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INTEGRATION ON A CONVEX POLYTOPE 

JEAN B. LASSERRE 

(Communicated by David Sharp) 

ABSTRACT. We present an exact formula for integrating a (positively) homo- 
geneous function f on a convex polytope Q C Rn. We show that it suffices to 
integrate the function on the (n - 1)-dimensional faces of Q, thus reducing the 
computational burden. Further properties are derived when f has continuous 
higher order derivatives. This result can be used to integrate a continuous 
function after approximation via a polynomial. 

1. INTRODUCTION 

We consider the integration of a continuous (positively) homogeneous function 
f: Rn -+ R on a convex polytope Q c Rn. We prove that if f is continuously 
differentiable, it suffices to integrate the function on the (n - 1)-dimensional faces 
of Q. As a continuous function on a compact set in Rn can be uniformly approxi- 
mated by a polynomial (a sum of homogeneous functions), this result provides an 
alternative method for integrating continuous functions on a convex polytope. 

A similar result also holds for an exponential e(c,x). In fact, it has even been 
shown in [1], [2] that it suffices to evaluate that function at the vertices of Q. This 
result was then used for computing the volume and counting integral points in Q. 

When f is twice continuously differentiable, one may proceed further, and we 
show that it suffices to integrate f on the (n-2)-dimensional faces and its derivatives 
on the (n - 1)-dimensional faces. One may iterate the process when f has higher 
order continuous derivatives, etc. 

2. INTEGRATION OF A HOMOGENEOUS FUNCTION 

Let A be an (m, n)-real matrix, f: Rn R f a real continuous (positively) 
homogeneous function of degree q, i.e. f(Ax) = Aqf(x) for all A > 0, x E Rnf. For 
a (positively) homogeneous function of degree q that is continuously differentiable, 
Euler's formula holds (cf. [5]), i.e.: 

(2.1) qf (x) = (Vf (x), x) for all x. 

Let 

(2.2) h(b) j f(x)dx with Q:= {x E Rnl Ax < b}. 
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We assume that Q is a convex polytope. The following fact is straightforward: 

Proposition 2.1. If f is (positively) homogeneous of degree q, then h is (positively) 
homogeneous of degree n + q. 

Proof. We have 

h(Ab) IA< f( = / Aqf)(/A)And(x/A) = An+q j f(x)dx, 
xz<Ab A(x /A) < bQ 

which yields the desired result. O 

Let Q? := {x E Rnl Ax < b, ATx - b}, i.e. Q? is the (n - 1)-dimensional 
face of Q determined by the hyperplane ATx = bi, where AT is the ith row of 
the matrix A. Let Hi denote the (n - 1)-dimensional affine variety that contains 
Q. The algebraic distance from the point xo to 'Hi is denoted d(xo,H-), and 
d(xo,1i) = (bi - ATxo)/IIAqiI (with 11.11 the usual Euclidean norm). Let 4t be the 
Lebesgue measure on 'Hi. The n-dimensional (resp. (n - 1)-dimensional) volume 
of Q (resp. Qi) is denoted by Vn(Q) (resp. Vn_l(Q)). 

Lemma 2.2. Assume that f is continuously differentiable, Vn(Q) # 0, and 
Vn, (Qi) = 0. Then, h is continuously differentiable at b and 

(2.3) a~~~~~(bi IlAill 
Q d8 

where 4t is the Lebesgue measure on tHi, the (n - 1)-dimensional affine variety that 
contains Qi. 

Proof. The proof is similar to the proof in [4] for the volume of Q, i.e. when 
f (x) _ 1. For 8bb > 0, let A (8b) be the set 

A(Qb%) := {x E Rnl bi < ATx < bi + 6bb, ATx < bj, ji}. 

Since Vn-1(Qi) $4 0, A(8bi) 7 0 for 8bb sufficiently small. Consider the change 
of variables x = xo + zAiI IAi I + En_- 1jVj, where ATxo = b& and the vj form 
an orthonormal basis of the (n - 1)-dimensional subspace ATx 0. Equivalently, 
A(6b ) can be written 

O<zIlAIll < Sb%, 
n-1 

S YkAJTVk < bj -ATxo-zATAi/IIAiI, j$& i. 
k=1 

Let 

sj := max[O, 
6b 

IA ATAil,s' := max[O, - I ATAi], j #i 

and let Al (6bi) and A2 (6bi) be the domains in RTn, defined respectively by 

b n-1 
O< z < bb ZYkATVk < bj -ATxo + s,j#i 

- II~II'k=1 

and 
n- T 

< - IIAz< 1 v YkATVk < bj-Af'xo-sj, j 
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Obviously, A2 (6bi) c A(6bi) C A' (bi ). Define also 

nl-1 

(2.4) A" (6bi) := {y E Rn-11 ZYkATVk < bj -AJ xo + sI, j $j}, 
k=1 

and 
n-1 

(2.5) A'2(6bi) := {y E R-I ZY kA"Vk < bj -ATxo-s, j # i}. 
k=1 

Note that A' (0) = A' 2(0) = Qi 
Assume first that f is nonnegative. From h(b + bbiei) - h(b) = fA(sb ) fdx, we 

have 

jbbIl JiA 2 f (xo + ZAil +EykVk)dydz < h(b+-8bi) - h(b), 

rabi/l ii l 2 ( i IAil 
bb/IAIl 

f/(xob + ZA11 +ZykVk)dydz > h(b+ bi) - h(b). 

f being continuously differentiable, one may write 

f (Xo + EykVk + zl Ai) 

= f(Xo + Z 
YkVk) + z(Vf (Xo + E YkVk + o 1) 

k kIl ll lA l 

for some 0 < 0 < z. Therefore, Vf being bounded on a compact set, with a simple 
continuity argument we get 

li h(b+ 6biei) - h(b) _A JI (o) f(xo + Zk YkVk)dy _f fdyt 
bbi-O bbi lAill lAill. 

For f not necessarily nonnegative, simply use the same argument with (f + M) - 

M, where supxE5Q If(x)I < M (as f is continuous and Q is compact). 
Finally, the same argument also holds if bbi < 0, and the continuity of the partial 

derivatives is immediate from (2.3). 0 

Remark 2.3. We have not used that f is (positively) homogeneous, so Lemma 2.2 is 
valid for any continuously differentiable function f. In addition, note that if Qi = 0, 
then ah(b)/&bi = 0, in accordance with 0 = fQ fd,u. Indeed, the constraint A Tx < 
bi is strictly redundant and remains strictly redundant with a slight perturbation 
of bi. 

Theorem 2.4. Assume that f is continuously differentiable, Vn(Q) $& 0, and, for 
all i = 1, ..., m, V,1 (Qi) :# 0. Then 

(2.6) f (x)dx=n E_ f fdt E fdjt, 

where pt is the Lebesgue measure on the (n - 1)-dimensional affine variety 'Hi that 
contains Qi. 
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Proof. Since h(b) is an homogeneous continuously differentiable function at b, by 
Euler's formula (2.1), one gets 

(2.7) (n + q)h(b) = (Vh(b), b), 

which, using Proposition 2.1 and Lemma 2.2 for Vh(b), yields (2.6). M 

Remark 2.5. (a) Formula (2.6) also holds if Qi = 0 for some i's. For such i's, 

fo, fd4t = 0, in accordance with ah(b)/9bi = 0 (cf. Remark 2.3). 
(b) Note that the proof of Theorem 2.4 only uses Euler's formula. An alternative 

proof is to use Green's formula, i.e., with notation as in Prop. 2.3 , p. 128 in [6], 

jdiv(X)fdw + jXfdw = j (X,n) fdc, 

where ni is the unit outward-pointing normal to 9Q, and with the vector field 
X := E-1 Xi(9a/xi. 

Hence, the integration of f on Q reduces to a weighted integration of f on the 
(n - 1)-dimensional faces of Q (and in fact, only on those faces that do not contain 
the origin). A similar formula has already been given for f := e(c,x), using Stokes' 
formula (see [1], [2]). 

For instance, if P (resp. Q) is an homogeneous polynomial of degree p (resp. q), 
then 

j(P+Q)dx=Zd(o,H,) (+ + Q+ )do. 
n+p n +q 

With f _ 1, one retrieves the volume formula given in [4] that is interpreted 
as a standard result in geometry. Indeed, in (2.6) fAi fdlt reduces to Vn-1(Qi), 
the (n - 1)-dimensional volume of Qi, so that bi/(njjAijj) x Vn_1(Qi) is simply the 
n-dimensional version of the standard formula for the area of a triangle (base x 
height/2) and (2.6) reads 

m b 
(2.8) Vn(Q) =n7 E 1^11Vn- (Q). 

In [4], an algorithm based on (2.8) has been proposed, and the interested reader is 
referred to [3] for a numerical comparison of several algorithms for exact volume 
computation, including that one. 

Remark 2.6. In fact Theorem 2.4 is also valid at points b where Vn- 1(Qi) = 0 for 
some i E I C {1, ..., m}. Indeed, one may prove that the constraint ATx < bi, i E I, 
is redundant and therefore can be removed, i.e. Q {xI ATx < bi, i ' I}. After 
having removed all the redundant constraints, (2.6) is valid, with the summation 
being now over all i 0 I. But (2.6) is also valid if we maintain those i C I, since 

Vnl(Qi) = O =* (Qi) = 0 jfdI -0. 

2.1. Further results. We now would like to apply the same technique to f,, f dy 
so as to consider integration on faces of lower dimensions. Indeed, we can do so 
provided f has continuous second derivatives. 

Let bi be the (m - 1)-vector obtained from b by deleting its ith entry, and let 
A(') be the matrix obtained from A by deleting its ith row. Let {Vk} be n - 1 
orthonormal vectors in the vector space associated with -Hi. For every j =$ i, let 
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Bj be the (n - 1)-vector {Bjk} with Bjk := ATVk, k = 1,...,n-1, and with xo 
arbitrary, define 

ri := {y E R IJ BTy < bj-A-Jxo, j$?& i}={y E R -'I By < b- A(()xo} 

and 
n-1 

(2.9) h(b, xo) ] f(xo + Zykvk)dy. 
JBy<bi-A(i)xo k=1 

If xo E 'Hi, then ri is the representation of Qi in an orthonormal basis of H-i, and 
h(b', xo)= fn fd,u, with it the Lebesgue measure on 'Hi. Finally, let 

Qi. := {x E Ql ATx = bi, ATx= bi} 

be the (i, j) ((n - 2)-dimensional) face of Q and l-ii the (n - 2)-dimensional affine 
variety that contains Qi , 
Theorem 2.7. Let f be twice continuously differentiable. Assume also that for 
every i = 1, ..., m, either Qi = 0 or Vn-I (Qi) $? 0, and for every j = 1, ... m with 
j :A i, either Qij = 0 or Vn-2(Qij) :# 0. Then: 

(a) h(b', xo) is positively homogeneous of degree n + q -1. 

(b) With xo E 'Hi fixed, arbitrary, 

(2.10) &h(b, ) _ 1 fdv, j $ i, 

(2.11) &?~~bjE IBjll Iij i k 

(2.11) ah(b,lxo) - Ajk fdv + j fdt 

with [t (resp. i) the Lebesgue measure on Hi (resp. l-i). 
(c) With xo E 'Hi fixed, arbitrary, 

(2.12) jf d[t= nj [Zdi(xo,Iij)J fdv + f(Vf,xo)dpi, 
i n + q 1 jisj J~i 

with di the algebraic (Euclidean) distance in 'Hi. 

Proof. (a) FRom the definition of h(b, xo) in (2.9), we- get 
n-1 

h(Ab, Axo) = | f(Axo + E YkVk)dY 
JBy?(bt-A(i) xo) k=1 

n-1 

= /z Aqf(xo + Z(Yk/A)Vk)A ld(y/A) 
- B(Y/A)<bA )XO k=1 

n-1 

= A nJq-1 f l (xo + E YkVk)dy 
JBy<bi-A(ixo k=1 

= An+q-l h(b'l xo). 

(b) If Q = 0, then Q = 0 as well, and fJJ, fdv = 0. Any slight perturbation 

of bj, j : i, leaves Qi empty, so that ah(b', xo)/&lbj = 0, and thus (2.10) holds. 
Assume now that Vn-i(Qi) $& 0. If Qij = 0, it remains empty for every suf- 

ficiently small perturbation of bj, and therefore, Qi remains unchanged. Hence, 
&9h(b', xo)/&bj) = 0, in accordance with fnj f dv = 0, i.e. (2.10) holds. 
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Consider now the case where Qij $& 0 and write h(b', x0) as G(b) fBy?b g(y)dy, 
with 

n-1 

b:-b' - A(')xo and g(y) := f(xo + > YkVk). 
k=1 

We can also write By < b as 

BTy < ba := b--ATXo for all j $& i. 

Applying Lemma 2.2 to G (in Lemma 2.2, we did not use that f was positively 

homogeneous, cf. Remark 2.3), we see that G is continuously differentiable, and 

&h(bt, xo) _3G(b) 1 f 
abj ab B I|Bil By<b, BTy=bg 

where v is now the Lebesgue measure on the (n - 2)-dimensional affine variety 

7Hij C 'Hi, that contains the polytope 

{y E Rn-liBy <b BTy = bj} = Qi. 

This yields (2.10). To get (2.11), let xo xo + Aek with ek the n-vector {8kj} (and 

8kj the Kronecker symbol). Then 
n-1 

h(b', xo + Aek) = f (xo + Aek + >j y8v,)dy. 
Y<bi-A_ (XO+\ek) s=1 

Define 

Qi(A) :={y E R jn-l By < b' - A()xo- AA(')ek} and Qi(O) = Qi 

Now, writing x' := xo + E?=- y,v,, with f twice continuously differentiable, we get 

n-1if(/ 2f(I+Ok 

f (xo + Aek + E ysv) = f(x') + A&f(x) + A2 &2f(x + X ek) 
S=1 Xk 

for some 0 < 0 < A. Hence, 

A-1(h(b',xo + Aek)-h(b7,xo)) = A-1[ f(x')dy - j f(x')dy] 
Qi (A) Qi 

+ &f (x) + A&a2f (xI + Oek) dy 
JQQN() aXk ak 

As f is twice continuously differentiable, (&2f (X')/&X2) is bounded on a compact 
set. In addition, for A sufficiently small, Qi(A) is contained in some compact set. 
Therefore, in the above equation, the term A Q(A)(02 f (X + 0ek)/0x2 )dy vanishes 

as A -* 0. 

In addition, by a simple continuity argument, 

(2.13) A -* 0= ()dy f &f(x') f 

JQi(A) OXk JQ2(0) OXk JQi 
with ,u the Lebesgue measure on 'H-. 

Finally, write 
n-1 

g(y) : f(xo ysvs) and bj(A) bj-ATxo-AAjk, ji. 
s=l 
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Denote 

G(b(A)) j f(x')dy= J g(y)dy. 
Qi () y<6(,\) 

Assume first that Vn-2(Qij) .7 O. Again, we can apply Lemma 2.2 to G, since g 
is continuously differentiable and Vn_2(Qij) $ 0. Therefore, one gets 

abj I fBdll y d=BjTy=b 9 l jjBjl y<b,BTy fdv, 

with v the Lebesgue measure on the (n - 2)-dimensional affine variety lHij c 'Hi 
that contains the convex polytope {y E Rn-1lBy < b, BjTy = bj} Qi. Hence, 
from 

1* &~~~~~~~~~~~~G (b (O)) d-b3(O) lim A ? i()f(x)dy -j f(x )dy) = d 
AA)jab d 

and dbj/dA = -AJk, one gets 

(2.14) limA-J( f(x')dyj- f(x')dy) = gAj f dv. 

If Qjj 0, then Qi (A) = Qi for A sufficiently small, and therefore, 

lim A-'[ g(y)dy - g(y)dy] = 0, 
>? - Qi (A) Q 

in accordance with fJ. fdv = 0. Finally, combining (2.13) and (2.14) yields (2.11). 
(c) To get (2.12), we just apply Euler's formula (2.1) to h(bi, xo), which is posi- 

tively homogeneous of degree n + q -1, and continuously differentiable. This yields 

f d,u = h (bi xo) = 1 h (Vh(b xo) (bI xo)) 
nm+q 1 

= m+q- 1 [(V bih(bI, xo), bi) + (Vxoh(b'I xo), Xo)]. 

Using (2.10)-(2.11) for Vh(bi, xo) in the above expression, one gets 

jfdiuz = ?l_[Z b I fdv +J (Vf, xo)ddj] 

Noting that (bj - ATxo)/l l Bj If is just di(x0,H tij) (the algebraic distance in 1-i from 
the origin xo to lij), one gets (2.12). l 

Hence, integrating f on Q reduces to 
* either integrating f on the (n - 1)-dimensional faces of Q (cf. Theorem 2.4), 
* or integrating f on the (n - 2)-dimensional faces of Q and its derivatives on 

the (n - 1)-dimensional faces of Q (cf. Theorem 2.7). 
Provided f has continuous partial derivatives of order p + 1, one may iterate 

the above procedure and show that it suffices to evaluate f and its first, second, 
... , pth derivatives at the vertices of Q, the (1)-dimensional faces, etc. 
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For instance, consider the term fji(Vf,xo)dMt. Let zo E Hi be arbitrary, and 
with the same notation as in the proof of Theorem 2.7, write 

n-1 

g(bl, zo) (Vf , xo)d /| (Vfd(zo + E ykVk), xo)dy. 
JQi J By<bi-AMi)zo k=l 

Again, g is (positively) homogeneous of degree (n + q - 2) since Vf is positively 
homogeneous of degree q - 1. Therefore, if f has continuous third derivatives, 
proceeding with similar arguments as in the proof of Theorem 2.7, one gets: 

J (Vf, xo)dtL - +q- 2[E lBl) J (Vf, xo)dv+ j (ZO (&2f)xo)dMl 

with 02f the Hessian matrix of f. 
An interesting case is when f is an homogeneous polynomial of degree q. Then 

the (q + 1)th derivatives vanish, and integrating that polynomial on Q requires only 
knowledge of the polynomial and all its partial derivatives at the vertices of Q, 
i.e. at a finite number of points. As a continuous function on a compact set can 
be approximated by polynomials (a sum of homogeneous polynomials), one may 
compute a good approximation of the integral by considering only the vertices of 
Q. 

Finally, one may notice that integration on a nonconvex polytope reduces to the 
above case after a partition of the original polytope into convex polytopes. 

2.2. Illustrative example. In R2, consider J := fQ xydxdy with 

Q := {(x,y) E R121 x + y < 1, x > a, y > b}, 

i.e. n = q = 2. A direct integration yields 

J = 8 [(1-b)4-a4]3 [(1-b) - a3+ 4(1-b2)[(l-b)2-a2] 

Now, with Q1 := Q n {x = a}, we get 
s1-a 

d(o7Il)]X f d,u = -a] avdv = -a2[(1 - a)2 - b2]/2. 
Q1b 

With Q2 := Q n f{y = b} we get 
t1-b 

d(o,1H2)] fd,u =-b J bvdv = -b2[(1 - b)2 - a2]/2. 

With Q3 := nf {x + y = we get 

if1-b 1 
d(o, lt3) f fd/- =2 X\A v(l -v)dv = 2-[(I1-b)2 -a2] _ 3 [(1 -b)3 -a3] 

and one may check that 
,1-a r1-b ^1-b 

J -[-a2J vdv-b2 J vdv+ j v(l-v)dv], 

J-45 d(0, )O fd,u, 

or equivalently, (2.6) is satisfied. 
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Similarly, take xo := (1 - b, b) E 'H3. Then 

d3 (xXO 2) = O, d3 (XO, H ) = 2(l1- a- b), f ((a, 1 -a))=- a(l-X 

In addition, 
r s~~~~~1-a 

j(Vf(x), xo)p(dx) V= j [v(l - b) + (1 - v)b]dv, 
03b 

and one may check that 

--[(1-a- b)a(l -a) + j [v(l - b) + b(l - v)]dv] = fdu 
3 43 

i.e. (2.12) is satisfied. 
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