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Abstract

It is well known that we can efficiently test whether a polynomial is identically zero or not by examining the values of
the polynomial at well-chosen points. Both deterministic and efficient probabilistic algorithms have been devised for this
purpose. It is not so well recognized that algebraic functions can be similarly tested for zeroness. The need for zero testing
black boxes representing algebraic functions has recently arisen in the area of self-testing/self-correcting programs. Given
a black box B, that represents an algebraic function a and a few additional parameters about @, we show how to test if «

is equal to the zero function. (©) 1997 Elsevier Science B.V.
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1. Introduction

Let a be a function of n arguments, each of which
comes from some field k and where the value of the
function lies in an algebraic extension of k. Given a
black box B, that represents &, we wish to determine
if a is identically zero. That is, a(x(,...,x,) =0 for
all x; € k. If a is not identically zero, then there exist
evaluation points for whicha(wy,...,w,) # 0.Such
a point is called a witness to the non-zeroness of a.

When additional information is known about a, wit-
nesses to the zeroness of a do exist but tend to be large.
For instance, if « is a univariate polynomial over the
rational integers Z, whose coefficients are bounded in
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absolute value by A, then the existence of an x > 2A
for which B, (x) = 0 proves «a is identically zero, and
X is a witness to a’s zeroness. For multivariate poly-
nomials in v variables, the witnesses are larger and
have additional constraints on their components.

To avoid growth in the size of the numbers used
in zero testing, a sequence of test points is usually
used. Test values ¥i,..., Xy are chosen such that if
B,(X1),...,B,(Xy) are each zero, then
e «a is identically zero (for deterministic algorithms),

or
e « is very likely to be identically zero (for proba-

bilistic algorithms).
If B,(X;) is different from zero for some i, then X;
is a witness to the non-zeroness of a. The essence
of the problem is to determine the minimum N and
a sequence of evaluation points Xj,. .., Xy that yield
the desired “‘zeroness” from the parameters of a.

We show how to reduce the zero testing of alge-
braic functions to zero testing of polynomials. The al-
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gorithms are the same as those for polynomials. The
subtlety is in determining how many test values are
needed.

2. Reduction to polynomial zero testing

We recall some basic definitions from algebraic
function theory. Unproven results mentioned below
can be found in standard references on algebraic ex-
tensions, such as Lang [5]. An clement of an exten-
sion of the field K is said to be algebraic over K if it
is a zero of a monic polynomial

P(Z)=Z~pZ 4+ p 29— (—1)py,

d
=(Z-a [[(Z-ap, (1

i=2

where the p; are elements of K. The monic polyno-
mial of lowest degree satisfied by « is unique. This
polynomial is called the minimal polynomial of a,
which we denote by P,. The other zeroes of P, are
called the conjugates of a. For simplicity, we will let
a) = a. The p; are symmetric functions of the «; and,
in particular,

pa=ay-ay - -ay.

Expression py is called the norm of a. If p,; is zero
and P, is irreducible, then the degree of P, is 1 ~ the
element O has no conjugates. Therefore, « is identi-
cally zero if and only if py is identically zero.

If K is a field of rational functions over a ground
field, e.g., K = k(u),...,u,), and at least one of the
p; is not an element of %, then « is said to be an
algebraic function. The norm of the algebraic function
«a is arational function in the u;. We have the following
proposition.

Proposition 1. Let k be a field, a be an algebraic
functionover k(uy, ..., uy) and pa(u, ..., uy,) be the
norm of a over k(uy,...,u,). Then « is zero if and
only if the numerator of py is zero.

Zero testing algorithms for polynomials, whether
probabilistic or deterministic, compute the value of
the polynomial at a carefully chosen sequence of test
points. If any value differs from zero, then the poly-
nomial is definitely not equal to zero. If all values are

equal to zero, then the polynomial is either likely to be
zero or definitely equal to zero, depending upon how
the points where chosen.

To zero test an algebraic function «; it is enough to
zero test the numerator of the norm of @ (by Propo-
sition 1). To zero test the norm of a, we do not need
to compute py. Assume @9 = (u{”,.. ., 4D} is an
element of k". For each evaluation of « there are two
possible cases.

e If a(if'?) is different from zero, then iV is a wit-
ness to @’s non-zeroness and we are finished.
o If a(i@) is equal to zero, then py(a*?) is also

equal to zero, since py is a multiple of a.

This technique allows us to use the zero test-
ing techniques discussed in Chapter 12 of [9].
These techniques require bounds on the polynomial
paluy,...,uy) of one of two types:
¢ a bound on the number of non-zero terms in the

polynomial, or
o a bound on the degree of the u;’s in p,.
Some techniques require bounds of both types.

Since we are treating these polynomials as black
boxes, it is most natural to assume bounds on the de-
grees of the u;. Degree bounds are most naturally ex-
pressed as bounds on the total degrees of the coeffi-
cients of the powers of Z in P,(Z,uy,...,u,). (The
total degree of a polynomial p(uy,...,u,) is the de-
gree in ¢ of the polynomial p(u;t,...,u,t).)

By clearing the denominators of the rational func-
tions in (2), we can write the minimal polynomial for
a as

P (Z)=Po(Zuy, ... uy)
=poZ! - piz 4 ppzt?
— -+ (=Dpy,

where there is no common divisor of all of the p}. The
height of a (hta) is the maximum of the total degrees
of the p; in the variables u,,...,u,. The height of a
constant, an element of k, is defined to be 1, not zero.

Clearly, the total degree of p; is bounded by the
height of a. Using Proposition 5, which is stated in
the Appendix and which is discussed in [9], we have
the probabilistic result:

Proposition 2. Ler B, be a black box representing
an algebraic function a in n variables over a field
k. Assume that the height of « is bounded by D. If
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x(",...,x) are chosen from a subset of k of car-
dinality B, i = 1,...,N and Bo(x{",...,x{?) =0,
then the likelihood that « is not identically zero is less
than D/B.

Using Proposition 6 (given in the Appendix and first
presented in [4]) we have the following deterministic
result.

Proposition 3. Let B, be a black box representing
an algebraic function « in n variables over a field k
of characteristic zero. Assume that the height of a is
bounded by D. Let q; denote the ith prime number in
Z.IfBu(ql,....q¢}) =0forj= l,...,(D:"),thena
is identically zero.

Proof. That the components of the set of potential
witnesses should be powers of prime numbers follows
from the proof of Proposition 6, which is given in
the Appendix. The only parameter needed by Propo-
sition 6 is the maximum number of monomials in py,
which is bounded by (°*"). The fact that a polyno-
mial in n variables of total degree D is bounded by
(D+") is well known [1,3]. O

n

3. Estimating the height of an algebraic function

The height of an algebraic function is a bound on
the coefficients of the algebraic function’s minimal
polynomial. When an algebraic function is constructed
from other algebraic functions using arithmetic oper-
ations and extraction of roots, we can compute the
minimal polynomial of the new algebraic function
from those of the “smaller” algebraic functions. The
height of the new algebraic function can then be re-
lated to the heights of the smaller ones, by relating
the sizes of the coefficients of the minimal polynomi-
als.

For instance, let P,(Z,uy,...,u,) and Pg(Z uy,
..., Uy ) be the minimal polynomials of two algebraic
functions a and B over the field K = k(u,...,u,).
Denote the degree of a by m and the degree of 3 by
n. Then the minimal polynomial of & + 8 divides the
resultant of P,(Z — ) and P + B(t) with respect to
t (see Section 9.4 of [9]):

Q(Z) =res, (P, (Z — 1), Pg(1)).

The height of Q(Z) can be bounded using the
Sylvester determinant for the resultant:

res,(F(1),G(1))

fo /i f2 -+ O 0 0
0O fo fi - O 0 0
0 0 0 fm—l fm 0
= det 0 0 0 s fm—Z fm~l fm
g & & - O 0 0
0 g & - O 0 0
0 0 0 o 8n—1 8n 0
0 0 0 - gui—2 81 &n

Identifying F (t) with P,(Z—1) and G(t) with Pg(t),
the Sylvester matrix is (n + m) x (n + m). There
are n rows of f; and m rows of g; entries. The g; are
just the coefficients of the powers of Z in Pg. The f;
are linear combinations of coefficients of P, and thus
have the same height as P,.

The determinant is a signed sum of products. Each
product contains one element from each row in the
matrix. Since we are only concerned with the degrees
of the coefficients of Q(Z) we can ignore the sum-
mation and focus on the products. The degree of u;
in each of the first n rows is bounded by hta and is
bounded in the last m rows by ht 8. So we have

ht(a + B) < (hta)"(ht 8)™.

For other algebraic operations, we know the follow-
ing multiples of minimal polynomials, where a and b
are elements of K.

a+ B res(Po(Z —1),Pg(1))
a— B res,(Po(Z+1),Pg(t))
ax f res; (1" Po(Z[t), Pg(1))

af/B  res(Pa(1Z),Pp(1))
Va  res(Z" —1t,Pg(1))
ace+b a"P,((Z - b)/a)

Since the size of the coefficients are not increased in
any of the variations of P, used, we have:

Proposition 4. The heights of arithmetic combina-
tions of algebraic functions can be bounded as fol-
lows:
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hta + 8 < (hta)"(ht 8)",
hta — B < (hta)"(ht 8)™,
hte - B< (hta)"(htB)",
hta/B < (hta)"(ht B)™,
ht e < (hta)’,
ht(aa + b) < (hta) (hta)™.

Note that height of /& is somewhat smaller than
the other bounds since the height of Z" — ¢t is 1.

4. Conclusions

We have extended the techniques for zero testing
of polynomials to zero testing of algebraic functions.
The key to this approach lies in estimating the size
of the norm of the algebraic function, which we have
shown can be done from a straight line program rep-
resenting the algebraic function. This technique can
be used to develop self-checkers and self-testers for
programs that compute functions satisfying functional
equations [6].

Ronitt Rubinfeld encouraged the writing of this note
and made useful suggestions in its presentation.

Appendix. Polynomial zero testing theorems

The following two propositions are the basis of most
zero testing algorithms. Proposition 5, a probabilistic
result, is used in most computer algebra implementa-
tions. Variations of this result first appeared in [2,7,8].
Proposition 6 yields a deterministic zero testing tech-
nique; it was first given in [4].

Proposition 5. Let P € A[Z,,...,Z.] be a polyno-
mial of rotal degree D over an integral domain A. Let
S be a subset of A of cardinality B. Then

D

PI(P(Z,....2Z) =0‘ Z; € S] < E

The following deterministic result depends on the

number of monomials of a polynomial. A monomial

is a product of constants and variables. Thus the poly-
nomial

()c+y)2 = x? +2xy-+—y2

has 3 monomials. Although (x + y)? could be written
as the sum of four monomials (x* + y? + xy + xy),
all monomials with similar degree structure are com-
bined. The following polynomial also has three non-
zero monomials:

X4y + 0.

Proposition 6. Let P(Z) be a polynomial in v vari-
ables over a ring of characteristic zero and assume
that P has no more than T non-zero monomials. Then
there exists a set of v-tuples, _{)Z_'o e Zr 1} such that
either P(Z;) # 0forsome Z; or P is identically zero.

Proof. One set of v-tuples that satisfies the require-
ments of the proposition is

S={(lv]’~-~11)1(2’39-"~q0),
L@l Th)

Write P(Z) = cymy(Z) +comy(Z) +- - +crmp(Z),
where the m; are distinct monomials in the Z;. Denote
the value of the monomial m; at (2%,3%,... ¢y € S
by M%. The M; are distinct by unique factorization of
the rational integers.

Assume that P(i ) vanishes at each element of S:

ci+---+cr=0,
oM+ ---+crMr =0,

oM™ oMy =0,

The only solution to this Vandermonde system of
equations is ¢; =0. U

A thorough discussion of zero testing techniques is
given in [9].
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