this question is independent of Zermelo—Fraenkel.) 7

DEeFINITION 2.12. Let F be a field.

(i) Let fe F[x4,..., x,] and ge F[x4, .. ., x,,]. fis a projection of g if and only if there
exist aq, ..., a,e Fu{x,, ..., x,} such that

f= g(ala AR am)'

(i) Let f=(f)uen and g=(g)men be families of polynomials over F, with
Jn€F[xy, ..., Xy and g, €F[x;, .. ., Xyml, and t: N—N. fis a t-projection of g
if and only if for every n there exists m < t(n) such that v(n), w(m) < t(n) and f, is a
projection of g,,,.

(iii) Let f, g be as in (ii). f'is a p-projection of g if and only if f is a t-projection of g for
some p-bounded ¢. Similarly, we define gp-projection. [

One can consider more generous notions of reduction, e.g. where in a computation for f
one is allowed to use values of g at various inputs. The motivation to use projections here
is that the results of sections 3 through 5 hold even for this stringent notion, and thus are

~ stronger than when formulated with more liberal variants. In the analogy of “Turing-" or
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Cook-"reductions, one would be allowed to evaluate a subroutine for g at several inputs

in order to compute f. In a projection, on
: . , one has a package fo i
constants or inputs to compute f. ’ e for g and only plugs in

ExaMPpLE 2.13.
1. PROD and SUM are p-projections of ELSYMM.

2. PROD and SUM are p-projections of DET. This i i .
follow from Theorem 3.1 for SUM. + This 1s obvious for PROD, and will

‘31. PROD an'd SUM are .not. t-projections of each other for any ¢.
- X1+X;X3 18 not a projection of any symmetric polynomial (Fich et al., 1986). O

ProrosrITION 2.14.

((lg ;:I};te c;)mposit}on of two p-projections is a p-projection. Similar with “qp” for “p”
ii e classes of p-computable and p-expressible ili iectio
Similar wih e e P Jamilies are closed under p-projections.

PROOF (easy, but uninspiring). (i) Su ili
F (casy, . ppose that f, g, h are families of polynomials. £ i
p-projection of g, and g a p-projection of h. For simplicity, assume thzft ! n /i
Jus Gns W€ F[xq, . . ., x,];

in general, one can renumber the families and introduce dummy members to achieve this

assumption, with only polynomial growth. Th i i

, . us there exi i :

st st functions ¢, s, m, i: N — N,
Wuts - oo Oy my €EFU{Xy, .., x,},

bits - b e FU{xy, ..., x;}

for all n, je N, such that
Vnz=3mmn) <t <n,
VJjZ3i() <s() <j
f;l = gm(n)(anla AR ] an,m(n))a
Then 9 = hip(Bjas - - s by i)
Ju= hi(m(n))(b(a)nD cee b(a)n,i(m(n)))9
where b(a) is obtained by “substituting a in b”, i.c.
b(a)ﬂp = {bm(")!P %f bm(")’p EF’
yq if by, , = x, for some ¢, 1 <g < m(n).
If n, m(n) > 3, then
St i(m(n)) < (n°)* = n,
Then e = max {cd, log, (i(0)), log (i(1)), log, (i(2))}.
i(m(n)) < n®

for all n> 3, and therefore fis a iecti
= p-projection of h. The G aa s .
same, using that argument for “gp” is essentially the

Q(log(20°6")a _ H(logmea

(ii) Suppose that g is p-computable, and /@ p-projection of g. Use notation t, m, c, a as
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in (i), and let u;= (s, . . ., 4;,;) be the result sequence of a computation for g; with
I: N—N p-bounded. Using a,,; for every occurrence of x; in tyg, (1 <i< m(n)), we get a
computation for f,. The length of that computation is again p-bounded, and f therefore

p-computable.
The argument applies mutatis mutandis to the other claims of (ii). O

3. Universality of the Determinant

In this section we show that the methods of linear algebra are, at least in principle,
sufficient to devise feasible algorithms whenever they exist. More precisely, any
p-expressible family of polynomials is a p-projection of the determinant; similarly for
Lﬁqp’7‘ K
Valiant complements his result by showing similar properties for the Boolean problems
of transitive closure (for parallel algorithms) and of linear programming (for sequential
algorithms), again under a restrictive notion of “projection”. Jung (1985) shows that the
discrete DET is complete for the probabilistic space class PrSPACE (log n), and that PER
is complete for PrTIME (n°Y).

TreoreM 3.1. Let feF[x,, ..., X,] have expression size e. Then f is a projection of
DET22+Z'

COROLLARY 3.2. Let f=(f,) be a family of polynomials with v(n) and deg f, p-bounded.
Then the following are equivalent:

() fis gp-computable,
(ii) fis gp-expressible,
(i) fis a gp-projection of DET. 0

PrROOF OF THEOREM 3.1. Let R be the set of expressions over X = FU{x, ..., X,}, and
denote by X*** the set of all s x t-matrices with entries from X. We will define a mapping

u: R — {square matrices over X}
with the following properties, for all peR:

(1.1) val(ep) = det u(p).

(1.2) If ¢ has size e, then u(¢) has size s x s with s =2e+2.

(1.3) There exist Ae X V*6~1 qex1x6=D e X6~Dx1 with s=2e+2 as in (1.2),
such that A is upper triangular with 1’s on the diagonal and u(¢) is shown in
Fig. 2.

plp)= : B

Flg 2.
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(1.1) and (1.2) are sufficient to prove the theorem; (1.3) is a technical requirement for
the construction. The definition of # proceeds by induction along the construction of ¢.
Without (1.3), one can trivially use diagonal blocks that simulate *; the non-trivial part is
to find a construction that also works for +.

Case 1: pe X. Then

Eszz

_| » O
wep) = {1

Case 2: ¢ = (¢, x @,). Define u(o) as in Fig. 3.
Property (1.3) is clear. Using e and s as in (1.2), we have

e=e;+e,+1,
and the size s of u(p) is
§$=51+5; = (2e;+2)+(2e,+2) = 2e+2;

(1.2) follows. Since u(¢) is block lower triangular, (1.1) is clear, too.

Case 3: ¢ =(¢,+¢,). Assume that 4(@,) is as shown in Fig. 4(a) for k= 1,2. First -

consider M as in Fig. 4(b) where
S=(s; =D+ (s, —D+1=2¢,+1+2e,+1+1

is odd. Let I ={1,...,s}. Which permutations oeSym I contribute to det M? Suppose
first that ¢(1) <s,, and that the diagonal product
Po(M) = H M; .

1<is<s

is non-zero. Then
o({l,...s.ps{l,..., s;—1, s},

and, having equal cardinality, these two sets are equal. It follows that also

o({si+1...8})={sy,...,5s—1},

and o lives on the diagonal of A,. ¢ induces a permutation t on {1, .. ., s;} (by taking the
sth column of M as the s,th), and po(M) equals the corresponding diagonal product
p((@,)). For the signs we have

sign o = (—1)°"1 7"+ 5ign 7 = (—1)2e2+1 sign T = —sign 1.

A

/"'(‘Pk)z . By

1 5-1 4 s-1s-
(b) @ 22 o

O' 1 51

1 54+1

o | . P
o .

Fig. 4.

It follows that all ceSym I with a(1) <s, contribute a total of —det u(p,) to det M.
Similarly, the ceSym I with s; <o(1)<s contribute a total of —det u(p,) to det M.

Hence,
det M = —(det u(p,) +det p(ep,)) = —val(@).

We now get u(¢p) by adding to M a last row and a last but one column, consisting of c2111]
zeros except a one at the intersection (Fig. 5). Then det u(@) = —det M, and (1.1) holds.

Property (1.3) is clear, and the size of u(¢) is
s+1=2e,+2e,+4=2e+2.0

REMARK 3.3. The number of non-zero entries of u(¢) is at most 4e+3. Neither this
number nor the size 2e+2 are minimal; Valiant (1979a) constructs u(¢p) with property

_ (1.1) and size e+2. O
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p(xsXxg)=

ﬁl_e‘[
p(x5+6)= ! E

X4 0 O x> 0 ]
1 1 0] 0
Rl X )+ xx)) = | O 1 % 0
0 0 1
1 1 0 o]
0 1 X2 0]
¢] o] 1 1
1
Fig. 6.

We give three examples of this construction in Fig. 6; all blank entries are zero.

One consequence of Theorem 3.1 is the “universality of the determinant”, i.e. the fact
that every polynomial over F is a projection of DET, for some n. We now show that also
PER is universal; this result will be used in the next section.

]EII{E(:{POSITION 3.4. Let feF[xy, ..., x,] have expression size e. Then [ is a projection of
2e+2-

PrOOF. Using the notation of the previous proof, we show that val(@) = per(u(ep)). It is

sufficient to prove that if a diagonal product p.(u(9)) is non-zero, then ¢ is even. With
what we know about ., the proof is an easy induction. O

A.Ithough the determinant and permanent share this absolute property of
“universality”, the computational implications differ wildly. As pointed out in Corollary
3.2, universality of the determinant (in the specific form stated here) allows us to identify
the algorithmic notion of “gp-computable” with the algebraic notion of “gp-projection of
DET”. The universality of the permanent is pointless under this aspect, due to the
notorious lack of feasible computations for the permanent.

It is natural to ask for families having the property stated in Corollary 3.2 for the
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determinant, but with “p-expressible” or “p-computable” instead of “gp-computable”.
Fich et al. (1986) give the following results.

Define f,eF[x,...,x,] to be zero when n is not a power of 4, and otherwise
inductively by f; = x; and '

Jn =f;1/4(x15 cee xn/4) *fn/4(xn/4+1a cees Xn/z)
+(fn/4(xn/2+1’ cen X3n/4) *fn/4(x3n/4+1s ce X))

Thus f, is the polynomial computed by the complete binary tree with n leaves and
alternating layers of * and +. Then the family f= (f}),cn is p-expressible, and any
p-expressible family of polynomials is a p-projection of f. :

No family consisting of symmetric polynomials has this property: x; +x,X3, €.g. is not
a projection of a symmetric polynomial over any field F. For F = Z,, this contrasts with
the result of Skyum & Valiant (1985) that for every polynomial there exists a projection of
a symmetric polynomial that assumes the same values everywhere. If
03.4=X1X;+X;X3+. .. is the elementary symmetric function of degree 2 in 4 variables,
then

Va,,ay,as€Z, a,+0a,a; =0, 4(ay,ay, a,, as).

If F has characteristic zero, then also x;—x, is not a projection of a symmetric
polynomial.

Let neN, and consider the following arithmetic circuit with inputs x,, ..., x, and
t(d, e, i,j, k) for 1<d, e, i, j, k<n, and layers 1, . . ., n. In each layer d, n polynomials s, ;
are computed, all homogeneous in all variables x,,...,x, and t(d,e,1i,j, k), and
homogeneous of degree d in x4, . . ., x, alone. In layer 1, these are

sii= 9, t(1,1,0j,1)x

1<j<€n
for all i, and in layer d
Sd,i= Z t(do e, iaj, k)'se,j.sd—e,k

1<j,k<n

1se<d
for 1 <i<n. Setting

Su=1to+ Sa,15
1<d<n

we get a p-computable family f=(f,),y such that any p-computable family of
polynomials is a p-projection of f.

OPEN QUESTION 3.5. Find more “natural” families that are “universal” as the above
examples. Is the determinant universal for p-computable polynomials (under p-projections)?

4, P-definable Families

In this section, we give a number of equivalent definitions of the very general class of
“p-definable” polynomials. The p-complete polynomials are the computationally hardest
among these. Valiant’s hypothesis is the conjecture that some p-definable polynomials are
not p-computable. It holds if and only if each p-complete polynomial is not p-computable.
Finally, we find that the p-definable polynomials are closed under more natural
operations than the p-computable ones.
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DEFINITION 4.1.

() If g and h are two families of polynomials over F, then g defines h if and only if for
all neN

ho=% gaexe
es{0, 1)
Here x° denotes the monomial x¢* - - - x¢n,
(i) A family f of polynomials over F is p-definable if and only if there exists a

p-expressible family g over F such that fis a p-projection of the family & defined
by g. O

In the above definition, & consists of polynomials whose coefficients can be computed
fast. We can think of the arithmetic expression for g as an efficient algorithm which, on
input an exponent vector e, produces the coefficient of x in h,. However, h itself may or
may not be efficiently computable. Since such & are restricted to have degree at most 1 in
each variable, we allow p-projections for the notion of “p-definable”.

To motivate the definition, we note the following equivalent formulations.

THEOREM 4.2. Let f be a family of polynomials over F. The Jollowing are equivalent.
() fis p-definable.
(i) fis p-definable as above, but with g allowed to be p-computable.
(iti) There exists a p-computable Jamily g and a p-bounded m: N — N such that Jor all n
f;x = Z gm(u)(xl’ RS xm en+1= v em(n))'
[ ,,em(")e(o, 1}
(iv) As (iii), but with g required to be p-expressible.
(v) There exists a p-computable g and p-bounded m: N — N such that f is a p-projection
th = (hn)neN With
hn = Z gm(n)(xla e xns en+17 RIS em(n))'xﬁnﬂj.l1 n ‘xr?(l;x"))' O
RPN em(")s{o, 1}

The proof of this theorem is non-trivial (Valiant, 1979a, 1982).
COROLLARY 4.3. Every p-computable Jfamily is p-definable.

Proor. Use Theorem 4.2 (jii), with f=g.0

The property (iii) is similar in form to the following characterisation of NP. A language
Lis in NP if and only if there exists a p-bounded t:N—N and a language M in P such
that

VneNVxeX (xeL<3eeX™ x@ ecM).

Here, ¥ is the alphabet, and @ a new symbol. If we rewrite the condition with
characteristic functions as:

1w =V wmx@e),

eeXtin)

then property (iii) looks very similar, with the disjunction over e replaced by the sum over
e. This similarity is supported by the following formal connection.

PROPOSITION 4.4. Let f=(f,),.n With Jo€F[xq, ..., x,] be a family of polynomials, of
degree at most 1 in each variable, and with all monomials having coefficient either zero or
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one. Suppose that there exists a deterministic polynomial-time bounded- Turing machine
which on input e€ {0, 1}" decides whether the coefficient of X° in f, is zero or one. Then f is
p-definable. 7

PROPOSITION 4.5. The permanent family is p-definable.

ProoF. Consider indeterminates x;;, 1 <i,j<n, over F, and

o=(, 1 a=xm) (I1 3 x)

1<i€n 1<j<n
(i, ))#(k, 1)
i=korj=1
We want to check that the polynomial h defined by g equals per((x;;)). On substituting
e {0, 1}"*", the first factor of g vanishes if and only if in some row or some column of e,
more than a single 1 occurs. If the first factor does not vanish, then the second is zero if
and only if some row has all entries equal to 0. Together we get

g(e) # 0 < every row and every column of e has exactly one 1.

(In characteristic zero, we only need the factors 1—x;;x,; with i # k in the first factor.) O

For the main results of this tutorial, we will use the following combinatorial
interpretation of linear algebra. We consider complete weighted directed graphs G on a
set N of nodes, with a edge-weight function

G:NXN—->X=Fu{xy,...X,}

Obviously, the set of all such graphs on N={1,...,n} is in a natural bijective
correspondence with the set X"*" of n x n-matrices, via

Under this correspondence, a permutation from Sym (N) corresponds to a cycle cover of
G, and
det A= ) sign(c)- (product of weights on c),

cacycle
coverof G

per A= 3 (product of weights on c).

cacycle
coverof G

- In pictures of G, we do not draw those edges that have weight 0. Figure 7 shows three of

the graphs (=matrices u(¢)) constructed in the proof of Theorem 3.1, corresponding to
the examples in section 3. All edges shown have weight 1, unless otherwise specified.

We will use the following conventions. If G is a weighted directed graph with node set
N, then Sym G is the group of permutations of N, and for ceSym G, we have the
diagonal product

Po(G) = ]—][v G(i, o ().

If under the association discussed above G corresponds to 4, then we also use Sym A and

p,(A) as above. Thus
detA= 3 sign(o)p,(G),

oeSymG

perA= Y p,(G).

oeSymG
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(x5X xg):
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) O,
® ° °
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Fig. 7.

The combinatorial interpretation of matrices leads to considering the following
polynomials. If S is a set of sets of edges of the complete graph, where the weight of edge
(i, ) is an indeterminate x;;, then

EeS (i,j)eE xu
is the polynomial for S. Examples:

1. Permanent: S = {cycle covers}.

2. Hamiltonian circuits: § = {self-avoiding cycles covering each node}.

3. Hamiltonian paths: S = {self-avoiding paths from node 1 to node 2, covering each
node}.

4. Spanning trees: S = {spanning trees in which each edge is directed away from
node 1}.

5. Reliability: S = {edge sets in which there is a path from node 1 to node 2}.

Varying the number n of nodes of the complete graph in these examples, we obtain
families of polynomials over F.
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PROPOSITION 4.6. All the above families are p-definable. [

Most “naturally occurring” families of polynomials seem to be p-definable. Some of
them—e.g. the determinant—are p-computable, while others—e.g. the permanent—have
defied attempts to find polynomial-time algorithms for them.

We recall the central conjecture that in some cases no such fast algorithms exist:

VALIANT’S HYPOTHESIS. Over any field F, there exist p-definable families of polynomials that
are not p-computable. O

Valiant’s hypothesis is the arithmetic analogue of Cook’s hypothesis “P = NP, which
refers to Boolean computations. If Valiant’s hypothesis were false, then PER would be
p-computable, and indeed PER, could be computed by a program of depth 0(log? n) and
length n°®. The general simulations of arithmetic computations over @ by Boolean
computations (Ibarra & Moran, 1983; von zur Gathen, 1985, Corollary 6.9) then yield
Boolean circuits of polynomial size for the integer permanent. Since the integer permanent
is complete for # P (Valiant, 1979b), we have for the non-uniform versions of the Boolean
complexity classes

P(NON-UNIFORM) # NP(NON-UNIFORM)=
NC?*(NON-UNIFORM) +# #P(NON-UNIFORM) =
Valiant’s hypothesis over F,

when F is Q or a finite field. (In characteristic two, we use the p-complete family of
Hamiltonian cycle polynomials instead of PER in this remark.) For a formal relation with
the “uniform” Boolean conjecture, we would have to consider “uniform families (Q,),cn
of straight-line programs”, where a Turing machine, say probabilistic and polynomial-
time bounded, can produce a description of @, on input » in unary (see von zur Gathen,
1986). The Boolean class R consists of the languages accepted by such Turing machines.
Then a slightly stronger form of P # NP, namely R # NP (or R # # P) implies Valiant’s
hypothesis over (Q, since a uniform family of straight-line programs for the permanent
would yield a random polynomial-time bounded Turing machine for the integer
permanent. No converse implication is clear, and indeed it is hoped that Valiant’s
arithmetic hypothesis is “easier” to prove than Cook’s Boolean hypothesis.

DEerFINITION 4.7. A family fis p-complete if and only if

(i) fis p-definable, and
(ii) every p-definable family is a p-projection of £. O

PROPOSITION 4.8. Let f be a p-complete family over F. Then Valiant’s hypothesis holds over
F if and only if f is not p-computable. O

An interesting question is whether the classes of p-computable and of p-definable
families are closed under some natural mathematical operations, such as:

1. gcd,

2. factorisation,

3. substitution,

4. taking coefficients,
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5. derivative,
6. integral,
7. definition.

Proposition 2.14 has noted that both classes are closed under p-projections. In the
sparse representation, von zur Gathen & Kaltofen (1985) showed that irreducible factors
may grow more than polynomially in size. Kaltofen (1986) surprised us by showing that
this does not happen for straight-line programs: the p-computable polynomials are closed
under ged’s and factorisation. The factorisation algorithm works over those fields over
which univariate polynomials can be factored efficiently; these include finite fields and the
field of rational numbers. (An unsolved technical problem still is to extract pth roots of
polynomials over a finite field of characteristic p.) Kaltofen’s results are ‘““‘uniform” in the
following sense: There is a probabilistic Turing machine, which takes as input a binary
representation of two programs, a list of constants used, and a supply of random elements
from a large enough finite subset of the field. It outputs a binary representation of a
program computing the gcd of the two polynomials computed by the two input
programs, using the given constants. The running time is polynomial in the input size
(which, over Q, has to be defined carefully) plus the degrees of the two input polynomials,
both for the new program and for the Turing machine. Similarly, Kaltofen can produce
the irreducible factors of a polynomial, and also the reduced numerator and denominator
if the input program computes a rational function.

These results provide justification for the condition of “p-bounded degree” for
p-computable (or p-definable) polynomials. If no such degree bound is imposed, then even
deciding whether the ged of two univariate polynomials over Q is non-trivial is NP-hard
(Plaisted, 1984).

For the proper notion of substitution, one has to consider arrays g = (gum)m<ncn, Which
can be substituted into a family of polynomials in the obvious way. Both complexity
classes are closed under this type of substitution.

The coefficient in fe F[xy, ..., x,] of the monomial x¢= x5'. . .x2 (with eeN") is the
unique polynomial ge F[x,, . . ., x,] for which there exists a polynomial

h=3 hx*
such that oet
f=gx+h,
Vi< n(e;>0=>x; does not occur in g),
VaeN" (h,#0=3i(e;#0 and q; # ¢,)).
ExaMPpLE 4.9.

1. The coefficient of 1 =x?- - -x? in fis f.
2. The coefficient of x,, in DET, is —x,;.
3. The coefficient of x, in POWERSUM; is 0.
4. Consider the family g = (g,),.n With
4w = H z Xij V-
1<isn 1<j<n
The coefficient of y, - - -y, in g, is PER,. (This is already in Hammond, 1879.) This
family g is p-expressible, but—under Valiant’s hypothesis—the coefficient is not
p-computable.

In contrast, the class of p-definable families is closed under the operation of taking
coeflicients.

k ~ Thus per G = per (G; §).
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The p-computable functions are closed under partial derivatives Of/0x; and integrals
[ fdx;; see Baur & Strassen (1982) for a surprisingly strong result about derivatives.
However, it makes sense now to consider p-bounded application of these operators, and
then p-computability may get lost:

0 0 0

dy; Oy, OYu

1 1
f J (ylynqn)dyldyn'__PERn

-1

q, = PER,,

However, the class of p-definable families is closed under these operations.

Finally, consider the operation “g defines h” of Definition 4.1 (i). Then Valiant’s
hypothesis is equivalent to the statement that the p-computable families are not closed
under this operation. It turns out that the p-definable families are closed under this
“definition”. An arithmetic analogue P, = P; < - - - of the Boolean hierarchy of Meyer &
Stockmeyer (1972) would let P, consist of the p-computable polynomials, and P; would
be composed of those polynomials that can be defined by polynomials in P;_,. Then the
above shows that this hierarchy collapses: P, =P, =---.

The upshot is that among our two natural complexity classes, the p-computable
families are somewhat vulnerable, but the p-definable ones are robust under the
mathematical operations considered above.

5. P-complete Families

In this section we prove Valiant’s central result that the permanent and Hamiltonian
circuit families are p-complete. We start with an auxiliary structure, called ““coupled
permanents” (and proposed by Volker Strassen). Afterwards, we only have to show how
to express these coupled permanents by ordinary permanents respectively by Hamiltonian
cycle polynomials.

Let G be a (complete directed edge-weighted) graph on node set N with weights from a
commutative ring R (i.e. a matrix from R¥*"), A set

NxN
pg( . )

is called a set of couples of edges of G if for all a={(u, v), (W, v')}, be P we have u#u/,

v#0, and (a # b<>anb = ). An edge of G corresponds to a position in the matrix, and a
couple is an unordered pair. The two conditions say that the two edges of a couple
originate and terminate in different nodes, and that any edge may occur in at most one
couple of a set of couples. For an edge e = (u, v)e N x N and o € Sym G we write “ec¢” if
and only if ¢(u) = v; this is consistent with the interpretation of ¢ as a subset of N x N.
The set Sym (G; P) of coupled permutations is

Sym (G; P) = {ceSym G: V {e, €} e P (eco<>¢ €0)},
and the coupled permanent per (G; P) is
per (G;P)= Y  p,G).

aeSym(G;P)
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LEmMA 5.1. Suppose that ge F[x, . . ., x,] has expression size e, and that g defines h. Then
there exists a matrix B and a set Q of couples of edges of B such that

(2.1) per (B; Q)=h,
(2.2) Be(Fu{xy, ..., x,})"** where u<4e+2n+4,
(2.3) #0<e+1.

Proor. We will use the following construction. Let R be a polynomial ring over F (or a
commutative F-algebra), x an indeterminate over R, Ae(RuU {x})*** a matrix in which x
occurs exactly m times, and Q a set of couples of edges of 4. We construct a matrix

C=1v(4, x) , containing A as a full subgraph, and a set P = n(A, x) of couples of edges of
C such that

(3-1) per (C; QU P) = (per (4; @))(0) + x(per (4; Q))(1),

(3.2) Ce(Ru{x})*!, where t =s+2m+2,

(3.3) any element of R\{0, 1} occurs an equal number of times in A and C, x occurs
exactly once in C, and #P =m.

(*C contains A as a full subgraph” means that we identify each node of 4 with a node of
C. Although the edge weights in 4 and C of corresponding edges need not be equal, it is
clear how to interpret Q as a set of couples of edges of C. Recall that all our graphs are
complete.)

Then we prove the lemma by an easy induction: We let ¢ be an expression for g of
size e, Qo=0, and Co=pu(p)eX?**? the matrix from Proposition 3.4, where
X=Fu{x,...,x,}, and per Co=g. Let m; denote the number of occurrences of X;
in C,. We get a matrix C; and a set Q; for 1<i<n by Iletting
Ri=F[xXy, oy Xim gy Xip1s - Xy, Ci = P(Ci-ysx) and Q;=Q;_, un(C,_,, x;)-

Properties (3.1), (3.2), (3.3) translate inductively into:

(41) per (C13 Ql) = (;1}. g(els s €y X1y e xn)x‘i1 e x?ia

(4.2) CieX"*%, where t;=2e+2+2(m, +. .. +m)+2i,

(4.3) for 1<, j<n, the number of occurrences of x;in C;is m; if i < j, and 1 otherwise.

Furthermore, #Q;,=m;+...+m,.

It is easy to see that a formula of size e can have at most e+ 1 occurrences of variables,
so that m; +...+m,<e+1. Then with B=C, and Q = 0, the claims of Lemma 5.1 hold.
The construction of C and P proceeds as follows. C consists of A plus (disjointly) the
graph C; on nodes {uy, . . ., Uy, Uy, - - ., U, (Fig. 8).

All edges drawn have weight 1, except that C, (u,, u;) = x; besides these edges, every
node u; or v, has a self-loop: C, (u, ), C; (v, v,) = 1. Each edge weight of A is repeated
in C, except that each occurrence of x is replaced by 1. For m=0, C, is:

1C3%o 1.
We number the occurrences of x in 4 as e, =(i, Ji)s e em="{(mn,j), and let
di = (e, ey ,) for 1 <k <m. Then
P={{d,e}:1<k<m}

is a set of couples of edges for C. Properties (3.2) and (3.3) obviously hold, and it remains
to prove (3.1). This is clear if m =0, and we now assume m > 1.
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Figure 9 shows the construction for the example x5+ 6 from section 3. Returning to the
proof of (3.1), we consider 6 e Sym C and one triangle

U1 Yy
I YO

b = C \./
U",D

We say that o moves in t, if and only if () # u,. We then have for all ¢ eSym C with

1600 !
10 01 O 2
O101 3
0010 4 o us
C =y (Axs)= T 0 0 lup Co—2v0D)
O 011 u o \/\Q
1010 us O. °
001 1]y Uz “
1 2 3 4uguq upg vy
and P= (4, xg) = {{(1,1),(u,up)f} . Then
per(C;iPY=% plc) + % pglC)
eeeoc ee'¢o
1 Qe 00
001 1001
101 0101
010 0010
= per 1 xg (0] + per 1x00
1 0 1[Q]1
10 0] 1010
00 1 00 11
=1 xg+6:(1+x5) =((x5+ 6) (0)) + x5 (x5 +6) (1)).

Fig. 9.
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p,(C) # 0 that
dk<m o moves in t,

<> (VY k<m o moves in t;) and o (uy) = u,
(since m>1). This follows by inductively applying the “domino theorem”: a move

(="revolution™) in one triangle forces a move in each neighbouring triangle.
Consider

§ = {oeSym(C; QUP): p,(C) # 0},
the mapping
o: S = Sym(4; Q)
o+ ¢ | (nodes of A),
T = a(S),
and for M= {1, ..., m}
Sy ={0ceS:Vk<m (o(w) =1, ,<ke M)},
Note that (Syaeq1,...,m 1S @ partition of S.
Then the following hold for all te Sym(4; Q):
teT<p(A) #0,
1€Ty<p(A)#0 and Vk<m(o()=j.<keM).
Consider M # () and te T,,. Then
#a (1) =1,
x:pA(1)) = p,(C) if a(0) = 1.
Here we use that ¢ moves in ¢, if ke M and c€S,,. As an example, if m=3, M = {2, 3}

and a(o) € Ty, then ¢ operates on C; as in Fig. 10.

Now consider t€Ty. Then o™ '(t) = {0y, 0}, where o, uses all self-loops on C,, and g,
on C, is as in Fig. 11.
We have

5

p(A4) = p(A(1)) = pA(0)) = p,,(C),
% p(A(1)) = ps,(O).
We also have that
2. P.(4(0)) = (per (4; 0))(0),

teTy

12 . p(A(1)) = (per (4; Q)(1).
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“m Umst U Uy o
\\ 0 —ro0—
S ou,
“;+1 o u;_q
oy
./“k\.
Yk Vk-1
Fig. 11.
Assembling all this, we get ‘
per (C;QUP)= Y  p(O)= Y 2. p.(C)
oceSym(C; QuUP) Mc{O0,..., m} aeSM
=2 2 xpAD)+ Y [pLA0)+x-p(A(1))]
M+#£Q €T, teT(D

= (per (4; 9)(0) +x - (per (4; @))(1).
Thus properties (3.1), (3.2), (3.3) are proven. O

REMARK 5.2. We can make the coupled permanents into a family of polynomials. For
neN, we have indeterminates x;; and y,, ., for i, jeN and

~ (NxN
{e,e}e( 5 ),
where N={1, ..., n}. Then

&= 2 Il %ew Il Yoo o
ceSymN ieN i,j.keN
o) #k

is the nth “coupled permanent polynomial”. If A€ F"*" is a matrix and
NxN
o=("7")
a set of couples of edges of A, then per (4; Q) equals c, evaluated at x;; = 4;; and
3 {0 if peQ,

Yo .
1 otherwise. O

REMARK 5.3 (C. Greither). Let us replace in the construction of C each triangle
U@ — Oy,
N/
°
Uk

WO e—dy .,

[

®— O
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and, if m is even, add an extra node

Upt+1 Upmia U
[ IR ey )

between u,., and wu, Then each permutation with non-zero contribution to the

permanent is even. Therefore the permanent equals the determinant, and it follows that

an analogue of Lemma 5.1 also holds for “coupled determinants”. O

THEOREM 5.4. Let F be a field of characteristic different from two. Then PER is p-complete
over F.

ProoF. The main step is the following construction which removes one couple from a

coupled permanent. Let Ge R*** be a matrix over a commutative F -algebra R, Q a set of -

couples of edges of G, and {e, ¢’} a couple of edges of G with {e,e}¢0. We will get a
graph H =#(G, {e, ¢'}), which contains G as a full subgraph, such that

(3.1) per (H; Q) = per (G; Qu{{e, €'}}),
(5.2) HeR™", where r =t+3.

Given this construction, we prove the theorem as follows. PER is p-definable by
Proposition 4.5. Let f be an arbitrary p-definable family of polynomials over F, and g, h
as in Definition 4.1. It is sufficient to prove that 4 is a p-projection of PER, since then by
Proposition 2.14 (i) also fis such a p-projection, and therefore PER p-complete.

Let e, be the expression size of g,. By assumption, e, is a p-bounded function of n.

Fix some neN. By Lemma 5.1, there exist B,e X*** and a set Q, of couples of edges of
By, where X =Fu{x,,..., x,}, such that h,=per (Bo; Qo) and u<de,+2n+4. Let
q=#Q, and Qy={cy,...,¢,}. Then g<e,+1. For 1 <i<q we get graphs
B;=n(B;-1, c;) and sets Q;={c;,, . . ., ¢,} such that

(6.1) per (B;; Q) =h,
(6.2) B;e Xw+30xw+3)

In particular, Q, =@, B,e X*** with s<7e,+2n+7, and h,=per (B,). Thus h is a
p-projection of PER.

The basic graph for the construction with properties (5.1) and (5.2) is the following
“coupler” K on 3 nodes a, b, ¢ (Fig. 12). The edges drawn have weight 1, unless otherwise

specified. If K (U | V) denotes K with rows U and columns V removed, then the following
hold:

(7.1) per K =1,
(7.1) perK (b, cla, c) = 1,
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ue ou’
Gu,v) G{u',v")
a
b
1 1
ve oV
Fig. 13.
(7.3) per K (b|a) =0,
(7.4) per K (b|c) =0,
(7.5) per K (c|a) =0,
(7.6) per K (c|c) =0.

Now consider G, Q, e, ¢’ as above, and write e =(u, v) and ¢ = (v, v), with u #u' and
v#v'. The graph (or matrix) H =#5(G, {e, ¢'}) lives on the nodes of G plus the three nodes
of K. All edges of G and K occur with the same weight in H, except that
H(u, v) = H(@', v") = 0. The interconnecting edges are as in Fig. 13.

Properties (5.2) and (5.3) obviously hold. We now let

S = {oeSym (H; Q):p,(H) #0},

and partition § into six parts (Fig. 14). o

Figure 14 illustrates exactly which connections between u, v, u,v anfl a, b,.c are
required for each geS,. We first note that any o€ S uses a matching number of in/out
edges between G and K. Inspection shows that this implies

ce |J S
1<k<6

Sy o (v) # a, Sat o (u) # a, !
o) #ec, o) =g, {
o (b) # v, o (b) =v, N
o(c) # v olc) # v, l
[ ]
o o °
Sp: oW =a, g l S5t o(u) =a [
o (u) =c, |* olu) #ec, N
o) =v, | 2 o (b  # v,
o) =v, B ole) =7, 1
e o
o [
Sg: o (u) # a,
o (¢') =c, S
O'(b) # v,
‘ ofc) =v, °
L ]
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and therefore 5:85 = Sym (G; Q)
S = S ’
_ 1<¥<6 N1 ifi=u,
1s a disjoint union. We now have six claims. a3(0)0) = o(i) otherwise,
®.1) Y p(H)= % p(G), | 2184~ Sym (G; Q)
oeS IESym'(G;Q)
e, e'¢t N v ifl'=u’,
®3.2) Y. Po(H) = Y, plG), %)) = o(i) otherwise,
ceS2 tESeyr:l(G;Q)
e os:Ss — Sym (G;
(8.%) S p(H) =0 for 3 <k <6. 5:85 = Sym ( _Q)
. &Sk Ly ifi=u,
Since §;N S, = @ for j #k, these claims will imply 5(0)(0) = o(i) otherwise,
per (H; Q) = Zs P.(H) %g: 8¢ = Sym (G; Q)
o ifi=u
=Y pH)+ Y p,(H n=4" 1 X
a;s, aezsz Po(H) 6(0)(0) {o-(i) otherwise.
O+ Y p(G) , One checks that each o, is well defined, and the fibres are equivalence classes. For
eage eyieo | cesm@G 0,
= per (G; Qu{{e, €}}), : (9.k) p(H) = 4 p(G),
which is (5.1). te e a,{%“:t k
It is convenient to consider the following equivalence relation on S: where 1 fk<2,
p=o<>p and o agree outside the coupler T {0 otherwise,
< (p() #0()=1i, p(i), s()) e {a, b, c}). using equation (7.k). Summing (9.k) over TeIm «,, the claim (8.k) follows. [
For (8.1), we let ' =Qu{{e, ¢'}} and consider The question of what kind of relations exist between permanent and determinant, in

S 55 ] particular whether the permanent can be expressed as the determinant of a matrix, is a
%115, = Sym (G; Q) classical mathematical problem. Szegé (1913), answering a question posed by Polya
;(0) = o | (nodes of G). , (1913), showed that for n > 3, there is no way of generalising

One checks that «; is well defined, has
T, = {teSym (G; Q) :p(G) #0 and e, e'¢r}

as 1mage, and the fibres are equivalence classes. For te T;, we have

Y p(H)=Y p,x(K)-pG)}

X111 X12 X113 —X12
per =det ,

X21 X22 X1  Xa22

ie. of affixing + signs to the indeterminate entries x;; such that

ay(@)=1 aifo)=t Marcus & Minc (1961) proved that one cannot relate certain permanental and
determinantal functions by linear mappings. In particular, for n> 3, there are no linear
=[ SZ pp(K)]-p,(G) forms f,; in indeterminates x;; (1<1,j, k, I<n) such that per (x;;) = det (fy;). Von zur

peSymK

Gathen (1987) proves that if the nxn—permanent is a projection of the mxm—
determinant, then m > 1-06n; Meshulam (1987) and Seress & Babai (1987) improve this to
m>\/§n. The previous results establish the following connection between this classical
- algebraic question and the “gp-variant” of Valiant’s hypothesis (the “extended Valiant
- hypothesis™).

= per K- p(G) = p(G),
by (7.1). Summing over te T, yields (8.1).

The remaining claims are proven in an analogous way. One considers the
corresponding mappings:

COROLLARY 5.5. Let F be a field of characteristic different from two. Then the following are

ay:8; — Sym (G; Q) equivalent :

v ifi=u,
@)@ =<v ifi=u,

a(i) otherwise,

(i) there exists a qp-definable family which is not gp-computable,
(ii) PER is not gp-computable,
(i) PER is not a gp-projection of DET.
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PROOF. For “(i)=>(ii)”, one has to check that the proofs of this section go through with
“gp” for “p”. Since DET is gp-computable (even p-computable), “(i))=(iti)” holds by
Proposition 2.14 (ii). “(iif)= (ii)” follows from Theorem 3.1. “@i)=>()" is trivial. O

Our next goal is to prove that the family of Hamiltonian cycle polynomials is
p-complete. We first show that “coupled Hamiltonian cycles” can simulate coupled
permanents, and then that ordinary Hamiltonian cycles can simulate the coupled ones. So
let G be an arbitrary (complete directed edge-weighted) graph on node set N, and

NXN
pg( ; )

a set of couples of edges of G. We have the set of Hamiltonian cycles
HC(G) = {o6eSym N : ¢ consists of one cycle},
the coupled Hamiltonian cycles
HC(G; P) = HC(G)nSym (G; p),
and the coupled Hamiltonian of G
he(G;P)= ¥ p (6.

ceHC(G; P)
The ordinary Hamiltonian of G is
he(G) = he(G; ).
If G, is the graph on nodes 1, . . ., 1 with an indeterminate X;; as weight on the edge (i, j),

then HC, = he(G,) is the nth member in the Hamiltonian circuit family HC as defined in
section 4.

THEOREM 5.6. Over any field, HC is p-complete.

PROOF. We start by showing that coupled Hamiltonian circuits can simulate coupled
permanents, using the following construction, which was suggested by A. Mébus.

Given a graph Ge R°**, where R is a commutative ring, and

§X§
0=("})
IXt
Pc
(7

(10.1) he(H; P) = per (G; Q),

(10.2) t=4s>+2s, and #P = #0,

(10.3) every element of R\{0, 1} occurs an equal number of times in G and H.

we construct a graph He R'** and

such that

We arrange the positions (i, j) in G (1<i,j<s) arbitrarily in a circle, say alphabetically
with (1, 1) after (s, s). For every i, 1 <i<s, we have two nodes r;and c; in H (for “row i
and “column i), and for every i, j, 1 <i,j<s, four nodes Vij> Wijis Wija, Wy3, With edge-
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bead;; o @— @
[ Wi n
®
vun®
Fig. 15.

weights as in Fig. 15, where (i, /)" is the successor of (i, j). All fadge_s drawn have weight 1,
except H(v;, wi;1) = G(i, j). Note that the same r; and ¢; occur in different beads. All _beads
are strung together on a “Mébus band” H (Fig. 16). Claims (10.2) and (10.3) obviously

hold. _ ' o
We first note that there are only two ways that a Hamiltonian circuit e HC(H) can

traverse any bead (Fig. 17). ‘ _
For an edge e = (i, j) of G, we have the corresponding edge

d, = (vija Wijl)
pc txt
2

becdss beﬂd11
— e

~
IE AN —~
Vit S—>-@7~ pead
Viz\ N 12
o
Y3

in H. We define

/
@ ——
Ves

Vi +1 Vi :
1Y Vig e Yijt
~~ 's .

AN ® ~

~— e —

becd,-/- bead,-,,-_1

]
°

Fig. 16.
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vy

[
\G(\i,-j)
v
(i,j) Wy ? Wi

——o<—o
G Wi fi
*vi,n*
Fig. 17.

as the set of couples corresponding to Q in a natural way:

P={{d,,d,}:{ee}eQ}.
We get a mapping
a:HC(H; P) - Sym (G; Q),
wo)@D) =j if o(vy) = wy;.
One checks that a(o) is a permutation in Sym (G), since for each I, 0 passes through 7,

exactly once, and through one ¢; using the bead (i,j). It is then clear that also
o(o)eSym (G; Q), and

po(H) = pa(a’)(G)'
The claim (10.1) is proven.

The next task, simulating coupled Hamiltonians by ordinary Hamiltonians, is solved by
the following construction. We will consider “special graphs” H, which have a special
edge eg=(u,v) such that H(u,j)=H(,v)=0 for j#v, i*u, and H(u,v)=1. Every
o€ HC(H) with p,(H) # 0 contains e,. For the construction, we are given a special graph
HeR'™, where R is a commutative ring, and

txt o [txt
PE( ) ), {e,e}e( 5 )\P,

such that PU{{e, ¢'}} is a set of couples of edges of H, in which e, does not occur. We

construct a special graph C = y(H, {e, ¢'}), which contains H as a full subgraph, and such
that

(11.1) he(C; P) =he(H; Pu{{e, €}}),
(11.2) CeR™", where r =t+6,
(11.3) every element of R\{0, 1} occurs an equal number of times in H and C.
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beadsj _ 4 _:% /\b\ead“
/ ” \ \
[ N
v ez
Fig. 18.

Given this construction, we prove the theorem just as in Theorem 5.4. In Proposition
4.6 we remarked that HC is p-definable. Using the notation n,e,, X = FU{xy, ..., X,},
Boe X"** and Q, from the proof of Theorem 5.4, it is sufficient to show that per (By; Qo)
is a projection of HC, for some small n, by Lemma 5.1. From (10.1), (10.2), and (10.3) we
get He R, where t = 4u® +2u, and

- [tXt
Pe ( ; )

such that hc(H; P) = per (By; Q). We make H into a special graph H, by splitting node
v,, into two nodes z;, and z,, with special edge e, = (z3, z,) (Fig. 18). Let p=#P and
P={cy,...,c,}. Then p=#Q, <e,+1. We get special graphs Hy, Hy, ..., H, and sets
Py, Py, ..., P, by setting

Pi={cir1s--Cp}s

H;=vy(H;_,, ¢

Properties (11.1), (11.2), (11.3) yield that for all i<p
(12.1) he(H;, Py) = he(H, Po) = per (Bo, Qo)s

(12.2) H;eR"*"i where r; = 4u*+2u+6i, '
(12.3) every element of R\{0, 1} occurs an equal number of times in H; and B,,.

In particular, per (By; Qo) = hc(H,) and H,e R"™", where
r < (8e,+4n)% +142e,+ 68n+78.

It remains to construct C with properties (11.1), (11.2), (11.3). Assume that e = (u, v),
¢ =@,v), and ey = (ug, vy) is the special edge of H. C has the nodes of H plus 6 new
nodes a,, a,, as, b, ¢;, c,. The edge weights are as in Fig. 19. All edges drawn have weight
1, unless otherwise specified. For nodes i,j of H, we have C(, j) = H(i, j) unless

G, Nefe,e}; Cu,v)=CW,v)=0.
The special edge of C is (ug, ¢;). Properties (11.2) and (11.3) obviously hold. Let
S = {oe HC(C; P):p,(C) # 0},
S, ={oeS:o(a,)=as},
SZ = S\Sl.

One checks that any o €S, has the form in Fig. 20 and any o €8S, has the form in Fig. 21.
Let P'=Pu{{e, ¢'}}. We have a mapping

o,:8; > HC(H; P
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Fig. 21.
v ifi=u, COROLLARY 5.7. Under Valiant’s hypothesis, neither PER (in characteristic different from
. ' ifi=u, two) nor HC are p-computable.
0(1(0')(1) = 0 ifi= Uy
o(i) otherwise. Many thanks go to the participants of the DMV seminar, in particular to Volker Strassen and
Michael Clausen, to the audience of a course in Toronto, in particular to Steve Cook, Faith Fich,
Then #a7!(z) =1 for any teima,, and if a;(s) =1, then p,(C) = p.(H). and Charlie Rackoff, to the editor, Bruno Buchberger, and to the referees, for many helpful
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We develop the notion of theory link, which is a generalization of.ordinary link to a
set of literals that are simultaneously unsatisfiable relative to a given set of clause;
We show that theory links may be ‘activated’ in much the same manner as or.d1-
nary links when inferencing with respect to the given set of clauses. Several link
deletion results are shown to hold for theory links, and some examples are
presented using first-order theory links.

1. Introduction

In (Murray & Rosenthal, 1985a, 1985b, 1985c, 1987) we developed a graphical
representation of NNF quantifier-free predicate calculus fo.rmulas ‘a,nd a new rule of
inference, path resolution, which employs this representation. Stickel (1983, 1985a,
1985b) introduced theory resolution in which inferences depend on the ex;s‘t‘ence of a
‘black box’ to implement a theory. Stickel designed theory reso.lutlon to be ‘““‘a method
of incorporating specialized reasoning procedures in a resolution thegrem prover so
that the reasoning task will be eflectively divided into two parts: special cases ... are
handled efliciently by specialized reasoning procedures, while more generalized reason-
ing is handled by resolution.”

Path resolution operations hinge on the discovery of subgraphs (calleq resolution
chains) which have the special property that all their c-.paths contam.a l%nk. Mgn}i
results from path resolution go through when we consider a generalization of link
which we call a theory link. Intuitively, an ordinary link is a set of two c-cor.mec-ted
(conjoined) literals such that under no assignment can both bg true; a t,}feory link is a
set of n c-connected literals such that under no T-aSSIgnment_, i.e., an asmgnment satis-
fying the axioms of theory T, can all be true. These specialized theory links can then
be used in resolution-like procedures.

Finding a large resolution chain is hard in general, being es.se:ntially a sub-
deduction, i.e., the theorem proving problem on a (possibly non-explicit) subformula.
One major advantage to the use of theory links is that they often represent large
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