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INTRODUCTION

This paper is the second part of a broader survey of computational convexity, an area
of mathematics that has crystallized around a variety of results, problems and applications
involving interactions among convex geometry, mathematical programming and computer
science. The first part [GrK94a] discussed containment problems. This second part is
concerned with computing volumes and mixed volumes of convex polytopes and more general
convex bodies. In order to keep the paper self-contained we repeat some aspects that have
already been mentioned in [GrK94a]. However, this overlap is limited to Section 1. For
further background material and references, see [GrKK94a], and for other parts of the survey

see [GrK94b] and [GrK94c].
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1. PRELIMINARIES

1.1 What is Computational Convexity?

The subject of Computational Convexity draws its methods from discrete mathematics
and convex geometry, and many of its problems from operations research, computer science,
and other applied areas. In essence, it is the study of the computational and algorithmic
aspects of high-dimensional convex bodies (especially polytopes), with a view to apply-
ing the knowledge gained to bodies that arise in other mathematical disciplines or in the
mathematical modeling of problems from outside mathematics.

One of the requirements for turning a potential application into a real one is to have
efficient algorithms for computing (or approximating or bounding) the functionals involved.
The subject of computational convexity is centered on the search for such algorithms and
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on results concerning the intrinsic complexity of the functionals that may help to guide this
search. Basic and typical problems deal with the efficient computation or approximation of
geometric functionals such as the volume or the diameter of a polytope, or with the algo-
rithmic reconstruction of a polytope from data concerning it, or with algorithmic versions
of geometric theorems.

The name Computational Converity is of recent origin, having first appeared in print
in 1989 (see [GrK89]). However, results that retrospectively belong to this area go back a
long way. In particular, many of the basic ideas of Linear Programmaing have an essentially
geometric character and fit very well into our conception of Computational Convexity. The
same is true of the subject of Polyhedral Combinatorics and of the Algorithmic Theory of
Polytopes and Conver Bodies; see [GrK94a] for a brief survey of these areas and a list of
references to related research papers, survey articles and books.

As opposed to the area that has come to be called Computational Geometry ([PrS85],
[EA87], [Ya90], [Ed93a], [Mu94], [Or94a]), the emphasis in Computational Convexity is on
problems whose underlying structure is convexity in normed vector spaces of finite but
generally not restricted dimension, rather than of fixed (low) dimension. This leads to much
closer connections with the optimization problems that arise in a wide variety of disciplines.

In the study of Computational Convexity, the underlying model of computation is mainly
the binary (Turing machine) model that is common in studies of computational complexity.
This requirement is imposed by prospective applications, particularly in mathematical pro-
gramming. For the study of algorithmic aspects of convex bodies the binary model is often
augmented by additional devices called “oracles”; see Subsection 1.2 and [GrK94a]. Some
cases of interest do involve other underlying models of computation, but the present paper
focuses on aspects of computational convexity for which binary models seem most natural.

1.2 Presentations of polytopes and general convex bodies.

The setting for everything in this paper is a finite-dimensional real vector space R". In
the present context, R™ may be assumed to carry the usual Euclidean norm, thus forming
the Euclidean n-space E* = (R™,|| ||2)-

As the terms are used here, a body in R™ is a compact convex set and a polytope is a body
that has only finitely many extreme points. (These objects are usually called convez bodies
and convez polytopes, but we often omit the adjectives in the interest of brevity.) We use
the symbols K™ and P" to denote respectively the family of all bodies in R™ and the family
of all polytopes in R™.

A body or a polytope in R™ is proper if it is n-dimensional and hence has nonempty
interior. From an algorithmic point of view, polytopes are dealt with much more easily
than general bodies, because polytopes can be presented in a finite manner. However, even
for a polytope P the precise manner of presentation must be specified, and the difficulty of
answering basic questions about P can be greatly influenced by the manner of presentation.

A V-presentation of a polytope P consists of positive integers n and m, and m points
Uiy U in R™ such that P = conv{vy,...,v;}. An H-presentation of a polytope P
consists of integers n and m with m > n > 1, a real m x n matrix A, and a vector b € R™
such that P = {a € R™: Az < b}.

A face of a polytope P is P itself, the empty set, or the intersection of P with some
supporting hyperplane. Faces of dimension i are called ¢-faces (with the convention that
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dim(0) = —1). The O-faces, 1-faces, and (n — 1)-faces of an n-polytope P are respectively
its vertices, edges, and facets. For i = —1,0,...,n, F;(P) denotes the set of all i-faces of P
and f;(P) = card(F;(P)), the number of i-faces.

A V- (H-) presentation of P is irredundant if the omission of any of the points vy, ..., vy,
(any of the inequalities in Ax < b) changes the polytope, reducing it in the first case and
enlarging it in the second. In geometric terms, a V-presentation is irredundant if each point
v; is a vertex of P, and when P is n-dimensional, an H-presentation is irredundant if each
inequality induces a facet of P.

Each polytope P C R™ admits a V-presentation and also admits an H-presentation, and
we refer to [Dy83], [Sw85], [Se87], [AvF91], and [ChHJ92] for algorithms that convert one
sort of presentation into the other. However, since P may have many more vertices than
facets, and vice-versa [Mc70] (see also [Gr67], [McST1], [Br83]), it can happen that the
minimum size of one sort of presentation is much larger than the minimum size of the other
sort.

Our discussion here is based mainly on the binary or Turing machine model of computa-
tion [GaJT79], in which the size of the input is defined as the length of the binary encoding
needed to present the input data to a Turing machine and the time-complezity of an al-
gorithm is also defined in terms of the operations of a Turing machine. For this model,
each computation involving polytopes begins with a rational V- or H-presentation of a ra-
tional polytope P. The presentation’s being rational means that vy,...,v,, € Q" if P is
V-presented, or that the matrix A has rational entries and b € Q™ if P is H-presented;
integer presentations are defined in a similar way. The (binary) size of a rational V- or H-
presentation — usually denoted by L (for “length”) — is the number of binary digits needed
to encode the data of the presentation; see e.g. [GrLS88].

As was mentioned earlier, our main emphasis is on questions involving the dimension n as
part of the input. However, we will also mention corresponding results for fixed dimensions.
As a notational convention, we restrict the use of L to the case of varying dimension; further,
whenever the dimension is regarded as fixed, we explicitly say so. Thus when no assumption
on the dimension is stated, the dimension n is always regarded as part of the input.

For algorithmic purposes it is usually not the rational polytope P as a geometric object
that is relevant, but rather its algebraic presentation. We will speak of a V-polytope P or
of an H-polytope P when a specific rational V-presentation (n,m;v1,...,vy) or a specific
rational H-presentation (n,m; A,b) is given. For most of the problems discussed here the
focus is on polynomial-time computability or on various hardness results, and hence we may
assume without loss of generality that presentations are irredundant. That is because, for
a given V- (or H-) polytope P, linear programming can be used to produce, in polynomial
time, an irredundant V- (or H-) presentation.

In order to further illuminate the algorithmic differences between V- and H-polytopes
and the difficulties that may be expected in attempting to transfer an algorithmic approach
from one sort of presentation to the other, we mention that LINTAL [Li86] has established
the #P-completeness (a strong measure of difficulty) of each of the following two problems:

Given a positive integer n and an n-dimensional V-polytope P, determine the num-
ber of facets of P.

Given a positive integer n and an n-dimensional H-polytope P, determine the num-
ber of vertices of P.

Among important special classes of polytopes, the zonotopes are particularly interesting
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because they can be so compactly presented. A zonotope is the vector sum (Minkowski sum)

of a finite number of line segments. When the segments are Sq,...,S, and their centers
are ¢i,...,Cm, we have
m m m
Si = (Z Ci) + ) (Si—ci)

where the point .. ¢; is the center of symmetry of the set > 1" S; and each segment
S; — ¢; 1s centered at the origin. Hence it is convenient to define an S-presentation of a
zonotope in R™ as a sequence (¢; z1,. .., 2z, ) of points in R™, where ¢ is the center and the
z; are the ends of segments centered at the origin 0, with one end listed for each segment.
This sequence represents the zonotope

c—l—Z[—l,l]zi = c+ {Z/\ZZZ s ] < 1 for all z}

This zonotope is a polytope of dimension at most min{m,n}, and it is a proper polytope
if and only if there are n linearly independent points among the z;. We speak of integer
and rational S-presentations, and define their sizes in the natural way. Sometimes we will
also work with zonotopes whose relationship to the origin (and whose scaling) is different.
Specifically, zontopes of the form > | [0, 1]z; are used quite frequently. To keep the notation
simple, we refrain, however, from introducing an additional name for such a presentation.

Again, in our algorithmic model it is usually not the rational zonotope Z as a geometric
object that is relevant, but rather its presentation; hence we speak of an S-zonotope Z when
a specific rational S-presentation (n,m;¢;z1,. .., 2y ) is given. Although each zonotope is a
polytope, in general neither the vertices nor the facets of a zonotope are readily accessible
from an S-presentation. In fact, for zonotopes generated by m segments in general position,
both the number of facets and the number of vertices grow exponentially as m increases.

A zonotope Z = ¢+ Y .- [-1,1]z is called a parallelotope when the points zq,...,2zm
are linearly independent. In contrast to the case of general zonotopes, the facial structure
of a parallelotope is immediately accessible from an S-presentation: The passage between
a rational S-presentation of a parallelotope P and a rational H-presentation of P can be
accomplished in polynomial time.

A different approach is required to deal with bodies K that are not polytopes, since an
enumeration of all the extreme points of K or of K’s polar is not possible. Sometimes K
can be described explicitly in terms of an easily computable function. An example of this
kind is the Euclidean unit ball B” given in the form B® = {(&;,...,&,)T 1 &4+ 4 €2 <1},
However, such a description is often not available. A convenient way to deal with the
general situation is to assume that the body in question is given by an algorithm (called an
oracle) that answers certain sorts of questions about the body. All information about the
specific body must be obtained from the oracle, which functions as a “black box.” In other
words, while it is assumed that the oracle’s answers are always correct, nothing is assumed
about the manner in which it produces those answers. This oracular approach has been
extensively studied and utilized for combinatorial optimization problems by GROTSCHEL,
LovAsz & SCHRIJVER [GrLS81], [GrLS88]. In order to describe some oracles that have
figured prominently in their work, let us recall that for e > 0 the outer parallel body and the
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inner parallel body of a convex body K are given respectively by

Kl)=K+eB" = |J (K+0b) and K(—¢) =K\ |J (R"\K) + ).
bEeBn bEeBn

The three most important oracles of [GrLS88] are the ones that solve the following prob-
lems for proper bodies K.

WEAK MEMBERSHIP PROBLEM. Given K € K", y € Q", and a rational number ¢ > 0,
conclude with one of the following:

assert that y € K(e);
assert that y ¢ K(—e).

WEAK SEPARATION PROBLEM. Given K € K", y € Q", and a rational number ¢ > 0,
conclude with one of the following:

assert that y € K(e);
find a vector z € Qn such that H P Hoo: 1 and ZTJ? < ZTy + € for every r € I&’(—E).

WEAK (LINEAR) OPTIMIZATION PROBLEM. Given K € K", a vector ¢ € Q", and a rational
number € > 0, conclude with one of the following:

find a vector y € Q" N K(e) such that ¢cTx < Ty 4+ € for every v € K(—¢);
assert that K(—e) = {).

If a proper body K 1is given by an algorithm that solves the weak membership problem,
the weak separation problem, or the weak linear optimization problem, we say that K is
described by a weak membership oracle, a weak separation oracle or a weak (linear) opti-
mazation oracle. The oracle is called strong if it solves the corresponding strong problem
that is obtained by setting e = 0. A body K is called circumscribed or well-bounded if a
positive rational number R or positive rational numbers r, R are given explicitly such that
K C RB" or, in addition, K contains a ball of radius r. If, further, we are given a vector
b € Q™" such that b+ rB" C K, then K is called centered.

To place the weak linear optimization oracle in the perspective of classical convexity
theory, recall Minkowski’s useful functional approach to convex bodies by means of the

support function h : K™ x S*~! — R, which is defined for K € K™ and v € S*! = bdB" by

h(K,u) = argzc(x,w

Note that presenting a ¢ € Q" as a call to a weak optimization oracle for K provides us
with an approximation of h(K,c/||c|l2), and, in addition, with a “weak support point” in
this direction.

The above three problems are very closely related in the sense that when the classes of
proper bodies are appropriately restricted to those that are circumscribed, well-bounded, or
centered, and when input sizes are properly defined, an algorithm that solves any one of the
problems in polynomial time can be used as a subroutine to solve the others in polynomial
time also; see Theorem 1.2.1. The definition of input size involves the size of ¢, the dimension
of K, the given a priori information, and the input required by the oracle. Suppose that K
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is well-bounded with parameters r and R. Then the input size is defined as the sum of the
following numbers:
size(e);
size(I{) = n + size(r) + size( R);
an additional term size(b) when the oracle is centered with center b;
an additional term size(y) for the membership problem and the separation problem,
and size(c) for the optimization problem.

The following theorem contains a list of the precise relationships among the three basic
oracles for bodies (see [GrLS88]). The notation “(A; prop) — B” indicates the existence of
an (oracle-) polynomial-time algorithm that solves problem B for every body that is given by
the oracle A and has all the properties specified in prop. (prop= () means that the statement
holds for general bodies.)

1.2.1 (WEAK MEMBERSHIP; centered, well-bounded) —, WEAK SEPARATION;
(WEAK MEMBERSHIP; centered, well-bounded) —, WEAK OPTIMIZATION;
(WEAK SEPARATION; () —, WEAK MEMBERSHIP;

(WEAK SEPARATION; circumscribed) —, WEAK OPTIMIZATION;
(WEAK OPTIMIZATION; () —, WEAK MEMBERSHIP;
(WEAK OPTIMIZATION; () —, WEAK SEPARATION.

We want to emphasize the following fact, for it implies that the “oracular” approach to
convex bodies is in an important sense the most general sort of presentation introduced in
this subsection. It also helps to clarify the way in which the formulation in terms of oracles
leads to an efficient modular approach to the problems of computational convexity.

1.2.2 There are polynomial-time algorithms which, accepting as input a proper V-polytope
or a proper H-polytope P, or a proper S-zonotope Z, produce membership, separation
and optimization oracles for P and Z, and also compute lower bounds on P’s and Z’s
inradius, upper bounds on P’s and Z’s circumradius, and “centers” bp and by for P and Z
respectively.

This implies that if an algorithm performs certain tasks for bodies given by some of the
above (appropriately specified) oracles, then the same algorithm can also serve as a basis
for procedures that perform these tasks for V- or H-polytopes and for S-zonotopes. (On the
other hand, it is possible to derive some lower bounds on the performance of approximate
algorithms for the oracle model that do not carry over to the case of V- or H-polytopes or
S-zonotopes. Examples of this kind can be found in Subsection 6.3.)

Let us end this section by stating some basic algorithmic problems of volume computation.
Other variants of these problems (including those asking for weak approximations) will be
introduced later. Here are the problems.

VOLUME COMPUTATION.
Instance: A positive integer n, an H-polytope (or a V-polytope, or an S-zonotope) P.
Task: Compute the volume V(P) of P.

WEAK VOLUME COMPUTATION.

Instance: A positive integer n, a body K in R" that is given by a weak optimization
oracle (or a weak membership oracle or a weak separation oracle; a rational
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vector b € R™ and positive rationals v, R such that b+ rB" C K C RB"); a
positive rational \.
Task: Compute a rational p1 such that |y — V(K)| < A.

It should be emphasized that this survey concentrates on providing some idea of the
principal methods that are available for computing or approximating volumes and mixed
volumes, and sketches (or, much less frequently, details) of proofs are given only for the
purpose of enhancing the intuitive understanding of these underlying ideas and concepts.
To further research in this fruitful area of computational convexity we have formulated
unsolved problems that seem especially natural or important, and in some cases of particular
interest we have even included some “speculative” material, speculative in the sense that we
show how certain procedures (which may not be available at present) could in principle be
used to solve certain other problems efficiently. Finally, it should be mentioned that much
of this survey is “qualitative” in the sense that the primary distinction in computational
complexity is that between polynomial-time solvability on the one hand and NP-hardness
or #P-hardness on the other hand. We recognize that this classification is only a first step
toward finding optimal algorithms, but we believe it to be a useful guide for the latter effort.

2. FOUNDATIONS

In the present section, Subsection 2.1 fixes some terminology and Subsections 2.3-2.5
discuss the aspects of volume and mixed volumes that are most relevant to what follows.
Subsection 2.2 represents a deviation (but a fascinating one) from our main line of discussion.
Much of the material in 2.2 has been treated in books by BOLTYANSKIT [Bo78] and WAGON
[Wa85]. The material in 2.3-2.5 has been the subject of various books and survey articles,
including the book by HADWIGER [Ha57], the survey by MCMULLEN & SCHNEIDER [McS83],
and a recent handbook article by MCMULLEN [Mc93]. For this reason, and also because the
present article is concerned mainly with algorithmic aspects, we will be rather brief in this
section. More details can be found in the cited references.

2.1 Background and terminology.

We could begin by simply noting that convex bodies are Lebesgue measurable, and that
our term volume is synonymous to Lebesque measure. However, when restricted to bodies
and especially when restricted to polytopes, Lebesgue measure exhibits many properties
that are of fundamental geometric significance. Further, these properties can in some cases
be formulated in an “elementary” way — i.e., without recourse to limiting processes — and
it turns out that some of the notation and terminology needed to describe the properties is
also useful for algorithmic studies.

We speak of a dissection of an n-polytope P into n-polytopes Py,..., Py if

k
P:UH
1

int(P;,NP;)=10 fori,7=1,....k, 1 #j.



BASIC PROBLEMS IN COMPUTATIONAL CONVEXITY II 9

With respect to a subgroup G of the group of all affine automorphisms of R™, two polytopes
P, C R™ are said to be G-equidissectable (or equidissectable under G) if (for some k) there
exist dissections Py, ..., P; of P and ()1, ...,Q of () and elements ¢4, ..., gr of G such that
P; = ¢;(Q;) for all 1.

A related notion is that of equicomplementability. Two polytopes P, () C R" are called
G-equicomplementable if there are polytopes P;, P, and (1,2 such that P, is dissected
into P and Py, )7 is dissected into () and @)y, P; and (); are G-equidissectable, and P,
and )2 are G-equidissectable. HADWIGER [Ha57, p.47] showed that two polytopes are
G-equidissectable if and only if they are G-equicomplementable.

Let 8™ be a family of subsets of R". A functional ¢ : ™ — R is called a valuation on S
if

99(51) + 99(52) = 99(51 U 52) + 99(51 N 52) whenever 51752751 U 52751 N 52 € Sn

The families of principal interest to us here are P" and K". A valuation ¢ is called G-
wnvariant if

©(S)=¢(g(S)) for all S € §" and g € G,
simple if
©(S) = 0 whenever S € 8" and S is contained in a hyperplane,
and monotone if
©(S1) < ¢(S3) whenever Sy, 5, € " with Sy C Ss.
Obviously, if ¢ is a G-invariant simple valuation on P™ and P and () are G-equidissectable

(or G-equicomplementable) then ¢(P) = ¢(Q). HADWIGER [Hab7] showed that this leads
already to a characterization of G-equidissectability of polytopes.

2.1.1 Two polytopes P and @) are G-equidissectable if and only if p(P) = ¢(Q) for all
G-invariant simple valuations on P™.

2.2 “Elementary” approaches to volume.

The present subsection states some results on isometry-based elementary approaches to
volume and contrasts them later with a result on an affinity-based approach.
The most famous result concerning equidissectability involves the group D of isometries.

It is the following Bolyai- Gerwien theorem (see [Gel833], [Bo78|, [Wa85]).
2.2.1 Two plane polygons are of equal area if and only if they are D-equidissectable.

If one agrees that an a-by-b rectangle should have area ab, and also agrees that the area
function should be a D-invariant simple valuation, it then follows from 2.2.1 that the area
of any plane polygon P can be determined (at least in theory) by finding a rectangle R to
which P is equidissectable. This provides a satisfyingly geometric theory of area that does
not require any limiting considerations. Several refinements of the Bolyai-Gerwien theorem
have been established. For example, rather than using the group of all isometries, it suffices
to use translations and half-turns. Also, the pairs (P,Q) of polygons that are equidissectable
under translations alone have been characterized by HADWIGER & GLUR [HaGb1]. (See
[BoT8] for this and other refinements.) Although the original proof of 2.2.1 was algorithmic
in nature, there remain open questions concerning how rapidly, under various hypotheses,
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one can find an equidissection of two given polygons of equal area, and there are also open
questions concerning the minimum number of pieces needed in certain equidissections. See
[KoK94] for some of the algorithmic aspects, and see [Mo91, p.215] for a problem concerning
minimum dissections.

The third problem of HILBERT [Hi00] asked, in effect, whether the Bolyai-Gerwien result
extends to 3-polytopes. A negative answer was supplied by DEHN [De00], who showed that
a regular tetrahedron and a cube are not equidissectable. His work led to the notion of a
Dehn invariant of a 3-polytope P. Let f : R — R be an arbitrary additive function such
that f(7) = 0 but f is not identically zero. (This implies that f is discontinuous.) For each
such f, and for each 3-polytope P, let

k

FH(P) =) oif(ai),

=1

where 01,...,0p are the lengths of the various edges of P and «q,...,a; are the radian
measures of the corresponding dihedral angles. Then the number f*(P) is known as the
Dehn invariant of P associated with the functional f. In the following result, the necessity
was proved by DEHN [De00] and the sufficiency by SYDLER [Sy65] 65 years later.

2.2.2 For two 3-polytopes P and ) to be equidissectable under the group of all isometries
of R®, it is necessary and sufficient that f*(P) = f*(Q) for each additive function f such
that f(m) = 0.

Dehn’s necessary conditions (for equidissectability of proper polytopes in 3-space) were
extended to n-space by HADWIGER (see [Bo78| and [Sa79] for references), and the sufficiency
of the extended conditions was proved by JESSEN [Je68], [Je72] when n = 4. However, the
case of n > 5 is still unsettled. See [Bo78] and [SaT9] for expositions of Jessen’s proof, and
see SAH [SaT79] for an account of algebraic studies that have been inspired by Hilbert’s third
problem.

A notion related to G-equidissectability is that of G-equidecomposability, where a decom-
position of a set X is a way of expressing X as a union X7 U --- U X} of a finite number of
pairwise disjoint sets X;. In contrast to the notion of a dissection, these sets X; are not even
permitted to have boundary points in common, and there is no restriction on the nature of
the individual sets (they may even be nonmeasurable). Hence the study of equidecompos-
ability is far from our algorithmic approach. Nevertheless, we feel that its principal results
should at least be mentioned here because they are the most striking of all results related
to volume.

Even though equidecomposability does not require measurability of the sets in the de-
composition, in the following result these sets may be taken as open triangles together with
nice portions of their boundaries.

2.2.3 Two plane polygons are of equal area if and only if they are D-equidecomposable.

Theorem 2.2.3 is due to TARSKI (see [BaT24]), and it led to the question as to which pairs
of nonpolygonal plane bodies are D-equidecomposable. Although the sets in a decomposition
need not be measurable, equidecomposability of two plane bodies does imply that the bodies
are of equal area. That is a consequence of the following result.
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2.2.4 Lebesgue measure on the line or in the plane can be extended to a D-invariant simple
monotone valuation p that is defined and finite for all bounded sets.

In fact, p can also be required to multiply properly with respect to all similarity trans-
formations of R%. See [Wa85] for references to proofs of 2.2.4, and for a discussion of further
ramifications of the theorem.

LACZKOVICH [La90] sharpened 2.2.3 as follows.

2.2.5 Any two plane polygons of equal area are equidecomposable under the group of
translations.

He also settled Tarski’s old problem of “squaring the circle” by showing that a square and
a circular disk of equal area are equidecomposable. There too, he needed only translations.
(See [GaW89] for an expositon of the methods and theorems of [La90].) On the other hand,
a theorem of DUBINS, HIRSCH & KARUSH [DuHKG63] implies that a disk and a square cannot
be “scissors congruent”; i.e., there is no equidissection (with respect to rigid motions) into
pieces which, roughly speaking, could be cut out with a pair of scissors.

The relationship of equidecomposability to volume in R™ changes dramatically with the
passage from n = 2 to n = 3. That is clear from the following result, which is known as the

Banach-Tarsk: paradoz [BaT24].

2.2.6 If X and Y are bounded subsets of R" (with n > 3), and each set has nonempty
interior, then X andY are D-equidecomposable.

The essential difference between the cases n < 2 and n > 3 lies in the fact that for n <2
the group of all isometries of R™ is solvable (a condition of near-commutativity), while for
n > 3 it contains a free nonabelian subgroup and hence is not solvable. Thus, for example,
while it is clear from 2.2.6 that 2.2.4 does not (as stated) extend to R, it does extend when
the group D of all isometries is replaced by the group of translations. See WAGON [Wa85]
for a survey of the Banach-Tarski paradox and of several other results and problems related
to the results stated in this subsection; see also [St79].

We see from 2.2.1 that an “elementary” theory of the area of plane polygons (i.e., a theory
free of limiting processes) can be based on isometries and equidissectability, and we see from
2.2.3 that such a theory can also be based on isometries and equidecomposability. When the
underlying group is the group D of isometries, both of these statements fail in R™ for each
n > 3. Equidecomposability fails because (by 2.2.6) the associated equivalence class is far
too large, having no connection with equality of volume. Equidissectability fails because,
although this condition implies equality of volume, proper polytopes of equal volume can fail
to be equidissectable (see 2.2.2). A pleasant contrast to these difficulties is provided by the
following result (see [Mc93, p.966]), which is valid for all n. It is based on volume-preserving
affinities rather than on isometries.

2.2.7 Under the group of all volume-preserving affinites of R", two n-polytopes are equidis-
sectable if and only if they are of equal volume.

For this result, as for 2.2.1, it seems that little is known about minimizing the number of
pieces in an equidissection or about the computational complexity of finding an equidissec-
tion.
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2.3 Characterizations of the volume.

The volume function can be characterized as follows in terms of valuations.

2.3.1 If ¢ is a translation-invariant, nonnegative simple valuation on P™ (K™), then there
exists a nonnegative real « such that ¢ = a'V.

2.3.2 A translation-invariant valuation on P"™ which is homogeneous of degree n is a
constant multiple of the volume.

2.3.3 A continuous rigid-motion-invariant simple valuation on K™ is a constant multiple
of the volume.

2.3.4 A nonnegative simple valuation on P" (K™) which is invariant under all volume-
preserving linear maps of R" is a constant multiple of the volume.

Proofs of 2.3.1, 2.3.2 and 2.3.3 can be found in the book of HADWIGER [Ha57], in Section
2.1.3 and on pages 79 and 221. Theorem 2.3.4 is also due to HADWIGER [Ha70]. See, in
addition, the surveys [McS83] and [Mc93].

It is unknown whether, in 2.3.3, K™ can be replaced by P".

2.4 Mixed volumes.

The study of mixed volumes, the Brunn-Minkowsk: theory, forms the backbone of clas-
sical convexity theory and is also useful for applications in various other areas including
combinatorics and algebraic geometry (see Section 9). SCHNEIDER [Sc93] has an excellent
treatment of the theory that includes proofs for all the results presented in this section.

The starting point for the Brunn-Minkowski theory is the following famous theorem of

MINKOWSKI [Mill] (see [BoF34], [Sa93], [Sc93]):

2.4.1 Let Ky,...,K, be convex bodies in R", and let &,...,{, be nonnegative reals.
Then the function V(Ele fiKi> is a homogeneous polynomial of degree n in the variables
&1,...,&, and can be written in the form

V (zr: gi]fi) = zr: zr: U zr: §i1‘€i2 U ‘fln V(I(il ) I(iw cee 7I§in )7
=1

i1:1 i2:1 anl

where the coefficients V(K;,, K,,, ..., K, ) are order-independent, i.e. invariant under per-
mutations of their argument.

The coefficient V(K;, , K,,,...,K; ) is called the mized volume of K; , K;,,..., K; . We
will also use the term mized volume for the functional

/_/—
V:KPx---xK" =R
Ki,...,K;, = V(Ky,...,K,)

as well as for restrictions of this functional to certain subsets of K™ x .-+ x ™.
Here are some of the most important properties of mixed volumes.
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2.4.2 Let Ky,...,K, € K™. Then the mixed volumes have the following properties.

(i) Mixed volumes are nonnegative, monotone, multilinear, and continuous valuations.
n

—_—~—
(i) V(E)) = V(K ..., K)).

(iii) If A is an affine transformation, then

V(AKY), ..., A(K,)) = |det(A)|V (KL, ..., Kn).

Property 2.4.2 (ii) shows that mixed volumes directly generalize the ordinary volume.
This implies that in general, computing mixed volumes of polytopes is no easier than com-
puting volumes of polytopes.

The multilinearity of the mixed volume is important for certain algorithmic approaches
outlined in Subsection 7.2. It says that mixed volumes can again be expanded into mixed
volumes, or, more explicitly, that for C4,...,C, € K", &,...,& € [0,00[, K =3 _, &C;
and keN, k<n-—1,

k
—_—~—
V(K,...,K,Ki41,...,K,) =
=3 > ) GGG V(G G K, K.
i1:1 i2:1 lkzl

One of the most famous inequalities in convexity theory is the following, known as the

Aleksandrov-Fenchel inequality, [Al137], [A138], [Fe36].
2.4.3 For Ky,...,K, € K", it is true that

V(Ky, Ky, Ks, ... ,Kn)2 >V(Ky, K1, Ks,...,K,) V(Kq, Ko, Ks,...,K,).

The cases for which equality holds in 2.4.3 have not been fully characterized; see [Sa93],
[Sc93].
A famous consequence of Theorem 2.4.3 is the following Brunn-Minkowski theorem (see

[Sa93], [Sc93]):
2.4.4 IfKy,K; € K" and \ € [0,1], then

VE (1= Mo + MK ) > (1= MV (Ky) + AVE ().

Let us close this subsection by introducing the quermassintegrals and the intrinsic volumes
of a body K.
The quermassintegrals Wy, ..., W, are defined on K™ by
n—1 ?

WiEK)=V(K,...,K,B",... B"),

and the intrinsic volumes V4, ..., V), are given by

/fn—i‘/i - <n> Wn—iy
2



14 P. GRITZMANN AND V. KLEE

where #; denotes the k-volume of B*. (See [Ha57], [Mc75], [Mc77], [Mc93], [Sa93], [Sc93]).
In particular, V,, is the volume V, V,,_; is half the surface area, and V5 = 1. Note that
the intrinsic volumes are dimension-invariant in the sense that V;(K) depends only on the
body K and not on the dimension of the space in which K is embedded. This implies,
in particular, that for an i-dimensional body K the ith intrinsic volume V;(K) is just the
2-volume of K.

Note that for £ > 0, the body K + (B" is the outer parallel body (already introduced in
Subsection 1.2) and the mixed volume expansion becomes the Steiner-formule [St1840]:

12

V(K +¢B") =Y (Z‘) Wil K)E =Y hmiVi(K)E" .
1=0

=0

2.5 Characterizations of mixed volumes.

The following characterization is due to FIREY [Fi76] for k¥ = 1 and to MCMULLEN [Mc90]
for k=n—1.

2.5.1 Let k=1ork =n—1. If ¢ is a monotone translation-invariant valuation on K"

and is homogeneous of degree k, then there exist bodies Ky41,..., K, such that
k
—_——
o(K)=V(K,...,K,Kgy1,...,K,).

The problem of extending 2.5.1 to general k is wide open, and examples of GOODEY
(private communication) show that the general situation is more complicated than that for
k=1 and k = n — 1. For instance, let X and Y be orthogonal 2-spaces in E* and for each
K € K" set o(K) = Vo(IIx(K)) + Vo(Ily (K)), where Ilx and IIy denote the orthogonal
projections onto X and Y respectively. The valuation ¢ is monotone, translation-invariant
and homogeneous of degree 2, but it cannot be expressed as a mixed volume. Goodey gives
similar examples in arbitrary dimensions.

Let us close this section with the famous characterization theorems of HADWIGER [Ha57,
Section 6.1.10], showing that the quermassintegrals or intrinsic volumes form a basis for a
certain space of valuations. (Recall that the intrinsic volume V; is a continuous valuation,
invariant under rigid motions and homogeneous of degree i.)

2.5.2 If p is a continuous valuation that is invariant under rigid motions, then there are
constants «y,. .., «, such that

o(K) = Z a; Vi(K) for all K € K".
1=0

2.5.3 If ¢ is a monotone valuation that is invariant under rigid motions, then there are
nonnegative constants ay, ..., «a, such that

o(K) = Z a; Vi(K) for all K € K".
1=0
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The following example indicates the manner in which the characterization results 2.5.2
and 2.5.3 can be used to identify certain functionals as intrinsic volumes. For a body K in
R”, and for u € S, the breadth of K in the direction u is defined as the number

bu K)= 3 - i 3 )
(K) = max(u, y) — minfu, y)

this 1s just the distance between the two supporting hyperplanes of K that are orthogonal
to the line Ru. The width of K is the minimum of the numbers b,(K). The mean width of
K is obtained by integrating the function b,(K) over u € S"~! and then dividing the result
by the (n—1)-measure of S"~1. As a consequence of 2.5.3 we see that up to a positive factor
the mean width of K is just V4 (K).

3. DETERMINISTIC METHODS FOR VOLUME COMPUTATION

The problem of computing polytope volume has been studied by many authors. The
present section will summarize several of the basic ideas for deterministic volume compu-
tation. In addition to the papers that are mentioned below in connection with the various
methods, the reader may be interested in the following papers that are not mentioned below:

[A1S86], [BaST79], [CoHTI], [Ka94], [Ko82], [Lag3], [LeR82a], [LeR82b], [ShH54], [Sp&6].

3.1 Triangulation.

If vy, ..., v, are affinely independent points of R”, and T = conv{vy,...,v,}, then
1
V(T) = E| det(v1 —V0y...3Up — v0)|'

Thus computing the volume of an n-simplex is equivalent to computing the determinant
of an n X n matrix and can be handled very efficiently by means of Gaussian elimination.
Other formulas for computing the volume of a simplex are stated in Subsection 3.6.

Since simplex volumes can be computed so easily, the most natural approach to the
problem of computing the volume of a polytope P is to produce a dissection of P into
simplices. Then compute the volumes of the individual simplices and add them up to find
the volume of P. (This uses the fact that the volume is a simple valuation.)

In fact, we shall tell, for both V-polytopes and H-polytopes, how to produce a triangula-
tion. As the term is used here, a triangulation is not merely a dissection into simplices, but
it has the additional property that the intersection of any two simplices in the dissection is
a face of each.

We will first outline an “incremental” algorithm that constructs a triangulation of a
V-polytope. The case of H-polytopes is treated later in this subsection.

The problem of constructing triangulations of V-polytopes is intimately related to the
task of computing the face-lattice of the convex hull of a given finite point set, and this
is a fundamental task in computational geometry; see EDELSBRUNNER [Ed87], [Ed93] and
CHAZELLE [Ch93]. The incremental method, a paradigmatic procedure in computational
geometry, uses the beneath-beyond approach that goes back to GRUNBAUM [Gr67, p.78].
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The basic strategy is to add one of the given points at a time and hence compute the convex
hull step by step. This requires the use of an ordering of the input vectors.

The following algorithm is based on a convex hull algorithm due to SEIDEL [Se91], and
can also be found in [Ed87] and [Ed93].

Let v1,...,v,, € Q" be given, and suppose that

(i) aff{v1,...,vp41} =R", and
(ii) a rational vector zo € R™ is given such that (v1,z0) < (va,20) < -+ < (Vm—1,20) <
(Vm, 20).

Then the incremental algorithm proceeds as follows:

o Let P,y = conv{vy,...,vn41}, set Thp1 = {Pnt1}, and assume that for some
i > n+ 1 a triangulation 7; of the convex hull P; of {vy,...,v;} has already been
constructed.

e Let B; denote the induced triangulation of the boundary bd(P;). (Note that P,4q
is a simplex, whence B,y1 = Fr—1(Pny1).)

o Let [;’Z denote the set of all (n — 1)-simplices in B; that are visible from v;4; with
respect to P;, i.e. the affine hull of a simplex in B; separates v;41 from P;.

e Finally, set Piy; = conv({v41} U P;) and Ti41 = 7; U {conv({viy1 } U F) : F € Bl}

Before mentioning some complexity issues of the main algorithm, let us comment on
the assumptions (i) and (ii). From a theoretical point of view, none of these assumptions
constitutes any restriction of generality. However, since we are here interested in algorithmac
questions, we need efficient computational procedures for satisfying the assumptions in order
to conclude that they are not too restrictive for our purposes.

Using Gaussian elimination, we can determine a maximal affinely independent subset
of {v1,..., v} in polynomial time, and (possibly after reordering) we may assume that it
consists of the first k vectors. If £ < n 4 1 we may terminate the algorithm (in view of the
fact that we are here interested in triangulations only as a tool for volume computation),
or we may decide to continue in aff V. In any case, Assumption (i) is “algorithmically
acceptable.”

As to Assumption (ii), it is possible as follows to obtain such a hyperplane Hy = {x :
(,z9) = 0} through the origin with the property that no line determined by two of the
vectors of V' is parallel to Hy. For any pair (v;, v;) of different vectors of V', let 6;; € {—1,1}
and y;; = 6;j(v;—v;), where the choice of the sign ¢;; is such that the first nonzero coordinate
of y;; 1s positive. Then the positive hull of all such vectors y;; is a pointed convex cone, and
we can use linear programming to find (in polynomial time) a vector zg such that (y;;,z9) > 1
for all such vectors y;;. Clearly, Assumption (ii) is then satisfied by z( after a suitable sorting
of the inner-product values (v;, zg), and hence is “algorithmically acceptable” as well.

(It is also possible to deal with Assumption (ii) by choosing any hyperplane and then
“simulating” a perturbation of the input points [EAM90], an approach similar to the lexi-
cographic rule of the simplex algorithm, see [Da63].)

Note that the ordering of {vy,..., v, } implies that the segment conv{v;,v;+1} meets P;
only in the point v;, and hence v; belongs to an (n—1)-simplex of B; that is visible from v;1.
This allows us in the main algorithm to find an element of B; by looking at all simplices of
B; that contain v;; and then we proceed by looking at neighboring boundary simplices.

It is not hard to see that the running time of the above incremental algorithm is of the
order O(m(L)mn*+1/2) where 7 denotes a suitable polynomial in L. Observe that this
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bound is polynomial only in the case of fized dimension; for general V-polytopes, the number
of simplices in a triangulation is indeed exponential in n since the number of facets may
already be exponential in the dimension.

Let us mention in passing that triangulations with special properties are studied promi-
nently in computational geometry, see [Ed87], [EA93]. A particular class of triangulations
that has received a lot of attention because of its wide range of applications is the class of
Delauney-triangulations that are “dual” to the Voronoi-diagrams. Properties of triangula-
tions that are important for practical application (for instance in “surface-design” in the
automobile industry) include “good conditioning” in the sense that the ratio of a longest to
a shortest edge of the triangulation is bounded above by a reasonably small constant.

For some structural properties of triangulations and dissections, and a related bibliogra-
phy, see BAYER & LEE [BaL93].

For a given H-polytope we could, of course, compute all vertices and then proceed just as
before. However, we will outline an algorithmically different approach that is based on the
fact that linear programming problems can be solved in polynomial time. It will allow us to
derive an additional result in the case when the dimension is part of the input (and then, of
course, rational V-presentations and rational H-presentations are no longer “polynomially
equivalent”).

Suppose that P is an H-polytope given by the irredundant presentation (n,m; A,b). A
triangulation 7 (P) of P can be computed recursively as follows:

e Determine a vertex v of P. This can be done in polynomial time by an application
of the ellipsoid algorithm or by interior-point methods.

e Determine the set F of (irredundant H-presentations of ) facets of P that do not con-
tain v. This can again be done by linear progamming. (Note that from (n,m; A, b)
we can easily obtain H-presentations for the facets in F, and the subsequent redun-
dancy tests require the solution of at most O(m?) suitable linear programs; hence
this step can be done in time that is polynomial in the size of the original input.)

The same step is now repeated for the facets in F and so on, and the results are stored in a
layered graph. The Oth node is the pair (), P) and the nodes of layer j are pairs S and F,
where S is a set of j vertices and F' is a face of dimension n — j. The recursive process stops
with the (n + 1)st layer. Then the respective faces are all empty, and the sets S contain the
vertices of the simplices of the so constructed triangulation. (A close relative of this method
appears in a paper by VON HOHENBALKEN [Vo81].)

A first observation confirms the result that for fized n, the volume of an H-polytope can
be computed in polynomial time. (Note that this follows already from the triangulation
routine for V-polytopes that was outlined earlier, in conjunction with the fact that, when
the dimension is fixed, a passage from a rational V-presentation of a polytope to a rational
H-presentation of the same polytope can be carried out in polynomial time.)

3.1.1 When the dimension n is fixed, the volume of V-polytopes and H-polytopes can be
computed in polynomial time.

Clearly, the above algorithm may require time that is exponential in n. However, for the
case of H-polytopes that are simplicial, the algorithm runs in polynomial time even when
the dimension n is part of the input. To see this, observe first that the problem of deciding
whether P has volume 0 can be solved by way of linear programming. So, suppose that P
is n-dimensional. Further, note that the number of simplices of 7(P) is bounded by m, the
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number of constraints in the given H-presentation. We can then use linear programming
to identify for each facet F' of P the constraint hyperplanes of the given presentation that
contain F’s facets (which are (n — 2)-dimensional faces of P), and then it is easy to derive
irredundant H-presentations for all simplices of 7(P). For simplices, one presentation can
be converted easily into the other, so we obtain, in time that is polynomial in L, rational
V-presentations of all simplices in 7(P). As the final step we compute the volumes of these
simplices and add them all up to obtain the volume of P. This result can be easily extended
to “near-simplicial” H-polytopes. To be more precise, let ¢ be a nonnegative integer and

define the class Py(o) by

Pulo) = U {P € P": P is an H-polytope, and fo(F) < n 4+ 1+ o for each facet F of P}.
neN

Then we obtain the following result:

3.1.2 Let 0 be a nonnegative integer constant. When restricted to Py(o), the problem of
volume computation can be solved in time that is bounded by a polynomial in L.

Let us conclude with a result about the binary size of the volume of V-polytopes. Clearly,
when the dimension is fixed, the volume of a (V- or H-) polytope P can be computed in
polynomial time and its size is therefore polynomial in the size of the input. It is not clear a
priori whether this property of the volume persists when the dimension is part of the input.
It is true that each vertex of P is rational of size that is bounded above by a polynomial in
L, and that each simplex in a triangulation has volume of size that is again bounded by a
polynomial in L. However, it is also true that there may be exponentially many simplices in
any possible triangulation, and thus it is conceivable that V(P) (the sum of all the simplex-
volumes) may be of exponential size. (Remember that we are speaking here of the size or
length of the volume as a binary number, and not of its magnitude as a real number!) As
we will see in the next subsection, this may actually be the case for H-polytopes. On the
other hand, it is easy to see (by multiplying with the common denominator or simply with
the product of all denominators of the rational entries (vq,...,vy)), that the size of the
volume of a V-polytope is indeed bounded above by a polynomial in L.

3.1.3 If P is a V-polytope, then the binary size of V(P) is bounded above by a polynomial
in the size L of P’s V-presentation.

3.2 Sweeping-plane formulas.

Another approach that has become a standard tool for many algorithmic questions in
geometry is the sweeping-plane technique. It goes back (at least) to HADWIGER [Ha55], who
used it in the context of the Euler characteristic on the convex ring. It has been applied to
volume computation by BIERT & NEF [BiN83], LAWRENCE [La91] and KHACHTYAN [Kh88],
[Kh89], [Kho3].

The general idea is to “sweep” a hyperplane through a polytope P, keeping track of the
changes that occur when the hyperplane sweeps through a vertex. Let us illustrate this idea
for the problem of computing the volume of a triangle T' = {vg,vy,v2} in the plane. Let
c € R? be a rational vector such that

(c,v9) < (e,v1) < (e, v2).
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For 7 € R, let
H(r)={z:{c,x) <71} and o(r)=V(T N H(T)).

Clearly, (7) = 0 for 7 < (¢,vg) and p(7) = V(T) for 7 > (¢, v2). Now define the following
three cones:

Cy = vo + pos{vy —vg,v3 —vo}, C1 = vy +pos{vy —vg,ve — vy},

Cy = vy + pos{vy — vy, v9 — vy }.

Note that C; N H(7) is bounded for each ¢, whence (as an easy case of the inclusion-exclusion
principle)
o(t)=V(ConNH(r))=V(CiNH(T))+ V(CyN H(T)).

Further, for : = 0,1, 2,

0 for 7 < (¢, v;);

V(C;NH(T)) = { il — <C,vi>)2 for 7 > (¢, vi),

where the v; are suitable (easily computable) constants. Hence for 7 > (¢, v2) we obtain

2

V(T) =) (=1)'il(r = (e,vi)*.

=0

Clearly, this approach can be generalized to arbitrary polytopes, and it yields a volume
formula that does not explicitly involve triangulations. This formula was first derived by
Biert & NEF [BiN83] (even for more general bounded polyhedral sets); other proofs are
due to LAWRENCE [La91] and FILLIMAN [Fi92]. We will give LAWRENCE’s [La91] statement
of the volume formula (under additional restrictions) since it is formulated in terms of the
standard ingredients of the simplex tableau of linear programming. Later we will comment
on some generalizations.

Suppose that (n,m; A, b) is an irredundant H-presentation of a simple polytope P. Recall
that P’s being simple means geometrically that each vertex of P is contained in precisely
n facets. Let b = (B1,...,3m)T and denote the row-vectors of A by al,...,al. Let
M ={1,...,m} and for each nonempty subset I of M, let A; denote the submatrix of A of
rows with indices in I and let b; denote the corresponding right-hand side. For each vertex
vof P={x € R": Az < b} there is a subset I = I, C M of cardinality n such that
Arv = by and Apyp\rv < bppy 7. Since P is assumed to be simple and its H-presentation to be
irredundant, the set I, is unique. Stated in the terminology of the (dual) simplex algorithm
this means that the basic feasible solutions of Ax < b are in one-to-one correspondence with
the vertices of P, and hence the corresponding linear program is nondegenerate.

Let ¢ € R™ such that (¢,v1) # (¢, v2) for any pair of vertices vy, vy that form an edge of
P,and set H(t)={x e R": (¢,z) <7} for 7 € R.

3.2.1 If the polytope P is simple, and (n,m; A, b) is an irredundant H-presentation, then
(with the above notation)

oy D" (max{0, 7 — (¢,v)})"
V(PN H(T)) ol ve%:(P) 1" eTAI_vlc| det(Ar)|’

=1 "t
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where eq,...,e, denote the standard unit vectors of R".

Consequently,

_ (1 (r = tero))
TP DN A FT

whenever 7 > max,ecp(c,v). It follows that as a polynomial in 7, the right-hand side of this
formula is constant. Evaluation at 7 = 0 yields the following volume formula.

3.2.2 If the polytope P is simple, and (m,n; A, b) is an irredundant H-presentation, then
(with the above notation)

(¢, 0)"

V(P) =+ 0 ~ .
n ve%:(P) [Ti=1 eiTAIUIC| det(Ar,)]

As was mentioned earlier, the ingredients of this volume formula are those which are
computed in the (dual) simplex algorithm. More precisely, (¢,v) is just the value of the
objective function at the current basic feasible solution v, det(Ay,) is the determinant of
the current basis, and Aj_vlc is the vector of reduced costs, i.e. the (generally infeasible)
dual point that belongs to v. Note that the signs that were present in our introductory
example (which come from the inclusion-exclusion principle, or from Gram’s relation) are
now hidden in AI_vlc; each dually infeasible component contributes a negative sign.

For practical computations, 3.2.2 has to be combined with some vertex enumeration
technique. Its closeness to the simplex algorithm suggests the use of a reverse search method
of Avis & FUKUDA [AvF91], which is based on the simplex method with Bland’s pivoting
rule.

As it stands, the volume formula 3.2.2 does not involve triangulation. However, if we
interpret it in a polar setting, it becomes clear that we are really dealing with the faces of the
simplicial polytope P°. Accordingly, generalization to nonsimple polytopes involves polar
triangulation. In fact, for general polytopes P, [BiN83] and [La91] suggest a “lexicographic
rule” to move from one basis to another, and this is just a particular triangulation of P°;
see also FILLIMAN [Fi92, Theorem 1].

As an application of formula 3.2.2, LAWRENCE [La91] derives the following negative result
for the binary size of V(P) for H-polytopes P.

3.2.3 The binary size of the volume of H-polytopes is in general not bounded above by a
polynomial in L.

This result is in striking contrast to the case of V-polytopes (3.1.3) and answers a question
of DYER & FRIEZE [DyF88].

The example given in [La91] is a projective image of the standard cube. More precisely,
let

Co=10,1]"={z=(&,....&.)  €eR":0<¢&,..., & < 11,
let .
a= 2—n(z’“L—l,Q’”L—?,...,20)T,
and consider the projective transformation 7, defined by
x

Tt {aa)

o ()
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Then P = 7,(C,,) is a polytope which is defined by the inequalities

£+ (a,x) <1 i=1,...,n

and this is a rational H-presentation of P of size that is polynomial in n. However,

1 2n-|—1_1 ‘ 1
V(P) — EQ(TL +3)/2 Z (_1)w(z)—1;7
) i=27n

where w(7) is the number of 1’s in ¢’s binary representation. Now, write this number as a
rational /v in coprime representation (with 5,4 > 0), and let p be a prime with 2" < p <
27+1 Note that p divides a denominator 7 of a summand if and only if p = i. Let 7 = [] ¢*,
where the product extends over all primes ¢ and ¢* is the highest power of ¢ that divides
at least one of the integers between 2" and 27! — 1; certainly + divides 7. Then

2n-|—1_1 2n-|—1_1

Y ptie 3 e

and p divides each 7/¢ with p # ¢ but does not divide 7/p. Thus the numerator

ontl_q

> (-

=27

is not divisible by p and p is not factored out when producing the coprime representation
(/~. This implies that

v 2 H{p . p is a prime with 2" < p < 271},

By the prime number theorem (see e.g. [HaW68]) there are asymptotically 2" /n such primes
and thus 7 is an integer of order 22", Hence the binary size of the denominator of V(P) is
not bounded by a polynomial in n.

3.3 Exponential integrals.

Another possibility to compute the volume of a polytope P — at least if P belongs to
some special classes of polytopes — is to study the exponential integral

/ ee0) gy
P

where ¢ is an arbitrary vector of R™. (Note that for ¢ = 0, the above integral gives just
the volume of P.) Exponential integrals satisfy certain relations, some of which are stated
later, that make it possible to compute the integrals efficiently in some important cases.



22 P. GRITZMANN AND V. KLEE
Let us begin by stating formulas for the cube C,, = [0,1]" and for the regular (n — 1)-

simplex T, = C, N H, where H = {x € R": {; +-- -+, = 1}, that is embedded in R"; see
[Ba93a]. Let ¢ = (v1,...,v,)T. Then in the first case we have

1 if’yi:();

k13
et dy — H o; where a; =4 vy
C : £——  else.
n =1 i

In the second case, let i denote the Lebesgue measure on H induced from R"™. Then

/ e<c,x>dﬂzﬁiewﬁ 1
Tn =1 j=1

Yi— i

i

for all ¢ € R™ with pairwise distinct coordinates. This result is due to PODKORYTOV [Po80)]

and a different proof was given by BARVINOK [Ba93a]. The following proposition stems
from [Ba93a].

3.3.1 Let C be an n-dimensional line-free polyhedral cone in R™. Further, let z1, ...,z be
a minimal set of vectors that generate all extreme rays of C, and let H; = {x : (z;,2) = 0}.
Then the integral

&c(c):/ elor) gy
C

exists for all vectors ¢ that are contained in the interior of C'’s polar C°, and the function
o¢ is rational in ¢. Further, 6¢ can be naturally extended to a rational function o on C",
with singularities precisely in Hy U ---U H,,.

The following theorem is the central result in this context. It is due to BRION [Br8§]
for rational polytopes, and was later extended to the form stated below by KHOVANSKIT &
PunLikoVv (1989, unpublished) and BARVINOK [Ba91], [Ba93a).

3.3.2 Let P be an n-polytope, and for each vertex v of P let C, denote the cone v+ pos(P —
v). Further, let o¢, be the functions defined in 3.3.1 (with C replaced by C,). Then

<C’x>d _
e r = oc,(c),
/P S ole)

UE]'—()(P)

whenever ¢ € C" is nonsingular for all functions o¢, .

Note that in some sense Theorem 3.3.2 can be regarded as a generalization of the Gram-
relation of LAWRENCE’s [La91] approach.

The vector ¢ = 0 that corresponds to volume computation is singular for all functionals
oc,; so we have to resort to computing the exponential integrals for nonzero vectors ¢ with
0 < ||e]]2 < € for some sufficiently small positive e. Using such an approximation, BARVINOK
[Ba93a] proves a theorem which, when combined with the fact that the volume of a given
V-polytope is polynomial in the size of the input, yields the following result.
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3.3.3 There is an algorithm which, for a given V-polytope P, computes the volume of P in
time O(n(L)B(P)), where 7 is a polynomial and

BP)y= ) (fl(”)> with fi(v) = card({e € Fi(P) : v € e}).

n
UE]'—()(P)

As a corollary to this theorem we see that for “near-simple” V-polytopes P the volume of
P can be computed in polynomial time. To be more precise, let T be a nonnegative integer

and define the class Py(7) by

Py(r) = U {P € P": P is a V-polytope, and fl(v) < n + 7 for each vertex v of P.}
neN

Then we obtain the following result, which is the “dual” counterpart of Theorem 3.1.2:

3.3.4 Let 7 be a nonnegative integer constant. Then there is a polynomial-time algorithm
which, for a given P € Py(7), computes the volume of P.

Let us point out that 3.3.4 can also be derived from 3.2.2. Note that the validity of 3.3.4
is based on the fact that the number of facets of a simple polytope is bounded above by its
number of vertices. Since, on the other hand, the number of vertices may be exponential in
the number of facets, a similar result is not likely to be true for near-simple H-polytopes. In
fact, as we will see in Subsection 5.1, the problem of computing the volume of the intersection
of a cube with a rational halfspace is already #P-hard.

3.4 Numerical integration.

It may be fair to say that the modern study of volume computations began with KEPLER
[Kel615] who derived the first cubature formule for measuring the capacities of wine barrels
(see [St69, pp.192-197]), and that it was the task of volume computation that motivated
the general field of integration. Many efforts have been made in numerical analysis to
devise efficient algorithms for computing or approximating integrals, and it seems very
natural to browse through the fund of numerical analysis to see what kind of approaches to
numerical integration may, when suitably specialized, lead to efficient methods for volume
computation.

Of course, we do not attempt to give a full account of the methods of numerical integra-
tion; for general treatments of this subject see any standard monograph, e.g. STROUD [St71]
or Davis & RABINOVITZ [DaR84|. Here we want to concentrate on two main approaches
to numerical integration, the (degree d) integration formulas, and the (quasi-) Monte Carlo
methods.

Many of the approximate methods for integration of a functional f over a compact region

B of R™ have the form i
[ e~ 3wt
B i=1

where the points y1,...,y, € R" are the nodes and the numbers «aq,...,a, € R are the
coefficients of the formula. Of course, the nodes and coefficients must not depend on f,
and it is numerically desirable (to avoid annihilation) to have nonnegative coefficients. The
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integration formula is of degree d if it is exact for all multivariate polynomials f of degree
at most d but inexact for some polynomial of degree d 4 1.

The theory of integration formulas for functions of one variable is well developed; subjects
like the Newton-Cotes formulas or the Gaussian quadrature formulas are standard fare in
every undergraduate course on this subject. However, already in dimension 2 the situation
becomes significantly more complicated. One reason is that up to affine equivalence there
is only one compact connected region in R!, while there are uncountably many such affinity
classes in higher dimensions. Further, integration formulas for functions in one variable can
be easily obtained by integration of interpolation polynomials, while for arbitrary point sets
in higher dimensions, suitable interpolation is not always possible. Moreover, in contrast to
the multivariate case, the theory of univariate orthogonal polynomials (which is of great use
for constructing integration formulas in one variable) is simple and fairly well understood.

Suppose now that, given a region B in R", we want to construct an integration formula of
degree d. For x = (&1,...,&,) and ¢ = (K1,...,kn) € (NU{0})" let 27 denote the monomial

4 _ ¢R1 gR2 | (Kn
Z 1 2 En"-

Further, let

Spa=1{q=(k1,....50) € (NU{O})" ngd}

("2")

different multivariate monomials of degree at most d in R™. Thus in order to obtain an
integration formula of degree d we have to solve the system

r
/ 2ldxr = Zaiyiq, q € Sn.d,
B i=1

of (";d> nonlinear equations in r(d + 1) variables.

It is quite easy to see (e.g. [DaR84, p.366]) that the system cannot be solved with fewer

than
(n + Ld/2j>
/2]
nodes. The following theorem of TCHAKALOFF [Tc57] shows on the positive side that the
system is always solvable with
_(n+ d
ry — d

nodes even under the additional constraints that all coefficients be positive.

Note that there are

3.4.1 Let B C R" be compact with positive volume. Then there exist nodes y1,...,y,, € B
and positive coefficients ay, ..., ap, such that

| farde =3 aufn)
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whenever f is a multivariate polynomial in x of degree at most d.

It may be worthwhile in our context to point out that the most elegant proof of this
theorem makes fundamental use of the theory of convex cones.
Note that the equation in the above nonlinear system that corresponds to the monomial

V(B):/de:/ondx:Zai.
=1

Hence 3.4.1 is just tautological when applied to volume computation for a body K in its
formulation B = K, f = 1.

There are other ways of formulating (WEAK) VOLUME COMPUTATION as a problem in
integration. For instance, it is equally natural to write

2% of degree 0 is just

V(K) = /C v (2)dz,

where Y denotes the characteristic function of the body K and C is a body with K C
C' whose volume can be computed easily. Then the formula would not be tautological.
However, since the quality of the approximation

/ XK(Q;)dJ} ~ ZO@XK(%)
C i=1

would depend on the error in approximating the (noncontinuous) function yx by polyno-
mials of (preferably) small degree, this formula would not be of great practical use.

If mere continuity were the issue, we could use yet another formulation. Suppose that
0 € int K, and let vx denote the gauge functional of K; i.e. for x € R™,

yr(x) =min{A > 0:2 € \K}.

Then
1

V(K) = —'/ e~V () g
n! Jpn

and hence we could get good approximations of V(K ) from the numerical value of the

integral fc e~ (B dy where C is, say, a sufficiently large cube centered at the origin.

By the Stone-Weierstrass theorem, any continuous function on C' can be approximated

uniformly on C' by multivariate polynomials. However, in order to obtain sufficiently close

approximation, the degrees of the polynomials must be very high.

There are many other ways in which one could try to utilize the rich fund of integration
formulas (and their accompanying, sometimes very deep, theory of error bounds) for the
apparently simpler task of volume computation. However, as we will see in Sections 5 and
6, there are some serious, apparently unavoidable obstacles to obtaining efficient determin-
istic algorithms for (WEAK) VOLUME COMPUTATION. With this in mind, it is natural to
investigate techniques that use (or simulate) some kind of sampling. The general idea of
the classical Monte Carlo method for numerical integration is to devise a stochastic process
whose expected value is the integral under consideration, and then to estimate this expected
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value by sampling. More precisely, for approximating the integral fB f(a)dz we choose, for
a given integer r, random points y1, ..., y, independently uniformly distributed in B. Then
the integral is estimated by

[ fada ~ SV(B)Y fian)

The expression %V(B) > i1 f(yi) is a random variable with expected value [, f(x)dz and

standard deviation
(v [ P = ([ s’

Since the standard deviation does not decrease very rapidly in r, and since for most regions B
it does not seem possible to actually perform random sampling, most practical applications
resort to sequences of points that are specifically tailored for integration. They are in fact
quast-Monte Carlo methods.

(Note that the latter two of the three mentioned methods of formulating volume com-
putation as a problem of integration do at least avoid the obvious drawback of the first
formulation — that we would have to know in advance the volume of the body under con-
sideration.)

A natural approach to deterministic sampling uses the points of B that belong to the
point lattice 6Z™ for some parameter ¢ €]0,1]. The corresponding formula is then

V(B
[ s~ GBS

yEBNSTN

where Gs(B) = card(B N 6Z") is the lattice-point enumerator with respect to 6Z". Under
assumptions on f that involve its variation it is possible to derive error estimates for such
formulas; see [DaR84, p.352]. In the next subsection we will consider this lattice-point
approach more closely in the context of (WEAK) VOLUME COMPUTATION.

Improved quasi-Monte Carlo methods can be obtained by “optimizing” the set of sampling
points. The error estimates then rely explicitly on measures of equidistribution of the point
set; see [St71, Sections 6.2 and 6.3], [DaR84, Section 5.5] and [SpM94].

Let us point out in passing that the lattice-point sampling corresponds to a dissection of
space into cubes with centers at the lattice points. Rather than choosing these centers as

sampling points one can choose one or more random points in each cube; this leads to the
method of stratified sampling, see [St71, p.209].

As we will see in Section 7, the general idea of random sampling (when appropriately
elaborated, utilizing special properties of convex bodies) does indeed lead to a randomized
polynomial-time algorithm for volume computation (and hence also for some special integra-
tion problems; see Subsection 9.3). In fact, after suitable transformations, DYER, FRIEZE
& KANNAN [DyFK89], [DyFK91] construct an ascending sequence of bodies

B"® = KycKyCc---CKy=K

such that the corresponding volume ratios are small, and they then use random walks on
the lattice points inside K; to generate random points from the uniform distribution over

K; that lead to an estimate for V(I;_1)/V(I;).



BASIC PROBLEMS IN COMPUTATIONAL CONVEXITY II 27

3.5 Lattice point enumeration.

As was mentioned in the previous subsection, it is quite natural (though in general not
optimal) to use the points of suitable lattices for sampling in a quasi-Monte Carlo approach
to numerical integration. We want to consider the sampling with lattice points more closely
now in the context of (WEAK) VOLUME COMPUTATION. Let R € N, and suppose that the
body K is contained in RB". Set for ¢ €]0,1]

R 1 1
k& = ’Vg — 5-‘ and B(S = (k& —|— 5) [—6, (S]n

Note that
K C B(s, G&(B(s) = (2]55 + 1)” and V(B(s) = (2]55 + 1)”(5”

Then, when applied to B = Bs and f = Yk, the corresponding quasi-Monte Carlo integral
formula of Subsection 3.4 becomes

V(K) = /B Yre(z)dz ~ ;s(é;?) Gs(K) = 6"Gs(K),

and this relates (WEAK) VOLUME COMPUTATION to the problem of counting lattice points.
(See [GrW93] for a survey of lattice-point problems.) Now, we have the trivial upper bound

n—1 )

§"G5(K) < V(K +68[-1,1]") < ) (”) V(K,...,K,[-1,1]",...,[-1,1]")8',
1=0 t

and using the monotonicity of mixed volumes we obtain

n—1 7

§"Gs(K) < V(K) + 5273 (’Z) V(R[-1,1]",...,R[-1.1)".[-1,1]",....[-1,1]")

<V(K)46(2(R+1))".
On the other hand, the inequality of BokOWsKI, HADWIGER & WILLS [BoHWT2] yields
V(K)—én(2R)" ' < V(K) — §Vao1(K) < §"Gs(K),

whence

V(K) — 6"Gs(K)| < 6(3R)™.

Thus if A is a positive rational, and we set 6 = A/(3R)", the volume of K is approximated
by 6"Gs(K) up to the additive error A.

By results of DYER [Dy91] for n < 4 (see also ZAMANSKIT & CHERKASSKIT [ZaC83],
[ZaC85]) and of BARVINOK [Ba93b] in general (see also [DyK93]), the number of lattice
points of an H- or a V-polytope can be computed in polynomial time when the dimension
is fized. Hence the above approach yields again Theorem 3.1.1 as a corollary.



28 P. GRITZMANN AND V. KLEE

Now, suppose there is an algorithm A which, accepting as input a pair of rationals
e,6 €]0,1] and a centered well-bounded body in R™ that is given by a weak membership
oracle, produces a number ¢ such that

Gs(K) — g| < Gs(K(€)) — Gs(K(—e)).

Suppose further that for fized n the running time of A is polynomial in size( K), size(e) and
size(6). Then we can use the algorithm A to solve WEAK VOLUME COMPUTATION in fixed
dimensions. In fact, let b, r, R denote the parameters of a centered well-bounded body K in
R”, and suppose (without loss of generality) that » = 1. Note first that

K C K(—¢)+ eRB",

and hence

n—1 7
n

V(K(—€)) > V(K) — GZ (

> V(K) — e(4R)".

77) V(R[-1,1",... R[-1,1]",[-1.1]",....[- L, 1R’

2

With § = 6(3(R 4 1))", this implies that

0"Gs(K) — g < 6" Gs(K(e)) — 6" Gs(K(—¢))
< V(K(e) + [6"Gs(K(e)) = V(K (e))| = V(K(—e€))+
+[6"Gs(K(—€)) = V(E(—¢))
< V(K(e)) = V(K(—€)) + 6(3(R +€))" + 6(3(R —€))"
< 26 4 2¢(4R)"

K
K (-

and hence

[V(K) —6"g| < |V(K) = 8"Gs(K)| + 6" |Gs(K) — g
< 38 + 2¢(4R)".

If X is now the error parameter of the given instance of WEAK VOLUME COMPUTATION, we
choose

~

A 6 A
and

S TRy = BRI S GGERT

and run algorithm A. This proves the following result.

3.5.1 When the dimension is fixed, there is an algorithm for WEAK VOLUME COMPUTA-
TION that uses a polynomial number of arithmetic operations on rationals of polynomially
bounded sizes and a polynomial number of calls to the hypothetical algorithm A.

Note that we can of course check in oracle-polynomial time for each point y of Bs N 0Z"
whether y is weakly contained in K. More precisely, given y € Bs N 0Z", and a rational
number € > 0, the oracle for K asserts that y € K(e) or that y ¢ K(—e¢). Further, the
number ¢ of input points y € Bs N 6Z" for which the oracle asserts y € K(¢e) would satisfy
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the above requirements. Unfortunately, while the number of lattice points in R[—1,1]" that
we have to check is polynomial in R and 1/, it is not bounded by a polynomial in size( )
and size(\) and hence is not polynomial in the size of the input. Thus this simple checking
procedure does not yield a suitable algorithm A.

At present, we don’t know whether such a polynomial algorithm A for WEAK LATTICE
POINT ENUMERATION exists, nor do we know the precise status of WEAK VOLUME COMPU-
TATION in fixed dimensions. The latter question is of course closely related to the question
of devising suitable algorithms for approximating bodies by polytopes.

3.6 Special convex bodies.

Since simplices are the most basic and elementary polytopes, formulas for volumes of
simplices are of special interest. We begin this subsection with some formulas which supple-
ment the basic determinantal formula given at the beginning of Subsection 3.1 and which
are for some purposes more useful than that one. The following result expresses the volume
of a j-dimensional simplex (short j-simplez) in R™ in terms of its edge-lengths.

3.6.1 Suppose that S is a j-simplex in R™ with vertices vy,...,v;j41. Let B = () denote
the (j +1) x (j + 1) matrix given by Bir = ||v; — vg||3. Then

21 VE(S) = |det(B)),

where B is the ( +2) x (j + 2) matrix obtained from B by bordering B with a top row
(0,1,...,1) and a left column (0,1,...,1)T.

9

The determinant appearing in 3.6.1 is often called the Cayley-Menger determinant. See
[D665, p.285] and [B1G43] for references to low-dimensional cases of 3.6.1 associated with
the names of Euler, Lagrange, Cayley, and Sylvester, and see SOMMERVILLE [S029, p.125]
and BLUMENTHAL [BI153, p.98] for proofs of 3.6.1.

The next formula, a close relative of 3.6.1, expresses the volume of a suitably located
simplex in terms of the Gram matriz of inner products of its vertices; see [GrKL94] and
[B153] for proofs of 3.6.2 and a variant of it.

3.6.2 Suppose that S is a j-simplex in R™ with 0 € aff S, and A is the (j + 1) x n matrix
whose rows list the coordinates of the vertices of S. Then

(GD?VF(S) = det(M + AAT),

where M is the (j + 1) x (j + 1) matrix whose entries are all 1. If the origin is a vertex of
S then

(GD?VE(S) = det(Ao 4y ).
where Ag is formed from A by discarding A’s zero row.

For an n-simplex S in R™, the following formula expresses the volume of S in terms of
the coefficients that appear in the affine functionals defining the facets of S. For general n
the formula is due to KLEBANER, SUDBURY AND WATTERSON [KISW89].
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3.6.3 Suppose that an n-simplex S in R"™ is bounded by the n 4+ 1 hyperplanes whose
equations are

Oéio—l—ZOéi]‘x]‘:O (i:(),l,...,n),
=1

and let A denote the (n 4+ 1) x (n + 1) matrix with elements «;;, 0 < ¢, < n. Then the
volume of S' is given by

| det(A)|™

*1li=0 0

where A;y is the cofactor of a;y 1n A.

The paper [KISW89] also contains two formulas giving the volume of a j-simplex S in R”
when 7 < n. One formula is in terms of the coefficients that appear in the affine functionals
defining the affine hull of S and the facets of S. The other formula is in terms of the
coordinates of the vertices of the simplex. Like the volume formulas in [LiL90] and [Be92],
it may be regarded as a higher-dimensional analogue of the Pythagorean theorem of plane
geometry.

There are, of course, other classes of bodies or polytopes for which special volume formulas
or special methods of computing volumes are known. Some of these can be found in the
references listed at the start of Section 3. We do not discuss these here, but the case of
zonotopes does seems worthy of special mention.

Let (n,r;c;z1,...,2,) be an S-zonotope and set Z = .. [0,1]z;. Further, for ¢ =

1,....r let K; =10,1]z;; i.e. the K;’s are all line segments. It follows from 2.4.1 that
V(Z)= v(Zm) Y Y V(E LK),
i:1 i1:1 i2:1 anl
If the indices 71, ...,1, are not pairwise distinct, the zonotope K;, + --- + K; has volume

0, whence V(K;,,..., K; ) =0 and it follows with
vV (A’il + -4 A’in) = V(A’il R 7I(in) = n!‘det(zil e ,Zln)‘

that
V(Z)= Z ‘det(zil,...,zin)‘;
1< <ip <o <y <
see also [Mo89], [St91] and [Sh74].
Note that this formula for the volume of a zonotope leads to a polynomial-time algorithm
for fixed dimensions, and also for varying dimensions if the input is restricted to the class
of all “near-parallelotopal” S-zonotopes, where r — n is bounded by an a priori constant.

3.6.4 When the dimension n is fixed or when r — n is fixed, VOLUME COMPUTATION can
be solved in polynomial time for S-zonotopes.

In general the above volume formula involves exponentially many summands, and this
feature of zonotope volume computation cannot be avoided (unless P = NP); see 5.1.7.

For combining two convex sets J and K to form a third, the three most important ways
are those of intersection, vector addition, and joining — forming the sets J N K, J + K, and
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conv(.J U K') respectively. When the sets J and K are sufficiently “independent,” there are
useful formulas relating V(J + K) and V(conv(J U K)) to V(J) and V(K).
For any two subsets X and Y of E", we define the distance

dist(X,Y) = inf{|jz —y|[2: 2 € X,y € Y}.

Now suppose that X and Y are both flats (affine subspaces), that there is a unique pair
of points 9 € X and yo € Y for which [[zg — yoll2 = dist(X,Y’), and that the linear
subspaces X — 2y and Y — yo are mutually orthogonal. Then the flats X and Y are said to
be orthogonal when xy = yo (so that dist(X,Y") = 0) and skew-orthogonal when g # yo (so
that dist(X,Y") > 0).

3.6.5 Suppose that J is a j-dimensional body in R™ and K is a k-dimensional body in R".
Let
P=J+K and Q = conv(J U K).

If the flats aff J and aff I are orthogonal, then P is a (j + k)-dimensional body with
Vier(P) = Vi(J) - Vi(K).

If the flats aff J and aff ' are skew-orthogonal, then Q) is a (j + k + 1)-dimensional body
with

Jlk!
(j+k+1)

The first formula in 3.6.5 is just the standard one for the volume of a cartesian product.
Suppose, in particular, that &, ny,...,ny are fixed positive integers. Then, for given (H- or
V-) polytopes Py CR™,..., P, CR™ and P = Py X --- x P, we have

Vitrt1(Q) = dist (aff F,aff G) - V;(J) - Vi(K).

V(P)=V(Py)-...-V(Py),

and hence by 3.1.1, V(P) can be computed in polynomial time. The computation of
V(P1),...,V(Py) is generally more efficient than direct computation of V(P).

The second formula in 3.6.5 appears in [GrKL94] for the case in which J and K are both
simplices, whence the general formula follows easily for polytopes by dissection and then for
general bodies by approximation.

4. DETERMINISTIC METHODS FOR COMPUTING MIXED VOLUMES

4.1 Using a volume oracle.

In this first subsection we will outline the most natural approach for computing mixed
volumes, a method directly suggested by Theorem 2.4.1, which is based on a procedure for
volume computation.

Let us consider an arbitrary procedure B (efficient or not) for WEAK VOLUME COM-
PUTATION; so, suppose that B is an algorithm which, for a body K given by a weak opti-
mization oracle and for a given positive rational A, produces a rational number p such that
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|[V(K) — ] < A. In this subsection we show how such an algorithm can be used for the
(weak) computation of mixed volumes.

Note first that when the number r of bodies Ky,..., K, and the binary sizes of the
positive rationals £q,..., &, are bounded by a polynomial in n, then the weak optimization
oracles for Ki,..., K, can be used to devise a weak optimization oracle for >_._, & K;. We
will now try to gain information about mixed volumes by calling B for various such linear
combinations of Ky,..., I,.

Let us begin with some remarks about the maximum number of different mixed volumes.

By 2.4.1,
v(ngy) NS Y b £ V(s K K.
=1 i1:1 i2:1 anl
Thus we have r” coefficients V(K;,, K,,,...,K; ). However, these coeflicients are order-
n+r—1
r—1

of them can actually be distinct, for this is the number of different multivariate monomials
of degree n in R". It follows that if r 1s fized, their number is polynomial in n, and if n s
fized, their number is polynomial in r. However, it also follows that in general, the task of

independent and hence only

computing ¢/l mixed volumes cannot be accomplished in polynomial time since the number
of different mixed volumes may grow exponentially.
Now, for @ = (&,...,¢,) and ¢ = (k1,...,k&,) € (NU{0})", let 27 denote again the

monomial

g
Further, let

Qn =1{g=(r1,...,8,) €(NU{0O})" Zlil—TL}

and for ¢ € @), let

K1 Ke

n - - - -
cq:< )V(I&l,...,lxl,...,Ixr,...,fxr).
Kly... KRp
Here, as usual,

1 if/ii:();

n Tl
=n!- H — where o; =
Kiyeuny Ry L k;! else

is a multinomaial coefficient. Setting

=V (zr: ‘glI{z> )
=1
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the mixed volume expression 2.4.1 of 7 reads

m(x) = Z cqrl.

qEQn

Assume that the elements of ), are ordered (for instance lexicographically),

Qn={q1,---,q}, with kz(n;l:izl>

Then, a choice of k nonnegative rational row vectors yi,...,y; of R™ and evaluation of 7(z)
at these interpolation points leads to the matrix equation

m(y1) T T S T+ Cq

m(yr) yeoue oy Cq

Note that for r = 2 and y1 = (L,m1),.--,Ynt1 = (L, nnt1), Y is just a Vandermonde-
matriz and hence is nonsingular whenever ny,...,7n,41 are pairwise distinct. In this case
T = 7|{1}xr can be expressed in terms of the standard Lagrange interpolation polynomials,
and there is a considerable literature on how to choose the interpolation nodes and do the
computation in an efficient and numerically stable way; see e.g. [BeZ65], [Sa’74], [Ri75],
[Ri90], or [MiM85]; see also 7.2 for a more explicit description of the case r = 2 in terms of
Lagrange polynomials.

Now suppose we have chosen y; = (n;1,...,7n;,) for j = 1,...,k such that Y is nonsin-
gular. Further, let pq,..., pur be the rationals produced by B when applied to the bodies
> i nj,isi, respectively, whence

|T(y;) — pji] < A forj=1,...,k.

Now, let
A=Y p=(p1,..., )", and 2= Ap.
Then
12 = 2llee = [[A(P = Plloc < NAllll2 = plloc < Al[A]l,
where || A is the matrix norm induced by || /e, i-e. the maximum of the ¢; norms of the
rows of A.

It can now be shown (see [St71, p.55], [ChYT77], [O186]; cf. also 3.4.1) that the inter-
polation points y,...,yr can be appropriately specified so as to yield the first case of the
following result; the assertion for fixed n but varying r then follows in a standard way.

4.1.1 Whenever r is fixed or n is fixed, there is an algorithm for (weakly) computing all
mixed volumes of r bodies in R™ given by weak optimization oracles that uses a polyno-
mial number of arithmetic operations on rationals of polynomially bounded sizes and a
polynomial number of calls to the algorithm B.

Note that in order to compute one specific mixed volume by this method, we must
essentially compute all of them. Further, 4.1.1 does not cover the case of varying n and r. In
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particular, it is unclear whether there is an efficient way of computing, say, V(Ky,..., K,).
Theorem 5.2.2 below gives some indication that this might not be the case.

Finally note that we have used here a quite strong algorithm for volume approximation.
We will use a weaker approximation routine in Subsection 7.2, and we will comment on
the difference there. Different measures for approximation errors will be introduced in
Subsection 6.1.

4.2 Polytopes.

Theorems 3.1.1 and 4.1.1 together show that there is a polynomial-time algorithm for
computing all mixed volumes of polytopes in fixed dimensions.

4.2.1 When the dimension n is fixed, there is a polynomial-time algorithm which, given
r € N and (V- or 'H-) polytopes Py,..., P., computes all mixed volumes V(P; P

in )-

This algorithm makes use of the fact that the given bodies are actually polytopes only
in the subroutine for VOLUME COMPUTATION. It is, however, possible to express the mixed
volumes of polytopes as the sum of volumes of polytopes formed as sums of faces, and hence
devise an algorithm that makes much stronger use of the facial structure of the polytopes,
is more combinatorial and therefore possibly numerically more stable.

19°°°

For r > 2let Py,..., P, be polytopes in R". When applied to the mapping
p: Py x-xP.— P +---4+P, defined by ¢(x1,...,2,) =21 + - + @,

the lifting theorem of WALKUP & WETS [WaW69] yields a dissection of Py + -+ + P, into
polytopes Fy + --- 4+ F,, where (Fy,..., F,) varies over suitable r-tuples of faces F; of P;;
see [McS83], [PeS92], [HuS93]. Using the expansion of V(P; + - -- 4+ P,) into mixed volumes
and comparing coefficients, this dissection can be used to obtain a representation for mixed
volumes in terms of the volumes V(Fy + --- 4+ F;). An explicit formula of this kind was
given by BETKE [Be’92] for r = 2 and SCHNEIDER [Sc94] in the general case.

In order to state Schneider’s result (in Theorem 4.2.2) precisely, we need to introduce
some notation.

For a polytope P and a face F of P, let N(P, F') denote the cone of outer normals of P
at F. Further, let us call the vectors vy,...,v, € R™ admussible for Py, ..., P, if

(i) there is an ¢ € {1,...,r} such that v; # 0;
(i) Djmq i =0;
(ii1) i, (relint N(P,, F;) — vi> = ( whenever, for i« = 1,....r, F; is a face of P; and
Yo, dim F; > n.

Note that the third condition is invariant under a common translation of the vectors
v1,...,0r, whence (iii) is the only relevant condition for admissibility. Now suppose that
v1,...,0, do not satisfy (iii). Then there exist faces Fy, ..., F, of Py,..., P, respectively,
with >;_, dim F; > n, and a vector xy € R" such that for each i = 1,...,r the (appro-
priate hyperplane perpendicular to the) vector xg + v; supports P; in the face F;. Hence
z = ((zo +v1)T, ..., (20 +v,)T)T € R"" supports the polytope P = P; x --- x P, of R""
in its face F' = Fy x --- X F,., whence z € relint N(P, F). This implies in particular that
v+ S Clin(N(P, F)), where v = (v{,...,v1)T and S is the n-dimensional subspace of R""

yrr
of vectors of the form (z7,... 2T)T with + € R". Now consider the (linear) hyperplane
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arrangement H in R™" that is formed by all hyperplanes that are orthogonal to an edge of
P. The condition that Y ._, dim F; > n implies that dim N(P,F) < (r — 1)n — 1, whence
the n-dimensional affine subspace v + .5 of R™" meets a face of H of dimension (r — 1)n — 1;
so, admissibility is just a general position condition that is “generically” satisfied.

In practice, to find vectors vy, ..., v, that are admissible for Py,..., P, one would essen-
tially choose vy,...,v, at random. In a deterministic approach one might construct the
face-lattice of H (using the algorithm of EDELSBRUNNER, O’ROURKE & SEIDEL [EdOSS86],
[EASS91]), then add S to each cell of dimension (r — 1)n — 1 (and if necessary add further
lines to obtain hyperplanes), and then find an interior point of a full-dimensional cell of this
new arrangement.

Let, as in the previous subsection,

Qn:{q:(/ﬁ,..., ») € (NU{0})" ZKJZ—TL}

and, for ¢ € @y, let F, denote the set of all r-tuples (Fi,..., F}) of faces of Py,..., Py,
respectively, for which

dimFi:/ii,fOTizl,...,r;
dm(SST_, B) =
Nt (N(Pr, Fi) —vi) #0.

Then SCHNEIDER [Sc94] proved the following representation theorem.

4.2.2 Let Py,..., P, be polytopes of R", let vy,...,v, € R™ be admissible for Py, ..., Py,
and let ¢ = (Kk1,...,kr) € Q. Then

K1 Ke

n prm—— N—— [P
</§/ /{/>V(P17"'7P17"‘7PT7"'7PT)
TyeoeyBp

Y V(Fi+-+F)
’7:‘1

Let us point out that, when Py, ..., P, are H-polytopes, for a given r-tuple (Fy,..., F,) of
(V- or H-presented) faces of Py,..., P, respectively, it can be checked in polynomial time
(using Gaussian elimination and linear programming) whether (Fy,...,F,) € F,. Note,
further, that 4.2.2 can be used to prove 4.2.1, that in fixed dimension, mixed volumes of
polytopes can be computed in polynomial time.

We close this section with a tractability result of [DyGH94] that holds even when the
dimension is part of the input.

4.2.3 There is a polynomial time algorithm for checking whether, for given n,r € N, (H- or
V-) polytpes Py,...,P. of R", and ¢ = (K1,...,kr) € Qn,

K1 Ke

v(P,...,P.,....,P.,...,P) = 0.

This result does not seem to be striking, but it is not trivial. In fact, suppose for notational
simplicity that r = n, and that the origin belongs to the relative interior of all polytopes.
Then select for each 7 a basis A; of lin P;. It is easy to see that V(Py,...,P,) # 0 if and
only if there is a choice of (ay,...,a,) € Ay X --- x A, such that det(ay,...,a,) # 0. Let
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A =i, 4;, let I, be the family of all linearly independent subsets of A, and let Zp denote
the family of all subsets of A which meet each of the A; in at most one element. Then the
pairs My = (A,Z1) and Mp = (A,Zp) are matroids, called respectively a linear matroid
and a partition matroid. Now V(Py,..., P,) # 0 if and only if M and M p have a common
basis, and this can be detected in polynomial time by the matroid intersection theorem of

EDpMONDs [Ed70]; see also [GrLS88, Section 7.5].

4.3 Polytopes and bodies.

This subsection discusses a specific formula due to MINKOWSKI [Mill] for the mixed
volume of a convex body and n — 1 copies of a polytope; see also [BoF34] and [Sc93].

With A : K" x S"™! — R denoting as before the support function, Minkowski proved the
following result.

4.3.1 Let K be a body and P a polytope in R", let F,..., F,, denote P’s facets, and let

Uy, ..., Uy, be the corresponding outer unit normals. Then
n—1 m
/—/H 1
V(K,P,...,P)=— h( K, ui)) Vi1 (F;).
( [ ) ) n ; ( L, u ) 1( )

Let us mention, as a side remark, that 4.3.1 can be applied to a polytope P of the form
P = Py + .-+ P,_y; it then yields a similar representation for V(K, Py,...,P,_1) (see
[BoF34, p.42]).

Suppose now that P is an H-polytope and that the given presentation is irredundant.
This means, in particular, that (not necessarily unit) normal vectors of all facets are given.
Further suppose that the volumes of the facets of P are known, and that K is given by a
weak optimization oracle. Then formula 4.3.1 allows us to approximate V(K, P, ..., P) with
the aid of m calls to the optimization oracle.

For general polytopes, and when the dimension is part of the input, this is not particularly
encouraging since the problem is only polynomially reduced to VOLUME COMPUTATION for
the facets of P. If, however, P belongs to a class of polytopes for which the facet volumes
can be obtained efficiently, or if we just consider all computations that involve only P as
“preprocessing” (since we may want to compute V(K P, ..., P) for many different bodies
K but fixed P), then 4.3.1 may even be algorithmically useful.

It may be worthwhile to point out that some of the problems disappear when different
data structures are used. This is particularly apparent in connection with the algorithmic
significance of 4.3.1. Indeed, recall that by a theorem of MINKOWSKI [Mil897], [Mi03],
a polytope is uniquely determined (up to translation) by its facet volumes and its facet
normals. Hence, the “tractability statement” related to 4.3.1 says essentially that if we
choose, as our data structure for polytopes, a Minkowsk: presentation — i.e., a list of facet
volumes and the associated facet normals — then V(I P,...,P) can be approximated in
polynomial time for arbitrary bodies given by a weak optimization oracle. However, the
problem of passing from a given V- or H-presentation to a Minkowski-presentation is algo-
rithmically difficult (see 5.2) unless the dimenson is fixed. The same is true for the reverse
transformation; see [GrH94].
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4.4 Special convex bodies.

There are other formulas and integral representations known for mixed volumes in general
or for certain classes of bodies (see e.g. [BoF34], [Ha57], [BuZ88|, [Sc93]) whose algorithmic
significance seems, however, restricted to very particular cases. In the present subsection
we will just mention two explicit formulas for the mixed volumes of a body and a ball or a
parallelotope. We begin with the intrinsic volumes of polytopes.

As was noted already in Subsection 2.4, the expansion of V(P +¢B") into mixed volumes
leads to quermassintegrals or intrinsic volumes of a polytope P. For a face F of P let v(F, P)
denote the outer angle of F' at P (i.e. the fraction of space that is taken up by the cone of
outer normals of P at some point that is relatively interior to F'). Then MCMULLEN [Mc75]
gave the following representation of the intrinsic volumes.

4.4.1 For:=0,...,n,
VP = Y (R PVi(F).
FeF;(P)

Evaluation of this formula involves computing the volumes of all :-dimensional faces of
P, and also of the (n —¢ —1)-dimensional (spherical) volumes of spherical polytopes that are
obtained by intersecting the cones N(P, F) of outer normals with S"~!. While the former
is algorithmically easy only for small values of ¢ (see 3.1.1), the latter is easy only for small
values of n — 1.

We mention in passing that HADWIGER [Ha75] has given the integral formula

Z V;(IX’) — / e—frdis‘c2(l(,x)dx7
i=0 e

which is a useful tool for certain lattice-point problems. The same is true (see [GrW93]) for
a formula that we are going to develop now; see [BuZ88, p.141] or [Sc93, p.294].

Let ay,...,a, € R" such that Z = " [0,1]a; is a proper parallelotope, let 0 < k < n,
and let Ky,...,K,_; € K". Further, [l denotes again the orthogonal projection of a
body K onto a linear subspace S. Then the multilinearity of the mixed volume implies that

k
k13 k13 k13
V(Z,.... 2. Ky, Kpg) = )00 Y V([0,ai, ;. [0, Hai, K1, K.

i1:1 i2:1 Zkzl
Now let S;, .. i, =lin{a;,...,q;, }, then

ityenip AL AIMSG G, =k
(Z)V([O,l]am-..,[0,1]aik,f&’1,...,Kn_k):{Oz iy dim Sy,

0 otherwise,

Qi gty — VS»J- . (HSlJ- . I&’lv"wHS# e I(n—k) ’ Vsil ..... ik([ovl]ahv'"7[071]aik);

the subscripts SiJl_,~~~,ik
with respect to the spaces SiJl_,~~~,ik and S;, .. i, , respectively. If we specialize this formula
to the case Z = C,, = [0,1]" = > 7_[0,1]e; and Ky = -+ = K,,_; = K we obtain the
following result.

and S;, ... ;, indicate that the corresponding mixed volumes are taken
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4.4.2 Fork=0,...,n,

(Z) V(Cn, ey Cn,IX’, e ,I&’) = Z Vn—k(HSI(),

where S ranges over all (n — k)-dimensional coordinate subspaces of R™.

Another useful specialization is obtained for Ky = --- = K,,_; = B"; it leads to a simple
formula for the intrinsic volumes of a parallelotope.

4.4.3 Let Z =% _,[0,1]a; be a proper parallelotope. Then, for k =0,...,n,

2" MV(Z)= > Vil(F).

FeF(Z2)

Hence, in order to compute the intrinsic volumes of Z, we need only compute the k-volume
of its k-skeleton UFeTk(Z) F. This can be done inductively. In fact, if for j = 0,...,k and
m=1,...

,n

S(j,m) = > Vi(F),

FeF; (327 [0,1]ai)

then we have (with appropriate conventions in the “boundary cases”)
S(j,m+1)=25(,m)+S(G —1,m)||ams1 — A(AT A AT 4 i |2,

where A is the n X m matrix with column vectors aq, ..., a,. Thus we obtain the following
result as a corollary of 4.4.3.

4.4.4 The mixed volumes of an S-parallelotope Z in R" can be approximated up to an
additive rational error € > 0 in time that is polynomial in n, in the size of Z’s presentation,
and in size(e).

5. INTRACTABILITY RESULTS

5.1 Volume computations.

In striking contrast to the “positive” results 3.1.1, 3.1.2, 3.3.4, 3.6.4, there are several
strong intractability results for VOLUME COMPUTATION. Theorem 5.1.1 summarizes the
former, and the latter appear in Theorems 5.1.3-5.1.5 and 5.1.7.

5.1.1 The volume of a polytope P can be computed in polynomial time in the following
cases:

(i) if the dimension is fixed and P is a V- or H-polytope or an S-zonotope;
(ii) if the dimension is part of the input and P is a near-simple V- or a near-simplicial
‘H-polytope or a near-parallelotopal S-zonotope.
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By 5.1.1 (i) there is a polynomial-time algorithm for VOLUME COMPUTATION when the
dimension is fixed. However, the methods of volume computation that we described in Sec-
tion 3 all require exponential time when n is part of the input. Hence it is natural to wonder
whether there is a more robustly polynomial-time procedure for volume computation.

To set the stage, let us begin with a negative result that was mentioned in a different
setting in Theorem 3.2.3.

5.1.2 There does not exist a polynomial-space algorithm for exact computation of the vol-
ume of H-polytopes.

Since each polynomial-time algorithm uses only a polynomial amount of space, Theorem
5.1.2 implies that there is no polynomial-time algorithm which, given a dimension n and an
n-dimensional H-polytope P, computes V(P). Doesn’t this result already show that volume
computation is actually much harder than such NP-complete problems as the TRAVELING
SALESMAN PROBLEM? The answer is “Not really!” and we take a few sentences to explain
why (to a reader who is less familiar with the relevant concepts of complexity theory).

In the realm of P and NP, complexity theory usually deals with problems whose answer is
“yes” or “no” since this corresponds to the results of a halting Turing machine computation.
(When dealing with the class #P, the Turing machine is augmented by a device that counts
accepting computations.) This means that when dealing with related complexity results,
the proper formulation of VOLUME COMPUTATION is as follows.

VOLUME.

Instance: A positive integer n, an H-polytope (or a V-polytope, or an S-zonotope) P,
a nonnegative rational v.
Question:  Is the volume of P bounded above by v, i.e. is V(P) <v?

In order to distinguish the different classes of input polytopes we will sometimes speak
of the problems H-VOLUME, V-VOLUME and S-VOLUME, respectively.

Note that the above problems could have equally well been phrased in terms of lower
bounding V(P). We use upper-bounding only to associate a “yes” answer with instances in
which P is lower-dimensional, a special and easy case.

Suppose now that we had a polynomial-time routine for solving H-VOLUME. Then, using
binary search (with appropriately specified values of v) we could approximate V(P) with
any polynomial-size accuracy in polynomial time. Hence, Theorem 5.1.2 does not rule out
the possibility that H-VOLUME is in P and that computing any number of polynomially
many digits of V(P) for H-polytopes P is actually easy.

DyYER & FRIEZE [DyF88] showed, however, that both H-VOLUME and V-VOLUME are
#P-hard, and we are going to describe various hardness proofs that are all geometric in
nature; (see also KHACHTYAN [Kh88], [Kh&89], [Kh93]). We begin with H-VOLUME.

Let us point out that, in the following, we are going to deal with hardness results which
involve classes of H-polytopes for which the volume is of polynomial size. Hence, a poly-
nomial time method for VOLUME would, in fact, result in a polynomial-time algorithm for
VOLUME COMPUTATION.

The first proof stated here for the NP-hardness of the problem of computing the volume of
certain simple H-polytopes utilizes the sweeping-plane formula 3.2.1; it is due to KHACHIYAN
[Kh88], [Kh93].
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Asin 3.2.1, let P be a simple H-polytope with corresponding irredundant H-presentation
(n,m; A, b). Further, let ¢ € R™ such that (¢, ) is not constant on any edge of P, and let
H(r)={x e R": {(¢,z) <7} for 7 € R. Then, by 3.2.1,

(max{0,7 — (¢, v)})"
I GTAI_UIC| det(Ar, )| '

=1 "t

_ 1)
V(PAH() = n!) >
vEFo(P)

This implies that

p(r) =V(PNH(7))
is a piecewise polynomial of degree at most n, and is (n—1)-times continuously differentiable.
(This result has also been proved in the theory of splines (c¢f. DE BOOR & HOLLIG [BoH82]),
and it is also relevant to some problems in geometric tomography; see [GaG94].) Further,
if 79 < -+ < 71 are the (ordered) values of 7 for which bd H(7) contains a vertex of P,
then the nth derivative of ¢ is discontinuous at most at g, ..., 7., and at these points the
one-sided derivatives satisfy the equation

n n 6(v
Telit) Aoty (-1)""
drm drm 1T, e;fAI_Ulcdet(AIU)|7

UET()(P),<C,U>:T

where 6(v) = card{w € Fo(P) : (c,w) < (c,v)}.

Specifically, if C,, = [0,1]™ and ¢ > 0, then for each vertex v of C,, we have 6(v) = ||v|]1.
Let us assume that ¢ has the following “constant-one” property that whenever two vertices
v, w of C,, are such that (¢,v) = (¢, w), then ||v|l; = ||w||1. Then,

there is a vector v € {0,1}" with (c,v) =&

if and only if

Polnt) | dp(n-)
drn - dr # 0.

Now suppose that we could compute the volume of the intersection ¢(7) = C,, N H(7) in
polynomial time. Since, unless bd H(7) meets a vertex of Cy,, ¢(7) is a polynomial in 7 of
degree at most n, we can check the differentiability condition in polynomial time. Hence
the problem,

Given ¢ € N™ with the constant-one property and « € N; is there a 0-1-vector v with
(c,v) = K7,
is transformed in polynomial time into the problem of computing the volume of an H-
polytope. But except for the additional property of ¢ this is equivalent to SUBSET-SUM:

Given positive integers n, v1,...,7v, and a positive integer k, is there a subset I of
{1,...,n} such that ), ;v = &7
SUBSET-SUM is known to be NP-complete, [Sa74] (see also [GaJ79]). On the other hand,
any instance of SUBSET-SUM can easily be transformed to the n instances of the required
restricted version that are obtained by replacing ¢ by the vector e+ (||c|[1+1,...,]c[[1 +1)7,
and k successively for § = 1,....n by k + (]|¢|][s + 1)f. This shows that computing the
volume of an H-polytope is NP-hard even for polytopes that are intersections of C),, with
one additional (rational) halfspace.
DYER & FRIEZE [DyF88] actually proved #P-hardness of H-VOLUME; see also [IKh89],
[DyF91], [Kh93].
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5.1.3 The problem of computing the volume of the intersection of the unit cube with a
rational halfspace is #P-hard.

To prove 5.1.3, [DyF88] use a reduction of the following counting version of 0-1 KNAP-
SACK, a problem that is known to be #P-hard; see [GaJ79].

#(0-1 KNAPSACK).

Instance: A positive integer n, a positive integer n-vector a, a positive integer [3.
Task: Determine the cardinality of {v € {0,1}" : (a,v) < }.

The polynomial-time reduction of #(0-1 KNAPSACK) to H-VOLUME uses some ideas that
are similar in spirit to the ideas exploited in the above NP-hardness proof. In particular, an
inclusion-exclusion formula is used, and the volumes that will be computed are again values
of a certain polynomial. There are, however, important differences, and it may be useful to
sketch the explicit geometric construction underlying the reduction of 5.1.3.

Let (n;ag, fo) be an instance of #(0-1 KNAPSACK). We may assume (by considering the
instance (n;2ag, 28y + 1), if necessary) that {v € {0,1}" : (ag,v) = B} = 0.

Now, let us define for each v € {0,1}" the polytope

Sy ={z €R": 2 >wv, (ag,z) < fo}.

If S, is full-dimensional, it is the simplex with vertices v and (g — (ao,v))e; /a;, where «;
is the ith coordinate of ag. Hence, by the standard determinant formula for the volume of
a simplex,

V(S,) = %H maX{O,ﬁ(;— <aoav>}‘
Ti=1 !

Now, let P = {z € C, : {ap,z) < o}, and let 1 = (1,...,1)T € R™ Then the inclusion-
exclusion principle yields

vie = Y <—1><”’l>v<5v>=i(ﬂi) S (=1 (max{0, fo — (ao, 0)})"

nt \ 4L o,
ve{0,1}n =1 ve{0,1}n

In the neighborhood |3y — 1, fy + 1] of g, the function 7., g, defined by

Tange(B) = Y (=)W (max{0,5 — {ag,v)})"

vef{0,1}m

is a polynomial in 3, and a procedure for volume computation would allow us to compute
all coefficients of m,, 3,. Note that the coefficient of 3™ is just

ST (e,

vef{0,1}"
<a0av>§60

Let us now compute the leading coefficients for various choices of ag and fy; set for
k=1,....n
p="(ap,1)+1, ar=ao+pl, and B = fo+ pk.
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We may assume in the following that (ag, 1) > [y, since otherwise the original instance of
#(0-1 KNAPSACK) is trivial.
Now let v € {0,1}". Then (ag,v) < [ if and only if v satisfies one of the following two
conditions:
(i) (v, 1) <Fk;
(ii) (v,1) =k and (ag,v) < fo.

Hence the leading coefficient of m,, 3, is

k—1
(—=1)* card{v € {0,1}" : (ag,v) < Bo, (v,1) =k} + Z(—l)i <7Z>

Since
"

anrd{v € {0,1}" : (ag,v) < By, (v,1) =k}

k=0
is actually the solution for the given instance (n;ag, 5o ) of #(0-1-KNAPSACK), we see that a
polynomial-time algorithm for volume computation would yield a polynomial-time algorithm
for #(0-1-KNAPSACK).

Note that this and the previous hardness result involve, as part of the input, integers
whose absolute values are not bounded by a polynomial in n. In fact, a result of KozLov
[Ko86] shows that the volume of the intersection of the unit cube with a constant number
of rational halfspaces can be computed in pseudopolynomial time. Thus it is natural to
wonder whether the problem retains its hardness if we restrict all input data to numbers
whose absolute values are bounded by a polynomial in n. It turns out that the problem of
computing the volume of H-polytopes is #P-hard even in this strong sense. This follows
from the two facts that the problem of computing the number of linear extensions of a
given partially ordered set O = ({1,...,n}, <) is #P-complete, BRIGHTWELL & WINKLER
[BrW91], and that this number is equal to n!V(Pp), where the set

Po={x=(&,....6)T €[0,1]": & <& <= i <3}

is the order polytope of O; STANLEY [St86a]. In the following we will indicate the geometric
essence of the latter result.

Let N ={1,...,n}, and let O = (N, <) be an arbitrary poset. A linear extension of O is
a total ordering of N that is compatible with <. A linear extension of O can be regarded as
a permutation m of N (or, equally, as a vector (w(1),7(2),...,7(n))) which has the property

hjENANi<] = 7)<t ).

Let E(O) denote the set of linear extensions of O. Now consider for a given linear extension
7 € E(O) the polytope

Tr = {l‘ S [Ovl]n : ‘ffr(l) < 5#(2) <. < ‘ffr(n)}

Observe that T is a simplex, and that all the constraints that define the order polytope Pp
are also constraints of Tr; hence T C Po. Further,

if 7y and my are different linear extensions of O then int(Ty, ) Nint(Tx,) = 0,
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and also

UTrEE((’)) T = Po.

Hence the simplices T, 7 € E(O) form a dissection of the order polytope Pp. Finally note
that all these simplices are congruent, and hence

1
But this shows that each linear extension n of O contributes 1/(n!) to the volume of P,
and therefore

card(E(O)) = n!V(Po).
Observe that the number of inequalities defining P is O(n?).
5.1.4 H-VOLUME is #P-hard in the strong sense.

Let us now turn to V-VOLUME, a problem that, in general, is slightly easier since the
volume of V-polytopes is of polynomial size; see 3.1.3. However, as DYER & FRIEZE [DyF88]
show, it is not much easier; see also [Kh89], [Kh93].

5.1.5 The problem of computing the volume of the convex hull of the regular V-cross-
polytope and an additional integer vector is #P-hard.

The following proof is due to KHACHIYAN [Kh&89]. Let @, = conv{tey,...,+e,}, the
regular cross-polytope, and for each a € Z" let P, = conv({a} U Q). Then P, can be
dissected into @), and the set S of all simplices Sp = conv(F U {a}), where F is a facet of
()., that is visible from a. Now, let Sp € S, and let z € {—1,1}" be an outer normal to F.

Then
V(Sr) = V(F) - dist(a, F) = V(F). 22 =1 _ 1

NG a((a,zﬁ —1).

Therefore

nV(Py) =nV(Qu)+n! Y V(S)=2"+ > max{0,(a,z) — 1},

Ses se{—1,1}"

whence
n!<V(Pa+e1) —2V(Py) + V(Pa-e, )) =
= Z (max{0, (a,2) — 2} — 2max{0, (a, z) — 1} + max{0, (a,z)})

ze{—1,1}"

= > L

ze{—1,1}"
{a,z)=1

This implies that if we could compute the volume of a V-polytope in polynomial time, then
we could also solve the following counting problem in polynomial time:

Given n € N and a € Z", determine the number of solutions z € {—1,1}" of
(a,z) = 1.
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However, this problem is closely related to #(0-1 KNAPSACK) and is in fact #P-complete.
It is not known whether the problem of computing the volume of a V-polytope is #P-hard
in the strong sense.
DYER & FRIEZE [DyF88] also show that the problem of computing the volume of a
V-polytope is #P-easy in the following sense.

5.1.6 Let Il be any #P-complete problem. Then any oracle Oy for solving Il can be used
to produce an algorithm that runs in time that is oracle-polynomial in L and size(e) for
solving the following problem:

Givenn € N, a V- or an H-polytope P and a positive rational €, compute a rational

number y such that V(P) —e <y < V(P)+e.

It follows from 5.1.6 that for V-polytopes, O can be used to actually compute V(P),
while (due to Theorem 5.1.2) for H-polytopes, V(P) can only be approximated (yet in a
very strong sense). Note, however, that (as remarked in [DyF88]) the question remains open
as to whether there exist a fized constant A and a polynomial-time algorithm which, given
n € N and a V- or an H-polytope P, computes a rational number p such that

(1= MV(P) < u<(1+NV(P).

See Subsection 6.3 for some related “negative” results in a different model of computation.

The final subject of this subsection is the complexity of volume computations for zono-
topes.

The fact that V- and H-VOLUME is #P-hard does not necessarily mean that the same is
true for S-zonotopes since, typically, zonotopes have a number of vertices and a number of
facets that grow exponentially in the number of generating segments. Recall from 3.6 that
we can express the volume of the zonotope Z = YI_,[0,1]z; as a sum of determinants

V(Z) = > |det(ziy, ..y 24, )]

1< <t <<t <1

Hence S-VOLUME is equivalent to the following problem, SUM-OF-DETERMINANTS:

Given positive integers n,r with » > n, and an integer n X r matrix A, compute

> | det(B)|, where the sum extends over all n x n submatrices of A.
Clearly, in fixed dimension, this problem can be solved in polynomial time (see 3.6.4), and,
even when the dimension is part of the input, each summand can be computed in polynomial
time. There are, however, exponentially many summands, and this fact accounts for the
hardness of the problem. (See BEN ISRAEL [Be92] for a related but different notion of
“volume” associated with the determinants of the n x n submatrices of an n x r matrix, and
for the relevance of his notion to Moore-Penrose inverses of rectangular matrices. )

5.1.7 S-VOLUME is #P-hard and also #P-easy.

Theorem 5.1.7 is due to [DyGHO94|. Its hardness result is obtained by a reduction of
#PARTITION, the #P-complete task to

determine for given m € N, and «aq,...,a, € N, the number of different subsets

I'CM={1,....m} such that } .. ;a; =30y i
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It is not known whether S-VOLUME is #P-hard in the strong sense.
Let us mention in passing that the problem

given positive integers n,r with r > n, an integer n X r matrix A, a positive integer
A, determine whether there exists an n x n submatrix of A such that | det(B)| > A,

is NIP-complete. This follows from the NP-completeness of HAMILTONIAN CYCLE for directed
graphs by a construction of PAPADIMITRIOU & YANNAKAKIS [PaY90]; see [GrKL94]| for
applications of this result to the problem of finding j-simplices of maximum volume in
n-polytopes.

5.2 Computing mixed volumes.

Since volume computation is just a special case of computing mixed volumes, the hardness
results of the previous subsection carry over:

5.2.1 For each fixed k € N, and for each fixed sequence (¢ )nen, Where each ¢, is a k-tuple

(K1,...,Kk) of nonnegative integers with Ele k; = n, the following problem is #P-hard:
Instance: A positive integer n, H- (or V-) polytopes (or S-zonotopes) Py,..., Py of
R™.
K1 Kk
Task: Determine the mixed volume V(Py,...,Py,..., Px,..., Pt).

In the remainder of this subsection we will give some additional hardness results for
mixed volumes that do not trivially depend on the hardness of volume computations. Let
us start with the following extreme example of such a result, the hardness of computing
mixed volumes of bozes, by which we mean rectangular parallelotopes with axis-aligned
edges.

5.2.2 The following problem is #P-hard.

Instance: A positive integer n, for1,j =1,...,n positive integers «; ;.
Task: Determine the mixed volume V(Zy,...,Z,), where Z; = 2?21[0, a; jle; for
r=1,...,n.

Note that this result, which is due to [DyGH94], is indeed of a different nature than 5.2.1.
In fact, each of the Z; is just a rectangular box, and sois Z = Y ., Z;. Hence the volume
V(Z) = H?:1 (E?:l ozi,j> can be computed very easily. Nevertheless, the mixed volume
V(Zi1,...,Zy) is hard to compute. This is in interesting contrast to the hardness result of
5.1.7, where the volume of a sum of segments is hard to compute even though each of their
mixed volumes can be computed in polynomial time.

As was shown in [DyGH94], 5.2.2 can be extended to show that the #P-hardness persists
even if the integers «; ; have only two different values o and j.

To sketch the reasoning for this result, let us compute V(Zi,...,Z,), where Z; =
22 5=1[0, i jle;.

Let &1,...,&, > 0. Then

12

V(é ‘5izi> =V Z[Ov;;&m,j]ej = ﬁ (i &az‘,]‘) ,

J=1
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and a comparison of the coefficients of & - &5 - ... - &, yields

1 n n
V(Z177Zn) = E Z Z 6j1a"'ajna1aj1 T ‘anajn7

j1:1 ]nzl

where . .
5 { 1 if {j1,...,7n} is a permutation of {1,2,...,n};
Jiyeendn =

0 otherwise.

Thus
n'V(Zy,...,Z,) = per(A)

is the permanent of the matrix A = (o ;)i j=1,....n-

Now, VALIANT [Va77] has established the #P-hardness of the problem of computing the
permanent even for 0-1-matrices. (In fact, this problem is equivalent to counting the number
of perfect matchings in a bipartite graph.) This gives already the hardness result 5.2.2. The
sharpening, however, relies on an extension of Valiant’s result since it requires « and /3 to
be positive or, equivalently, the parallelotopes to be full-dimensional.

Note that by 4.1.1 (in conjunction with 1.2.2), the mixed volumes of boxes Z1,...,Z,
can be computed in polynomial time if the number r of boxes is constant. (Recall that in
5.2.2 we had r = n.) However, this result relies in an essential way on the fact that each of
the rectangular parallelotopes has axis-parallel edges. When this restriction is lifted, even

the case r = 2 becomes hard [DyGH94].
5.2.3 The following problem is #P-hard.

Instance: Positive integers n and k with k < n, two n-tuples vy, ...,v, and wy, ..., wy
of integer vectors which each form an orthogonal basis of R™.
Task: Compute the mixed volume
k n—k

V(Z1,..., 21, Zay. .., Z2),

where Z; = 2?21[0, ljv; and Z; = 2?21[0, 1jw;.

6. DETERMINISTIC APPROXIMATION OF VOLUMES AND MIXED VOLUMES

6.1 Measures for approximation errors.

Since it is algorithmically difficult to compute the volume of a given body (or polytope)
K, it is of interest to approximate V(K ) from above or below. The same is true for mixed
volumes.

In general, the approximation of a (nonnegative) functional p defined on a class of bodies
involves, first, an a priori measure for the closeness of approximation.

Typical measures of the closeness of a number p and the function value p(K) for a given
convex body K include the absolute error

| — p(I))
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and the relative error
‘M—MK)
p(K) |
Obviously, the results of Section 5 and the fact that the absolute error changes after scaling
K indicate that the absolute error is not an adequate measure for our purposes. The relative
error introduced above is adequate for “positive” results that involve a small positive rational
error bound A. However, the relative error is biased toward underestimation in the sense

that 4 = 0 always produces the error 1. Since we are interested in a symmetric relative
error measure we define for an arbitrary positive rational A a (rational) A-approzimation of
p(K) to be a positive rational number p such that
PE) 1 in and <140
1 p(K)
Note that this criterion can also be stated as follows
I et (GNP
1+X = p(K) —

In the remainder of the section we will deal mainly with the following problem for a

positive functional A : N — R and with p representing the volume or some mixed volume.

A-APPROXIMATION for p

Instance: A positive integer n, a well-bounded body K given by a (strong or weak)
separation oracle.
Task: Determine a positive rational y1 such that
A )
1+X 7 p(K) —

For abbreviation we will sometimes use the terms VOLUME APPROXIMATION and MIXED
VOLUME APPROXIMATION for the task of solving A-APPROXIMATION for the volume or for
some mixed volumes, respectively.

6.2 Upper bounds.

A quite general tool for obtaining estimates of functionals, even for arbitrary convex
bodies, is suggested by a theorem of JOHN [Jo48]. (A strengthening of this result for
symmetric bodies appeared in [Jo42].)

6.2.1 For a body K in R", let ap € R" and let Ay be a linear transformation such that
Ey = ag + A(B") is the ellipsoid of maximum volume inscribed in K. Then
ag + Ao(Bn) CK Cap+ nAO(B")

Any ellipsoid E = a + A(B") that satisfies the inclusion relation a + A(B") C K C
a+nA(B") is called a Lowner-John ellipsoid for K. Observe that the dilatation factor n in
John’s theorem is best possible for the simplex (and only for the simplex [Pa92]). See the
book [Pi89] for additional results on contained and containing ellipsoids.

In order to obtain approximative algorithms, one needs of course an algorithmic version
of Theorem 6.2.1, or at least a polynomial-time method for approximating the ellipsoid Ej
in 6.2.1 (and in this way obtaining weak Léwner-John ellipsoids). Such an algorithm was
devised by GROTSCHEL, LOVASZ & SCHRIJVER [GrLS88], using the ellipsoid method of
linear programming.
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6.2.2 There exists an oracle-polynomial-time algorithm which, for any well-bounded body
K of R™ given by a weak separation oracle, finds a point a and a linear transformation A
such that

a+AB") C K Ca+(n+1)vnAB").
Further, the dilatation factor (n41)\/n can be replaced by /n(n + 1) when K is symmetric,
by (n 4+ 1) when K is an H-polytope, and by v/n + 1 when K is a symmetric (V- or H-)
polytope.

Since the volume of the ellipsoid a + A(B") can be easily computed, taking the geo-
metric mean of the upper and lower bound in 6.2.2 gives a polynomial-time (n + 1)3"/4—
approximation p to V().

TArRASOV, KHACHIYAN & ErvicH [TaKES88] and KHACHIYAN & TopD [KhT93] give
polynomial-time algorithms for approximating the ellipsoid of maximum volume that is
contained in an H-polytope. In particular, the following appears in [KhT93].

6.2.3 For each rational v €]0,1] there exists a polynomial-time algorithm which, given
n,m € N, and ay,...,an € Q", produces an ellipsoid E = a + A(B") such that

EcP={zeR": (a;,2) <1, fori=1,...,m} and V(E)>~-V(E),

where Ey is the ellipsoid of maximum volume contained in P. The running time of the
algorithm is

O (m”*?log(mR)/(rlog(1/7))log(nR)/(r log(1/7))) .

where r and R are respectively a lower bound on P’s inradius and an upper bound on P’s
circumradius.

Note that it can be determined in polynomial time whether a given H-polytope has
interior points, and, if it does, such a point b can be found in polynomial time. Then,
if necessary, a translation about —b (and a suitable scaling) will transform the given H-
polytope into one of the kind used in 6.2.3. Hence, the condition on the right-hand side
of P’s H-presentation does not impose any severe restrictions. It is not known whether a
result similar to 6.2.3 can also be obtained for V-polytopes; see [KhT93, p.158].

Now note that, as shown in [TaKES§], an approximation of Ey of the kind given in
Theorem 6.2.3 leads to the following inclusion:

n(l+3y1—7) A(B")
v

a+AB")C K Ca+

and hence leads, for every a > 1, to an (an)"/?-approximation of V(P) for H-polytopes P.

A similar bound can also be derived for convex bodies that are given by an appropri-
ate oracle. In particular, APPLEGATE & KANNAN [ApK90] give the following algorithmic
Lowner-John-type result for parallelotopes.

6.2.4 There exists an oracle-polynomial-time algorithm which, for any well-bounded body
K of R™ given by a weak separation oracle, finds a point a and a linear transformation A
such that
a+ A([-1,1]")C K Ca+2(n+1)A([-1,1]").
While this result has direct applications in the design of improved randomized algorithms
for volume computation (see Subsection 8.1), the following result of BETKE & HENK [BeH93]
gives a slightly better approximation error.



BASIC PROBLEMS IN COMPUTATIONAL CONVEXITY II 49

6.2.5 There exists an oracle-polynomial-time algorithm which, for any body K of R™ given
by a weak optimization oracle, and for every e > 0, finds rationals 1 and py such that

p1 SV(K) < py and po < nl(l4€)"u.

In fact, two calls to a strong optimization oracle for directions ¢; and —c¢; give two
supporting halfspaces Hl"", H{ and two optimizers Zii—, 21 . This procedure is now repeated
for the directions +e¢y, with a ¢y orthogonal to aﬁ{zf’,zf}, etc. After n steps one gets
the parallelotope P = ﬂ?zl(Hj' N H;) D K and the polytope Q = conv{z, 27 :i =
1,...,n} C K, with V(P)/V(Q) < n!. The use of a weak rather than a strong optimization
oracle brings in an additional factor (1 + €)™.

Let us now turn to the case of mixed volumes for some bodies K, ..., K,. There are two
natural general approaches to this problem, namely to approximate the bodies Ky,..., K,
by bodies C1,...,C,, respectively, and then to use the corresponding mixed volumes of
Ci,...,C, as approximations, or to approximate V(> .._, {K;) for appropriately chosen
nonnegative parameters {1, ..., &,, and then to use the techniques outlined in Subsection 4.1
to derive estimates for the mixed volumes of Ky,..., K,.. The remainder of this subsection
will address both possibilities.

Note, first, that the Minkowski sum of two ellipsoids is, in general, no longer an ellipsoid.
Hence a straightforward extension of the Lowner-John approach to mixed volumes fails
because of the lack of an efficient algorithmic procedure for computing mixed volumes of
ellipsoids. Also the approach of 6.2.4 is bound to fail for mixed volumes, for we have
seen in Theorem 5.2.3 that computing mixed volumes of parallelotopes is #P-hard. The
general problem that we are facing here is that there don’t seem to be rich enough classes
of bodies (which could be used for approximating the given bodies Ky, ..., K, ) for which
mixed volumes can actually be computed, and this is closely related to the obvious lack of
rich enough classes of bodies for which the volume of their Minkowski sums can actually be
computed.

There is however one case where the mixed volumes can be (weakly) computed, and this
is the case r = 2 where C7; = B" and (5 is a parallelotope. Recall, in fact, that by Theorem
4.4.4 the intrinsic volumes of an S-parallelotope can be approximated (with respect to
arbitrarily small additive error) in polynomial time. Hence we can combine Theorems 6.2.2
and 6.2.4 as follows. First we construct an ellipsoid E = ay + A;(B") and a parallelotope
Z = ay + Asy([—1,1]") such that

a; + A1(B") C Ky Cay + (n+1)y/nA(B") and
as + Ax([-1,1]") C Ky Caz 4+ 2(n+ 1)As([—1,1]").
Then, with
i = a1+ A (B"), CY = a1+ (n+1)vVnA(B"),
é :a2+A2([_171]n)7 Cél = dz +2(n+1)A2([_171]n)7
we have
k n—k k n—k k n—k

v, ... cn e o< V(KL KK LK) < V(T ey o).
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By 2.4.2 (iii), application of the affine transformation z — A['(x — a;) changes the mixed
volume only by the common factor |det(A1)|™!, and this is irrelevant for relative approxi-
mation. But now we have arrived at an approximation by means of the intrinsic volumes of

the parallelotope Z = A7 ' (ag + A2([—1,1]") —ap ) which can, in fact, be (weakly) computed.
k n—k

Hence we can compute a lower bound p (= V(Cy,...,Cy,CS, ..., C5)) such that

k n—k

p< V(K. KKy K) < ((n 4+ 1D)vm) @+ 1)

Taking the geometric mean of the lower and upper bound and, if necessary, interchanging

the roles of Ky and K3, we obtain the following result; see [DyGH94].

6.2.6 There is a polynomial-time algorithm for 0(2"/4n5"/8)—APPROXIMATION of all mixed
volumes of any two well-bounded bodies K1 and Ky given by a weak separation oracle.

The approximation error in 6.2.6 is only an upper bound for the precise value that we
get from 6.2.2 and 6.2.4 with the outlined method; it is in fact

n—k n—k

ER 2%}.

A(n) =(n + 1)"/2 min{n%Q

Note further that for H-polytopes, 6.2.6 can be improved by using 6.2.3 rather than 6.2.2.
However, we don’t know of any result that extends 6.2.6 to the general case of n bodies.
It is easy to obtain some approximation results that depend on auxiliary parameters such
as the inradius or the circumradius of the specific bodies, but such results are much weaker
than 6.2.6 which depends only on the dimension.

Another way of attempting to obtain, for some functional A : N — R, a A-APPROXIMA-
TION of certain mixed volumes, is to try to extend 4.1.1 to A-APPROXIMATION.

Recall that 4.1.1 utilized the fact that an algorithm for approximating a polynomial with
respect to the absolute error can be used to obtain approximations of the coefficients (again
with respect to the absolute error). It turns out, however, that such a procedure does not
exist with respect to the (symmetric) relative error. In fact, let us consider the following
simple univariate example. Suppose that we want to estimate the middle coefficient « of a
quadratic polynomial © with constant 1 and leading coefficient 1. In other words, we know
that 7 = 7o = 22 + ax + 1 for some «, and we want to find or approximate a. Now let
e > 0, and suppose that ng,...,n; are nodes at which we want to approximately evaluate
7 in order to estimate . We may further suppose that ng,...,nr > 0 (for this is the only
situation that is relevant in the context of MIXED VOLUME APPROXIMATION, and also, the
construction can be easily adapted to the general case if desired). Now assume that the

approximation oracle uses the exact values of my = 1422 at 1g,...,n to produce estimates
for (no), ..., w(Nk).
For j =0,...,k and each o with 0 < a < €¢/(max;—o,.. k7;), we have
o (1)

<1 and F(nj) <l4an; <l+e
m(n;)

Hence the approximation oracle produces estimates for the values of the polynomial with
symmetric relative error bounded by e. On the other hand, since a may be (at least)
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any coeflicient between 0 and e/(max;—g, .k 7;), we cannot use the approximations of the
function values to obtain any symmetric relative approximation for this coefficient with
finite error bound.

The obstruction here is the lack of some kind of correlation between the various coefficients
of m. However, with mixed volumes we are here in a special situation since we can use the
Aleksandrov-Fenchel inequality. For two bodies K1 and K5, 2.4.3 reads as follows:

n—1 7 n—i+1 1—1 n—i—1 1+1

V(I(l, Ce ,I(l,ffz, Ce 71&’2)2 > V(I(l, Ce ,I(l,ffz, Ce ,I(z)V(I(l, Ce ,I(l,ffz, Ce ,I(z),

This implies that the sequence of coefficients 79, ..., 7, is unimodal. Furthermore, in the spe-
cial case of mixed volumes of two bodies an appropriate “scaling” can be utilized, [DyGH94].

6.2.7 For any pair K1, Ky of well-bounded bodies given by a weak separation oracle and
for any k = 1,...,n one can construct in polynomial time an affine transformation « and a
positive rational scaling factor A such that the mixed volumes

n—1 7

n=V(K!,. . K K\ ... K,) i=k—1,k

of the transformed bodies K| = a(K;) and K} = Aa(K>) satisfy the inequality

Tk—1
Tk

1< < (n+1)%,

Note that the right-hand bound does depend only on n and k, and not on special prop-
erties or measures of the bodies K and K.

These special properties of mixed volumes can be used to obtain approximation results,
and they are crucial for the randomized algorithm described in Subsection 7.2. There are,
however, still major obstacles to extending Theorem 4.1.1 to relative volume approximation,
and we will deal with these problems in Subsection 7.2.

6.3 Lower bounds in the oracle model.

It turns out that the above bounds for VOLUME APPROXIMATION are not too far away
from the best one can achieve. ELEKES [EI86] showed that even if our bodies K are given
by a strong separation oracle, a subexponential number of calls to the oracle does not
suffice to obtain a polynomial approximation. His argument is based on the following
observation. Suppose that KX C B", that for some k& € N the inputs to the oracle are points
Y1,-..,yr € B", and suppose further that all membership tests are affirmative (and hence
we never get a separating hyperplane). Then, with P = conv{yi,...,yx} we know that
P C K C B", but this is all the information that is available, and based on this information
an approximation g of V(K) is determined by our approximation algorithm. This implies
that

. po V(K)
(r:pckcen} | V(K)

V(B")
} “\ Ve
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Now, ELEKES [EI86] shows that

k
1 n
Pcs L_Jl(yi +B"),

and this yields

V(B™) k
> —.

V(P) — 2»
BARANY & FUREDI [BaF86] improve this result by proving the following theorem.

6.3.1 Suppose that

n/2
/\(n)<< - ) 1 forallneN.
logn

Then there is no deterministic oracle-polynomial-time algorithm for A- APPROXIMATION of
the volume.

Now, it is clear by Theorem 2.4.2 (ii) that Theorem 6.3.1 carries over to MIXED VOLUME
APPROXIMATION simply because it includes the case where all bodies are the same. It is
very likely, though, that in more general situations the bound of 6.3.1 can be improved. In
particular, the worst-case approximation error for V(Ky,..., K, ) (where the worst case is
taken over all possible choices of K1, ..., K,) should be much worse than (n/logn)"/? —1.

7. RANDOMIZED ALGORITHMS

7.1 Approximating the volume.

As we have seen, volume computation and even volume approximation is hard when we
restrict our algorithms to deterministic ones. The situation changes drastically if we allow
randomized algorithms. In fact, DYER, FRIEZE & KANNAN [DyFK89] give a polynomial-
time randomized algorithm for relative approximation of the volume of convex bodies that
are given by appropriate oracles. The algorithm is a random walk, and its analysis is
based on the notion of rapidly mizing Markov chains. We are going to describe the basic
ideas of this approach, skipping however a lot of technical details, particularly those related
to the stochastic analysis. For further details, background information, a sketch of the
corresponding history and more references see the papers by DYER & FRIEzZE [DyF91],
KHACHIYAN [Kh93], LoVASZ [Lo92], [Lo94] and LovAsz & SIMONOVITZ [LoS93].

EXPECTED VOLUME COMPUTATION.

Instance: A positive integer n, a centered well-bounded body K in R™ given by a weak
membership oracle, positive rationals 3 and e.
Task: Determine a positive rational random variable p such that

[
prob{‘v(K) —1‘ < e} >1-—4.

Note that in the above problem, the relative error measure is employed; see Subsection

6.1. This indicates already that we are aiming at “close approximation,” and in fact, the
main theorem of this section due to DYER, FRIEZE & KANNAN [DyFK89] is as follows.
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7.1.1 There is a randomized algorithm for EXPECTED VOLUME COMPUTATION which runs
in time that is oracle-polynomial in n, 1/e and log(1/3).

Before giving an (informal) description of the algorithm let us clarify that the existence
of a polynomial-time randomized algorithm for volume computations does not contradict
the negative results of Subsections 5.1 and 6.3. In fact, for a deterministic algorithm all
that counts is what it produces as output, while for a nondeterministic algorithm what
can potentially be produced is relevant. In fact, the results depend on the distribution of
these potential outcomes rather than on the outcomes themselves. As will become clear, the
randomized algorithm described below does have the potential to reach exponentially many
points, and this is crucial for the polynomial running time.

Let us now describe the original algorithm for 7.1.1; some improvements will be outlined
later in this subsection. The first step is a rounding procedure that utilizes (in conjunction
with 1.2.1) the algorithmic version 6.1.2 [GrLS88] of JOHN’s [Jo48] result. According to this
version, there exists an oracle-polynomial-time algorithm which, for any well-bounded body
K of R™ given by a weak separation oracle, finds a point a and a linear transformation A
such that

a+AB") C K Ca+(n+1)vnAB").

Hence,

B" C A 'a — ATHK) C (n+ 1)v/nB".

This rounding procedure is a deterministic algorithm that uses O(n*(size(r) + size(R)))
operations on numbers of size O(n?(size(r)+size(R))), where r, R are (as usual) the a priori
bounds for K’s inradius and circumradius; see [GrLS88, p.122]. Since

V(K) = |det(A)| V(A \a+ A7Y(K)),
we may, for the second step of the randomized algorithm, assume that
B" C K C (n+1)y/nB".
One could now try to estimate the ratio V/((n+1)/nB")/V (LK) by means of a randomized
procedure. However, this ratio may be exponential, and this leads to a blowup of the

complexity of the randomized approach outlined below. For this reason, the next step
reduces the problem to a series of problems with suitably bounded volume ratios. Let

1 7
k= [;(n—l—l)log(n—l—l)-‘ , and K, =Kn <l—l——> B" for:=0,..., k.
n
Then
B" =Ky CK; C--CKy_y CKyr=KC(n+1)/nB",
and, more importantly, for ¢ = 1,..., k,

1<



54 P. GRITZMANN AND V. KLEE

Clearly,
Bn
V( H vV IXZ 1

whence it suffices to estimate each ratio V(K;)/V(K;_1) up to a relative error of order
¢/(nlogn) with error probability of order 3/(nlogn).

Now, the main step of the algorithm of DYER, FRIEZE & KANNAN [DyFK89] is based on
a method for sampling nearly uniformly from within K;. It superimposes a chess-board grid
of small cubes (say of edge length 6) on K; (compare 3.4 and 3.5) and performs a random
walk over the set C; of cubes in this grid that intersect a suitable parallel body K + aB”
where « is small. This walk is performed by moving through a facet with probability
1/ fn—1(Cpn) = (2n)~" if this move ends up in a cube of C;, and staying at the current cube
if the move would lead outside of C;. The random walk gives a Markov chain which is
irreducible (since the moves are connected), aperiodic and hence ergodic. But this implies
that there is a unique stationary distribution, the limit distribution of the chain, which is
easily seen to be a uniform distribution. Thus after a sufficiently large number of steps we
can use the current cube in the random walk to sample nearly uniformly from C;. Having
obtained such a uniformly sampled cube, it is determined whether it belongs to C;—1 or to
Ci\Ci—y.

Now note that if v; is the number of cubes in C;, then the number u; = v;/v;—y is
an estimate for the volume ratio V(K;)/V(K;—1). It is this number p; that can now be
“randomly approximated” using the above constructed approximation of a uniform sampling
over C;. In fact, a cube C' that is reached after sufficiently many steps in the random walk
will lie in C;—; with probability approximately 1/u;; hence by repeated sampling we can
approximate this number closely.

This informal description of the randomized algorithm must of course be rigorously an-
alyzed to determine its complexity. A main question is just how quickly the random walk
approximates a “reasonably uniform” distribution. In their analysis, DYER, FRIEZE &
KANNAN [DyFKB89] use a result of SINCLATR & JERRUM [SiJ89] that relates the speed of
convergence to the conductance of the chain. With the aid of a geometric interpretation of
this quantity and an isoperimetric inequality of BERAD, BESSON & GALLOT [BeBGS85] on
the volume of subsets of smooth Riemannian manifolds with positive curvature, it is shown
in [DyFK89] that the Markov chain is, indeed, mixing rapidly enough to yield polynomiality.
The following inequality (which is stronger than what was needed in [DyFK89]’s original
proof) is taken from [DyF91]; see also [LoS90], [ApK90] and [LoS93].

7.1.2 Let K be a convex body in R™, and let f be a real-valued log-concave function on
int(K). Further, let S1,S5; C K be measurable, S = K \ (51 U S2), and suppose that
dist(S1, S2) > 0. Then

' Ri(K)
mm{ Slf(l') f( )d } d1st 51,52 /f

where Ry(K) is half of K’s diameter.

A corollary which conveys the flavor of this inequality (and which is sufficient for the
proof of polynomiality of the randomized volume-algorithm ) says that if K is a convex body
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in R”, and S is a minimal surface that partitions K into two sets 51,55, then
min{V(51), V(S52)} < Ri(K)A(S),

where A(S) denotes the surface area of S. This formulation shows that 7.1.2 is an extension
of the result that a body K is contained in any cylinder whose base is the projection of K
on the hyperplane orthogonal to some direction u, and whose height in direction u is K'’s
breadth in this direction.

[DyFK89]’s polynomial-time randomized algorithm for EXPECTED VOLUME COMPUTA-
TION was subsequently improved in various papers, including [LoS90], [ApK90], [DyF91],
[LoS93] and [KaLS94].

One key ingredient for improvements is 7.1.2, while another major improvement can be
obtained by replacing the “rounding”

B" C K C(n+1)y/nB"

by the “normalization”

[-L,1)]" C K C2(n+1)[-1,1]"
APPLEGATE & KANNAN [ApK90], see 6.2.4. Another idea of [ApK90] that avoids difficulties

caused by inherent “nonsmoothness” is to approximate the characteristic function of K by
a smooth function; cf. 3.4.

LovAsz & SIMONOVITS [LoS93] improve on these ideas extend the theory of conductance
and rapid mixing from the finite case to arbitrary Markov chains (so that now steps can
be chosen uniformly from a ball with fixed radius about the current point), and replace the
rounding phase by an “approximate sandwiching:” an affine transformation « is produced
such that 2/3 of the volume of B" is contained in a(K) and 2/3 of the volume of «(K) is
contained in nB". In their extensive study, they achieve the following complexity bound for
the second step (after the normalization) of

O (;2# logz(n)log?)(%) 10g<%>> :

Very recently, KANNAN, LOVAsz & SIMONOVITS [KaLS94] gave a further substantial im-
provement; see [Lo94]. They achieve the currently best known bound where now n enters
only in fifth power.

Let us close this subsection with a few remarks.

Sometimes it is possible to devise random walks not over a superimposed grid of cubes
but over objects that are more closely related to the specific bodies. One natural example
is the class of order polytopes. As we have seen in Subsection 5.1 (the discussion preceding
Theorem 5.1.4), an order polytope can be dissected into simplices of the same volume which
correspond to the linear extensions of the given order 0. This approach gives rise to a
random walk over the linear extensions of O which, itself, has interesting applications; see
KARrRzANOV & KHACHIYAN [KaK90], KHACHIYAN [Kh93] and LOoVASZ [Lo94].

A second class of bodies that come with a natural dissection are the zonotopes. Zonotopes
can be dissected into parallelotopes, and it is intriguing to try to use these parallelotopes
instead of the cubes. Unfortunately, the volumes of the parallelotopes may in general vary
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exponentially, and hence a direct extension of the above approach will work only in very
special cases. Thus it is unknown whether, for general zonotopes, there is a randomized
algorithm for volume computation that is more efficient than randomized algorithms that
work for arbitrary convex bodies.

The key step of the randomized volume-algorithms is to compute a nearly uniform dis-
tribution on a body K. DYER & FRIEZE [DyF91] show that the converse is also true: A
polynomial number of calls to a volume approximator suffice to generate with high proba-
bility uniformly distributed points in K.

7.2 Approximating mixed volumes.

Now that we have a randomized polynomial-time algorithm at hand for solving EX-
PECTED VOLUME COMPUTATION, it is natural to try to use it for devising a similar proce-
dure for mixed volumes. This subsection will outline such an approach of [DyGH94].

Let us begin with the case of two centered well-bounded bodies K; and K, that are given
by weak membership oracles. Let us consider the polynomial 7 given by

n—1 7

12

n .
F(f) = V(I(l + 51{2) = Z (@')V(I(h R ,I(l,ffz, ce ,I(z){:l.

=1

We will sometimes use the abbreviation
n—1 7

T, = V(I(l, - ,I(l,ffz, - ,I(z) and Cl = <n> Ty-

2

Then, following the approach of Subsection 4.1 our goal is to use the randomized volume
algorithm to evaluate the polynomial 7(£) = >0, (€' at suitable nodes in order to obtain
estimates for its coefficients (;.

As we have already seen in Subsection 6.2, there is no general way to derive relative
estimates for the coefficients of a polynomial from relative estimates of certain function
values of 7. However, we are here in a special situation in which we can use both 6.2.7 and
the specialization to two bodies of the Aleksandrov-Fenchel inequality. As we have already
mentioned at the end of Subsection 6.2, it turns out, though, that there are still major
obstacles to extending Theorem 4.1.1 to randomized relative volume approximation, and
before we state the results of [DyGH94] we want to point out what the additional problems

are.

As we have seen in Subsection 4.1, computing the coefficients of a polynomial from some
of its values can in principle be done by numerical differentiation. Let 7o, ...,n, be pairwise
different nterpolation points, and let for j =0,...,n

GE) =Y Bt
=0
denote the jth Lagrange interpolation polynomial on the node set Y = {no,...,n,}. Recall
that for 7,k =0,...,n,
1 forj==k

0 otherwise.

GEr) =Y Biséh = 6k = {
i=0
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Therefore

n n n

T(€) =) w (G =) Bim(&;) | €,

whence for each ¢ = 0,...,n,
G=> Bim(&).
=0

Now, suppose we have approximations i, . .., ft, of the values 7(&), ..., 7(£,), respectively,
with relative error bounded by some € > 0, and for ¢ = 0,...,n we use

G=> Bijn
j=0

as an estimate for (;. Then it is easy to see that
n
G =Gl = e max 7(() ; 1535,
]:

and this bound is tight. This means, in order to bound the relative error of the approxima-
tion ék of (; we need to be able to bound the right-hand side in terms of (. Unfortunately,
as is pointed out in [DyGH94|, maxp—q, . » 7(&k) 2?20 |3ij| grows exponentially, and that
is why only a certain portion of the coefficients may become approximable by such an ap-
proach. (Recall that the randomized volume algorithm is polynomial in 1/e but exponential
in log(1/€).) Hence we introduce a version of the problem that depends on an additional
function ¢ : Ny — Ny with ¢(n) < n for every n € Ny.

EXPECTED ¢-MIXED VOLUME COMPUTATION.

Instance: A positive integer n, centered well-bounded bodies K1 and Ky in R™ given
by weak membership oracles, positive rationals  and e.
Task: Determine for each nonnegative integer ¢ with ¢ < i(n) a positive rational

random variable 7; such that

prob {

Then [DyGH94] prove the following theorem.

~

E—l‘§6}21—ﬂ.

Ti

7.2.1 Let ¢ : Ny — Ny with ¢(n) < n for every n € Ny, and suppose that

¥(n)log P(n) = oflogn).

Then there is a randomized algorithm for EXPECTED ¢-MIXED VOLUME COMPUTATION
which runs in time that is oracle-polynomial in n, 1/e and log(1//3).

Observe that 1(n) = [log(n)/log®log(n)] is a choice that satisfies the assumptions of
Theorem 7.2.1.
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The algorithm underlying 7.2.1 proceeds inductively, beginning with 7y which can be
approximated by the volume procedure 6.1.1. Suppose that for some k all mixed volumes
To,...,Tk—1 have already been approximated. As was mentioned earlier, the algorithm
now uses the scaling described in 6.2.7 as preprocessing for the next step. This yields a
rough estimate for 7. Then, using the volume algorithm again and choosing the nodes
appropriately, approximations of m({) are computed. Next, a binary search procedure is
used to improve the initial relative estimate of 75 to within a constant error, and finally the
last step achieves an approximation of 74 to within a relative error e, as desired. Of course,
the interpolation points now depend on e, and they are chosen in such a way that the higher
order terms of 7 can be bounded appropriately so as to allow the use of only a small part
of the coefficient matrix B = (f3;;). This makes it possible to keep the error small.

It may be worth mentioning that as compared to algorithms for EXPECTED VOLUME
COMPUTATION, the complexity of the above algorithm is only marginally worse.

Let us point out explicitly that it is not known whether EXPECTED ¢-MIXED VOLUME
COMPUTATION can be solved in polynomial time under assumptions on 1 that are less re-

strictive than those stated in Theorem 7.2.1. In particular, it is not known how to efficiently
n n

approximate V(Ky,..., Ky, Ko, ..., Ky) for bodies in R?™.
On the positive side, it is possible to extend 7.2.1 to the case of more than two bodies
and to show that there is a randomized polynomial time algorithm for computing

i 12 tr—1 iy

V(Ky,.... K1, Ko, ..., Ko,... . Kr—q,...,Kr21, Kr, ... K, ),

where 2;21 i; =n and E;;i i; = (n) with a function 1 as in 7.2.1.
In fact, suppose we have a procedure for r sets. Then, utilizing the multilinearity of the
mixed volume, we consider

i1 i, —1 ir+ir+1

—_——
F(f) = V(I(l, Ce ,I(l, Ce 71(1”—17 Ce ,I(r_l,ffr + {:IX’T+1, .. ,IX’T + {:IX’T+1),

which can be estimated recursively for fixed £. On the other hand, 7 is a polynomial of degree
iy +irgq in &, for which we wish to estimate the coefficient of ¢i7+1. The coefficients of
are themselves mixed volumes, and consequently satisfy the Alexandrov-Fenchel inequalities.
Thus the approach above for two sets can be used with very little change. There is, however,
one difficulty. We do not have a polynomial-time procedure for producing a “good” initial
scaling of the sets, as we had with 6.2.7 for two bodies; and we leave as an open question
whether such a procedure exists. Without such a scaling, one has to resort to the “well-
boundedness” parameters ri, Ry that come as bounds for the inradius and the circumradius
of the bodies. Unfortunately, these parameters may be exponentially large, and this feeds
into the recursion. However, [DyGH94] show that one can approximate the mixed volumes
for any fized r in polynomial time, where each of the first » — 1 sets may be repeated up
to o(logn/loglogn) times. Further, if the ratios Ry /ry are “quasi-polynomial” in n, i.e. of
the form 0(27(103("))), where 7 is a polynomial, we can approximate mixed volumes for any
r = o(logn/loglogn) in polynomial time. For larger ratio p = maxg=1, , Rp/rr we can
approximate up to r = o(log n/loglog p) in similar time.
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Let us finally point out that, particularly in view of the applications stated in Subsec-
tions 9.6 — 9.9, it would be desirable to be able to extend the above results to the general
case. Specifically, it would be useful to be able to compute V(K7y,..., K, ) by means of a
randomized polynomial time algorithm. It is not known whether such a procedure exists.

8. MISCELLANEOQUS

In the present section, we will mention some results that are closely related to volume
computation.

8.1 Projections and sections.

The problem of maximizing or minimizing the volumes of orthogonal projections of poly-
topes onto hyperplanes has received some attention in geometry because it is related to
various illumination and optimization problems, see e.g. MARTINI [Ma85]. It has been
treated from a computational viewpoint by MCKENNA & SEIDEL [McS85], whose algo-
rithm finds a direction in which the orthogonal projection has maximum (or minimum)
volume. Their algorithm is asymptotically optimal when the dimension is fixed.

The more general case of projections onto subspaces of arbitrary intermediate dimension
is studied (for fixed and for variable dimensions) in [BuGK94a]. Let v : N — N denote a
functional with the property that 1 < y(n) < n — 1 for each n. Then we have the following
decision problems.

MAXIMUM 5-PROJECTION (MINIMUM ~-PROJECTION).

Instance: A positive integer n, an H-polytope (a V-polytope, or an S-zonotope) P, a
nonnegative rational p.
Question:  Is there a v(n)-dimensional subspace S of R™ such that Vj(n)(HSP) > [

(V2 (IlsP) < u)?

~(n)

Here, as before, V. (,,)(IlsP) denotes the v(n)-dimensional volume of the orthogonal pro-
jection IIgP of P on 5.

Note that with the special choice v = 1, MAXIMUM ~-PROJECTION is the problem of lower
bounding (the square of ) a polytope P’s diameter. This problem is easy for V-polytopes;
however, it is already NP-complete for H- (or S-) parallelotopes, [BoGKLI0], [GrK93a]; see
also [GrK94a).

In view of the results of Subsection 5.1, it is not surprising that the variants of MAXIMUM
~-PROJECTION and MINIMUM +-PROJECTION that ask for the actual volumes of optimal
projections are #P-hard. However, it turns out that MAXIMUM ~-PROJECTION is hard
for other reasons as well. In fact, even for v(n) = n — 1 (the case of projections onto
hyperplanes), the problem MAXIMUM 5-PROJECTION is NP-complete even for the class of
all (V- or H-) simplices ([BuGK94a]), even though the (n — 1)-dimensional volume of any
projection of a (rational) simplex on a (rationally presented) hyperplane can be computed
in polynomial time. On the other hand, minimizing projections of simplices on hyperplanes
is easy, but MINIMUM ~-PROJECTION is NP-hard for many classes of functionals v and
polytopes P (see [BuGK94al).
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Recalling from Subsection 4.4 that for any z € S"™!,
n—1
—_——
nV([0,1]z,K,...,K)= V(I (K)),
n—1

—_——
these results imply that the problem of maximizing V([0,1]z, K, ..., K) is already NP-hard
n—1
for I being a simplex, while the problem of minimizing V' ([0, 1]z, K, ..., K) is NP-hard for
arbitrary H-polytopes (but easy for simplices). Extensions of these and other results can
be found in [BuGK94a].

For some interesting theoretical results on projections see FILLIMAN [Fi88], [Fi90] and
[F192]. The problem of estimating the intrinsic volume V;(K) of a body K from the intrinsic
volumes V;(Ils; K') of K’s projections onto certain j-dimensional subspaces St, ..., Sy, (with
1 <1< j <n—1) has been studied by BETKE & McMULLEN [BeM83].

Problems similar to those for projections can also be investigated for sections (with some
additional constraints in the case of minimizing sections). In fact, for v = 1, the problem
MAXIMIMUM ~-PROJECTION is the same as the (appropriately defined) problem MAXIMI-
MUM -SECTION, and the latter is hence again NP-hard. Additional algorithmic results can
be found in [BuGK94b].

The general problem of finding the maximum of the volumes of the j-dimensional sec-
tions of P (i.e., of the j-dimensional convex sets formed by intersecting P with a j-flat) is
discussed by FILLIMAN [Fi92], who finds geometric conditions that must be satisfied by crit-
ical sections. For results related to extremal j-sections of simplices and cubes, see [Wa68],
[Fi92].

Finally, we mention the survey article of MARTINT [Ma94], which discusses a variety of
questions related to sections and projections.

8.2 Expected volumes.

For a proper body K in R™ and an integer m > n, let ¢, (K) = pm(K)/V(K), where
pm(IC) is the expected volume of the convex hull of m points chosen independently and
at random from the uniform distribution over K. For each m this is an affine invariant
of K, because volume ratios are invariant under nonsingular affine transformations. The
literature contains many results concerning the functions ¢,,, and a good short survey with
many references was given by CROFT, FALCONER & GUY [CrFG91, pp.54-57]. See BARANY
& BucHTA [BaB93] for later results and references.

Despite the extensive literature, we are not aware of any general algorithmic approach to
the computation of ¢,,(P) when P is a given n-polytope. Indeed, even the numbers s(n) =
©n+1(5) for an n-simplex S have proved to be resistant. (These numbers are of interest for
a comparison of the efficiency of two algorithms for the analysis of multicomponent phase
diagrams; see [K165].) Although it is easy to see that s(1) = 1/3 and has long been known
that s(2) = 1/6, for many years the best that could be done with s(3) was to approximate it
by means of Monte Carlo experiments (see [BuR92] and its references). Recently, however,
BucHTA & REITZINGER [BuR92] showed in a tour de force that

13 w2
3= T
() =750 ~ 5015
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For n > 3, s(n) is still not known precisely.

It seems reasonable to conjecture that for each fixed n, ¢,41(K) is a maximum when
K is a simplex, but the conjecture is open for all n > 3. GROEMER [Gr73] showed for all
n that ¢,41(K) is a minimum when K is an ellipsoid, and the value in this case has been
computed by KINGMAN [Ki69].

8.3 Volumes of unions and intersections of special bodies.

The special bodies to be discussed in this subsection are boxes, balls, and simplices. For

a=(ar,....,an)T b= (B1,...,8,)T € R" with «; < 3; for all 7, let B(a,b) denote the box
B(a,b) = {x = (fl,...,.fn)T:ozi <& < B for 1 <i<n}.

Now suppose that B(aq,b1),...,B(ax,by) are boxes with a; = (aj1,...,qa;,) and b; =
(Bjas--.,Bjn) for 1 <j <k and for 1 <i <n let

a; = max{a i, ..., 0%},

and

éi = min{ﬂl,ia e ,5]@,1‘}.

Then the intersection ﬂle B(ai, b;) is empty if a; > él for some ¢, and otherwise the
intersection is the box B(@,b). This representation yields a fast algorithm for computing
volumes of intersections of boxes.

Note that any algorithm for computing volumes of intersections of bodies of a special sort
yields also an algorithm for computing volumes of unions of the same sort of bodies. That
is true because the volume function is a valuation and hence

v (O KZ) =) V(Ki) =Y V(KinK;)+

i=1 i<j

+ Y V(ENENEg)— -+ (-1)"'V (ﬂ KZ) :

i<j<k i=1

However, this direct use of the principle of inclusion and exclusion is often not the best way
to compute volumes of unions. For better ways to compute the volume of a union of k£ boxes
in R", see FREDMAN & WEIDE [FrW78] for an optimal O(klog k) algorithm when n = 1;
see VAN LEEUWEN & Woob [VaWsl1] for an O(klogk) algorithm (doe to J.L. Bentley)
when n = 2 and for an O(k"~1) algorithm when n > 3.

Among the papers that contain algorithms for computing volumes of unions and in-
tersections of balls, we mention [Au86], [AvBI88], [Sp85], and especially EDELSBRUNNER
[EA93b] and EDELSBRUNNER & FU [EAF93]. See Subsection 9.11 for a suggested use of
such algorithms in experimental computation on a famous unsolved problem.

JFrom the viewpoint of computational complexity, the most interesting problem to be
mentioned in this subsection is that of computing the volume of a union of n d-simplices in
R? (The change in notation — d rather than n for the dimension — is necessary in order to
conform to the notation in the term n%-hard below that is standard in the relevant part of



62 P. GRITZMANN AND V. KLEE

the literature.) When d = 2, this problem belongs to the class of so-called n?-hard problems
introduced by GAJENTAAN & OVERMARS [GaO93] with the aid of quadratic transformations
from a “base problem” that is linearly equivalent to the following:

Given three sets of integers A, B, and C with |A| + |B| + |C| = n, decide whether
there exist a € A, b € B, and ¢ € C such that a + b = ¢?

For the problem of computing the area of a union of triangles, as for other problems in the
class, there are no known subquadratic algorithms. (In addition to the original paper of
[Ga093], see [Or94b], [EfLS93], [ErS93], and their references for more details. The present
account is taken from [Or94b].) From the viewpoint of computational convexity, it would
be interesting to know what can be said for d > 2 about the complexity of computing the
volume of the union of n simplices in R?, and what happens when the dimension d is part
of the input.

8.4 More about dissections and triangulations.

As we have seen, any sort of deterministic computation of the volume of a polytope P is
apt to be time-consuming. However, since the volume of a simplex is so easy to compute,
and since dissecting P into simplices is easy to understand and not hard to program (see
Subsection 3.1), the use of such a dissection is the most convenient method in many practical
cases. When faced with a polytope P whose volume is to be computed by means of dissection
into simplices, it is natural to wonder what is the minimum number of simplices possible.
That suggests the following decision problems.

8.4.1 Given a positive integer n, a proper H-polytope (or V-polytope) P C R™, a positive
integer k.

(A) Can P be dissected into k or fewer n-simplices, each having all of its vertices among
those of P?

(B) Can P be dissected into k or fewer n-simplices, each having all of its vertices at
points of P that have rational coordinates?

(C) Can P be dissected into k or fewer n-simplices?

Note that in 8.4.1 (A), only the vertices of P can be used in forming the n-simplices of
the dissection. It seems plausible that the minimum number of such simplices cannot be
reduced by the use of additional vertices. However, we are not aware of any proof of this
even for the case in which P is an n-cube. In 8.4.1 (B), additional vertices are permitted but
are required to have all rational coordinates (as do the vertices of P), while in 8.4.1 (C) there
is no restriction on the position of additional vertices. Hence it is conceivable that these
three similar-sounding problems are of different computational complexity. It can be shown
that 8.4.1 (A) belongs to the class NP. However, for 8.4.1 (B) it does not seem obvious even
that there exists a finite decision algorithm. (This is vaguely reminiscent of the fact that
the problem of deciding whether a given polytope is combinatorially equivalent to one with
exclusively rational vertices is algorithmically equivalent to the problem of deciding whether
a diophantine equation is solvable in rationals (see STURMFELS [St87]) — and it is not known
whether there is an algorithm for the latter problem (see [KIW91, p.95]).) For 8.4.1 (C), the
existence of a finite decision algorithm follows from the decision theory of TARSKI [Ta61] (see

also [ChK73] and RENEGAR [Re92a], [Re92b], [Re92¢]) because the existence of a dissection
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of the desired sort can be expressed in terms of the consistency (now over R™ rather than
Q") of a system of polynomial equalities and inequalities involving the vertex-coordinates.

When the above problems are posed for triangulations (as opposed to dissections), the
above statements about computational complexity still apply to 8.4.1 (A) and 8.4.1 (C).
However, in the case of triangulations, the same decision algorithm that works for 8.4.1 (C)
applies also to 8.4.1 (B). That is a consequence of the following fact: If P is a polytope
whose vertices are all at rational points, and 7 is a triangulation of P, then the nonrational
vertices of 7 can be moved, one at a time, to nearby rational points so as to produce a
triangulation 7' of P whose vertices are all at rational points.

Though it has nothing to do with computing the volume of a polytope, we want to
mention the following fact, simply for its intrinsic interest: An n-cube can be dissected into
k n-simplices of equal volume if and only if k is a multiple of n!. This was first proved for
n =2 in [Mo70], then extended to arbitrary n in [Me79]. The proof depends in an essential
way on valuation theory. For further results on dissecting polygons into triangles of equal
area, see [KaS90] and [Mo90].

There is an extensive literature concerning the following questions.

8.4.2 What is the minimum number T(n) (S(n)) of n-simplices into which an n-cube can
be triangulated (dissected)?

The number S(n) has been fully determined only for n < 5, T(n) only for n < 7 (see
HucHES [Hu93] and HUGHES & ANDERSON [HuA94]), and as n — oo the best asymptotic
lower and upper bounds are far apart. The best asymptotic lower bounds result from volume
considerations (see [Ha91] for references), and the best asymptotic upper bounds come from
the construction of specific triangulations in low dimensions together with a simple but
elegant method of HAIMAN [Ha91] for extending these to higher dimensions. For n < 11,
the best lower bounds for both S(n) and T(n) come from a linear programming approach
proposed by SALLEE [Sa82] and developed further in [Hu93] and [HuA94].

Triangulations of n-cubes are of interest for their role in complementary pivoting al-
gorithms used to find approximately fixed points of continuous mappings [To76]. In this
connection, ToDD [To76] proposes the number (card(7 )/n!)'/™ as a measure of the efficiency
of a triangulation 7 of the n-cube. The construction of [Ha91] shows that any value of this
measure that is attained for some fixed n is also attainable asymptotically. However, this
measure does not tell the whole story of efficiency, for it often happens that triangulations
into fewer simplices require more complicated pivoting rules. See [ToT93] and [HuAH94]
for the details of some recent triangulations and for references to earlier work.

To end this subsection, we mention that ONG [On91], [On94], has analyzed a triangulation
of the 3-cube that is notable for a number of geometric properties that make it especially
convenient for use in the finite-element method for approximating solutions to partial differ-
ential equations. It would be worthwhile to produce and study higher-dimensional analogues
of her triangulation.

9. APPLICATIONS

This last section collects some of the more recent and probably less known applications
of volume and mixed volume computation. The applications 9.3-9.5 and part of 9.9 were
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explored in more detail in [DyF91], the applications of 9.1, 9.2, 9.6-9.8 and part of 9.9 are
dealt with in [DyGH94].

9.1 Counting integer points in lattice polytopes.

As we have seen already in Subsection 3.5, there is a close connection between VOL-
UME COMPUTATION and counting lattice points. Here we show how a “mixed-volume-like”
approach to lattice-point enumeration can be used to deduce some complexity results.

Let L denote an integer lattice of R™ whose vectors span R", denote by P"(L) the set
of all polyopes in R™ whose vertex set belongs to L, and let Gy, denote the lattice-point
enumerator, i.e. the functional Gp, : P"(L) — Ny defined by Gr(P) = card(P N L). By
EHRHART [Eh67], [Eh68], [Eh69], [ELTT] there are functionals Gy,; : P"(L) — Ny such that
for every P € P*(L) and k € N,

GL(kP) = zn: k'Gr.i(P).

The polynomial on the right-hand side is often referred to as Ehrhart-polynomial; see STAN-
LEY [St86b] for basic facts on this polynomial, and see [GrW93] for a survey on lattice-point
problems. For simplicity we restrict the further considerations to the case where L is the
standard integer lattice Z™ and omit the subscript Z".

Note that G,,(P) is just the volume of P; see 3.5. Suppose now, we could determine in
polynomial time the number G(P) of lattice points of a polytope P € P(Z"™). We could run
this algorithm for the polytopes 1- P,...,n - P, and obtain V(P) = G,(P) by solving the
system

1 0 ... O

. o o(P) G(0- P)
o ) NG Gn - P)

of linear equations. Application of Theorems 5.1.4, 5.1.5 and 5.1.7 shows that the problem
of evaluating G(P) for integer H-polytopes, integer V-polytopes, or integer S-zonotopes is
#P-complete.

Recall from Section 3.5 that a recent result of BARVINOK [Ba93b] shows that in fixed
dimension, G(P) can be computed in polynomial time, see also [DyK93].

9.2 Zonotopes and Mixture-Management.

The typical approach to standard problems in mixture-management models the problem
as a linear program by assigning costs to each basic mixture. However, GIRAD & VALENTIN
[GiV89] remark that for many applications in the petroleum industry the cost of these basic
mixtures are essentially identical, and this accounts for the fact that the linear programming
model may not always be the best one. They propose an approach that involves zonotopes.

Suppose that a seller has m containers, each of which contains a mixture of n basic
chemicals. For i € {1,...,m} let z; = ((i1,...,Cin)T represent the mixture in container i,
where (;; is the quantity of chemical j in container ¢. (The (;; are assumed to be nonnegative
rationals.)
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Suppose, further, that a customer demands a certain mixture b = (3,...,3,)7 that
consists of the quantities 3y,..., 3, of chemical 1,...,n, respectively.
In order to satisfy this demand the seller takes, for ¢ = 1,...,m, a proportion \; of

container ¢’s content such that
m
Bi=> NCij  forjefl,... n}
=1

Hence, the zonotope
m

Z=> 0,1z
=1
is the set of all possible demands that the seller can satisfy. In general, there is more than
one way to satisfy the demand; thus the seller will have a choice of vectors

1 Ab) = {zz Ay AT €00,1]™ ixz = b},

and the question is: What is a good strategy for the choice of | so as to be able to satisfy
the widest possible variety of possible future demands. If the seller has no information on
the distribution of these demands it might be reasonable to assume that they are uniformly
distributed.

Then the objective for the seller is to maximize the volume of the zonotope Z(1) that is
the set of all mixtures that are still possible after the current demand b has been satisfied
by the choice [. This maximization criterion was suggested in [GiV89]. Of course, the
volume of Z(I) = 37" [0,1](1 — X\i)z; is a homogenous polynomial in the (1 — A;)’s, and
its nth root is concave by the Brunn-Minkowski theorem 2.4.4. Hence the maximization
problem is algorithmically tractable if the computation of function values is easy. However,
Theorem 5.1.7 shows that the problem of computing V(Z(1)) is #P-hard. Thus the algorithm
suggested by [GiV89] is not efficient unless the number n of basic chemicals is small. Note,
however, that the randomized algorithm of Theorem 7.1.1 could be used.

9.3 Integration over bodies.

Suppose that K is a convex body of R™ and that the function f : K — R is nonnegative
and concave. Then

fle)de = V(Ky), where Ky = {( v ) € K, 0< {41 < f(:z;)} )
nt

Since Ky is a convex body in R"*! we can use the algorithm of Theorem 7.1.1 to approxi-
mate [, f(x)dz.

In order to bound the running time of the corresponding randomized algorithm, we need
to make some assumptions about the a prior: guarantees for K and f. Naturally, we will
assume again that K is given by a centered well-bounded membership oracle with parameters
r, R and b. DYER & FRIEZE [DyF91] suggest, as measures for the size of f, the size L,
of an upper bound of f on K and the size L, of a positive lower bound on f’s average
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f[ z)dx/V(K) on K. Using 7.7.1, the integral can then be approximated in time that is
polynomlal in size(K) and Ly and Lg.

DYER & FRIEZE [DyF91] further show that this approach can be extended to quasi-
concave functions satisfying a Lipschitz-condition, and they derive a pseudopolynomial ran-
domized algorithm for general integrable functions.

9.4 Stochastic programming.

As is pointed out by DYER & FRIEZE [DyF91], the randomized algorithm for computing
the volume of convex bodies can, in certain cases, be used to approximate the expected
value of certain stochastic programming problems. Examples discussed in [DyF91] include
the problem of computing the expected value of the functional ¢(b) that is defined by

©(b) =max f(x)
gi(x) < Biy, 1=1,...,m,

where f is a concave functional, g1,...,¢m are convex, and b = (f1,..., )T is chosen
uniformly from a convex body K € K™.

Another example of [DyF91] deals with a question that comes up in the sensitivity analysis
for linear programs. When, in the linear program

min(c, x)

Az =b

x>0

the parameters (b7, cT)T € R™ x R" are chosen uniformly from a convex body K in R™*",
sensitivity analysis may ask for the probability that a specific nonsingular (m xm) submatrix
B of A gives an optimal basic solution. This can be expressed in terms of volumes as
follows. Since B is nonsingular, the condition Ax = b is equivalent to B~'Ax = B~1b.
Now, let zg = B~ b, let 5 denote the corresponding n-vector that is obtained from zp
by augmenting components 0 whenever the corresponding column of A does not belong
to B, and let c¢p denote the m-vector obtained from ¢ by deleting all components that
do not correspond to a column in B. Then it is well-known from duality theory of linear
programming (and quite easy to derive, see e.g. [GoT89] or [GrK93b]) that & p is an optimal
basic feasible solution if and only if £ g is primal feasible and §5 = (¢5B~!)T is dual feasible.

Since, by definition, Az = b, this is equivalent to
zg >0 and ch_lA <cT,

b, )T of K for which B is an optimal basis are those which belong to

Kg=Kn {(Zc’) :B7'b>0,c5B71A< CT}

of K, and the probability of B being an optimal basis is given as the volume ratio
V(Kg)/V(K).

Again, under some reasonable assumptions, the randomized algorithm 7.1.1 for volume
computation can be used.

Hence the choices (
the subset
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9.5 Learning a halfspace.

Another application for volume computation, due to DYER, FRIEZE & KANNAN (see
[DyF91]) is related to certain questions in “learning theory.” Suppose, an algorithm A
wanted to “learn” an unknown inequality (a,z) > « where a € [—1,1]" and « € [—1,1].
Suppose, further, that there is a sequence (x;);en of points provided, and at step ¢, a guess
is made by A as to whether x; satisfies the inequality. It is then revealed to A whether the
guess is correct. The goal for A is to devise a strategy which minimizes the proportion of
errors made.

Now, each query point x; leads to two halfspaces

Hj:{<z>:<a,xi>za} and Hi_:{<z>:<a,xi>§a},

and each “verification” if the guessed answer is correct or not rules out one of the halfspaces.
Hence after step i, A knows a polytope P;, and a good strategy for deciding, whether for
point ;41 the guess should be “yes” or “no” may be guided by the volumes of the two parts

_|_ —

An analysis of this approach and a comparison with a method of MAASS & TURAN
[MaT89] can be found in DYER & FRIEZE [DF91]. See BLum & KANNAN [BIK93] for a
polynomial time method for learning an intersection of a constant number of halfspaces over
a uniform distribution of query points.

9.6 Permanents.

12

Fori,j € {1,...,n} let a;; be a nonnegative integer, and set Z; = Ejzl[(), aijle;. As we

have seen in Subsection 5.2,

n'V(Zy,...,Z,) = per(A)

is the permanent of the matrix A = (a;j)i j=1,... n-

We have used the #P-hardness of the problem of computing the permanent of a matrix
to show in 5.2.2 that the problem of computing the mixed volume V(Zy,...,Z,) of the
rectangular parallelotopes Zy,..., Z, is #P-hard. However, the correspondence goes both
ways, and any progress for mixed volume computation leads to new results on the “positive
side” for permanent computation. It follows, for instance, from the results stated in Subsec-
tion 7.2 that one can approximate the permanent of matrices with positive integer entries of
quasi-polynomial size, at least if they have the property that all but n — o(logn/loglogn)
of the rows are identical, see [DyGH94].

Note that the fastest deterministic algorithm known for computing the permanent of a
square 0-1 matrix with n rows runs in n2"~! time (see RYSER [Ry63] and the improvement
by NIJENHUTS & WILF [NiWT78]), while the best known randomized algorithms for producing
a relative approximation p with

g s

still use time of order 20(vmlos®(n)—2 log(1/4), JERRUM & VAZIRANI [JeVI1], see also
KKARMARKAR, KARP, LIPTON, LovAsz & LUBY [KaKLLL93].
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Let us point out that besides the well-known applications in mathematical programming
and combinatorics, there is need for computing or approximating the permanents of certain
matrices that arise in particle physics (see ZHU [Zh93]). The lack of efficient procedures for
this task leads to difficulties in the study of the Bose-Einstein correlation between particles.

It seems appropriate to end this subsection by mentioning van der Waerden’s 1926 con-
jecture that on the (n — 1)?-dimensional polytope formed by all n x n doubly stochastic
matrices, the permanent attains its minimum at the matrix %Jn whose entries are all equal
to 1/n. This was finally proved by EGORYCHEV [Eg81], who showed that the minimum
is in fact attained wuniquely at %Jn. An essential tool in his proof was the Aleksandrov-
Fenchel inequality 2.4.3 for mixed volumes. KNUTH [Kn81] later gave a relatively elemen-
tary, self-contained proof of Egorychev’s result, and it turned out that FALIKMAN [Fa81]
had independently proved the conjecture (but not the uniqueness) by different methods.
Nevertheless, we believe that mixed volumes will continue to be a useful tool in dealing with
specific problems that may at first not appear to have any connection with mixed volumes.
In the words of Egorychev [Eg81, p.299]: “The method of mixed volumes is ideally suited to
solving extremal problems and problems of uniqueness, and obtaining deep new inequalities.
It is reasonable to assume that in the future the method of mixed volumes will stand with
that of generating functions as one of the basic analytical tools of combinatorial analysis.”

9.7 Polynomial equations.

Mixed volumes play an important role in algebraic geometry. Let us here discuss the
relation of mixed volumes and the number of solutions of a system of equations involving
Laurent polynomials.

We use a notation similar to that introduced in Subsection 3.4: when @ = (&1,...,&),
and ¢ = (K1,...,kp) € Z", then

¢ _ ¢RL gRa | ¢Rn
et =067 .

Now, let S1,99,...,5, CZ", and let for: =1,....n,

qES;

where the coefficients ¢ ! _1]7

(qi) are fixed complex numbers. Hence f; € C [zq,2] " ,... , &pn, 2,
and we are interested in determining the number L(F') of distinct common roots of the

system F' = {f1,..., fn}. By a result of BERNSTHEIN [Be75] (see also [BuZ88, Chapter 27])
(%)

this number depends, if the coefficients ¢, (¢ € S;) are chosen generically (i.e. in sufficiently
general position), only on the Newton polytopes

P; = conv(S;)
of the polynomials, and, more precisely,
L(F) = nl-V(P,Ps,...,P,).

HUBER & STURMFELS [HuS93] use this result in conjunction with an approach similar
to those of Subsection 4.2 to devise a numerical continuation algorithm for computing all
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isolated common roots of a system of polynomial equations. See GELFAND, KAPRANOV &
ZELEVINSKY [GeKZ90] and also [GrS93] for further information about Newton polytopes and
related concepts, and VERSCHELDE & CooOL [VeC92], PETERSEN & STURMFELS [PeS93],
CANNY & Roias [CaR93], and VERSCHELDE, VERLINDEN & CooL [VeVC94| for further
results along these lines.

9.8 Bases of unimodular matroids.

Let M be a unimodular matroid of rank n with representation vy, vs,..., v, over the
reals. Let Sy,..., S, be a partition of {1,2,...,m} and let ¢y, ..., 4, be nonnegative integers
such that 2;21 i; = n. STANLEY [St81] shows that the number of bases of M with i
elements in S; for e =1,...,7 1is

where Z; is the zonotope

Hence the results of Subsection 5.2 can be applied to yield #P-hardness results for this
counting problem. See BJORNER, LAS VERGNAS, STURMFELS, WHITE & ZIEGLER [BjL-
SWZ93] for a state-of-the-art account of oriented matroids.

9.9 Partial orders and linear extensions.

When dealing with the strong #P-hardness of volume computation for H-polytopes in
Subsection 5.1, we showed that the number of linear extensions of a given ordering O is
equal to the volume of the order polytope Pon. Now we outline an extension of this result,
also due to STANLEY [St81], that involves mixed volumes.

Let N ={p1,...,pr,q1:--.,qn—r} be aposet, let N, = {p1,....0r}, Ny ={q1,-- -, n-r},
and suppose that p; < ps < --- < p,. Foriy,...,i, € {1,...,n} let e(iy,...,7,) be the
number of linear extensions 7 of N such that 7(p;) =1, for j =1,2,...,r.

Now, define for j = 0,...,r the order polytopes P; of R"™" as the sets of points =
(&1,...,&n—r)T that satisfy the following constraints:

0<E <1 fore=1,....,n—r;
i < & ifgi <qr; ik =1,...,n—r
& =20 if g >0and ¢; <pj;t=1,....,n—r;
& =1 if g <randg¢ >pjqi;t=1,...,n—r.

Note, that the polytopes P; reflect the restriction of N to N, that lies “between” p; and

Pj+1-
STANLEY [St81] showed that (with ¢ = 0,441 = n + 1),

i —io—1 irq1—ip—1
e(t1,09, .. ytp) =(n—=r)WV(Py,...,Py,..., Pry..., Pp).
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As a side remark, observe that, when r = 1, the Aleksandrov-Fenchel inequalities 2.4.3
imply that for: =1,...,n—1

e(i)2 >e(i —1)e(e + 1),

and hence the sequence e(1),...,e(n) is unimodal.

9.10 Experimental computation: Points on spheres.

There is a large collection of unsolved mathematical problems involving volumes or mixed
volumes of polytopes or other bodies. In many cases, an important source of difficulty is a
lack of intuition or computational experience that might guide one to a solution. That is
especially true of extremum problems, and especially true in higher dimensions. We expect
that improved methods of volume computation, in conjunction with heuristic optimization
methods, will facilitate computational experiments to provide increased insight concerning
these problems. Here we describe two problems that are not completely solved even in low
dimensions and for which the range of ignorance increases rapidly as the dimension grows.

The sort of development that we have in mind is well illustrated by the history of the
following problem:

9.10.1 How should k points be arranged on the unit sphere S*~! in R” so as to maximize
the volume of their convex hull?

For n = 2, the solution is the obvious one: place the points at the vertices of a regular
k-gon inscribed in the unit circle S [Fe53]. As far as we know, the only case of 9.10.1 that
has been settled for all n is that in which k¥ = n+1, where the regular arrangements (placing
the points at the vertices of a regular n-simplex) are the only ones that maximize the volume
(FEJIES TOTH [Fe64, p.313], SLEPIAN [S169]). FEJES TOTH [Fe64] discusses the difficulties
in the case n = 4, k = 120, saying that “It may be taken as certain that of the 4-dimensional
polytopes with 120 vertices and unit circumradius {3, 3,5} (the regular one) has the great-
est possible volume ... But so far we have no methods for proving these conjectures ... .”
Of course, computer experimentation cannot provide proofs of such conjectures. However,
algorithms combining volume computation with optimization methods may provide useful
clues in cases where there is no obvious candidate for the optimizing shape or when the
“obvious” candidate turns out not to be the optimum. Consider, for example, the case
n = 3, k = 8, where the 8 vertices of a cube do not yield even a relative maximum. The
volume-maximizing arrangement of 8 points was first discovered (as a relative maximum)
by computer experimentation (GRACE [Gr63]), and was later proved by BERMAN & HANES
[BeH70] to be the maximum. We expect that, as algorithms for volume computation are im-
proved, higher-dimensional analogues of this sort of compute-conjecture-prove development
will occur.

The problem of the preceding paragraph is closely related to the problem of finding, for
a given n and k, the n-polytopes of minimum volume among those that have k facets and
are circumscribed about a given sphere in R”. Again, the regular solution is known to be
optimum for all ¥ when n = 2 [Fe53] and for all n when k¥ = n 4+ 1. Beyond that, the
solution is known when n = 3 for a few values of k > 4, but ignorance is almost total in the
higher-dimensional cases. For the case n = 3, see GOLDBERG [Go35] for the history of this
problem and SCHOEN [Sc86] for an algorithmic approach.

The following problem turns out to involve a specific mixed volume.
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9.10.2 How should k points be arranged on the unit sphere S*~! in R” so as to maximize
the mean width of their convex hull?

As pointed out at the end of Section 2, the mean width is just a multiple of the first
intrinsic volume V;. Let us add that for k-polytopes P in R", there is a formula of SHEPHARD
[Sh68]:

(14 (~1 Z S (1))

=1 FeF;(P)

The extent of ignorance concerning 9.10.2 is even greater than that for 9.10.1. For the
important case in which k& = n + 1, several authors ([Gi52], [Ba63], [Ba65], [We68]) have
assumed the existence of a proof that the regular arrangement maximizes the mean width.
However, we are not aware of any such proof. (It is known, ALEXANDER [Al77], that the
regular arrangement of n 4+ 1 points maximizes the width of the inscribed simplex.)

The problem 9.10.2 is of interest because of its connection with a problem in communi-
cation theory. Suppose that Z denotes the Gaussian distribution in R”™ that has zero mean
and whose covariance matrix is the n x n identity matrix. For a fixed k¥ > n, a fixed A > 0,
and a fixed set U consisting of k points of the unit sphere S*™!, let ¥ be the vector random
variable of the form Y = (AU) + Z. Upon receiving Y, we are asked to determine which
point of U has been transmitted, all points of U being equally likely a priori. The problem is
to arrange the points of U so as to maximize the probability of this detection. The simplex
code conjecture asserts that when & = n + 1, the optimum arrangement is the regular one.
A claimed proof [LaS66] of the conjecture was shown by FARBER [Fa68] and TANNER [Ta70]
to be invalid, but the conjecture itself is still open. See [Fa68], [Ta74] for stronger forms
of this conjecture, BALAKRISHNAN [Ba61], [Ba65], and TANNER [Ta70] for the relationship
of the conjecture to mean widths of simplices, and CHAKERIAN & KLAMKIN [ChKT73] for
other conjectures on mean widths of simplices.

9.11 Experimental computation: Pushing balls together.

For each point ¢ € R", let B(c) = {& € R™ : ||z — ¢||2 < 1}, the Euclidean ball of unit
radius centered at the point ¢. Now suppose that py,...,pr and ¢q,...,qr are points of R™
such that for all 7, j, ||¢; — ¢;l|2 < ||[pi — pjll2 — in other words, the ¢; are pairwise at least as
close together as the p;. It has been conjectured that under these circumstances, the greater
extent of overlapping of the balls B(¢;) insures that

14 (ﬂ B(Qi)) >V (ﬂ B(Pi))
14 (U B(Qi)) <V (U B(Pi)) :

(see [Thb4] and [Kn55] for the latter conjecture). Both conjectures have been proved for the
case in which £ < n 4+ 1 and for unrestricted & when n = 1, but for unrestricted k& both are
open for all n > 2. Concerning the intersections, it follows from a theorem of Kirszbraun

and
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[Ki34] that if V(ﬂle B(pi)) > 0 then V(ﬂle B(q;)) > 0, and concerning the unions, it was
proved by M. KNESER [Knb55] that

|14 UB(%‘) <3"V UB(Pz‘)

See [KIW91] for a detailed discussion of the above conjectures and some of their relatives,
including a stronger conjecture of Kneser that implies the above conjectures. Kneser’s
interest in these questions arose from his study [Knd5] of a measure of surface area proposed
by Minkowski.

Despite the plausibility of the above conjectures, it would not surprise us if they fail even
when n = 2. It seems that for small n and for k£ not too much larger than n+ 1, it should be
possible to design a computer experiment that would greatly improve the multiplier 3™ and
would at the same time have a good chance of discovering a counterexample to the original
conjecture (if one exists). Such an experiment would require fast algorithms for computing
the volumes of intersections and unions of balls. See subsection 8.3 for references to such
algorithms.
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