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NOTES 
Edited by Jimmie D. Lawson and William Adkins 

The Multi-Dimensional Version of b xPdx 

Jean B. Lasserre and Konstantin E. Avrachenkov 

1. INTRODUCTION. Besides its own interest, integration of polynomials over 
simple sets such as simplices has important applications. In particular, in most finite 
element integration methods ([7, p. 90, p. 175]), the domain of integration is decom- 
posed into elementary cells and the function is approximated by a polynomial on 
each cell. The simplex-like elements (triangles, tetrahedrons,...) are among the most 
popular type of cells. 

In this paper we obtain a new exact integration formula for a q-homogeneous poly- 
nomial that is not an approximate quadrature formula ([1], [2], [6]) but rather is the 
multi-dimensional version of the one-dimensional classical formula 

b bq+1l q+1 b- a 
xq dx = = b-[aq +aq-lb+ +abq +bq]. (. 1) 

I +q 1 +q 

Among its nice features, the multi-dimensional analogue of (1.1) has a simple form, is 
coordinate-free, and uses information at the vertices only. In addition, various simpli- 
fications are possible to yield even simpler alternative formulae [4]. 

Since every polynomial can be represented as a sum of homogeneous polynomials, 
one can easily apply our results to integrate an arbitrary polynomial over a simplex. 

Another interesting feature of this formula is that it could be used efficiently in a 
finite-element method using simplices. For example, while building the elementary 
simplices A of the mesh, it is easy to associate once and for all with each A (via 
this formula), a matrix Q*, so that integrating a quadratic functional x'Qx reduces to 
computing trace( QQ,), which requires only n2 scalar multiplications. This may be 
particularly useful when one has to integrate various quadratic functionals on the same 
mesh. A similar argument is also valid for arbitrary q-homogeneous functionals. 

2. MAIN RESULT. Let An C IRn be an n-dimensional (non-degenerate) simplex, 
that is, x E An if and only if x is a convex combination E 

Xixi (with Xi > 0 
and Xi Xi = 1) of n + 1 points x0, x1, ... , xn such that the vectors (xi - x0), i = 
1, 2, ... , n, are linearly independent. We let x' denote the transpose of a vector x. 

Let p(x): Rn --E R be a real (positively) r-homogeneous polynomial, i.e., p(Xx) = 
Xrp(x) for all X > 0, x E RnR, and some integer r > 0. 

We are interested in computing 

J p(x) dx. (2.1) 
n 

We first introduce some notation. With every symmetric multilinear form H 
(Rlfn)q ER, given by 

(Xi, ..*xq) F-* H(xi,.. Xq), X1, .., Xq E IRT (2.2) 
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one may associate a q-homogeneous polynomial x i-+f (x) := H(x, x, . .. , x) and 
conversely, using a polarization formula, with every q-homogeneous polynomial f: 
Rn I,R one may associate a symmetric q-linear form H: (In)q -? R. Therefore, 
we now consider the integration of a q-linear form H over the simplex An. 

Theorem 2.1. Let xO, xI, . . ., xn be the vertices of an n-dimensional simplex An- 
Then, for a symmetric q-linear form H : (Rfn)q - R, one has 

J H(x,x,...,x)dx = 
VOI 

j 
n 

H(xi,,xi2,.., (2.3) 
tn (q ) L0<ii <i2,..., <iq<n 

Proof. We use the well-known formula for integrating a homogeneous polynomial on 
the canonical simplex 

I a " dx = (2.4) 

where Qn := {x E Rnl En_IXi < 1; xi > 0, i = 1, 2, ... , n) ([2], [5]). Of course, 
(2.4) is valid only for the canonical simplex Qn. The key idea is to use properties of a 
symmetric q-linear form. 

Write x E An as x = Enj3 Xixi with Xi > 0 and Ei Xi = 1, or equivalently, x = 

Z7=l Xixi + (1 - 1 Xi)xO with (X1 .I. , Xn) E ?n, and where 

n 
Qn := { EcR I X i < 1, Xi > 0, i = 1, 2, n, I 

i=l 

i.e., Qn is just the canonical simplex in Rn. 
Therefore, noting that 

n n n 

x = ixi + 1 X i XO = XO + Xi R(xi - xo), 

we have, by a change of variable x - > X, 

J H(x,x, ...,x)dx = det(x1 -xO,x2- XO, Xn - -xo) 
n 

(, H xixi + ( 1- xi )xo, .. ., ,xixi + ( -, Xi )xo) dX, 
Qn i=l = = 

= n! VOl(An) 

x H (,Exi + (1-,xi xo . . .,E,Xxi + (1-,Xi xo) dX. 
Qn i=l i=j= =l 

Expanding, we get: 

I H(x, x, . . ., x) dx = n! vOl(An) 
\n 

x E A(ao, L xi an)f(1-Xi) X' n dX. (2.5) 
12 Ti=q Mn iAC 
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As H is symmetric, in (2.5), we have 

A(ao,..., an) = (q )1(q-oe0) (q Zlo ?i)H(x, xl, xccn) (2.6) 
aOI( a1 an ! 0'1'n' 

where En=Oci = q and where the notation H (x<a,o<, .a..',xn) means that xo ap- 
pears a0 times, xi appears a, times, ..., xn appears a,n times. 

Now, with Eyn= a1 = q, we have 

| (1- )i ,al ... n dv, = a0al! a. an! (2.7) 
_ n(n +q)! 

[2, (2.2)]. Therefore, using (2.6) and (2.7) in (2.5), and noting that 

(q 8 (q - aol (q-Zi-n-Iai ao!ll! ...an! q! 

Yxo} k al an v (n + q)! (n + q)!' 

we get 

| H(x, x, . .., x) dx= q! n! vol\) E H (xaO?... xuna 
fAfl ~~~~~(n +q)! 

IAn ..In 

vOI(An) E H(xi1,xi2 . .Xiq) i 

q o<il . .<iq <n 

As one may see, the formula (2.3) is extremely simple. Among its nice features: 

* it uses only n + 1 points, the vertices xo, . .. , xn of An , 
* it is coordinate-free, i.e., it is given directly for an arbitrary simplex and not only the 

canonical simplex. 
* all coefficients in the formula are equal, positive, and with ratio to vol(A,n) bounded 

as n increases. 

As already mentioned, every polynomial pn(x) :Rn Et- R of degree q is the sum of 
at most q + 1 homogeneous polynomials of degree 0, 1, . .. , q. To each one of them 
corresponds a 0-linear, 1-linear, . . ., q-linear form, to which in turn, the formula (2.3) 
may be applied. Thus, Theorem 2.1 provides a simple way to integrate an arbitrary 
polynomial on a simplex. 

One may see that (2.3) is the n-dimensional counterpart of the one-dimensional 
formula 

fbxqdx (bq+l _aq+l) =b -a [aq + aq-lb + +abq-1 + bq], (2.8) 

q +1 (+q) 

since (b - a) = vol([a, b]). 

Remark 2.2. Consider the integration of a quadratic homogeneous functional x'Qx 
(with Q an n-by-n symmetric real-valued matrix) on an n-dimensional simplex A. 
The functional Q - fA x'Qxdx may be viewed as a linear form on the n(n + 1)/2- 
dimensional Hilbert space of real-valued symmetric matrices, with the Frobenius 
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scalar product (Q, Q*) = trace( Q Q *) Therefore, 

fx'Qx dx = vol(A) (Q, Q*), (2.9) 

for some symmetric matrix Q*. The identification of Q* is easy from (2.3). For ex- 
ample, with n = 2 and A {(xi, yi)}, i = 0, 1,2, 

X 2Xj 2 3 yi + Y i+X1] 

O<i<j<2 O<i<j<2 

Q A 
- L2Xy+ij 

O<i<j<2 O<i<j<2 

and in the n-dimensional case, for a simplex An {xo, * * *, Xn}, 

QA(i,j) = 
(n + 1)(n + 2) 2 

1 

Hence, with an arbitrary n-dimensional simplex A, one may associate a symmetric 
matrix Q* so that for every (symmetric) functional x' Qx, (2.9) holds. This represen- 
tation is especially useful when one has to compute (2.3) for several matrices Q. For 
example, the matrices Q* can be precomputed in a finite element method while build- 
ing a mesh. Then, evaluating (2.3) for a functional x'Qx via (2.9), requires only n2 
scalar multiplications, in contrast to evaluating n(n + 1)/2 terms of the form x1'Qxj 
(each term also requires about n2 multiplications). Of course, a similar construction 
holds for q-linear symmetric forms. 
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