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ABSTRACT. We present an exact formula for integrating a (positively) homo-
geneous function f on a convex polytope 2 C R™. We show that it suffices to
integrate the function on the (n — 1)-dimensional faces of €2, thus reducing the
computational burden. Further properties are derived when f has continuous
higher order derivatives. This result can be used to integrate a continuous
function after approximation via a polynomial.

1. INTRODUCTION

We consider the integration of a continuous (positively) homogeneous function
f: R™ — R on a convex polytope  C R™. We prove that if f is continuously
differentiable, it suffices to integrate the function on the (n — 1)-dimensional faces
of Q. As a continuous function on a compact set in R™ can be uniformly approxi-
mated by a polynomial (a sum of homogeneous functions), this result provides an
alternative method for integrating continuous functions on a convex polytope.

A similar result also holds for an exponential e{>®). In fact, it has even been
shown in [1], [2] that it suffices to evaluate that function at the vertices of §2. This
result was then used for computing the volume and counting integral points in .

When f is twice continuously differentiable, one may proceed further, and we
show that it suffices to integrate f on the (n—2)-dimensional faces and its derivatives
on the (n — 1)-dimensional faces. One may iterate the process when f has higher
order continuous derivatives, etc.

2. INTEGRATION OF A HOMOGENEOUS FUNCTION

Let A be an (m,n)-real matrix, f : R — R a real continuous (positively)
homogeneous function of degree g, i.e. f(Az) = Af(z) for all A > 0, z € R™. For
a (positively) homogeneous function of degree ¢ that is continuously differentiable,
Euler’s formula holds (cf. [5]), i.e.:

(2.1) qf(z) = (Vf(z),z) for all z.

Let

(2.2) h(b) := / f(z)dz with Q := {z € R"| Az < b}.
Q
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We assume that 2 is a convex polytope. The following fact is straightforward:

Proposition 2.1. If f is (positively) homogeneous of degree q, then h is (positively)
homogeneous of degree n + q.

Proof. We have
— — n — \n+
h(AB) = /A , fie= /A @A =t /Q f(z)da,

which yields the desired result. O

Let Q; := {z € R*| Az < b, ATz = b;}, i.e. Q; is the (n — 1)-dimensional
face of  determined by the hyperplane A7z = b;, where AT is the ith row of
the matrix A. Let H; denote the (n — 1)-dimensional affine variety that contains
Q;. The algebraic distance from the point zo to H; is denoted d(zg,H;), and
d(zo, Hi) = (b; — AT'z)/||As|| (with ||.]| the usual Euclidean norm). Let u be the
Lebesgue measure on H;. The n-dimensional (resp. (n — 1)-dimensional) volume
of Q (resp. ;) is denoted by V,(2) (resp. Vn—1(£%)).

Lemma 2.2. Assume that f is continuously differentiable, V() # 0, and
Vn-1(€) # 0. Then, h is continuously differentiable at b and

oh 1
2.3 _—= / fdu,
(23) 56 = ATl o,
where u is the Lebesgue measure on H;, the (n — 1)-dimensional affine variety that
contains €;.

Proof. The proof is similar to the proof in [4] for the volume of €, i.e. when
f(z) = 1. For éb; > 0, let A(6b;) be the set

A(8b;) == {z € R"| b; < ATz < b; + 8b;, Ajz <bj, j #i}.

Since V,—1(f%) # 0, A(6b;) # 0 for 6b sufficiently small. Consider the change
of variables z = zo + zA4;/||Ail| + ZJ ', y;v;, where ATzo = b; and the v; form
an orthonormal basis of the (n — 1)-dimensional subspace ATz = 0. Equivalently,
A(6b;) can be written

S wATve < by — Ao — 2ATA||AY|, G # 1.

Let

R T 1, T . .
s; = max][0, A, HzAJA] = max]|0, ||A ||2AJA] Jj#1,

and let Al(6b;) and A%(6b;) be the domains in R", defined respectively by

5b,, T T . ;
0<z< Al ;ykAjkabj"ijO"i's‘;? J#F
and
§b; = p r .
0<2< ykAjUkaj—ijo'—Sj,J?éZ'
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Obviously, A%(6b;) C A(6b;) C Al(6b;). Define also

n—1

(24)  A(8b) ={y e R"| Y wkATvp <b; — ATzo + 5}, j #1},
k=1

and
n—1

(25)  A2(8b):={y € R"'| Y yrATvp <b; — ATzg —s;, j # i}.
k=1

Note that A'1(0) = A"2(0) =
Assume first that f is nonnegative. From h(b + éb;e;) — h(b) = fA(&b,—) fdzx, we
have

b /11 A:l| A;
/ / flzo+ 22—+ Zykvk)dydz < h(b+8b;) — h(b),
0 2(5b;) 1Al 4

6bi /11 Al A;
/ / flxo+ 2—— + Zykvk)dydz > h(b+ 6b;) — h(b).
0 A'1(6b;) ||Ai|| %
f being continuously differentiable, one may write

A;
f($0+2ykvk+zm)
k 1
:f(m0+zykvk)+z<Vf($O+Zykvk+0ﬁ)’ﬁ>
k k ? 1

for some 0 < 6 < z. Therefore, V f being bounded on a compact set, with a simple
continuity argument we get
o h(b+bie) — h(b) _ Jaro) F(@o + Zvev)dy [ fdu
8b;—0 8b; | Asl| Al

For f not necessarily nonnegative, simply use the same argument with (f+ M) —
M, where sup,cq |f(z)| < M (as f is continuous and 2 is compact).

Finally, the same argument also holds if §b; < 0, and the continuity of the partial
derivatives is immediate from (2.3). a

Remark 2.3. We have not used that f is (positively) homogeneous, so Lemma 2.2 is
valid for any continuously differentiable function f. In addition, note that if ; = @,
then 8h(b)/0b; = 0, in accordance with 0 = [, fdu. Indeed, the constraint ATz <
b; is strictly redundant and remains strictly redundant with a slight perturbation
of b;.

Theorem 2.4. Assume that f is continuously differentiable, V,,(Q) # 0, and, for
alli=1,...m, Vp_1(8;) # 0. Then

d(o, H;)
S A n+qznAln/ fd=2 g s

=1

where p is the Lebesgue measure on the (n — 1)-dimensional affine variety H; that
contains ;.
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Proof. Since h(b) is an homogeneous continuously differentiable function at b, by
Euler’s formula (2.1), one gets

(2.7) (n+ q)h(b) = (Vh(b),b),
which, using Proposition 2.1 and Lemma 2.2 for Vh(b), yields (2.6). O

Remark 2.5. (a) Formula (2.6) also holds if §; = @ for some ¢’s. For such 4’s,
Jo, fdu = 0, in accordance with 0h(b)/0b; = 0 (cf. Remark 2.3).

(b) Note that the proof of Theorem 2.4 only uses Euler’s formula. An alternative
proof is to use Green’s formula, i.e., with notation as in Prop. 2.3 , p. 128 in [6],

/Qdiv(X)fdw + /Qdew - /aQ(X,ﬁ)fda,

where 77 is the unit outward-pointing normal to 912, and with the vector field
X = Z?:l xza/axz

Hence, the integration of f on € reduces to a weighted integration of f on the
(n —1)-dimensional faces of 2 (and in fact, only on those faces that do not contain
the origin). A similar formula has already been given for f := e®?)  using Stokes’
formula (see [1], [2]).

For instance, if P (resp. Q) is an homogeneous polynomial of degree p (resp. gq),
then

/(P+Q)dx—zdo,m)/ (o + =)

With f = 1, one retrieves the volume formula given in [4] that is interpreted
as a standard result in geometry. Indeed, in (2.6) fQi fdp reduces to V,_1(Q),
the (n — 1)-dimensional volume of §2;, so that b;/(n||A;|]) X Va—1(€) is simply the
n-dimensional version of the standard formula for the area of a triangle (base X
height/2) and (2.6) reads

(28) Va(®) = -12 V()

In [4], an algorithm based on (2.8) has been proposed, and the interested reader is
referred to [3] for a numerical comparison of several algorithms for exact volume
computation, including that one.

Remark 2.6. In fact Theorem 2.4 is also valid at points b where V,,—1(Q;) = 0 for
somei € I C {1,...,m}. Indeed, one may prove that the constraint A7z < b;, i € I,
is redundant and therefore can be removed, i.e. Q = {z| ATz < b;, i ¢ I}. After
having removed all the redundant constraints, (2.6) is valid, with the summation
being now over all ¢ € I. But (2.6) is also valid if we maintain those ¢ € I, since

Vao1(R6) = 0= p(Q) =0 = /Q fdu=0.

2.1. Further results. We now would like to apply the same technique to fﬂi fdu
so as to consider integration on faces of lower dimensions. Indeed, we can do so
provided f has continuous second derivatives.

Let b® be the (m — 1)-vector obtained from b by deleting its ith entry, and let
A® be the matrix obtained from A by deleting its ith row. Let {vx} be n —1
orthonormal vectors in the vector space associated with H;. For every j # i, let
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Bj; be the (n — 1)-vector {Bjx} with Bj; := Aka, k=1,..,n—1, and with zg
arbitrary, define
Ii:={y € R"}| By <b; ~ Afz0, j #i} = {y € R**| By < b — AVz0}

and
n—1

(29) ', a0) = | Flao+ Y eor)dy.
By<bi—A()zy k=1

If z¢g € H;, then I'; is the representation of {2; in an orthonormal basis of H;, and
h(b?, o) = fﬂ; fdu, with u the Lebesgue measure on H;. Finally, let

Q:={o Q| ATz =b;, Ajz=b;}

be the (¢,7) ((n — 2)-dimensional) face of 2 and H;; the (n — 2)-dimensional affine
variety that contains €;;.

Theorem 2.7. Let f be twice continuously differentiable. Assume also that for
every i = 1,...,m, either Q; =0 or Vpo_1(%) # 0, and for every j = 1,...,m with
J #1, either Q;; =0 or Vp_2(Qj;) # 0. Then:

(a) h(b*,x0) is positively homogeneous of degree n+ q — 1.

(b) With o € H; fized, arbitrary,

O (b, o) 1 L
2.10 ; = dv, j#1,
(2.10) ob; [1Bjll Ja, fdo 37

Oh(b%, o) —Ajk / of
2.11 SRR = dv+ [ S=—dp,
@10 Do 2B o, T Jo, 5™

with p (resp. v) the Lebesgue measure on H; (resp. Hij).
(c) With o € H; fized, arbitrary,

1
(2.12) /m fdp = m[;‘h(fbo,"iij) /s:z] de+/Qi<Vf,$0>dﬂ],

with d; the algebraic (Euclidean) distance in H,;.
Proof. (a) From the definition of h(b%,zo) in (2.9), we get

n—1
RN, Azo) = / FOmo+ 3" ykvi)dy
By<A(bi—AW ) =t
n—1
- / X f(zo+ 3 (ve/Nui) A" d(y/A)
B(y/A)<bi— Az k=1
n—1
Amte—l / fl@o+ > yxvr)dy
By<bi— Az =

= AHUR(E ).
(b) If Q; = 0, then Q;; = 0 as well, and fﬂij fdv = 0. Any slight perturbation
of bj, j # 1, leaves §; empty, so that Oh(b%,z0)/0b; = 0, and thus (2.10) holds.
Assume now that V,_1(€%;) # 0. If Q;; = 0, it remains empty for every suf-

ficiently small perturbation of b;, and therefore, ; remains unchanged. Hence,
Oh(b*,9)/0b;) = 0, in accordance with fQ“ fdv =0, i.e. (2.10) holds.
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Consider now the case where Q;; # 0 and write h(b%, zo) as Gb) = [ By<b g(y)dy,
with
n—1

ho=bi — A(i)wo and g(y) = f(.'Eo + Zykvk)'
k=1

We can also write By < b as
Bly < b; :=b; — ATz, for all j #i.

Applying Lemma 2.2 to G (in Lemma 2.2, we did not use that f was positively
homogeneous, cf. Remark 2.3), we see that G is continuously differentiable, and

Oh(b' o) _ 8G() _ 1
Bbj 38j [|Bil] By<b, B y=b;

where v is now the Lebesgue measure on the (n — 2)-dimensional affine variety
H;; C H;, that contains the polytope

{y e R"'|By <b, By =1b;} = ;.

This yields (2.10). To get (2.11), let zo := zo + Aex with ey the n-vector {6;} (and
Ok; the Kronecker symbol). Then

gdv,

n—1

h(b%, 2o + Nex) = / f(zo+ Xep + Z YsVs)dy.
By<bi— AW (zo+Xey) o—1

Define
Q:(\) :={y € R" !By < b — A9z — MADe;} and Q;(0) = Q

Now, writing z’ := zo+ E::ll YsUs, with f twice continuously differentiable, we get

n—1
et Of(@') | 20%f (2’ + Oey)
f(x0+)\ek+sz=:1ys'us)_f(m)+)‘ oz, +A sz

for some 0 < 6 < A. Hence,

AL (R(b*, o + Aex) — h(b', To))

A / F&)dy - / £y

(&) | 0 (@ +bex)
+ dy.
/Q ) 8.’I3k 6.’1’? Y

As f is twice continuously differentiable, (62 f(z')/8z%) is bounded on a compact
set. In addition, for A sufficiently small, £2;()A) is contained in some compact set.
Therefore, in the above equation, the term A fQi o (0% f(x' + Oey,)/0x2)dy vanishes
as A — 0.

In addition, by a simple continuity argument,

/ / a
Ny, [ U 01), _ [ 1,

Q; (M) (9$k 8.’L'k Qs B:L'k ’

(2.13) A— 0=

with u the Lebesgue measure on H;.
Finally, write
n—1

9(y) == f(xo + Zysvs) and b (A) :==0b; — AT:rO — Mg, j#1.

s=1
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Denote

G = [

Q:(N)

f(a')dy = / ~ 9(y)dy.
By<b(N\)

Assume first that V,_2(£;;) # 0. Again, we can apply Lemma 2.2 to G, since g
is continuously differentiable and V,,_2(£;;) # 0. Therefore, one gets

aG(h) 1

—_— fdv,
0b; ||B I By<b,BT y=b,

gdv = ——
||Bj|| By<b,BF y=b,

with v the Lebesgue measure on the (n — 2)-dimensional affine variety H;; C H;
that contains the convex polytope {y € R""!|By < b, B y = b;} = Q;;. Hence,
from

0G(b(0)) db; db;(0)

lim A~ 1( / f(a")dy — / f(@')d b, dA

J#z
and db;/d\ = — Ay, one gets

(2.14) lim A~( / [ iy / F(@)dy) = Z” o / fdv.

A—0

If Q;; = 0, then Q;(\) = Q; for A sufficiently small, and therefore,

lim /\‘1[/920) 9(y)dy — /Q 9(y)dy] = 0,

A—0

in accordance with fﬂj fdv = 0. Finally, combining (2.13) and (2.14) yields (2.11).

(c) To get (2.12), we just apply Euler’s formula (2.1) to h(b%, ), which is posi-
tively homogeneous of degree n+ ¢ — 1, and continuously differentiable. This yields

/Qifdu = h(bi,xo):n—:;_—l(Vh(bi,xo),(bi,mo))
= ;;-zj—lwbih(b",wo), b + (Vo h(b', 20), z0)].

Using (2.10)-(2.11) for VA(b%, zo) in the above expression, one gets
b; AT.’B()

_ 1 i A
L= et P fav [ a0

JF#

Noting that (b; —A]Txo) /l|B;l| is just d;(zo, H;;) (the algebraic distance in H; from
the origin zo to H;;), one gets (2.12). O

Hence, integrating f on Q reduces to

e cither integrating f on the (n — 1)-dimensional faces of Q (cf. Theorem 2.4),
o or integrating f on the (n — 2)-dimensional faces of Q and its derivatives on
the (n — 1)-dimensional faces of  (cf. Theorem 2.7).

Provided f has continuous partial derivatives of order p + 1, one may iterate
the above procedure and show that it suffices to evaluate f and its first, second,
..., pth derivatives at the vertices of (2, the (1)-dimensional faces, etc.
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For instance, consider the term le(V frzo)du. Let zo € H; be arbitrary, and
with the same notation as in the proof of Theorem 2.7, write
n—1
o, 20) = [ (Vi z0)du= [ (VF(z0+ 3 vivi), zo)dy.
Q; B’y_(_bi—A(i)Zo k=1
Again, g is (positively) homogeneous of degree (n + g — 2) since V f is positively
homogeneous of degree ¢ — 1. Therefore, if f has continuous third derivatives,
proceeding with similar arguments as in the proof of Theorem 2.7, one gets:
1 d,L' (z(), Hi ) 2
v, z0)du = [ @raair+ [ (o, (@ f)o)dul
[ g ST | (oreias [ o

with 6% f the Hessian matrix of f.

An interesting case is when f is an homogeneous polynomial of degree q. Then
the (g-+1)th derivatives vanish, and integrating that polynomial on 2 requires only
knowledge of the polynomial and all its partial derivatives at the vertices of 2,
i.e. at a finite number of points. As a continuous function on a compact set can
be approximated by polynomials (a sum of homogeneous polynomials), one may
compute a good approximation of the integral by considering only the vertices of
Q.

Finally, one may notice that integration on a nonconvez polytope reduces to the
above case after a partition of the original polytope into convex polytopes.

2.2. Illustrative example. In R?, consider J := Jo zydzdy with
Q:={(z,y) ER*|z+y <1, z>a, y>b}

i.e. n=¢q=2. A direct integration yields
T =S[00t == 210 =5 @]+ 51 - B)[(1 - b —a?].
Now, with Q7 := QN {z = a}, we get
do, ) [ fou=—a /b 7 v = —a?[(1 — a)? — 12
With Qo :=Qn{y = b}l, we get
dlo,Ha) [ fu=—b / " v = (1 - b)? — a?]/2.
With Q3 :==QN{z+y ; 1}, we get
d(0,Hs) /Q fdp = -\}—5 /:"b Vau(1 - v)dv = %[(1 B -] - %[(1 B d

and one may check that

1 1—a 1-b 1-b
J= Z[_a?/ vdv — b2/ vdv +/ v(1 —v)dv],
b a a

ie.,

3
1
J=7 ;d(o,m) /ﬂ fdp,

or equivalently, (2.6) is satisfied.
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Similarly, take zg := (1 —b,b) € Hs. Then
ds(z0, H2) =0, d3(z0,H1) = V2(1 —a—1b), f((a,1—a)) =a(l -a).
In addition,

l—a
/ (Vf(z),zo)p(dz) = \/5/ [v(1=1b) + (1 —v)bldv,
Q3 b

and one may check that

l1—a
?[(1 —a-—"bla(l-a) +/b [v(1 =b) +b(1 —v)]dv] = ‘/ﬂa fdu,

i.e. (2.12) is satisfied.
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