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Abstract

In this paper, we investigate the maximum weight triangulation of a convex polygon and its application to graph drawing.
We can find the maximum weight triangulation of a special n-gon which inscribed on a circle in O(n?) time. The complexity of
this algorithm can be reduced to O(n) if the polygon is regular. The algorithm also produces a triangulation approximating the
maximum weight triangulation of a convex n-gon with weight ratio 0.5. We further show that a tree always admits a maximum
weight drawing if the internal nodes of the tree connect to at most 2 non-leaf nodes, and the drawing can be done in O(n) time.
Finally, we prove a property of maximum planar graphs which do not admit a maximum weight drawing on any convex point
set. © 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Triangulation of a set of points is a fundamental
structure in computational geometry. Among differ-
ent triangulations, the minimum weight triangulation,
MWT, of a set of points in the plane attracts special
attention [3,4,7]. The construction of the MWT of a
point set is still an outstanding open problem. When
the given point set is the set of vertices of a convex
polygon (so-called convex point set), then the corre-
sponding MWT can be found in O(n?) time by dy-
namic programming [3.,4].

According to the authors’ best knowledge, there is
not much research done on maximum weight triangu-
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lation, MaxWT. From the theoretical viewpoint, the
maximum weight triangulation problem and the mini-
mum weight triangulation problem attract equally in-
terest, and one seems not to be easier than the other.
The study of maximum weight triangulation will help
us to understand the nature of optimal triangulations.
Straight-line drawing is a field of growing inter-
est [1]. A special type of straight-line drawings is min-
imum weight drawings. Let C be a class of graphs,
and S be a set of points in the plane. Let G = (V, E)
be a graph of C such that V(G) = S, E is a set of
non-crossing straight-line segments connecting pairs
of points of S, and the length sum of all the edges in
E is minimized over all straight-line graphs of class C
on S, G is called a minimum weight representative of
C with respect to S. A graph G € C is said to admit
a minimum weight drawing if G is a minimum weight
representative of C with respect to some point set S.
In particular, if C is the class of trees, tree G admits
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Fig. 1. An illustration of minimum weight drawing.

(b)

a minimum weight drawing if there exists a set S of
points in the plane such that G is isomorphic to an
Euclidean minimum weight spanning tree of S. For
example, tree T in Fig. 1(a) has a minimum weight
drawing as T is isomorphic to an Euclidean minimum
weight spanning tree as given in Fig. 1(b).

The results of minimum weight drawing of graphs
can be found in [1,2,6]. The maximum weight drawing
of graphs, MaxWD, can be defined similarly.

2. Preliminaries

Let S be a set of points in the plane. A triangulation
of §, denoted by T(S), is a maximal set of non-
crossing line segments with their endpoints in §. It
follows that the interior of the convex hull of § is
partitioned into non-overlapping triangles. The weight
of a triangulation T(S) is given by

o(T()) = > oG,

S ET(S)

where w (5757) is the Euclidean length of line segment
5iS;.

A maximum weight triangulation of S (MaxWT(S))
is defined, for all possible T(S), as

(MaxWT(S)) = max{w(T (5))}.

Let P be a convex polygon (whose vertices are a
convex point set) and T (P) be its triangulation. A fly
triangle of T (P) is one that consists of three diagonals
(Fig. 2(a)). An ear of T(P) is atriangle containing two
consecutive boundary edges of P, which are called ear
edges. An inner-spanning tree of the vertices of P is a
subgraph of T (P) whose nodes are those vertices of P
and whose edges are the internal edges of T (P) plus
two ear edges, one per ear (Fig. 2(b)).

For simplicity, in the proofs of the lemmas, we use
<, =, <,+, —, %, etc. to denote the comparison and

(b)

Fig. 2. An illustration of the definitions.

arithmetic operations of the lengths of arcs or line
segments, i.e., ab < cd means a)(ab) < w(cd), and
ab < cd means the length of arc ab is less than that of
arc cd.

3. The MaxWT of some convex polygons

The following lemma shows an important property
of the maximum weight triangulation of convex poly-
gon.

Lemma 1. If P is a convex polygon, then each inte-
rior angle of any fly triangle of the MaxWT(P) must
be no less than 1 /4.

Proof. By contradiction. Without loss of generality,
assume Aabd is a fly triangle in the MaxWT(P)
with Za < m/4 as the smallest angle and ai is the
line segment perpendicular to bd from a (Fig. 3). As
Za =(a+p) <m/4,we have bd = ai *(tana—f—tanﬁ)
< ai * * tan{er + B) < ai. Replacing bd by @c (as ac >
ai > bd) would arrive at another triangulation whose
weight is larger than the weight of MaxWT(P). This
leads to a contradiction. O

Fig. 3. Fly triangles in the MaxWT(P).
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Corollary 2. If P is a convex polygon, then no inte-
rior angle of any fly triangle of MaxWT(P) is larger
than v /2.

Lemma3. If P is an inscribed polygon. Then
MaxWT(P) cannot contain any fly triangle.

Proof. By contradiction. With respect to Fig. 4, let
Aabc be a fly triangle of MaxWT(P). Then, Aabc
has three neighboring triangles, say Aaeb, Abfc, and
Acda. Let the intersection points of diagonals af, bd,
and ¢e be @', b’, and ¢/, respectively. There are two
distinct cases, depending on whether center o of the
circumcircle lies inside Aa’b’c’ or not.

(1) Let o lie outside the triangle Aa’b’c’ (Fig. 4(a)).
Then, o must lie inside one of of the areas bounded ed by
(cc’, Ca, ad(‘) or (aa’, a'b, bea) or (b¥, b'c, cfb)
Without loss of generallty, let o lie inside the area
bounded by cc’, ¢’a, and ade. In quadrllateral Oaebc
of MaxWT(P), given ce < ab, then cfbe < bea.
Similarly, in Oabfc of MaxWT(P), as (_1? < be, then
fbea cfb Thus, we have cfbe+ fbea < bea +
cfb or fbe 0, a contradiction.

(2) Let o lie inside Aa'b’c’ (Fig. 4(b)) In Qaebc
of MaxWT(P), ce < ab, then we have cfbe bea.
Slmllarly, we have t;ic\f cfb as af < be, and
b/e-c;l adc as db ac. Addmg them accordmg]y,
we have (bead+adcf+cfbe) (adc+cfb +bea)
Then, (ad + cf + be) < 0, a contradiction.

Both of the above cases assume center o lies inside
fly triangle Aabc. If center o lies outside Aabc, one
of the angles of Aabc must be larger than 7 /2. By
Lemma 3, Aabc cannot be a fly triangle. O

Fig. 4. For the proof of Lemma 3.

Theorem 4. The MaxWT(P) for an inscribed n-gon
P can be found in O(n?) time.

Proof. Assume P = (0,1,...,n — 1) and all the
vertex indices are modulo n. Let W;, jwith0<i,j<
n — 1 denote the weight of MaxWT(P; ;), where
P,y =(,i+1,...,j) is the convex subpolygon
of P. By Lemma 3, MaxWT(P) does not contain
any fly triangle. Thus, for each internal edge i in
MaxWT(P), the triangle in P; ; associated with edge
ij must involve with either boundary edge i(i + 1)
and diagonal (i 4+ 1) or boundary edge (j — 1) and
diagonal i (j — 1).

Thus, we have the following recurrence formula for
Wi ;, where all indices are modulo n.

0 if j =( + 1) mod(n);

max{W; j_1, Wiy1 j} + o))
otherwise.

W,',j=

Since the recurrence indices i and j range from O to
n — 1 and each evaluation of W; ; takes constant time,
all W; ; for 0 < i, j < n— 1 can be evaluated in O(n?)
time. Finally,

(MaxWT(P)) = max{W, ;41 [0<i <n— 1}
which takes another O(n) time. O

Theorem 4 gives an O(n?) algorithm for finding the
maximum weight triangulation of a general convex
polygon P such that its internal edges form a tree.
We let Ap(P) be the triangulation produced by this
algorithm.

Corollary 5. The maximum weight inner-spanning
tree of the vertices of an inscribed polygon P can be
found in O(n?) time.

Proof. As the inner-spanning tree of a convex point
set cannot contain any fly triangle, the algorithm for
finding the maximum weight inner-spanning tree of
the vertices of an inscribed polygon P is similar to
the algorithm for finding MaxWT(P). Let W’ be the
weight of the maximum weight i mner—spannmg tree
of P, j, thus the recurrence formula for W/ ;, with all
indices are modulo n, is

w(ij) if j = (i + 1) mod(n);
W= max{W/ ,_,, ‘_/+1~j}+w(ﬁ)
otherwise. a
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When P is aregular polygon, the foliowing theorem
shows that any triangulation of P without fly triangles
is a maximum weight triangulation.

Theorem 6. Any inner-spanning tree of a regular n-
gon P is maximum and together with the boundary
edges of P it forms a MaxWT(P).

Proof. Corollary 2 implies that the MaxWT(P) does
not contain any cycle formed by diagonals. As P is
regular and its boundary edges are shorter than its
diagonals, all the internal edges of MaxWT(P) and
two edges of P form a maximum weight spanning
tree. We say that a diagonal bridges k boundary edges
if the diagonal and the k& boundary edges form a cycle
of length k£ 4 1. For every inner-spanning tree of P,
it must consist of two boundary edges, a diagonal
bridging two boundary edges, a diagonal bridging
three boundary edges, ..., and a diagonal bridging
(n — 2) boundary edges. As P is regular, all diagonals
bridging the same number of boundary edges must be
of the same length. Thus, all the inner-spanning tree
must be maximum and of the same weight. O

4. MaxWD of caterpillar graphs

A caterpillar is a tree such that all internal nodes
connect to at most 2 non-leaf nodes. Fig. 5 gives an
example of caterpillar.

Let C be the class of caterpillars. We say caterpil-
lar G, has a maximum weight drawing if there exists a
convex point set P in the plane such that G is isomor-
phic to an Euclidean maximum weight spanning tree
of P.

In this section, we present a linear-time algorithm
for the MaxWD of caterpillars through the inner-
spanning trees on the vertex set of a regular polygons.
Given a caterpillar of n nodes G., we construct a
regular point set, i.e., the vertex set of a regular n-gon,
©O,1,....,n — 1). The drawing starts from a head of
the caterpillar, i.e., an internal node with exactly one
internal node as its neighbor. For example, nodes a
and k are heads in the caterpillar given in Fig. 5(a). The
next step is to select a vertex, say (n — 1), in the regular
n-gon to represent the head, and to act as the center of
a fan to vertices 0, 1, ... to represent edges adjacent
to the head (Fig. 5(b)). The drawing of the spanning

a d f k

\

b ¢ e g hi j 1

Fig. 5. An illustration of the definition of caterpillar.

tree will continue with the head’s neighboring internal
node to be represented by the last vertex in the fan
(vertex 2 in Fig. 5(b)). The drawing will proceed along
the chain of internal nodes of G. and the detailed
algorithm is given below.

Algorithm MaxWDRAW
Input: Caterpillar graph G,
Output: Maximum weight spanning tree isomorphic
to G,
Method:
L.n«|V(Gol;
Draw a regular pointset (0, 1,...,n —1).
2. Let V; be the chain of internal nodes starting from
ahead of G..
s < n—1;t < 0; Draw line st
3. While V; # 0 do
vy < Extract(Vy); k < degree(vy); ,
Draw line sj for j=t41,t+2,...,t +k—1;
t<—t+k—1;
if Vi # () then
vy < Extract(Vy); k < degree(v;);
Drawlinet_jforj=s—— l,s—2,....,s —k+1;
s<«s—k+1;
EndDo

Theorem 7. Any caterpillar graph has a straight-line
maximum weight drawing and which can be drawn in
linear time.

Proof. Apply algorithm MaxWDRAW to G.. The
output is a spanning tree over a regular point set, which
is isomorphic to G.. By Theorem 6, this spanning
tree gives the maximum weight triangulation of the
regular polygon formed by the point set. The proof
of Corollary 5 implies that this spanning tree also is

of the maximum weight. Finally, it is easy to see that
MaxWDRAW takes O(n) time. 0O
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Fig. 6. (a) Caterpillar graph,; (b) the corresponding maximum weight
drawing.

5. Forbidden graphs for MaxWD on convex point
set

A graph G is outerplanar if it has a planar embed-
ding such that all its nodes lie on a single face; an out-
erplanar graph is maximal if no edge can be added to
the planar embedding without crossing. In this section,
we shall prove that some maximal outerplanar graphs
do not admit an MaxWD, these graphs are called for-
bidden graphs.

Lemma 8. If P is a convex point set, then there

cannot exist two fly triangles sharing an edge in the
MaxWT(P).

Proof. By contradiction. Without loss of generality,
assume the two fly triangles are Aabd and Abcd as
shown in Fig. 3. We have

G =ab’ +be — 2ab % be cos(Zabc)

—ad’ +dc’ — 2ad xde * cos({cda).

bd =ab +ad" — 2ab +ad % cos(/dab)
= Ez + 21?2 —2bc *dc % cos(Zbcd).

From Lemma 1, since all angles of the fly triangles
are larger than /4, Zabc and Zcda are larger than
/2, 1e., cos({abc) and cos({cda) are negative.
Thus, we have 2a¢ — 2bd° > 0 or @c > bd. This
contradicts that bd is an edge in MaxWT(P). O

Let C be the class of all maximal outerplanar
graphs. A maximal outerplanar graph G has a maxi-
mum weight drawing if there exists a convex point set

P in the plane such that G is isomorphic to an Euclid-
ean maximum weight triangulation of P.

Based on Lemma 8, the following theorem shows
that some maximal outerplanar graphs do not have
maximum weight drawings. Fig. 3 illustrates such an
example.

Theorem 9. If G(V, E) is a maximal outerplanar
graph containing a simple cycle C with four noncon-
secutive nodes which form two triangles sharing a
common edge, then G cannot have a maximum weight
drawing.

Proof. Fig. 3 shows a maximal outerplanar graph
which does not have a maximum weight drawing,
cycle C = ahbecfdga and the four nonconsecutive
nodes a, b, ¢, d, as specified in the theorem. As long
as nodes a, b, ¢, d are nonconsecutive, any ear edges
in the triangulation can be replaced by chains of nodes
(note that many edges are needed to connect these
nodes to make the graph maximal). The proof follows
directly from Lemma 8 as any triangulation of a
convex polygon isomorphic to a maximal outerplanar
graph having the property specified in the theorem
would imply the existence of two fly triangles sharing
acommonedge. 0O

6. Approximating the MaxWT of a convex
polygon

It is a well-known open problem of whether or not
one can find the MWT(P) of convex n-gon P in o(n?)
time, similarly for the MaxWT(P) problem.

In this section, we present an O(n2) time algorithm
to approximate the maximum weight triangulation of
a convex n-gon. The worst ratio of w(ApT(P)) and
o (MaxWT(P)) is at least 0.5, where w(ApT(P))
is the weight of the triangulation produced by the
algorithm described in the proof of Theorem 4.

Let Aabc be a fly triangle of MaxWT(P). The
removal of a fly triangle Aabc will divide P into three
components, each associates with an edge of Aabc.
Aabc is called an ear-fly triangle if at most one of its
three components contains other fly triangles.

Lemma 10. Ratio
(T (P)) 1
oMaxWT(P)) = 2°
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a

Fig. 7. For the proof of Lemma 10.

Proof. (Refer to Fig. 7.) The main idea of the proof
is to locate an ear-fly triangle, say Aabc and then
to make a sequence of edge-flips [5] to transform
MaxWT(P) to T(P). For example, in Fig. 7, these
components associated with ab and @c do not contain
any fly triangles, and we flip bc with axi, then
cx; with axy, etc. until all the nodes x|, x2, ..., xp,

are connected to a directly. Since Aabc is a fly

triangle, /bac ranges from 45° to 90° (Lemma 1 and
Corollary 2). Thus,

w(axy) 1 w@x) _ 1
wbo) ~ 2 w@m 2
and we have
oTP) 1
wMaxWT(P)) ~ 2’

<y

a

Theorem 11. There exists an O(n?) time approxima-
tion algorithm which guarantees that

w(ApT(P)) _ 1
oMaxWT(P)) = 2’

Proof. As T(P) is a triangulation which contains
no fly triangles and Ap(P) is the maximum weight
triangulation which contains no fly triangles, so
w(ApT(P)) 2 w(T (P)). Thus,

w(ApT(P)) o) 1
oMaxWT(P)) = wMaxWT(P)) ~ 2’

Note that Theorem 4 gives an O(n?) algorithm to find
Ap(P). O

Remark. We believe that the worst ratio should be
(44 +/3)/6, occurring on a hexagon formed by having
an extra node on each side of a regular triangle.
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