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Abstract Based on discrete truncated powers, the beautiful Popoviciu’s for-
mulation for restricted integer partition function is generalized. An explicit
formulation for two dimensional multivariate truncated power functions is
presented. Therefore, a simplified explicit formulation for two dimensional
vector partition functions is given. Moreover, the generalized Frobenius prob-
lem is also discussed.
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1. Introduction

The vector partition function that we are interested in is in the form of

t(b|M) = #{x ∈ Zn
+|Mx = b},

where, Z+ denotes the nonnegative integers, M is a fixed s× n integer ma-
trix with columns m1, · · · ,mn ∈ Zs and b is a variable vector in Zs. To
guarantee t(b|M) is finite, we require [{m1, · · · ,mn}] does not contain the
origin, where [A] denotes the convex hull of a given set A. The vector par-
tition function t(b|M), which is also called a discrete truncated power, has
many applications in different mathematical areas including Algebraic Ge-
ometry [25], Representation Theory[28], Number Theory [22] , Statistics[16]
and Randomized Algorithm [31] etc. .
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When s = 1, an explicit formulation for t(b|M), which counts the integer
solutions for the linear Diophantine equation, is presented in [1]. In partic-
ular, when M = (a, b) where a and b are relatively prime, Popoviciu gave a
beautiful and surprising formulation for t(n|(a, b)) ([26]).

For the general matrix M , the nature of t(b|M) is investigated and the
piecewise structure of t(b|M) is given in [15] and [30]. Moreover, one is also
interested in the explicit formulation of t(b|M). For the general matrix M , a
powerful method for obtaining t(b|M) is described in [8,29]. Another inter-
esting algorithm for computing t(b|M) as a function of b is also introduced
in [3]. When M is unimodular, in which every nonsingular square subma-
trix has determinant ±1, two algebraic algorithms for generating the explicit
formulation for t(b|M) is presented in [17]. But all these methods depend
on the complex computation. In [33], based on multivariate truncated power
functions T (x|M), an explicit formulation for t(b|M) is presented. But the
formulation involves multivariate truncated power functions T (x|M), which
is not explicit form, and high-dimensional Fourier-Dedekind sums, so we have
to give an explicit form for T (x|M) and simplify high-dimensional Fourier-
Dedekind sums, in order to predigest the explicit formulation for t(b|M).

The rest of the paper is organized as follows. To help make this paper
self-contained we shall first introduce some notations and definitions in Sec-
tion 2. In Section 3, we recall some results about vector partition functions
t(b|M). Section 4 generalize the Popoviciu’s formulation. In Section 5, the
generalized Frobenius problem is investigated. Finally, Section 6 give an ex-
plicit formulation for multivariate truncated powers in the case where s = 2
and show the high-dimensional Fourier-Dedekind sum can be converted to
one-dimensional Fourier-Dedekind sum, which is convenient for computing.
And hence, a simplified explicit formulation for two-dimension vector parti-
tion functions is given.

2.Preliminaries

To describe the nature of t(b|M), we introduce several notations and def-
initions in which the common terminology of multiset theory is adopted.
Intuitively, a multiset is a set with possible repeated elements; for instance
{2, 2, 2, 3, 4, 4}. Let Y be an s× n matrix. Y can be considered as a multiset
of elements of Rs. The cone spanned by Y, denoted by cone(Y ), is the set

{
∑

y∈Y

ayy : ay ≥ 0 for all y}.

Denote by cone◦(Y ) the relative interior of cone(Y ). Let Y(M) denote the set
consisting of those submultisets Y of M for which M\Y does not span Rs.
Let the set c(M) be the union of cone(M \ Y ) where Y runs over Y(M). A
connected component of cone◦(M) \ c(M), is called a fundamental M−cone.
For the fundamental M−cone Ω, we set v(Ω|M) := Ω−[[M)). Here, [[M)) :=
{∑n

j=1 ajmj : 0 ≤ aj < 1,∀j}, Ω− [[M)) is the set of all elements of the form
a− b, where a ∈ Ω and b ∈ [[M)).
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We shall use the standard multiindex notation. Specifically, an element
α ∈ Nm is called an m−index, and |α| is called the length of α. Define
zα := zα1

1 · · · zαm
m for z = (z1, · · · , zm) ∈ Cm and α = (α1, · · · , αm) ∈ Nm.

For y = (y1, · · · , ys) ∈ Rs and a function f defined on Rs , we denote by
Dyf the directional derivative of f in the direction y,i.e. Dy =

∑s
j=1 yjDj ,

where, Dj denote the partial derivative with respect to the jth coordinate.
For v := (v1, · · · , vm) ∈ Nm, we let Dv = Dv1

1 · · ·Dvm
m and v! =

∏
i vi!

Moreover, we let e := (1, 1, · · · , 1) ∈ Zs.
Let Sk(M) = {Y ⊆ M : #Y = s + k, span(Y ) = Rs} and B(Y ) = {X ⊆

Y : #X = s, span(X) = Rs}. If for any Y ∈ Sk(M), gcd{|det(X)|, X ∈
B(Y )} = 1 , then M is called a k− prime matrix. In particular, when M is
an 1−prime matrix, M is also called a pairwise relative prime matrix. When
s = 1, k−prime matrix means that no k of the integers m1,m2, · · · ,mn have
a common factor, where mi, i = 1, · · · , n are the elements in M. Moreover,
we denote e

2πi
k by Wk.

The multivariate truncated power T (·|M) associated with M, which was
introduced by W.Dahmen [10] firstly, is the distribution given by the rule

T (·|M) : φ 7→
∫

Rn
+

φ(Mu)du, φ ∈ D(Rs), (1)

where D(Rs) is the space of test functions on Rs,i.e. the space of all com-
pactly supported and infinitely differentiable functions on Rs. In fact, T (·|M)
agrees with some homogeneous polynomial of degree n − s on each funda-
mental M−cone. When M is an s× s invertible matrix, T (·|M) agrees with
the function on Rs which takes value 1

|det(M)| on cone(M) and 0 elsewhere.
In [21], an efficient method for computing the multivariate truncated

power is presented.

Theorem 1 ([21]) Let M be an s×n matrix with columns m1, · · · ,mn ∈ Zs\
{0} such that the origin does not contain in conv(M). For any λ1, · · · , λn ∈
R, and x =

∑n
j=1 λjmj ,

T (x|M) =
1

n− s

n∑

j=1

λjT (x|M \mj). (2)

For more detailed information about the function, the reader is referred to
[6],[10].

A multivariate Box spline B(·|M) associated with M was introduced in
[5] and [6], which is the distribution given by the rule

B(·|M) : φ 7→
∫

[0,1)n

φ(Mu)du, φ ∈ D(Rs). (3)

By taking φ = exp(−iy·) in (3), we obtain the Fourier transform of B(·|M)
as

B̂(ζ|M) =
n∏

j=1

1− exp(−iζT mj)
iζT mj

, ζ ∈ Cs.

For more detail information about Box splines,the reader is referred to [7] .
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Remark 1 The definition of fundamental M-cone is slightly different with the
one presented in [15]. In [15], a fundamental M-cone is defined as a connected
component of cone◦(M)\c(M), where c(M) is the union of span(M \Y ) and
Y runs over Y(M). In fact, the fundamental M−cone defined in this paper
may be larger than the one defined in [15]. But all the conclusions in [15]
hold for the larger fundamental M-cone. In a private communication, Prof.
M. Vergne introduce the new definition about fundamental M-cone.

3. Vector partition functions

To describe the nature of t(b|M), we let Mθ := {y ∈ M : θy = 1} and let
A(M) := {θ ∈ (C \ {0})s : span(Mθ) = Rs}. Recall e = (1, 1, · · · , 1) ∈ Zs.
Obviously, e ∈ A(M).

The following qualitative result about t(·|M) is presented in [15].

Theorem 2 ([15]) Let M = {m1, · · · , mn} be a multiset of integer vectors
in Rs such that M spans Rs and the convex hull of M does not contain
the origin. Then for any fundamental M−cone Ω, there exists a unique el-
ement fΩ(α|M) =

∑
θ∈A(M)

θαpθ,Ω(α) such that fΩ(α|M) agrees with t(α|M)

on v(Ω|M), where pθ,Ω(·) is a polynomial with degree less than #Mθ − s.

An explicit formulation for pe,Ω(α), which is the polynomial part of
t(α|M), is presented in the following theorem.

Theorem 3 ([33]) Under the condition of Theorem 2, pe,Ω(x) =
∑n−s

k=0 pk,Ω(x),
where pk,Ω(x) is homogeneous polynomial of degree n− s− k, defined induc-
tively by

p0,Ω(x) = T (x|M), pk,Ω(x) = −
k−1∑

j=0

(
∑

|v|=k−j

Dvpj,Ω(x)(−i)|v|DvB̂(0|M)/v!), k ≥ 1,

where, x ∈ Ω.

More generally, an explicit formulation for pθ,Ω is also given as follows.

Theorem 4 ([33]) Given θ0 ∈ A(M) \ e, under the condition of Theorem 2,
pθ0,Ω(x) =

∑n−s−κ
µ=0 pθ0

µ,Ω(x), where κ = #(M \Mθ0), p
θ0
µ,Ω(x) is homogeneous

polynomial of degree n− s− κ− µ, defined inductively by

pθ0
0,Ω(x) = qθ0

0,r(x),

pθ0
µ,Ω(x) = qθ0

µ,r(x)−
µ−1∑

j=0

(
∑

|v|=µ−j

Dvpθ0
µ,Ω(x)(−i)|v|DvB̂(0|M̂r)/v!), µ ≥ 1.

Here, qθ0
µ,r(x) is a polynomial which is determined by the following conditions:

when x ∈ Ω, qθ0
µ,r(x) =

∑
j1+···+jκ=µ

κ∏
i=1

s1+ji
(θ0

−mi )

(ji+1)!
1
rκ Dj1

m1
· · ·Djκ

mκ
T (x|Mθ0),

where s0(x) = x−xr

x−1 , sj(x) = xs′j−1(x), j ∈ Z+.
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In particular, when M is a 1-prime matrix, a simple formulation for t(·|M)
is shown in the following theorem.

Theorem 5 [33] Under the condition of Theorem 2,when M is a 1−prime
matrix,

fΩ(α|M) = pe,Ω(α|M)+
∑

θ∈A(M)\e
θα 1
|det(Mθ)|

∏

w∈M\Mθ

1
1− θ−w

1cone(Mθ)(Ω),

where pe,Ω(α|M) is given in Theorem 3.

For the convenience of description, throughout the rest of the paper,
we suppose M is a 1-prime matrix without further declaration. According
to Theorem 5, to give a simple explicit formulation for t(b|M), we have
to present an explicit formulation for T (x|M). Moreover, to calculate the
elements in A(M) is a non-trivial problem, hence, we have to predigest the
non-polynomial part in t(b|M).

4. The generalized Popoviciu’s formulation

In this section, we are interested in t(n|M), where M =
(

x1 x2 x3

y1 y2 y3

)
∈ Z2×3,

n = (n1, n2)T ∈ Z2
+. Without loss of generality, we suppose y1

x1
< y2

x2
< y3

x3
.

Obviously, for the matrix M , there exit two fundamental M− cones, i.e.
Ω1 = {(x, y)T |(x, y)T ∈ cone(M), y1

x1
< y

x < y2
x2
} and Ω2 = {(x, y)T |(x, y)T ∈

cone(M), y2
x2

< y
x < y3

x3
} (See Fig.1).

�

�

���

���

Fig.1.The fundamental M-cones.

To describe conveniently, we let Mij =
(

xi xj

yi yj

)
, and let Yij = det(Mij),

where i < j. To describe the explicit formulation for t(n|M), we need to
define the fractional part function {x} which denotes the fractional part of
x, i.e. {x} = x− bxc.

In this section, our goal is to generalize the following beautiful formula
due to Popoviciu:
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Theorem 6 [26] If a and b are relatively prime,

t(n|(a, b)) =
n

ab
− {b−1n

a
} − {a−1n

b
}+ 1,

where b−1b ≡ 1 mod a, and a−1a ≡ 1 mod b, n ∈ Z+.

In order to generalize Theorem 6, we firstly consider the explicit formu-
lation for T (x|M).

Lemma 1 Suppose the matrix M =
(

x1 x2 x3

y1 y2 y3

)
∈ Z2×3. When x = (x, y)T ∈

Ω1, T (x|M) = yx1−xy1
(x1y2−y1x2)(x1y3−y1x3)

; when x = (x, y)T ∈ Ω2, T (x|M) =
xy3−yx3

(x2y3−y2x3)(x1y3−y1x3)
.

proof: Based on Theorem 1 and T (x|Mij) = 1
det(Mij)

,x ∈ cone(Mij), i < j,
the Lemma can be proved easily after a brief calculation. ¤

Hence, we obtain the conclusion as follows.

Theorem 7 Suppose the 1-prime matrix M =
(

x1 x2 x3

y1 y2 y3

)
. When n =

(n1, n2)T ∈ Ω1 ∩ Z2,

t(n|M) =
n2x1 − n1y1

Y12Y13
− { (f12Y13 + g12Y23)−1(n2(f12x1 + g12x2)− n1(f12y1 + g12y2))

Y12
}

− { (f13Y12 + g13Y23)−1(n2(f13x1 + g13x3)− n1(f13y1 + g13y3))
Y13

}+ 1;

when n = (n1, n2)T ∈ Ω2 ∩ Z2,

t(n|M) =
n1y3 − n2y3

Y23Y13
− { (f23Y13 + g23Y12)−1(n1(f23x3 + g23x2)− n2(f23y3 + g23y2))

Y23
}

− { (f13Y12 + g13Y23)−1(n1(f13x1 + g13x3)− n2(f13y1 + g13y3))
Y13

}+ 1,

where, f12, g12, f13, g13, f23 and g23 ∈ Z satisfy gcd(f12Y13 +g12Y23, Y12) = 1
gcd(f13Y12 + g13Y23, Y13) = 1 and gcd(f23Y13 + g23Y12, Y23) = 1, moreover,
(f12Y13+g12Y23)−1(f12Y13+g12Y23) ≡ 1 mod Y12, (f13Y12+g13Y23)−1(f13Y12+
g13Y23) ≡ 1 mod Y13 and (f23Y13+g23Y12)−1(f23Y13+g23Y12) ≡ 1 mod Y23.

proof: We only prove the case where (n1, n2)T ∈ Ω1 ∩Z2. Based on Theorem
3, pe,Ω1(x), which is the polynomial part of t(·|M) on Ω1, is in the form
of p0,Ω1(x) + p1,Ω1(x), where for x ∈ Ω1, p0,Ω1(x) = T (x|M), p1,Ω1(x) =
−(

∑
|v|=1 Dvp0,Ω1(x)(−i)DvB̂(0|M)). By the explicit formulation for T (x|M),

we have p0,Ω1(x) = y1x−x1y
(x2y1−y2x1)(x1y3−y1x3)

. After a brief calculation, we have
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p1,Ω(x) = 1
2 ( 1

Y13
+ 1

Y12
). Hence, the polynomial part of t(n|M) is n2x1−n1y1

Y12Y13
+

1
2 ( 1

Y13
+ 1

Y12
). According to Theorem 5, we only need to consider the sum

∑

θ∈A(M)\e

1
|det(Mθ)|

∏

w∈M\Mθ

θn

1− θ−w
1cone(Mθ)(Ω1)

=
1

Y12

∑
θ∈A(M)\e
Mθ=M12

θn

1− θ−(x3,y3)
+

1
Y13

∑
θ∈A(M)\e
Mθ=M13

θn

1− θ−(x2,y2)
.

Recall e
2πi
k is denoted by Wk. As pointed out in [13], the elements in the

set {θ|θ ∈ A(M), Mθ = M12} have the form (Wαj
1

Y12
,W

αj
2

Y12
), where (αj

1, α
j
2) ∈

Z2, 1 ≤ j ≤ Y12.
Consider firstly

1
Y12

∑
θ∈A(M)\e
Mθ=M12

θn

1− θ−(x3,y3)
=

1
Y12

Y12−1∑

j=1

W
n1αj

1+n2αj
2

Y12

1−W
−(x3αj

1+y3αj
2)

Y12

. (4)

We set x3α
j
1 + y3α

j
2 ≡ k mod Y12. Since M is a 1-prime matrix, x3α

j
1 +

y3α
j
2 6≡ x3α

m
1 +y3α

m
2 mod Y12 when j 6= m. Hence, k runs over [1, Y12−1]∩Z.

For θ ∈ {θ|θ ∈ A(M),Mθ = M12}, we have θ(x1,y1) = θ(x2,y2) = 1. Hence,

x1α
j
1 + y1α

j
2 ≡ 0 mod Y12, (5)

x2α
j
1 + y2α

j
2 ≡ 0 mod Y12, (6)

x3α
j
1 + y3α

j
2 ≡ k mod Y12. (7)

By x1 on both sides of (7), we have

x1x3α
j
1 + x1y3α

j
2 ≡ x1k mod Y12. (8)

According to (5), we obtain

x1α
j
1 ≡ −y1α

j
2 mod Y12. (9)

Substituting (9) into (8), we have

αj
2Y13 ≡ x1k mod Y12. (10)

By using similar method,

αj
2Y23 ≡ x2k mod Y12. (11)

Since M is a 1-prime matrix, there exits f12, g12 ∈ Z such that gcd(f12Y13 +
g12Y23, Y12) = 1. Combining (10) and (11), we have

αj
2(f12Y13 + g12Y23) ≡ (f12x1 + g12x2)k mod Y12.

Hence, αj
2 ≡ (f12Y13 + g12Y23)−1(f12x1 + g12x2)k mod Y12.
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Similarly, αj
1 ≡ −(f12Y13+g12Y23)−1(f12y1+g12y2)k mod Y12. Hence,(4)

is reduced to

1
Y12

Y12−1∑

k=1

W
(n2(f12x1+g12x2)−n1(f12y1+g12y2))(f12Y13+g12Y23)

−1k
Y12

1−W−k
Y12

. (12)

According to discrete Fourier transforms,

−{ t

a
} =

1− a

2a
+

1
a

a−1∑

k=1

W k
a

1−W−k
a

, (13)

(12) can be reduced to

{ (n2(f12x1 + g12x2)− n1(f12y1 + g12y2))(f12Y13 + g12Y23)−1

Y12
}+

1
2
− 1

2Y12
.

Hence

1
Y12

∑
θ∈A(M)
Mθ=Y12

θn

1− θ−(x3,y3)

= −{ (n2(f12x1 + g12x2)− n1(f12y1 + g12y2))(f12Y13 + g12Y23)−1

Y12
}+

1
2
− 1

2Y12
.

By using similar method, we have

1
Y13

∑
θ∈A(M)\e
Mθ=Y13

θn

1− θ−(x2,y2)

= −{ (n2(f13x1 + g13x3)− n1(f13y1 + g13y3))(f13Y12 + g13Y23)−1

Y13
}+

1
2
− 1

2Y13
.

Hence, when (n1, n2)T ∈ v(Ω1|M) ∩ Z2,

t(n|M)

=
n2x1 − n1y1

Y12Y13
− { (f12Y13 + g12Y23)−1(n2(f12x1 + g12x2)− n1(f12y1 + g12y2))

Y12
}

− { (f13Y12 + g13Y23)−1(n2(f13x1 + g13x3)− n1(f13y1 + g13y3))
Y13

}+ 1.

Note that Ω1 ⊂ v(Ω1|M). Hence, when n ∈ Ω1 ∩ Z2, the theorem holds. ¤

Remark 2 If f12, g12, f13, g13, f23 and g23 satisfy f12Y23+g12Y13 = gcd(Y23, Y13),
f13Y12+g13Y23 = gcd(Y12, Y23), f23Y13+g23Y12 = gcd(Y13, Y12), then gcd(f12Y13+
g12Y23, Y12) = 1, gcd(f13Y12+g13Y23, Y13) = 1 and gcd(f23Y13+g23Y12, Y23) =
1. Hence,one can determine f12, g12, f13, g13, f23 and g23 by Euclidean algo-
rithm. But in some special cases, such as Y12, Y13 and Y23 are pairwise relative
prime, there exits the simpler method for obtaining them.
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Corollary 1 Suppose Y12, Y13 and Y23 are pairwise relative prime. When
n = (n1, n2)T ∈ Ω1 ∩ Z2,

t(n|M) =
n2x1 − n1y1

Y12Y13
− {Y −1

13 (n2x1 − n1y1)
Y12

} − {Y −1
12 (n2x1 − n1y1)

Y13
}+ 1,

where Y −1
13 Y13 ≡ 1 mod Y12 and Y −1

12 Y12 ≡ 1 mod Y13. When n = (n1, n2)T ∈
Ω2 ∩ Z2,

t(n|M) =
n1y3 − n2x3

Y23Y13
− {Y −1

13 (n1x3 − n2y3)
Y23

} − {Y −1
23 (n1x3 − n2y3)

Y13
}+ 1,

where Y −1
13 Y13 ≡ 1 mod Y23 and Y −1

23 Y23 ≡ 1 mod Y13.

proof: We firstly consider the case where n ∈ Ω1∩Z2. Since gcd(Y12, Y13) = 1,
M is a 1-prime matrix. In Theorem 7, we may set f12 = 1, g12 = 0, f13 = 1,
and g13 = 0. Hence, When n = (n1, n2)T ∈ Ω1 ∩ Z2,

t(n|M) =
n2x1 − n1y1

Y12Y13
− {Y −1

13 (n2x1 − n1y1)
Y12

} − {Y −1
12 (n2x1 − n1y1)

Y13
}+ 1.

Using similar method, when n = (n1, n2)T ∈ Ω2 ∩ Z2,

t(n|M) =
n1y3 − n2x3

Y23Y13
− {Y −1

13 (n1x3 − n2y3)
Y23

} − {Y −1
23 (n1x3 − n2y3)

Y13
}+ 1.

¤

Remark 3 An interesting observation is that the formulation presented in
Corollary 2 is remarkably similar with Popoviciu’s formulation.

We now turn to consider the special case where y1
x1

= y2
x2

. Without loss of

generality, we suppose M =
(

kx1 lx1 x3

ky1 ly1 y3

)
. In this case, there exits only one

fundamental M-cone, which is denoted as Ω. Moreover, since M is a 1-prime
matrix, we have gcd(k, l) = 1, x1y3 − y1x3 = 1. Then we have

Theorem 8 Suppose y1
x1

< y3
x3

. When M =
(

kx1 lx1 x3

ky1 ly1 y3

)
, t(n|M) = x3n2−y3n1

kl −
{ l−1

k (n1y3−n2x3)}−{k−1

l (n1y3−n2x3)}+1, where n = (n1, n2)T ∈ Ω∩Z2.

proof: By using the recurrence formulation for T (x|M), we have T (x|M) =
x3y−y3x

kl . Hence, the polynomial part of t(·|M) is x3y−y3x
kl + 1

2 ( 1
k + 1

l ). We now
only need to consider the sums

1
k

∑

θ:Mθ=Yk

θn

1− θ−(lx1,ly1)
,
1
l

∑

θ:Mθ=Yl

θn

1− θ−(kx1,ky1)
.

By using the similar method with the one presented in the proof of Theorem
7, we have 1

k

∑
θ∈A(M)\e

Mθ=Yk

θn

1−θ−(lx1,ly1) = −{l−1 n1y3−n2x3
k }+ 1

2− 1
2k , 1

l

∑
θ∈A(M)
Mθ=Yl

θn

1−θ−(kx1,ky1)



10

= −{k−1 n1y3−n2x3
k }+ 1

2 − 1
2l . Note that Ω ⊂ v(Ω|M). By Theorem 5, when

n = (n1, n2)T ∈ Ω,

t(n|M)

=
x3y − y3x

kl
+

1
2
(
1
k

+
1
l
) +

1
k

∑

θ:Mθ=Yk

θn

1− θ−(lx1,ly1)
+

1
l

∑

θ:Mθ=Yl

θn

1− θ−(kx1,ky1)

=
x3n2 − y3n1

kl
− { l−1

k
(n1y3 − n2x3)} − {k−1

l
(n1y3 − n2x3)}+ 1.

¤

Remark 4 When the matrix M is of the form
(

x1 kx2 lx2

y1 ky2 ly2

)
, a similar result

can be obtained using the same method with the one presented in Theorem
8.

5.Linear Diophantine problem of Frobenius

Consider the linear Diophantine equation

x1a1 + · · ·xnan = N, (14)

where, ai ∈ Z+, gcd(a1, · · · , an) = 1.
It is well known that for all sufficiently large N the equation has solutions.

The Frobenius problems asks us to find the largest integer for which no
solution exists. We call the largest integer the Frobenius number and denote
it by f(a1, · · · , an). For n = 2 the largest N for which no solution exists can
be explicitly written as a1a2 − a1 − a2, i.e. f(a1, a2) = a1a2 − a1 − a2. But
no such formula exists for n ≥ 3.

As pointed out in [33], when gcd{|Y | : Y ∈ B(M)} = 1, for all suf-
ficiently large N the linear Diophantine equations Mx = Nn has solu-
tion, where n ∈ cone(M). Naturally, we hope to find the largest integer
N for which no solution exits, which is denoted as f(M,n). In particular,
we are interested in the linear Diophantine equations M0x = Nn, where

M0 =
(

x1 x2 x3

y1 y2 y3

)
,n ∈ cone(M0). In fact, the generalized Frobenius number

f(M0,n) is a generalization of f(a1, a2).

Recall Mij =
(

xi xj

yi yj

)
and Yij = det(Mij). In the following theorem, we

shall present an upper boundary for f(M0,n).

Theorem 9 Suppose Y12, Y13 and Y23 are pairwise relative prime. For n ∈
Ω1 ∩ Z2, f(M0,n) < Y12Y13−Y12−Y13+1

n2x1−n1y1
. For n ∈ Ω2 ∩ Z2, f(M0,n) <

Y23Y13−Y23−Y13+1
n1y3−n2x3

.

proof: We only prove the case where n ∈ Ω1∩Z2. Note t(Nn|M) = N(n2x1−n1y1)
Y12Y13

−
{ (Y13)

−1(N(n2x1−n1y1))
Y12

}−{ (Y12)
−1(N(n2x1−n1y1))

Y13
}+1 = t(N(n2x1−n1y1)|(Y12, Y13)).
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Since when N(n2x1−n1y1) ≥ Y12Y13−Y12−Y13+1, t(N(n2x1−n1y1)|Y12, Y13) =
t(Nn|M) > 0. Hence, when N ≥ Y12Y13−Y12−Y13+1

(n2x1−n1y1)
, t(Nn|M) > 0. So,

f(M,n) < Y12Y13−Y12−Y13+1
n2x1−n1y1

. ¤

Remark 5 Theorem 9 only gives an upper boundary for f(M0,n). According
to the proof of Theorem 9, giving the exact value of f(M0,n) is equivalent for
any given b0 ∈ Z determining the largest integer N for which the Diophantine
equation x1a1 + x2a2 = Nb0 no solution exits.

6 Two-dimension vector partition functions

We now turn to the general case. We let M =
(

x1 x2 · · · xn

y1 y2 · · · yn

)
be a 2 × n

integer matrix. and yi−1
xi−1

< yi

xi
, i = 2, · · · , n.

For the matrix M , there exist n − 1 fundamental M− cones. Denote
them as Ωi := {(x, y)T |(x, y)T ∈ cone(M), yi

xi
< y

x < yi+1
xi+1

}, i = 1, · · · , n −
1 respectively. In this section, we shall discuss the explicit formulation for
t(b|M). First, we present an explicit formulation for T (x|M).

Theorem 10 For x = (x, y)T ∈ R2,

T (x|M) =
1

(n− 2)!

n∑

i=1

(yix− xiy)n−2
+∏

j 6=i(yixj − yjxi)
,

where, (yix− xiy)+ =

{
yix− xiy, yix− xiy ≥ 0,

0, otherwise.

proof: According to the definition of (yix−xiy)+ we only need to prove that
when x ∈ Ωk, T (x|M) = 1

(n−2)!

∑n
i=k+1

(yix−xiy)n−2Q
j 6=i(yixj−yjxi)

.

We argue by induction on n. Initially, when n = 2, 3 the theorem certainly
holds. In the inductive step, we assume that when n = n0 the theorem holds
and we consider the case when n = n0 + 1.

According to the definition of (yix−xiy)+ we only need to prove that for

x ∈ Ωk, T (x|M) = 1
(n0−1)!

n0+1∑
i=k+1

(yix−xiy)n0−1Q
j 6=i(yixj−yjxi)

, where M is a 2 × (n0 + 1)

matrix.
After a brief calculation, it is easy for obtaining x = xyk+1−xk+1y

yk+1xk−ykxk+1
(xk, yk)T +

xyk−xky
yk+1xk−ykxk+1

(xk+1, yk+1)T . Based on the recurrence formulation of T (·|M)
, we have

T (x|M) =
1

n0 − 1
(

xyk+1 − xk+1y

yk+1xk − ykxk+1
T (x|M \ (xk, yk)T ) +

xyk − xky

yk+1xk − ykxk+1
T (x|M \ (xk+1, yk+1)T )).
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By the inductive hypothesis, T (x|M\(xk, yk)T ) = 1
(n0−2)!

n0+1∑
i=k+1

(yix−xiy)n0−2Q
j 6=i,j 6=k

(yixj−yjxi)
,

T (x|M \ (xk+1, yk+1)T ) = 1
(n0−2)!

n0+1∑
i=k+2

(yix−xiy)n0−2Q
j 6=i

(yixj−yjxi)
. Then we obtain

T (x|M) =
1

(n0 − 1)!
(

xyk+1 − xk+1y

yk+1xk − ykxk+1

n0+1∑

i=k+1

(yix− xiy)n0−2(xkyi − ykxi)∏
j 6=i

(yixj − yjxi)

+
xyk − xky

yk+1xk − ykxk+1

n0+1∑

i=k+2

(yix− xiy)n0−2(xk+1yi − yk+1xi)∏
j 6=i

(yixj − yjxi)
)

=
1

(n0 − 1)!
(

(yk+1x− xk+1y)n0−1

∏
j 6=k+1

(yk+1xj − yjxk+1)
+

1
yk+1xk − ykxk+1

n0+1∑

i=k+2

(yix− xiy)n0−2

(
(xyk+1 − xk+1y)(xkyi − ykxi)− (xyk − xky)(xk+1yi − yk+1xi)∏

j 6=i

(yixj − yjxi)
))

=
1

(n0 − 1)!

n0+1∑

i=k+1

(yix− xiy)n0−1

∏
j 6=i

(yixj − yjxi)
.

Thus, when n = n0+1 the theorem holds also, which completes the inductive
step and the proof. ¤

The following statements follow from Theorem 10.

Corollary 2

Dv1,v2T (x|M) =
1

(n− 2− v1 − v2)!

n∑

i=1

(yix− xiy)n−2−v1−v2
+∏

j 6=i

(yixj − yjxi)
yv1

i (−xi)v2 .

We now turn to non-polynomial part in t(·|M). We firstly recall the def-
inition of Fourier-Dedekind sum(c.f. [1]), which is defined as σt(C;n) =
1
n

∑
λn=1 6=λ

λtQ
c∈C(λc−1) , where C is an integer multiset and n is an integer.

To simplify the non-polynomial part in t(·|M), we naturally arrived at the
sums

1
Yij

∑

θMij =1,θ 6=e

θn
∏

ω∈M\Mij

1
1− θ−ω

, (15)

which is considered as a generalized Fourier-Dedekind sum. Here, θMij = 1
means θm = 1 for any m ∈ Mij . In fact, it is a non-trivial problem for
computing all complex vectors satisfying θMij = 1. In the following Lemma,
we shows the generalized Fourier-Dedekind sums (15) can be converted into
the 1-dimensional Fourier-Dedekind sums.
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Lemma 2 When M is a 1-prime matrix, for any given integer m, 1 ≤ m ≤
n,m 6= i, j,

1
Yij

∑

θ
Mij =1
θ 6=e

θn
∏

ω∈M\Mij

1
1− θ−ω

= σtij (Cij ; Yij),

where Cij = ∪1≤h≤n,h 6=i,h 6=j{(fYim + gYjm)−1(−(fyi + gyj)xh + (fxi +
gxj)yh)}, tij = (fYim +gYjm)−1(−(fyi +gyj)n1 +(fxi +gxj)n2)+

∑
c∈Cij

c,

where f, g ∈ Z satisfy gcd(fYim+gYjm, Yij) = 1, moreover, (fYim+gYjm)−1(fYim+
gYjm) ≡ 1,mod Yij .

proof: As pointed out in [13], the elements in the set {θ|θ ∈ A(M),Mθ = Mij}
have the form (Wαl

1
Yij

,W
αl

2
Y12

), where (αl
1, α

l
2) ∈ Z2, 1 ≤ l ≤ Yij .

Hence,

1
Yij

∑

θ
Mij =1
θ 6=e

θn
∏

ω∈M\Mij

1
1− θ−ω

=
1

Yij

Yij−1∑

l=1

W
n1αl

1+n2αl
2

Yij∏
h 6=i,h 6=j

(1−W
−(xhαl

1+yhαl
2)

Yij
)
.(16)

Noting m 6= i,m 6= j, we set xmαl
1 + ymαl

2 ≡ k mod Yij . Since M is a
1-prime matrix, k runs over [1, Yij − 1] ∩ Z. Using the similar method with
the one in the proof of Theorem 7, we have

αl
1 ≡ −(fijYim + gijYjm)−1(fijyi + gijyj)k mod Yij ,

αl
2 ≡ (fijYim + gijYjm)−1(fijxi + gijxj)k mod Yij .

Hence, (16) is converted into

1
Yij

Yij−1∑

k=1

W
(n2(fijxi+gijxj)−n1(fijyi+g12yj))(fijYim+gijYjm)−1k
Yij∏

h6=i,h6=j

(1−W
−(fijYim+gijYjm)−1(−xh(fijyi+gijyj)+yh(fijxi+gijxj))k
Yij

)

= σtij (Cij ; Yij).

¤

Remark 6 When |Yij | = 1, since {θ : θMij} = {e}, the terms in σtij (Cij : Yij)
disappear.

Combining Theorem 3, Theorem 5, Theorem 10 and Lemma 2, we can
present a simplified formulation for t(·|M).

Theorem 11 Suppose M =
(

x1 x2 · · · xn

y1 y2 · · · yn

)
is a 2× n integer 1-prime ma-

trix and yi

xi
< yi+1

xi+1
. When n = (n1, n2)T ∈ Ωk ∩ Z2,

t(n|M) = pe,Ωk
(n) +

∑

(i,j)∈{(i,j):i≤k<j}
σtij (Cij ; Yij),
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where, pe,Ωk
(x) =

∑n−2
j=0 pj,Ωk

(x), p0,Ωk
(x) = 1

n−2

∑n
l=k+1

(ylx−xly)n−2Q
j 6=l(ylxj−yjxl)

,

pj,Ωk
(x) = −∑j−1

l=0 (
∑
|v|=j−l D

vpl,Ωk
(x)(−i)|v|D

v bB(0|M)
v! ), tij and Cij are

defined in Lemma 2.

proof: Based on Theorem 5, when n ∈ Ωk ∩ Z2,

t(n|M) = pe,Ωk
(n) +

∑

θ∈A(M)\e
θn 1
|det(Mθ)|

∏

w∈M\Mθ

1
1− θ−w

1cone(Mθ)(Ωk),

where, the pe,Ωk
can be determined easily. Since M is a 1-prime matrix,

∑

θ∈A(M)\e
θn 1
|det(Mθ)|

∏

w∈M\Mθ

1
1− θ−w

1cone(Mθ)(Ωk)

=
∑

i<j

1
Yij

∑

θ
Mij =1
θ 6=e

θn
∏

ω∈M\Mij

1
1− θ−ω

1cone(Mij)(Ωk).

Based on Lemma 2, the above sum becomes as follows:
∑

i<j

σtij (Cij : Yij)1cone(Mij)(Ωk). (17)

Since when k ≥ j or k < i, cone(Mij)∩Ωk = ∅. Hence, (17) is converted into
∑

(i,j)∈{(i,j):i≤k<j}
σtij (Cij : Yij). (18)

The theorem holds. ¤
The explicit formulation presented in Theorem 11 contains DvB̂(0|M).

Note

B̂(ζ|M) =
n∏

j=1

1− exp(−iζT mj)
iζT mj

, ζ ∈ Cs.

The following assertion is obvious.

Dv1,v2B̂(0|M) = (−i)v1+v2
∑

k1+···+kn=v1

∑

l1+···+ln=v2

v1!
k1! · · · kn!

v2!
l1! · · · ln!

n∏

j=1

x
kj

j y
lj
j

kj + lj + 1
.

Using Theorem 11, we shall present an explicit formulation for an actual
vector partition function, which is the same with the one presented in [3]. By
using Theorem 11, it is indeed easier for obtaining the explicit formulation
for the actual vector partition function.

Example 1 Let A =
(

1 2 1 0
0 1 1 1

)
. We denote by Aij the square matrix con-

taining the ith and the jth columns in A.
For the matrix A, there exit three fundamental cones, which are denoted

as Ω1, Ω2 and Ω3 respectively. We shall discuss the explicit formulation for
t(n|A). After a brief calculation, we have



15

T (x|A) =





y2

2 , x ∈ Ω1,
1
4 (−x2 + 4xy − 2y2), x ∈ Ω2,
x2

4 , x ∈ Ω3.

Hence, p0,Ω1 = y2

2 . According to Theorem 10, p1,Ω1 = 3/2y and p2,Ω1 = 1
respectively. Since for any 1 < j ≤ 3, |det(Y1j)| = 1, the terms in Fourier-
Dedekind sum shall not appear when n ∈ Ω1 ∩ Z2. Based on Theorem 10,
we have when n ∈ Ω1 ∩ Z2, t(n|A) = n2

2
2 + 3n2

2 + 1.

Similarly, p0,Ω2 = 1
4 (−x2 + 4xy − 2y2), p1,Ω2 = x+y

2 , p2,Ω2 = 7
8 . Based

on Lemma 2, the non-polynomial part is 1
Y23

∑
θA23=1,θ 6=e

θn
∏

ω∈A\Aij

1
1−θ−ω =

(−1)n1 . Hence, when n ∈ Ω2∩Z2, t(n|A) = n1n2−n2
1
4 −

n2
2
2 +n1+n2

2 + 7
8+ (−1)n1

8 .

Using the same method with the above, we obtain p0,Ω3 = x2

4 , p1,Ω3 =
x, p2,Ω3 = 7

8 .

Hence, t(n|A) =





n2
2
2 + 3n2

2 + 1, n ∈ Ω1 ∩ Z2

n1n2 − n2
1
4 − n2

2
2 + n1+n2

2 + 7
8 + (−1)n1

8 , n ∈ Ω2 ∩ Z2

n2
1
4 + n1 + 7

8 + (−1)n1

8 , n ∈ Ω3 ∩ Z2.

Remark 7 In Theorem 11, when the case of yi

xi
= yj

xj
happens, the explicit

formulation for T (x|M) can be obtained by taking the limit. Using similar
method with the one in the proof of Theorem 8, an explicit formulation for
t(n|M) can be given also.

Remark 8 To simplify any-dimensional vector partition functions, we have
to give an explicit formulation for multivariate truncated power functions
T (x|M) and compute the chamber complex consisting of the fundamental
M−cones, which are indeed challenging problems.
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5. C.de Boor and R.Devore, Approximation by smooth multivariate splines,
Trans. Amer. Math. Soc.276(1983),775-788.
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