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INTEGRATION AND HOMOGENEOUS FUNCTIONS 

JEAN B. LASSERRE 

(Communicated by David H. Sharp) 

ABSTRACT. We show that integrating a (positively) homogeneous function f 
on a compact domain Q C Rn reduces to integrating a related function on the 
boundary 9Q. The formula simplifies when the boundary cAQ is determined 
by homogeneous functions. Similar results are also presented for integration 
of exponentials and logarithms of homogeneous functions. 

1. INTRODUCTION 

We consider the integration of a continuous (positively) homogeneous function 
f: Rn -- R on a compact domain Q with boundary &9Q. Using Euler's identity 
for homogeneous functions, Green's formula simplifies so that integrating f on Q 
reduces to integrating a (simply related) function on the boundary OQ. In the 
particular case where Q := {x E RnI gj(x) < ai, i = 1, .. , m} and where the func- 
tions gi are each (positively) homogeneous of degree pi, the formula is even simpler. 
Actually, an alternative proof that uses only Euler's formula is also outlined. 

We thus extend to more general domains a result in [4] for integrating a homo- 
geneous function on a convex polytope. 

A potential application is the integration of arbitrary continuous functions on a 
compact set Q. Indeed, as the polynomials are sums of homogeneous polynomials, 
and are dense in C(Q), the space of continuous functions on Q with the sup norm, 
or even in L1(Q), one could approximate fn f dx by Ei fn Pidx, where the Pi's are 
homogeneous polynomials, and therefore use the previous result. This result could 
also be used in finite element methods for the integration of a poynomial on each 
individual volume element. 

Finally, we also provide simple formulas for the integration of exponentials and 
logarithms of homogeneous functions. For instance, integrating log f on a convex 
polytope Q reduces to integrating log f on &Q and to computing the volume of Q. 

2. INTEGRATION OF A HOMOGENEOUS FUNCTION 

Let f: Rn -+ R be a real (positively) homogeneous function of degree p (or 
in short, f is p-homogeneous), i.e. f(Ax) = APf(x) for all A > 0, x E Rn. For 
a (positively) p-homogeneous function that is continuously differentiable, Euler's 
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formula states that 

(2.1) pf(x) = (Vf(x),x) for all x. 

2.1. On the Riemann-Green formula. We first treat the 2-dimensional case. 
Let Q be a compact domain in R2 with boundary &Q. Let P(x,y) and Q(x,y) 
be continuously differentiable on Q. Then, under some regularity conditions, the 
well-known Riemann-Green formula (cf. [5]) states that 

(2.2) JjjQ - ay)dxdy= Pdx+ Q dy. 

This yields: 

Lemma 2.1. Let f(x, y) be a continuously differentiable p-homogeneous function 
on Q. Then 

(2.3) (P + 2)Jj f dxdy = f (x, y) (x dy -y dx). 

Proof. As f is p-homogeneous, from (2.1) 

pf(xy) = Xaf +yaf b(x y) E P. 

Let P(x, y) := -yf (x, y) and Q(x, y) := xf (x, y) for every (x, y) E Q. 

aQ - 8aP = 2 f (XI y) + xf + y af = (p + 2)f (X y) V(x, y) E Q. 

Hence, applying the Riemann-Green formula (2.2) to P and Q yields 

(p+ 2) f dxdy = f (xy)(xdy - ydx), 

the desired result. [ 

When f =1 (i.e. p = 0), one immediately retrieves the well-known formula 

area(Q) = j x dy-y dx. 

2.2. The general case. The previous result generalizes to Rn as follows: 

Lemma 2.2. Let f : Rn - R be a continuously differentiable p-homogeneous func- 
tion and Q a compact domain Rn with boundary &Q. Then 

(2.4) (n + p) fdwI = (M, n) f (M) du, 

where no is the unit outward-pointing normal to &Q0. 

Proof. With notation as in [6], let X be the vector field X := Ej x3j . From 

Proposition 2.3 in [6], we have 

(2.5) jdiv(X)f dw + Xf dw = j(X, no) f du. 

Now, div(X) = n and from (2.1), Xf = pf so that the result follows. [ 

Thus, integrating f on Q reduces to integrating (M, n)f on the boundary 9Q. 
We next show that Lemma 2.2 further simplifies in the case where the boundary 
&Q is determined by homogeneous functions. 
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3. BOUNDARY DETERMINED BY HOMOGENEOUS FUNCTIONS 

We now consider the special case where 

(3.1) Q(c R n) := {x E Rn g(x) < ai, i = 1,...,m}, 

and the functions gi are each continuously differentiable (positively) pi-homogeneous 
functions, i = 1,... , m. We still assume that Q is compact. Finally, let Qi := {x E 

I gi(x) = ai} so that &Q = U' 1 Qi. 

Theorem 3.1. Assume that f is a continuously differentiable q-homogeneous func- 
tion and the functions gi are each continuously differentiable and pi -homogeneous, 
i=l,...,m. Then 

M 
~~f (3.2) (n+q) jfdw= piaij IVg 1 da. 

In particular, with f _ 1, one obtains 
m 

(3.3) n x vol(Q) = piaij IIVgij 'du-. 

Proof. Lemma 2.2 applies so that 
m 

(3.4) (n+q)jfdw = (X, n)fdd. 

Now, In= giVgij'-Vgi on Qi. Therefore, using (2.1), we have on Q 

(X, Vgi) = (x, Vgi(x)) = pigi(x) =piai, 

which yields the desired result. E 

Remark. When Q is a convex polytope, i.e. gi(x) = (Ai, x) and pi = 1, i-1,... , m, 
then IIVgiI = IIA1 and thus (3.2) simplifies to 

(n + q) jfdw = a i j fda. 

In addition, one may iterate the process for fo, f du (cf. [4] for more details). 

An alternative proof. Interestingly enough, there is a direct proof that does not use 
Green's formula. It was used in [4] for the case where Q is a convex polytope. 

Write ai = bPi, i = 1, ... , m, and let 

(3.5) h(b) fdw = fdx. 
Q {9~i (x) <bi, i=1,- * *,m-} 

It is immediate that h(Ab) = An+qh(b), i.e. h is (n + q)-homogeneous and continu- 
ously differentiable. In addition, one may show that 

a~h =ip- f d 

Hence, applying Euler's formula to h yields 

(3.6) (n+q)h(b) = (Vh(b),b) = piai ' 1 du, 

the desired result. 
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Example. In R2, consider the domain 

Q:= {(x, y) E R2I xy < 1; x2 + y2 < R2; xy?} > O 

and its volume fn dw (i.e. f _ 1 is 0-homogeneous). 
Note that in (3.3), the coordinate axis boundaries of Q do not contribute since 

the boundary values ai are zero in this case. 
Both gi (x, y) := xy and g2 (x, y) := x2 + y2 are 2-homogeneous. Q: {(x, y) E 

QI xy = 1} and Q2 := {(Xy) E Q x2 + y2 = R2}. IIVgl(M)I = +- so 
that on Q, we have I jVgl (M) I I = A(x4 + 1)/x2 and du = +/(x4 + l)/x4dx, which 
yields 

Q1 ~~~~a- (3.7) IlVglllj'do u x'dx =2log(a), 

where x = a is the solution to x2 + y2 = R2 Xy-1. 
Similarly, 11Vg2 = 2R on Q2, so that 

42 IVg21-1do = 2 x (1/2R) x (Ra) = a, 
Q2 

where a = arctan (a-2). Hence, Theorem 3.1 yields 

2 vol(Q) = 4 log (a) + R2 arctan (a-2), 

i.e. vol(Q) = 2 log (a) + R2 arctan (a-2)/2. This can be retrieved directly. 
If we now take Q := {(x,y)I xy < 1;b < y < a;x > O} with a > b > 0, we get 

02 := {(x, y) E 0I y = a} and Q3 := {(x, Y) E 0I -y =-b}. Therefore, 

4 IVgl1-ldu = log (a); J4 IVg211-1da = I; 4 Vg3 11 -1'd = 1 

so that Theorem 3.1 yields 

2vol(Q) = 2 log () + a-- b! = 2 log ()' 

i.e. vol(Q) = log (a/b), which is immediate to check. 

4. INTEGRATING EXPONENTIALS AND LOGARITHMS 

In this section, we consider exponentials and logarithms of homogeneous func- 
tions. Indeed, we show that integrating such functions on Q reduces to integrating 
a related function on the boundary &Q. 

4.1. Exponentials. We first consider the case of an exponential eh(x) where h: 
R' -- R is q-homogeneous. The particular case where h = (c, x) was considered 
in [1] and [2] and was used to compute the number of integral points in a convex 
polytope. We have the following result. 

Theorem 4.1. Let Q be the convex polytope {x E Rn I (Ai, x) < ai, i = 1,... , m}. 
(a) Let h: Rn -+ R be q-homogeneous and continuously differentiable. Then, 

for every k = 0,1,.... 

(4.1) (nr+qk) hkehdw + q hk+lehdw = E ji jhke du. 
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(b) Let h: Rh -- R be q-homogeneous, continuously differentiable and strictly 
positive on Q. Then, for every k = 1,..., 

m 

(4.2) (n - qk) h-keh dw + q] h-k+leh dw = h-kh do. 

(c) If p n/q is an integer, then 
m 

(4.3) q h-P+leh dw al h-Peh du 

and fn hkeh dw, k = -p + 1. . ., -1, 1,..., can all be expressed as integrals on 
&9Q. In particular, 

M 
(4.4) qj ehdw = L -- eh[h- -(p-l)h -1)(p -2)h 

+... + (-l)P+'(p - 1)!h-P]du. 

(d) With h := (c, x), and for every ( E Rn, we get 

(4.5) (c, () j e(c(x) d. - E ( j e(C') d. 

Proof. Again, with f hkeh and with the vector field X := xi A, Green's 
formula yields 

(4.6) n afdw+ Xfdw = j (X, n) f du. 

Using 

Xf = (khk-l + hk)eh Xi a = q(khk + hk+l)eh, and (X, n) I Q 

we obtain 

(4-7) (n + qk) hkeh dW + q hk+leh w=E al 
i 

hkeh do, 
IIlAi IIJ 

i.e. (4.1). Similarly, with f := hkeh and similar arguments we obtain (4.2). 
To get (c), just notice from (4.2) that fn h-n/q+lehdw is expressed directly as an 

integral over aQ, which yields (4.3). Using (4.2) with k := n/q - 1 and (4.3), one 
obtains f h-nl/q+2ehdw as an integral on (90. Therefore, iterating and using (4.2) 
and (4.1), all the fn hkehdw, for k :=-n/q + 1,..., -1,0 . 1, .. ., are expressed as 
integrals on 9Q. 

To get (d), apply Green's formula (4.6), but now with X = E (iO/xi, so that 
div(X) = 0. O 

The formula (4.1) remains valid even with h- 0 and k = 0. With the convention 
00 = 1, (4.1) reduces to the volume formula (3.3) of Q. 

Note that (4.5) was obtained in [1] using Stokes' formula, and a similar argument 
was used to show that it suffices to consider the vertices of the polyhedron. The 
same can be done using the above argument. 

Indeed, let 'Hi be the (n - 1)-dimensional affine variety that contains QP, and 
{IU1,... , Un-1} an orthonormal basis of the associated vector space. x C Qi can be 
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written xo + E- yui with xo CE Q, arbitrary. On Q., consider the vector field 

ZW' ~ia/&yt. Green's formula yields 
n-1 

(c, (ui / e(cx)du = d ni) e(cx)dv 
i=1 Qij7A 1ni. 

where Q~j := fl n Qj and ni (in the basis {Ul,... ,uni}) is the unit outward- 
pointing normal to Q~j. Obviously, the process can be repeated up to the 0- 
dimensional faces, i.e. the vertices of Q. 

4.2. Logarithms. Consider now the function log f where f : Rn tR is continu- 
ously differentiable, q-homogeneous and strictly positive on Q. 

Lemma 4.2. Let Q c Rn be a compact domain with boundary ffl, and let f 
Rnf R be continuously differentiable, q-homogeneous and strictly positive on Q. 
Then 

(4.8) n j log f dau + q x vol(Q) = j (M, n) log f (M) dcu. 

In addition, if Q := {x c Rn I (Ax) < a,, i = 1,...,m}, and Q. := {x C 
DI (Ai, x) = ai}, then 

(4.9) n log f dw + q x vol(Q) = log f du. 

Proof. The proof is again the same as for the exponential. Note that with the 
vector field X := Ej xi&/xj, we have Xlogf = q and div(X) = n, so that (2.5) 
reduces to (4.9). LI 

Hence, integrating log f on a convex polytope Q reduces to integrating log f on 
the boundary &Q and to computing the volume of the polyhedron. 
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