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ABSTRACT

The nXn permanent is not a projection of the m Xm determinant if

m<\/§n—6\/ﬁ.

1. INTRODUCTION

The definitions of permanent and determinant look very similar:

perxij = Z xlal T xno,,
o € Sym,,

differs from detx,; only in the signs of the summands. However, while
Gaussian elimination provides an efficient way of calculating the determi-
nant, no fast algorithm is known for the permanent. (We assume an arbitrary
ground field of characteristic different from two, since otherwise perx;;=
det x;;.) Evidence for the difficulty of computing the permanent was given in
Valiant’s (1979a) theory of p-completeness, an arithmetic analogue of the
Boolean theory of P versus NP [see von zur Gathen (1987) for an exposition].

*Part of this work was done while the author was visiting Universitit Ziirich, and supported
by Schweizerischer Nationalfonds, grant 21750.83, and by NSERC, grant 3-650-126-40. A
- preliminary version appears in Proceedings of the 27th Annual IEEE Symposium on Foundations
of Computer Science, Toronto, Ontario, 1986, pp. 398—401.
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Z‘he determinant can be computed in polynomial time, but the Permanent ;
p-complete”: a polynomial-time algorithm for the permanent would N
one for a host of problems which have so far withstood attempts to ﬁmlin}ply
algorithms. Valiant’s hypothesis is the conjecture that no such fast algoﬂthmaSt
exist, in particular no arithmetic algorithms for the n X n permanent ys; >
constants from the ground field, indeterminates, and nO® arithmetic i
ations +, —, *, /. One of the motivations for Valiant’s theory is the ;pen
‘t/hat t}l:e é)QW(:;'lﬁﬂBtoolls of algebra may allow us to solve problems which (;I;:
ery hard in the Boolean conte iant’s ari i
o Conies o the Boolean cor xt, maybe even Valiant’s arithmetic analogue
. The Boolean problem of computing the permanent of a matrix with
integer entries is #P-complete (Valiant 1979b). "
. The n >< n permanent is said to be a projection of the m X m determinant
if .there exists an' m X'm matrix f whose entries are constants and indeter-
minates x,; (1<i, j<n) such that perx;; = det f. Let us denote by p(n) the

smallest such m. Valiant — Arn20n L :
follow from m ant proves p(n) = O(n*2"). Valiant’s hypothesis would

p(n) = 2(10g n)”(l).

p(n) > n is trivial. The main result of the present paper is the first nontrivial
lower bound for this problem, showing that p(n)>v2n—6vn over an
infinite field of characteristic different from two. The author had obtained
p(n)>1.06n — 1; the stated bound is due to Babai and Seress (1987).

The question of what kind of relations exist between permanent and
determinant, in particular whether the permanent can be expressed as the
determinant of a matrix, is a classical mathematical problem. Szegf (1913),

answering a question posed by Pélya (1913), showed that for n > 3, there is
no way of generalizing ’

11 %y u —x
or _ 12
p [le Xoo det Xg1 Xy ]’
ie., of affixing + signs to the indeterminate entries x;; such that
perx;; = det( + x,.].).

In view of this question, we consider “ +-projections” f with perx = det f
as above, but where now constants, indeterminates 1. ,, and also —x,; are
allowed. p , (n) is the minimal m with this property. CYearly p.(n)< lr;(n)-

Marcus and Minc (1961) proved that one cannot relate certain permanen-
tal and determinantal functions by linear mappings. In particular. for n > 3,
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there are no linear forms f;, in indeterminates x,; (1 <4, j,k,I<n) such
that perx;; = det fi;. The methods of this paper yield an easy proof of this
result, generalized to arbitrary infinite fields of characteristic different from
two, and also allowing affine linear forms with nonzero constant terms.

A general background on permanents is given in Minc (1978).

The paper is organized as follows. In Section 2, we give bounds on the
dimension (in the sense of algebraic geometry) of the singular locus of the
permanent and determinant polynomials. In Section 3, we derive a criterion
on mappings that transform the permanent into the determinant. The result
of Marcus and Minc follows immediately. As an aside, absolute irreducibility
of the permanent is a corollary. Applying the criterion, a combinatorial
argument proves in Section 4 that p ,(n)> V2n—6yn.

We note that the combinatorial argument can be applied directly to prove
lower bounds for p(n), without using the geometry of Sections 2 and 3 (see
the preliminary version). However, that approach seems a dead end, while it
remains open whether the present method can yield better lower bounds.

2. THE SINGULAR LOCUS OF DETERMINANT AND PERMANENT

Throughout the paper, F is a field of characteristic different from two,
neN, and x; jare indeterminates over F for 1 < i, j < n. We use elementary
notions from algebraic geometry, as e.g. in Shafarevich (1974, Chapter I). For
simplicity, we assume F algebraically closed in this section. We say that the
n X n matrix x = (%;;); <, j < » consists of the coordinates on the ring F"*" of
n X n matrices over F. We also let x = {x, X19,..., X, }» 50 that perx,det x
e F[x]. If f€F[y;,...,y,] is squarefree, then the singular locus singY of
the hypersurface

Y={f=0}={acF": f(a)=0} CF"
is the closed subvariety of F" defined as

;_y{(a>=o}.

singY = {aeY:—(a)= e =
Y

Let I,Jc {1,...,n), R aring, and u € R"*" be an n X n matrix over R.
We denote by u(I|J) the (n—#I)X(n —#J) matrix obtained from u by
deleting the rows from I and the columns from J. We also write u(i|J) and
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u(i, j|J) if I={i} and I= (i, j}, respectively; similarly for J. We let
D, = {detx =0} c F**n,
P, = {perx =0} c Fr*n,
Since d det x /9x;; = (— 1)**idet(x(i|)), and similarly for per, we have
sing D, = {a € F"™":Vi, j < n deta(i|j) =0}
={a€eF"™":ranka<n -2},
sing P, = {a € F"*".vj, j<npera(ilj)=0}.

Lemma 2.1. Let F be algebraically clo.
irreducible of dimension n® — 4. y closed, n

Proof. For1<i<j<n,let

S;;={a&F"":rows i and j of a are linearly
dependent on the other rows of a }.

Then S,_, ., e.g., is the image of the mapping

d: F(n=2Xn X Fn—2x Fr2_, Frxn

b
(b,c,d)— 2 Ciby
2 dibye

:z:;l;i bk; is the kth row of b. The generic fibre of ¢ consists of one point,
erefore each S, ;s irreducible of dimension n2 — 4. Furthermore,

singD,=  |J S

ij?
l<i<jgn

and for any i< j, Si;N S, .-y is a dense open subset of S

that sing D, equals the Zariski closure of S,_1 .. o I fo]l(?w:

> 2. Then sing(D,) is
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This lemma is also valid in characteristic two.

Exampik 2.2. In this example we determine sing P;. First note that for
any n, the group G, consisting of row permutations, column permutations
and transposition on F"*" leaves sing P, invarjant. Let

[l* 0 O
U={|* 0 0|)cF¥?
0

| * 0
"« * 0
V={|l* =* 0 :per[: :]=0 C F3%3,
lo 0 0
w= U [e(U)ve(V)].
ceGy

Here, * denotes an arbitrary entry from F. W consists of 6+9=15
irreducible components of dimension 3. Clearly W C sing P;, and we prove
that equality holds. Let a € sing P;. We can assume that some entry of a is
nonzero, and hence that a,; # 0. Then

T 010,
Qgg=—"",
an

and similarly a;; for i,j€ (2,3} are rational functions of a;; and a;
1<i,j<3.

After substitution and multiplication by —a,,/2, the remaining five
equations give

0=10501305; = Q19013031 = Q13091031
= 013091031 = 150138 9,83, /0

All the solutions are contained in W. ]

Lemma 2.3. Let n>3, and F be algebraically closed. Then every
irreducible component of sing P, has dimension at most n?— 5.

Proof. Let CC F™*" be an irreducible component of sing P,. If all
(n— 2)X(n — 2) permanents vanish on C, the claim follows by induction.
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After possibly reorderin um
g rows and columns, we can ass wi
= —_— | .
J={n—-1,n} and g=perx(J|J) we have g| C +# 0. For I<i (;‘ihztf t
: ] X P s ==
ij

perx(i|j) vanishes on C. Th .
column gives | en e.g. developing f, . along the (n =Tt

 with the two 2X2 permanents equal to zero, forms a component C of
~ ging P,, of dimension 6. Each component of sing P, outside the orbit of C
- under G, has dimension 8, and contains at least one zero row or column. To
' generalize C, one takes two diagonal squares, say of sizes s X s and (n — s) X
(n—s), and sets the corresponding two permanents equal to zero and

Jan= Z x erx(i
i ne i,n i i . . on |
in—1Perx(i,n|J)+x all entries outside the squares equal to zero. The resulting ension 1s

l<isn—2 n—l,n—lg'

Thus x,_, ,_, is a rational functi
' neln on on C 2 i
i€ Jor j& J. Similarly, we can use A e T paiables ¢

r.emaim'ng n® — 4 variables. This proves dimC <
find a nonzero polynomial % in these n? -4 v\
Consider

h =gf;1—2,n -ft"z—l,n perx(n - 2’ nl])
-f,'mperx(n—2,n—1|])

= X o lperx(i,n—2iT)perz(n—1,n)

l<ign-3
—perx(i,n—1|J)perx(n—2, n|J)
—perx(i,n|J)perx(n—2,n— 17)]
—2%,_ 5, perx(n—2,n— 1|7 )perx(n—2,n|J).

e coefficient of x,_, ,_, in h is

- 2perx(n—2,n—1]])perx(n —2,n|J) #0,

and therefore h is not the zero polynomial. Since h | C = 0, the claim follows
| |

Re ,
o thMABatK 24, thWe ha\{e not (.ietermmed sing P,, or its dimension. One can
©.g. the matrices with last two columns equal to zero form a

component of sing P, of di ion n? —
comy g I, of dimension n? — 2n. The set of 4 x 4 matrices of the

SO * #
SO * *
* ¥ OO
**004

i; With

if

—1,n—1> f— and f

i . ) =1, n 1 toe

nns %p n_1> and Xn_1,n> Yespectively, as raﬁonalnfunctio;;’s" Oil C :fp rgfs
2 . ©

n° = 4, and it remaing to

ariables that vanishes on C

s2+(n—s)’ -2

3. POLYNOMIAL MAPPINGS

The following theorem is our tool for proving lower bounds on functions
relating the permanent and determinant.

TueoreM 3.1.  Let F be an infinite field of characteristic different from
two, m,n €N, n >3, x coordinates on F**", and

f: ann N Fme

 a polynomial mapping such that im f Nsing D,, # @. Then perx # det f.

Proof. We first assume that F is algebraically closed, perx = det f, and
let ¥ = ()1 <k 1<m be coordinates on F™*™. Thus D, = {dety =0}. By

assumption, f is given by polynomials:

f= (ﬁcl)lsk,l<m € (F[x])mxm'

(For the application in Section 4, it is sufficient to consider affine linear f.)
For a € F™*" and 1<, j <n, we have

sera(ilj) = ( a perx)(a) _ ( 3detf)(a)

ax,.]. axij
ddety af;
=( p (f)—éﬁ)(”)
l<k,l<m 9Yn Lij
a
- T (-0 e ) ED 2 a).
1<k, lI<sm 3xij
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If f(a) €sing D, then each summand vanishes, and therefore pera(ilj) =
and a €sing P,. Letting S= f- !(sing D,,), we have shown that S C sing p _
If $+, then dimS>n® — m? +(m® — 4) = > — 4 by Lemma 9.1 and the
theorem on the dimension of fibres (Shafarevich 1974, Chapter I, Section 3).
Therefore Lemma 2.3 implies that S = 2 ; the claim is proven for algebrajca]]y
closed fields.

If F is an arbitrary infinite field and K an algebraic closure of F , then £
defines a polynomial mapping f: K"*" — K™*™ The theorem for f implies
that for f. n

The theorem as stated also holds over a finite field F , since perx = det f
would be valid over arbitrary extension fields of F. However, it is more
relevant to consider the condition

Va€F™™"  pera=det f(a),

and this may not extend to larger fields.

ReMaRk 3.2. The theorem is a special case of the following situation. Let
f+ X =Y be a morphism of smooth varieties, g a regular function on Y with
g°f¢O,V={g=O}gY,W={g°f=0}=f‘1VgX,and :

do o
T= {aEW:Vi it f(a)=0},

where the ¢, form a system of local parameters on X at a. Then f~'singV C T.
Note that singW C T may be a proper inclusion, if g o £ is not square-free:
for f: F - F? with fla)=(a,a)and g= xy, where x, y are the coordinates
on F2 we have W=T= {0} and singW =g :

Marcus and Minc (1961) deal with representations of the permanent as
linear combinations of determinants of linear forms. As a corollary, they
obtain that for a field F of characteristic zero and n>3, the nXn
permanent is not the n X n determinant of some linear forms, i.e.,

nXn
Vn>=3 Vfe (Zinj) perx # det f.
ij

This is a trivial consequence of Theorem 3.1, since for any such f: Fr>" -
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nX1 we have f(0) =0 € sing D,,. We generalize this statement to ar_bitlra;y
if;finite fields, and also allow constants in the linear forms, in order to include
the “+ -projections” considered in Section 4.

TueoreM 3.3. Let F be an infinite field of charac)fﬁristic different ;‘r%om
wo, n =3, x coordinates on F™*", and f: F**" — F"*" affine linear. Then

perx # det f

Proof. We split f=g+h into its constant and linear parts, with
ge F"*" and

and distinguish two cases.

Case 1: da € F™"\ {0} h(a)=0. We choose a € F"*" wfith hizg
=0 and a,, #0, after possibly permuting rows and columns of x.
b€ F™*" be such that

(0 0 0
b= * H
L
au a]_z aln
1 0
a+b= L ’
L 0 1

ie., b;;=0 for 1<i<n, and (a+b),.j=8ij for 2<i<n, 1< j<n. Then
either per b # det f(b), or else
per(a+b)=ay

+ 0= perb=det[g + h(b)]

=det[g+h(a)+h(b)] =det[g+ h(a+b)] =det f(a+D).

~ Case 2. Ya€F"™"\{0} h(a)#0. Then fisan affine l(iin&la; caltg?r;
morphism of F**", and im f = F"*", In particular, 0 € im f, an

follows by Theorem 3.1.
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We note as an eas
Y consequence the well-known abs
the permanent; this will not be used in the sequel.

TuEOREM 3.4. Let F be an
. Yy field, n>1,
Then perx € F[x] is absolutely irreducible. ¢

Proof. We can assume that F j i
ooty e ol is algebraically closed, since absolute

ty i over an algebraic closure. If =

il)eI;OE:}:x —(i(latx is irreducible [see e.g. van der Waerden (1‘;1'173(;')F t;lz’

& D can also be used to prove Theorem 3.4]. For characteristic diff .
om two, we can assume n >3. o, Gt

Let g,h e i = i
the polynomial mapping f: F*Xn , F zgx 2 givf:IEXIJ)leth perE = ¢h Consider

=[5 3]ereee

a1t pel'x - det ’ S C p 1S omo eneous al (0] -
I h.e . Oince perx h

e nonconstant - _
contradicting Theorem 3.1. nstant, then g(0) = £(0) =0, and FO)=o,
B

4. THE PERMANENT AS PROJECTION OF THE DETERMINANT

We first recall Valiant’s (1979a) notion of projection in our case

DeFmnitioN 4.1, Let F be g field

~ » NEN, x coordi nXxn
x={x, X19:--+5 X, }, and ’ et on BT

p(n)=min{m€N:3fE(FUx)mxmperx=detf}.

If f is as above, then we say that th

en X . I
m X m determinant, Tog 1o ol N permanent is a projection of the

% T Xge., —x,,), and

pi(n)=mm{¢EN:3f€(FUix)mxmpefx=detf}.

We call such an fa +-projection.

C
provelsearl(y p_ién) 2< f(n), ar.nd P+(2)=2<p(2) (if charF = 2). Valiant
p(n) = O(n®2"). The interest in lower bounds on p(n) stems from

olute irreducibility of

nd x coordinates on EFnxn
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the fact that

p(n) = 20em™?

_ jmplies Valiant’s hypothesis, the arithmetic analogue of Cook’s hypothesis
P+ NP. Szegb [1913] showed p ,(n)>n; Theorem 4.4 improves this to
:,: pi(n)>\/§n—6w/ﬁ.

If we define p,, and p, similarly, by allowing f to consist of linear or
affine linear polynomials respectively, then Marcus and Minc (1961) prove
Prn(n) > n, and Theorem 3.3 reads py, > Py > 1.

For the remainder of this section we fix the following notation. F is an

 infinite field of characteristic different from two, m >n >3, x consists of
. coordinates on F"*", f e (FU +x)™*™, and perx = det f.

DrrFINITION 4.2. A free square for f consists of four indices 1 < k; <k,
<m, 1<1; <l <m such that f; , € +x, say

S, = £ %,,5,S X

rts

~for r, s € {1,2}; each such f; ; occurs only once in f; — fi 1, does not occur

in f; and iy # i99, f11 7 joor
Lemma 4.3.  f has no free square.

Proof. We assume that k;,k,,1;,l, form a free square for f. After
possibly permuting rows and columns in f (so that perx = t+det f), we can
assume that k,=1,=1, k,=1,=2, so that

where each f;, is some +x, ; for k,l€ (1,2}, and these variables do not
occurin g;, g, g3- As a further simplification, we may also assume f;; = £ x;;,
say fi;=¢;;x;; with ¢;;€ { — 1,1} for i, j € {1,2}. We show that we can
make d = det g, nonzero by appropriate substitutions for x;;, and then
adjust the four variables in the top left corner so that the resulting matrix has
rank m — 2. Let S= {5, ¥19, Xg), X9y } consist of the four special variables,
and z = f;; f5. Thus all entries of g,, g, g5 are from T=(FU £x)\ £S5
The coefficient of z in det f is +d, and the coefficient of z in perx is
nonzero, using the last condition in Definition 4.2. Thus d # 0. The two rows
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2X(m—2) . . .
;):yg 1ET are linear combinations of the rows of g5 € Tm=DX(m—3)
3

u.
fi= ¥ g
! 3<k<n dﬂ]
for1<i<2<j<n,withu,.keF[x\S].
We choose values a’ in F for the n2 —

d(a’) #0, and set 4 indeterminates in x\ § such that

- Usx

for i, j &€ (1,2}. This completes a’
s s . t nXn :
contradicting Theorem 3.1. ° @ toack with rank f(a) =m — 2,
[ ]

The athor. had originally used this lemma to show p+(n)>1.06n-1
The following improvement is due to Babai and Seress (1987). .

TueoreM 4.4.  Let F be an infinite field o i
characteristic di
o, and n &N, Thon (oo v ek f characteristic different from

w Proof. Suppose that fe(FU +x)™>™ is a matrix with per x =det f.
the sh.ow that m > V2n—6/n. For 1 <k< m?, let a; denote the number of'
hose indeterminates x, j for which x,; and —x,, together occur tl

times in f. Then ! N ractly &

al +2a2 +3a3 4+ ... <m2’
Oll+a2+a3+---=n2’
2n2—a1< m2,

and we will prove that «, is small.

We define a h’?w of f to be either a row or a column of frandlet XCx
denote the set of indeterminates occurring exactly once in f. ’ If x,, %, € X
occur (with a+sign) in the same line of f, then either i =k .or j =”l’ I,-cIlence
we can ‘l‘atffel those lines of f which contain at least two elemeflts c;f Xb

‘r or “c”; a line receives the label 7 if it contains indeterminates from Z
single row of x, and ¢ if from a single column of «. ‘

Let G l?e the undirected bipartite graph whose vertices are the 2m lines
of f, and with an edge between those lines that have an element of X at their

intersection. Let e denote the number of edges of G. Any x,. € X either
ij

4.3, G, and G, contain no four-cycles, and thus each have at most (2m
- edges (see Lovasz (1979), Ch. 10, Ex. 36).
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corresponds to an edge in G, or lies on an unlabelled line. There are at most

- 9m unlabelled lines, with at most one x;; per line. Thus &, <2m + e.

We split G into four subgraphs, each of which has the same set of vertices
as G, and the (disjoint) union of their edges is the edge set of G. G is the
graph whose edges connect vertices labelled r, G, is the graph connecting

 vertices labelled ¢, G, contains the edges which connect rows labelled r with
~ columns labelled ¢, and G, contains the edges connecting rows labelled ¢

~ with columns labelled 7.

We first consider a connected component H of G, or G,. Since all edges

~ in H represent members of the same line of x, H contains at most n edges.
. Thus if H has at least V/n vertices, the average degree of vertices is at most Vn.

The same is trivially true for H with less than Vn vertices, and so the average
degree in G, and G, is at most Vn.

A fourcycle in G, or G, corresponds to a free square in f. By Lemma
)32

Assuming that m<»/§n—6\/71<1/§n, we find

3/2 9

e<2-m-yn +2-(2m)”" < an®?,

4
with @ = 2V/2 +8v2. A simple calculation shows that
2n? — (2V2n + an®?) < 2n* — (2m +¢) <on—a,<m*< (Y2n—6yn)’

implies n < 70. However, Van—6/n<n<p 4 (n) for n <70, using Szegd
(1913) (or Theorem 3.3). |

5. CONCLUSION AND OPEN QUESTIONS

One of the goals of Valiant’s theory of “p-completeness” is to provide an
analogue of the notorious Boolean conjecture P # NP in a more structured
setting (here: arithmetic computations), where powerful toels are available.
The present criterion on maps relating the permanent and determinant yields
an easy proof of (a generalization of) a theorem of Marcus and Minc. The
main result is that p(n)> pi(n)>\/§n— 6yVn. Meshulam (1987) has
extended this to affine linear projections. It “remains” to improve this lower
bounds, ultimately to superpolynomial in n. Theorem 3.1 by itself will not
lead much further, since there are matrices f € (F U {23, %15,..0, X D™
with m <v2n +2, dim@im f)=n? and im f Nsing D,, =@ (e.g. an upper
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triangular matrix with ones on the diagonal and entries x;; in the upper
triangle). ,

From a geometric point of view, it would be interesting to determine the
number of irreducible components of sing P, and their dimensions. It is,
however, not clear that such a result would yield new information on p(n).

Many thanks go to Ldszlé Babai and Akos Seress for permission to include
their proof. I have had many stimulating discussions with Volker Strassen
and Michael Clausen about the subject and thank Allan Donsig and Gaston
Gonnet for help in calculating sing(P,) on the Maple system.
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ABSTRACT

=[i(n®—2n+
i i ] integer < [gw,]+1=[3(n
and Y. Vitek conjecture that every in ‘ .
i\’i- 11543 tvl‘llnexponent of some n X n primitive matrix. In thlS. paper we prm:an:l::;tt
?})115 conjecture is true except for n =11. The problem of determining the expon:

E, is completely solved.

INTRODUCTION

. o e s k
An n X n nonnegative square matrix A = (a,;) is primitive if fAA>ag dfc;z
some positive integer k. The least such k is called the exponent o
denoted by y(A).

1. THE MAIN RESULT

i i al upper bound for
H. Wielandt [6] first stated the exact general ug :

(AI;l tll?:fto’is y(AY <KW, =(n— 1)2+1 for all n X n primitive matrices. I.n
]1(964’A L. I)I’ ilmage and N. S. Mendelsohn [1] revealed the so-'called %a%s 1(.:;
the c;x;;onent set of nXn primitive matrices. Each. gap is a se S of
consecutive integers below W, such t?lai n[(:jt ]nfx n (;nilhtzxgz:nilfasl aIrll1 :t);l;:)c:i ot
in S. In 1981, M. Lewin and Yl. Vite oun method o

rmin 3 d W, where [x] denotes
ining all gaps between [;W,]+1 and W,,
gf;:test gtgeger < x. And they conjectured that there are no gaps below
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