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COMPUTING THE EHRHART QUASI-POLYNOMIAL
OF A RATIONAL SIMPLEX

ALEXANDER BARVINOK

ABSTRACT. We present a polynomial time algorithm to compute any fixed
number of the highest coefficients of the Ehrhart quasi-polynomial of a ratio-
nal simplex. Previously such algorithms were known for integer simplices and
for rational polytopes of a fixed dimension. The algorithm is based on the
formula relating the kth coefficient of the Ehrhart quasi-polynomial of a ratio-
nal polytope to volumes of sections of the polytope by affine lattice subspaces
parallel to k-dimensional faces of the polytope. We discuss possible extensions
and open questions.

1. INTRODUCTION AND MAIN RESULTS

Let P C R? be a rational polytope, that is, the convex hull of a finite set of
points with rational coordinates. Let ¢ € N be a positive integer such that the
vertices of the dilated polytope

th{t:C: J:EP}

are integer vectors. As is known (see, for example, Section 4.6 of [27]), there exist
functions e;(P;+) : N — Q, ¢ =0,...,d, such that

e;(P;n+t)=e;(P;n) forallneN
and

d
[nPNZY = z:ei(P;n)nZ for all n € N.
i=0

The function on the right-hand side is called the Fhrhart quasi-polynomial of P. It
is clear that if dim P = d, then ey(P;n) = vol P. In this paper, we are interested
in the computational complexity of the coefficients e;(P;n).

If the dimension d is fixed in advance, the values of e;(P;n) for any given P, n,
and ¢ can be computed in polynomial time by interpolation, as implied by a poly-
nomial time algorithm to count integer points in a polyhedron of a fixed dimension
@, 6]

If the dimension d is allowed to vary, it is an NP-hard problem to check whether
PNZ%+# (), let alone to count integer points in P. This is true even when P is a
rational simplex, as exemplified by the knapsack problem; see, for example, Section
16.6 of [25]. If the polytope P is integral, then the coefficients e;(P;n) = e;(P)
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do not depend on n. In that case, for any k fixed in advance, computation of
the Ehrhart coefficient e4_x(P) reduces in polynomial time to computation of the
volumes of the (d—k)-dimensional faces of P [5]. The algorithm is based on efficient
formulas relating ey (P), volumes of the (d — k)-dimensional faces, and cones of
feasible directions at those faces; see [22], [6], and [23]. In particular, if P = A is
an integer simplex, there is a polynomial time algorithm for computing e4_;(A) as
long as k is fixed in advance.

In this paper, we extend the last result to rational simplices (a d-dimensional
rational simplex is the convex hull in R? of (d+ 1) affinely independent points with
rational coordinates).

e Let us fix an integer £ > 0. The paper presents a polynomial time algorithm,
which, given an integer d > k, a rational simplex A C R¢, and a positive integer n,
computes the value of eq_x(A;n).

We present the algorithm in Section 7 and discuss its possible extensions in
Section 8.

This is in contrast to the case of an integral polytope, for a general rational poly-
tope P computation of e;(P;n) cannot be reduced to computation of the volumes
of faces and some functionals of the “angles” (cones of feasible direction) at the
faces. A general result of McMullen [19] (see also [2I] and [20]) asserts that the
contribution of the i-dimensional face F of a rational polytope P to the coefficient
e;(P;n) is a function of the volume of F, the cone of feasible directions of P at F,
and the translation class of the affine hull aff(F) of F' modulo Z<.

Our algorithm is based on a new structural result, Theorem 1.1 below, relating
the coefficient ey (P;n) to volumes of sections of P by affine lattice subspaces
parallel to faces F' of P with dim F' > d — k. Theorem 1.1 may be of interest in its
own right.

1.1. Valuations and polytopes. Let V' be a d-dimensional real vector space and
let A C V be a lattice, that is, a discrete additive subgroup which spans V. A
polytope P C V is called a A-polytope or a lattice polytope if the vertices of P
belong to A. A polytope P C V is called A-rational or just rational if tP is a lattice
polytope for some positive integer .

For a set A C V, let [A] : V — R be the indicator of A:

-} e

A complex-valued function v on rational polytopes P C V is called a valuation if
it preserves linear relations among indicators of rational polytopes:

ZOQ[Pl] =0= Z OéiI/(Pi) =0,

icl icl
where P; C V is a finite family of rational polytopes and «; are rational numbers.
We consider only A-valuations or lattice valuations v that satisfy

v(P+u)=v(P) forallueA;

see [21] and [20].
A general result of McMullen [I9] states that if v is a lattice valuation, P C V is
a rational polytope, and ¢ € N is a number such that ¢P is a lattice polytope, then
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there exist functions v;(P;-) : N — C, i =0,...,d, such that
d .
v(nP) = Z vi(P;n)n' for alln e N
i=0
and
vi(Pin+1t) =v;(P;n) forallneN.

Clearly, if we compute v(mP) for m =n,n+t,...,n + td, we can obtain v;(P;n)
by interpolation.
We are interested in the counting valuation E, where V = R? A = Z?, and

E(P)=|PNZY

is the number of lattice points in P.

The idea of the algorithm is to replace valuation E by some other valuation, so
that the coefficients eq(P;n), ..., e4—(P;n) remain intact, but the new valuation
can be computed in polynomial time on any given rational simplex A, so that the
desired coefficient e4_;(A;n) can be obtained by interpolation.

1.2. Valuations E;. Let L C R? be a lattice subspace, that is, a subspace spanned
by the points L N Z¢. Suppose that dimL = k and let pr : R — L be the
orthogonal projection onto L. Let P C R be a rational polytope, let Q = pr(P),
Q@ C L, be its projection, and let A = pr (Zd). Since L is a lattice subspace, A C L
is a lattice.

Let L* be the orthogonal complement of L. Then L+ C R? is a lattice sub-
space. We introduce the volume form voly_j on L+ which differs from the volume
form inherited from R? by a scaling factor chosen so that the determinant of the
lattice Z¢ N L* is 1. Consequently, the same volume form voly_j is carried by all
translations = + L+, € R%.

We consider the following quantity

EL(P)= Y volgr (PN (m+L"Y)) = Y vola_g (PN (m+L"))
meA meQRNA

(clearly, for m ¢ @ the corresponding terms are 0).

In words, we take all lattice translates of L', select those that intersect P, and
add the volumes of the intersections.

Clearly, Ey, is a lattice valuation, so

d
Ep(nP)= Z ei(P, L;n)n’
i=0
for some periodic functions e;(P, L; ). If tP is an integer polytope for some ¢t € N,
then
e;(PyLin+t)=¢;(P,L;n) forallneN

and i =0,...,d.

Note that if L = {0}, then E7(P) = vol P and if L = R?, then Er(P) = |[PNZ%|,
so the valuations Ej, interpolate between the volume and the number of lattice
points as dim L grows.

We prove that eq_r(P;n) can be represented as a linear combination of
ed—k (P, L;n) for some lattice subspaces L with dim L < k.
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Theorem 1.1. Let us fiz an integer k > 0. Let P C R? be a full-dimensional ratio-
nal polytope and let t be a positive integer such that tP is an integer polytope. For
a (d — k)-dimensional face F' of P let lin(F) C R? be the (d — k)-dimensional sub-
space parallel to the affine hull aff(F) of F and let L¥ = (lin F)J' be its orthogonal
complement, so L¥ C R? is a k-dimensional lattice subspace.

Let L be a finite collection of lattice subspaces which contains the subspaces L*
for all (d — k)-dimensional faces F of P and is closed under intersections. For
L € L let u(L) be integer numbers such that the identity

[U L] S o

LeLl LeLl

holds for the indicator functions of the subspaces from L.
Let us define

v(nP) =Y w(L)EL(nP) forneN.
LeL
Then there exist functions v;(P;-) : N — Q, i =0,...,d, such that

(1)

d
v(nP) = ZW(P; n)n' for alln € N,
i=0

vi(P;n+1t) =v;(P;n) forallneN,

eq—i(P;n) =vg_i(P;n) forallneN and i=0,...k.
We prove Theorem 1.1 in Section 4 after some preparations in Sections 2 and 3.

Remark 1.2. Valuation E clearly does not depend on the choice of the scalar product
in R%. One can observe that valuation v of Theorem 1.1 admits a dual description
which does not depend on the scalar product. Instead of £, we consider the set
LV of subspaces containing the subspaces lin(F') and closed under taking sums of
subspaces, and for L € LY we define EY(-) as the sum of the volumes of sections
of the polytope by the lattice affine subspaces parallel to L. Then

v=">Y u(L)E},
LeLv

where 1V are some integers computed from the set £V, partially ordered by inclu-
sion.
However, using the explicit scalar product turns out to be more convenient.

The advantage of working with valuations Ej, is that they are more amenable
to computations.

e Let us fix an integer £ > 0. We present a polynomial time algorithm, which,
given an integer d > k, a d-dimensional rational simplex A C R?, and a lattice
subspace L C R? such that dim L < k, computes Er,(A).

We present the algorithm in Section 6 after some preparations in Section 5.
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1.3. The main ingredient of the algorithm to compute ¢;_(A;n). Theorem
1.1 allows us to reduce the computation of e4_r(A;n) to that of Er(A), where
L c R? is a lattice subspace and dim L < k. Let us choose a particular lattice
subspace L with dimL =7 < k.

If P = A is a simplex, then the description of the orthogonal projection QQ =
pr(A) of A onto L can be computed in polynomial time. Moreover, one can compute
in polynomial time a decomposition of () into a union of non-intersecting polyhedral
pieces ();, such that volg_; (prfl(x)) is a polynomial on each piece @);. Thus
computing of E,(A) reduces to computing of the sum

> o(m),
meQ;NA

where ¢ is a polynomial with deg¢ = d — j, Q; C L is a polytope with dim Q; =
j <k,and A C L is a lattice. The sum is computed by applying the technique of
“short rational functions” for lattice points in polytopes of a fixed dimension; cf.
[7, [6], and [12].

The algorithm for computing the sum of a polynomial over integer points in a
polytope is discussed in Section 5.

2. THE FOURIER EXPANSIONS OF E AND Fj,

Let V be a d-dimensional real vector space with the scalar product (-,-) and the
corresponding Euclidean norm || - ||. Let A C V be a lattice and let A* C V be the
dual or the reciprocal lattice

A*:{xEV: (x,y)erorallyeA}.
For 7 > 0, we introduce the theta function

Op (2, 7) =72 Z exp {—n7|lz —m|?}
meA
=(det A)~* Z exp {—n[|l||*/7 + 27wi(l,z)}, where z € V.
leA*

The last inequality is the reciprocity relation for theta series (essentially, the Poisson
summation formula); see, for example, Section 69 of [J].

For a polytope P, let int P denote the relative interior of P and let 9P = P\ int P
be the boundary of P.

Lemma 2.1. Let P C V be a full-dimensional polytope such that OP N A = ().
Then
[PNA|= lim Op(z,7) do

T—>+400 P
—1 . 2 .
=(detA)~" lim zg‘* exp {—l|I[|?/7} /Pexp{2m<l, x)} da.
Proof. As is known (cf., for example, Section B.5 of [17]), as 7 — 400, the function
Oa(x,7) converges in the sense of distributions to the sum of the delta-functions
concentrated at the points m € A. Therefore, for every smooth function ¢ : R —
R with a compact support, we have

(2.1) lim . G(2)0a(z,7) dv = ¢(m).

T—400
meA
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Since P N A = (), we can replace ¢ by the indicator function [P] in (2.1). O

Remark 2.2. If 0P N A # (), the limit still exists but then it counts every lattice
point m € 0P with the weight equal to the “solid angle” of m at P, since every term
exp {—n7|lz —m|?} is spherically symmetric about m. This connection between
the solid angle valuation and the theta function was described by the author in the
unpublished paper [2] (the paper is very different from paper [5] which has the same
title) and independently discovered by Diaz and Robins [13]. Diaz and Robins used
a similar approach based on Fourier analysis to express coefficients of the Ehrhart
polynomial of an integer polytope in terms of cotangent sums [I4]. Banaszczyk [1]
obtained asymptotically optimal bounds in transference theorems for lattices by
using a similar approach with theta functions, with the polytope P replaced by a
Euclidean ball.

The formula of Lemma 2.1 can be considered as the Fourier expansion of the
counting valuation.

We need a similar result for valuation F, defined in Section 1.2.

Lemma 2.3. Let P C R? be a full-dimensional polytope and let L C R? be a lattice
subspace with dim L = k. Let pr : R* — L be the orthogonal projection onto
L, let Q = pr(P), and let A = pr(Z%), so A C L is a lattice in L. Suppose that
0QNA=10.

Then

T—>-400

leLnz4

Ey(P)= tm Y exp{—ﬂ||l||2/7'}/Pexp{27ri<l,a:>}dm.

Proof. We observe that LNZ?* = A*. For a vector z € R?, let 2, be the orthogonal
projection of & onto L. Applying the reciprocity relation for theta functions in L,
we write

> exp {—n|l?/7 + 2mi(l,z)}

leLnzd

= > exp{-n|l|*/7 +2mi(l, L)}
leLnzd

=(det A)r*/2 Z exp {—m7|lz, —m|*}.

meA
As is known (cf., for example, Section B.5 of [17]), as 7 — 400, the function
gr(@) =72 3 exp {=nrllar —m|*}
meA

converges in the sense of distributions to the sum of the delta-functions concentrated
on the subspaces m + L+ (this is the set of points where x;, = m) for m € A.
Therefore, for every smooth function ¢ : R — R with a compact support, we

have
Z /m+Li o(z) dprz,

(2.2) lim o(x)g,(z) dx =
Rd meA

T—>+400

where d; .2 is the Lebesgue measure on m + L+ induced from R?.
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Since 0Q N A = (), each subspace m + L+ for m € A either intersects the interior
of P or is at least some distance ¢ = ¢(P,L) > 0 away from P. Hence we may
replace ¢ by the indicator [P] in (2.2).

Recall from Section 1.2 that measuring volumes in m + L+, we scale the volume
form in L' induced from R so that the determinant of the lattice L+ N Z% is 1.
One can observe that det A provides the required normalization factor, so

(det A) / P di (@) = volaoi (P11 (m o+ 1)),

The proof now follows. O

Remark 2.4. If 0Q N A # (), the limit still exists, but then for m € 9Q N A the
volume volg_y, (P N (m + LJ-)) is counted with the weight defined as follows: we

find the minimal (under inclusion) face F' of P such that m + L~ is contained in
aff (F') and the weight is equal to the solid angle of P at F.

3. EXPONENTIAL VALUATIONS

Let V be a d-dimensional Euclidean space, let A C V' be a lattice, and let A* be
the reciprocal lattice. Let us choose a vector [ € A* and let us consider the integral

O)(P) = /Pexp{27ri<l,x>} dx,

where dz is the Lebesgue measure in V. Note that for | = 0 we have ®;(P) =
Oy (P) = vol P. We have

O;(P+a) =exp{2mi(l,a)} D;(P) forallacV.

It follows that ®; is a A-valuation on rational polytopes P C V.

If | # 0, then the following lemma (essentially, Stokes’ formula) shows that @,
can be expressed as a linear combination of exponential valuations on the facets of
P. The proof can be found, for example, in [3].

Lemma 3.1. Let P C V be a full-dimensional polytope. For a facet I' of P, let
drx be the Lebesgque measure on aff (T'), and let pr be the unit outer normal to T'.
Then, for everyl € V' \ 0, we have

. _ <lapF> X Till. x T
/Pexp{Zﬂ'z(l,x)} dx—zr:2m,”l”2/re p{2mi(l,z)} drz,

where the sum is taken over all facets I' of P.

Let F C P be an i-dimensional face of P. Recall that by lin(F') we denote the
i-dimensional subspace of R that is parallel to the affine hull aff(F) of F'. We need
the following result.

Theorem 3.2. Let P C V be a rational full-dimensional polytope and let t be a
positive integer such that tP is a lattice polytope. Let € > 0 be a rational number
and let a € V be a vector. Let us choose | € AN*. Then there exist functions
fi(Pe,a,l;): N— C, 1 =0,...,d, such that
(1)
d
P ((n+e)P+a)= Zfi(P,e,a,l;n)n’ foralln e N
i=0
and
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fi(Pe,a,l;n+t) = fi(P,e,a,l;n)  forallm € N
andi=0,...,d.

Suppose that fq_r(P,e,a,l;n) # 0 for some n. Then there exists a (d — k)-
dimensional face F of P such that | is orthogonal to lin(F).

Proof. Since

O (P + a) =exp{27mi(l,a)} D;(P),
without loss of generality we assume that a = 0. We will denote f;(P,¢€,0,1;n) just
by fi(P, e l;n).

We proceed by induction on d. For d = 0 the statement of the theorem obviously
holds. Suppose that d > 1. If [ = 0, then ®;((n + €)P) = (n+ €)% vol P and the
statement holds as well.

Suppose that I # 0. For a facet I of P, let Ap = A Nlin(T") and let Ip be the
orthogonal projection of  onto lin(T"). Thus Ar is a lattice in the (d—1)-dimensional
Euclidean space lin(T") and i € A}, so we can define valuations ®;. on lin(T"). Since
tP is a lattice polytope, for every facet I' there is a vector upr € V such that

lin(T') = aff(¢tT') — tur and  tur € A.

Let I =T — up, so IV C lin(T") is a Ap-rational (d — 1)-dimensional polytope such
that ¢TI is a Ap-polytope. We have

(n+e)l'=(n+e)l" + (n+€)ur.
Applying Lemma 3.1 to (n + €) P, we get

O ((n+e)P) =Y oI, Ln)d, ((n+el’),

where

<lapF>
2mi||1]]?

(T, l;n) = exp{2mi(n + €)(l,ur)}

and the sum is taken over all facets I' of P.
Since tur € A and [ € A*, we have

Y, n+t) =4¢(,;n) forallneN.
Hence, applying the induction hypothesis, we may write

fi(Pel;n) = Zw(F,l;n)fi(F’,e,lp;n) for all n € N
r

and 1 = 0,...,d — 1 and f4(P,¢,l;n) = 0. Hence (1)—(2) follows by the induction
hypothesis.

If fa—r(P,€e,l;n) # 0, then there is a facet T of P such that fq_x(I",€,lr;n) # 0.
By the induction hypothesis, there is a face F’ of IV such that dim F’ = d — k, and
Ir is orthogonal to lin(F”). Then F = F’ + ur is a (d — k)-dimensional face of P,
lin(F’") = lin(F'), and [ is orthogonal to lin(F"), which completes the proof. O
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4. PROOF OF THEOREM 1.1

First, we discuss some ideas relevant to the proof.

4.1. Shifting a valuation by a polytope. Let V' be a d-dimensional real vector
space, let A C V be a lattice, and let v be a A-valuation on rational polytopes.
Let us fix a rational polytope R C V. McMullen [I9] observed that the function u
defined by

w(P) =v(P+ R)

is a A-valuation on rational polytopes P. Here “+” stands for the Minkowski sum:
P—i—R:{x—i—y: z € P, yeR}.

This result follows since the transformation P — P + R preserves linear depen-
dencies among indicators of polyhedra; cf. [21].

Let ¢t be a positive integer such that ¢P is a lattice polytope. McMullen [19]
deduced that there exist functions v;(P,R;-) : N — C, i =0,...,d, such that

d
v(nP + R) Zz/zPRn i forallm €N
1=0

and
vi(P,R;n+t) =v;(P,R;n) forallneN.

4.2. Continuity properties of valuations E and E. Let R C R¢ be a full-
dimensional rational polytope containing the origin in its interior. Then for every
polytope P C R? and every ¢ > 0 we have P C (P + eR). We observe that

|(P+eR)NZ| = |PNZY,

for all sufficiently small ¢ > 0. If P is a rational polytope, the supporting affine
hyperplanes of the facets of nP for n € N are split among finitely many translation
classes modulo Z¢. Therefore, there exists § = §(P, R) > 0 such that

|(nP+eR)NZY = |nPNZ% forall0<e<d andallneN.
We also note that for every rational subspace L C R?, we have
Jim B (P4 eR) = B1(P).
We will use the perturbation P —— P + €R to push valuations E and E into
a sufficiently generic position, so that we can apply Lemmas 2.1 and 2.3 without

having to deal with various boundary effects. This is somewhat similar in spirit to
the idea of [§].

4.3. Linear identities for quasi-polynomials. Let us fix positive integers ¢ and
d. Suppose that we have a possibly infinite family of quasi-polynomials p; : N — C
of the type

n) = Zpi(l;n)ni for all n € N,

where functions p;(l;-) : N — (C 1=0,...,d, satisfy
pi(l;n) =pi(l;n+1t) forallneN.
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Suppose further that p : N — C is yet another quasi-polynomial
d
p(n) = Zpi(n)nZ where p;(n+t) = p;(n) for all n € N.
i=0

Finally, suppose that ¢;(-) : Ry — C is a family of functions and that
p(n)=_lim > a(r)p(n) forallneN

T—+00

l

and that the series converges absolutely for every n € N and every 7 > 0.
Then we claim that for : =0, ...,d we have

pi(n) = Tinj-oo; c(m)pi(l;n) forallnm e N

and that the series converges absolutely for every n € N and every 7 > 0.

This follows since p;(n), respectively p;(l;n), can be expressed as linear combi-
nations of p(m), respectively p;(m), for m = n,n+t,...,n+td with the coeflicients
depending on m,n,t, and d only.

Now we are ready to prove Theorem 1.1.

4.4. Proof of Theorem 1.1. Let us fix a rational polytope P C R? as defined in
the statement of the theorem. For L € £ let P;, C L be the orthogonal projection
of P onto L and let A;, C L be the orthogonal projection of Z¢ onto L.
Let a € int P be a rational vector and let
R=P—a.

Hence R is a rational polytope containing the origin in its interior. Let R; denote
the orthogonal projection of R onto L.

Since P is a rational polytope and L is a finite set of rational subspaces, there
exists d = d(P, R) > 0 such that for all 0 < e < ¢ and all n € N, we have

(41) (nP+eR)NZ*=nPNZ* and O(nP+eR)NZ* =0 forallneN
and for all L € L, we have

(nPL + eRL) NArL =nPr,NArL and
O(nPp+eR,)NAL =0 forallneN;

cf. Section 4.2. Let us choose any rational 0 < € < 4.
Because of (4.1), we can write

(4.2)

d
(4.3) |(nP +eR)NZY = ei(P;n)n’ foralln €N
i=0
and by Lemma 2.1 we get
(4.4) |(nP +eR)NZ| = lirglr Z exp{—n||l||*/7}®;(nP + €R),
lezd

where ®; are the exponential valuations of Section 3.
Since ®; is a Z4-valuation, by Section 4.1 there exist functions f;(P, ¢, l;-) : N —
C,i=0,...,d, such that
d
(4.5) ®;(nP +€R) = Zfi(R e,l;n)n' forneN
=0
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and
(4.6) fi(Pye,lsn+t) = fi(P,e,l;n) for alln € N.
Moreover, we can write
nP+eR=nP+¢e(P—a)=(n+¢P —ea.

Therefore, by Theorem 3.2, for i < k we have fq_;(P,¢,l;n) = 0 unless [ € LT for
some face F' of P with dim F' = d—k. Therefore, combining (4.3)—(4.6) and Section
4.3, we obtain for all 0 <i < k and allmn € N

ca-i(Pin) = lim > exp{=rllil*/7} fa-i(P.c;lin)

lezd

= lim S exp{=nll|?/r} fai(P,e l;n),

T—>+400

€Uy ¢ (LNZT)

since vectors [ € Z? outside of subspaces L € £ contribute 0 to the sum. Therefore,
for0<i<kandalneN

[ P- — ; _ 2 ) .
(4.7 eq—i(P;n) = Tin—',l-oo Z (L) Z exp {—7|ll|I*/7} fa—i(P, €, l;n)
LeL leLnzd
On the other hand, because of (4.2), by Lemma 2.3 we get for all L € £ and all
n €N

(4.8) Ep(nP +cR) = lim > exp{-n|l|*/7} ®i(nP +€R).
T > leLnzd
Since Ey, are Z%valuations, by Section 4.1 there exist functions

ei(Pe,L;-) :N— Q, i=0,...,d, such that

d

(4.9) EL(nP + €R) ZelPeLnni forallm e N
=0

and

(4.10) e;(Pye,Lyn+1t)=e;(Pye,L;n) forall neN.

Combining (4.5)—(4.6) and (4.8)—(4.10), by Section 4.3 we conclude
eai(Poe,Lin) = lim Y exp{—al||l|*/7} fa—i(P.€,l;n) foralln € N.

HERA ey
Therefore, by (4.7), for 0 <4 < k we have
(4.11) eq—i(P;n) = Z w(L)eq—i(P,e,L;n) for all n € N.

LeLl
Since Ep, is a Z%valuation, there exist functions e;(P,L;-) : N — Q, i =
.,d, such that
d .
(4.12) Zel (P,L;n)n* forallneN
=0

and

ei(P,Lin+1t) =e;(P,L;n) forallneN.
Let us choose an m € N. Substituting n = m,m+t,...,m+td in (4.12), we obtain
e;(P, L;m) as a linear combination of Fr,(nP) with coefficients depending on n, m,
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t, and d only. Similarly, substituting n = m,m +¢,...,m + ¢d in (4.9), we obtain
ei(P, €, L;m) as the same linear combination of Ef, (nP + eR). Since volumes are
continuous functions, in view of (4.2) (see also Section 4.2), we get

lir%+EL(nP—|—eR) =FEr(nP) forn=m,m+t,...,m+td

Therefore,
liné+ e;(Pye, Lym) = e;(P,L;m) for all m € N.

Taking the limit as ¢ — 0+ in (4.11), we obtain for 0 <4 < k
eq—i(P;n) = Z w(L)eq—i(P,L;n) for all n € N.
Lel
To complete the proof, we note that

va—i(P,Lin) = Y p(L)eq—i(P, L;n).
LeL

5. SUMMING UP A POLYNOMIAL OVER INTEGER POINTS
IN A RATIONAL POLYTOPE

Let us fix a positive integer k and let us consider the following situation. Let
Q C RF be a rational polytope, let int Q be the relative interior of @, and let
f : R¥ — R be a polynomial with rational coefficients. We want to compute the
value

(5.1) > f(m).
meint QNZF

We claim that as soon as the dimension k of the polytope @ is fixed, there is a
polynomial time algorithm to do that. We assume that the polytope @ is given by
the list of its vertices and the polynomial f is given by the list of its coefficients.

For an integer point m = (u1, ..., t), let
X" =gt alt for x = (24,...,ap)
be the Laurent monomial in k variables x = (z1,...,2%). We use the following
result [6].

5.1. The short rational function algorithm. Let us fix k. There is a polynomial
time algorithm, which, given a rational polytope Q C R¥, computes the generating
function (Laurent polynomial)

S@x) =Y = x"
meint QNZF

in the form

a K

S(Q;X) = Zei (1 —Xb“))'("(]. ,Xbik)’

icl
where a; € Z*, b;; € ZF\ {0}, and ¢; € Q. In particular, the number || of fractions
is bounded by a polynomial in the input size of Q.
Our first step is computing the generating function

S@ fix)= Y flm)x™

meint QNZk
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Our approach is similar to that of [12], although we obtain better complexity bounds
(our algorithm is polynomial in deg f whereas the algorithm of [I2] is exponential

in deg f).
5.2. The algorithm for computing S(Q, f;x). We observe that
S(Q. 130 = 1 (2170w ) S(@i)
s J - 16331’.”7 kal'k ) .

We compute S(Q;x) as in Section 5.1.
Let a = (ou,...,ar) be an integer vector, let b; = (G;1,...,0;x) be non-zero
integer vectors for j = 1,...,k, and let 71, ..., be positive integers. Then

o S
Ti ox; (]_ _ Xbl)’h - (]_ _ xbk)’Yk

x@ a+b
:ai(l_xlh)’h.. (1 — xbx)m ZWJ’BJZ 3 )i+l H 1—Xb
Consecutively applying the above formula and collecting similar frauctlons7 we com-

pute
f :ci xi x*
1ax17..~, ka.’ll‘]q (1—Xb1)~-~(1—xbk)

as an expression of the type

a .

(52) ij 1 — Xbl Vi1 .. (]_ — Xblc)'YJk

where p; € Q, vj1,...,7,x are non-negative integers satisfying v;1 + -+ + vji <
k + deg f and a; are vectors of the type

aj = a+ p1by + -+ + pgby,

where p; are non-negative integers and pq +- - -+ pr < deg f. The number of terms
in (5.2) is bounded by (deg f)°®), which shows that for a k fixed in advance, the
algorithm runs in polynomial time.

Consequently, S(Q, f;x) is computed in polynomial time.

Formally speaking, to compute the sum (5.1), we have to substitute z; = 1 into
the formula for S(Q, f;x). This, however, cannot be done in a straightforward
way since x = (1,...,1) is a pole of every fraction in the expression for S(Q, f; x).
Nevertheless, the substitution can be done via efficient computation of the relevant
residue of S(Q, f;x) as described in [4] and [7].

5.3. The algorithm for computing the sum. The output of Algorithm 5.2
represents S(@, f;x) in the general form

x4
S(Q fix ZGZ — xbit)7in ...(]_7Xb7‘,k)’Y7‘,k7

el

where ¢; € Q, a; € ZF, b;; € Z¥ \ {0}, and v;; € N are such that y;1 + - + Y <
k+deg f for alli € 1.

Let us choose a vector I € QF, I = (Aq,...,\g), such that (I,b;;) # 0 for all 4,
(such a vector can be computed in polynomial time; cf. [4]). For a complex T, let

x(1) = (e™,...,e™).
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We want to compute the limit
limOG(T) for G(1) = 5(Q, f;x(1)).
T—
In other words, we want to compute the constant term of the Laurent expansion of
G(7) around 7 = 0.
Let us consider a typical fraction
XO.
(1 — Xbl)’Yl e (1 — ka)’)’k :

Substituting x(7), we get the expression

ear

(1 —emP)m...(1—ePr)m’
where o = (a,l) and 3; = (b;,1l) for i = 1,... k. The order of the pole at 7 =0
isD=v+ 4+ < k+degf. To compute the constant term of the Laurent

expansion of (5.3) at 7 = 0, we do the following.
We compute the polynomial

(5.3)

that is the truncation at 77 of the Taylor series expansion of e®”. For i =1,...,k
we compute the polynomial p;(7) with degp; = D such that

T . .

T = pi(7) + terms of higher order in 7

at 7 = 0. Consecutively multiplying polynomials mod 77+!

mial u(7) with degu = D such that

, we compute a polyno-

a(r)p]'(r) -+ p}(7) = u(r) mod 707,

The coefficient of 77 in u(7) is the desired constant term of the Laurent expansion.

6. COMPUTING EL(A)

Let us fix a positive integer k. Let A C R? be a rational simplex given by the
list of its vertices and let L C R? be a rational subspace given by its basis and
such that dim L = k. In this section, we describe a polynomial time algorithm for
computing the value of E7(A) as defined in Section 1.2.

Let pr : R — L be the orthogonal projection. We compute the vertices of
the polytope @ = pr(A) and a basis of the lattice A = pr(Z?). For basic lattice
algorithms see [25] and [16].

As is known, as x € A varies, the function

¢(z) =voly_i (P;) where P, = (AN (z+L%))

is a piecewise polynomial on ). Our first step consists of computing a decomposition
(6.1) Q=J¢
i

such that C; C @ are rational polytopes (chambers) with pairwise disjoint interiors
and polynomials ¢; : L — R such that ¢;(z) = ¢(x) for x € C;.

We observe that every vertex of P, is the intersection of z 4+ L+ and some k-
dimensional face F' of A.
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For every face G of A with dimG = k — 1 and such that aff (G) is not parallel
to L*, let us compute

Ac={weL: o+ L Nafi(G) £ 0}.

Then Ag is an affine hyperplane in L. The number of different hyperplanes Ag
is d°*) and hence they cut @ into at most dO k) polyhedral chambers Cj; cf.
Section 6.1 of [I8]. As long as x stays within the relative interior of a chamber C;,
the strong combinatorial type of P, does not change (the facets of P, move parallel
to themselves) and hence the restriction ¢; of ¢ onto C; is a polynomial; cf. Section
5.1 of [24]. Since in the (d — k)-dimensional space =+ L+ the polytope P, is defined
by d linear inequalities, ¢; can be computed in polynomial time; see [15] and [3].
The decomposition (6.1) gives rise to the formula

Q1 =>[Qjl,

J

where @), are open faces of the chambers C; (the number of such faces is bounded
by a polynomial in d); cf. Section 6.1 of [18]. Hence we have

ELA)=3 3 4(m).

Jj meQ;NA

Fach inner sum is the sum of a polynomial over lattice points in a polytope of
dimension at most k. By a change of the coordinates, it becomes the sum over
integer points in a rational polytope and we compute it as described in Section 5.

7. COMPUTING e4_(A;n)

Let us fix an integer & > 0. We describe our algorithm, which, given a positive
integer d > k, a rational simplex A C R? (defined, for example, by the list of its
vertices), and a positive integer n, computes the number eg_x(A;n).

We use Theorem 1.1.

7.1. Computing the set L of subspaces. We compute subspaces L and numbers
w(L) described in Theorem 1.1. Namely, for each (d — k)-dimensional face F' of A,
we compute a basis of the subspace L = (lin F)*. Hence dim L¥ < k. Clearly,
the number of distinct subspaces L¥ is d°*). We let £ be the set consisting of the
subspaces L¥ and all other subspaces obtained as intersections of L¥. We compute
L in k (or fewer) steps. Initially, we let

L= {LF : Fis a (d — k)-dimensional face of A}.

Then, at every step, we consider the previously constructed subspaces L € L,
consider the pairwise intersections L N L as F' ranges over the (d — k)-dimensional
faces of A, and add the obtained subspace L N L to the set £ if it is not already
there. If no new subspaces are obtained, we stop. Clearly, in the end of this
process, we will obtain all subspaces L that are intersections of different L. Since
dim L% = k, each subspace L € L is an intersection of some k subspaces L+, Hence
the process stops after & steps and the total number |L£| of subspaces is dOG*),
Having computed the subspaces L € £, we compute the numbers p(L) as follows.
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For each pair of subspaces Li,Ls € L such that Ly C Lo, we compute the
number u(L1, Ly) recursively: if L1 = Lo, we let pu(L1, Lo) = 1. Otherwise, we let

(L, L) =~ > p(Ly, L),

Lel
LiCLCLo
L#L>

In the end, for each L € L, we let

w(z) = 3 wL.Ly).

LieL
LCLy

Hence p(L;, L;) are the values of the Mdbius function on the set £ partially

ordered by inclusion, so
[VEREE

LeL LeL
follows from the Mébius inversion formula; cf. Section 3.7 of [27].
Now, for each L € £ and m = n,n +t,...,n + td we compute the values of
Er(mA) as in Section 6, compute

v(mA) =" p(L)EL(mA),
Lel

and find vy_r(A;n) = eq_r(A, n) by interpolation.

8. POSSIBLE EXTENSIONS AND FURTHER QUESTIONS

8.1. Computing more general expressions. Let P C R be a rational polytope,
let & > 0 be a rational number, and let u € R4 be a rational vector. One can show
(cf. Section 4.1) that

d
}((n +a)P +u) N Zd‘ = Zei(P,a,u;n)ni for all n € N,
i=0
where e;(P,a,u;-) : N — Q, i =0,...,d, satisfy
ei(Pa,u;n+t) =e;(P,a,u;n) for all n € N,

provided t € N is a number such that ¢P is an integer polytope. As long as k is
fixed in advance, for given a, u, n, and a rational simplex A C R%, one can compute
ed—k (A, a,u;n) in polynomial time. Similarly, Theorem 1.1 and its proof extend
to this more general situation in a straightforward way.

8.2. Computing the generating function. Let P C R¢ be a rational polytope.
Then, for every 0 < 4 < d, the series

+o00
Z e;(P;n)t"
n=1

converges to a rational function f;(P;t) for |¢| < 1.

It is not clear whether fy_r(A;t) can be efficiently computed as a “closed form
expression” in any meaningful sense, although it seems that by adjusting the meth-
ods of Sections 5-7, for any given t such that |¢| < 1 one can compute the value of
fa—k(A;t) in polynomial time (again, k is assumed to be fixed in advance).
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8.3. Extensions to other classes of polytopes. If k£ is fixed in advance, the
coefficient e4_x(P;n) can be computed in polynomial time, if the rational polytope
P C R%is given by the list of its d+c vertices or the list of its d+c inequalities, where
c is a constant fixed in advance. A similar result holds for rational parallelepipeds
P, that is, for Minkowski sums of d rational intervals that do not lie in the same
affine hyperplane in R?.

8.4. Possible applications to integer programming and integer point
counting. If P C R™ is a rational polytope given by the list of its defining linear
inequalities, the problem of testing whether P N Z™ = () is a typical problem of
integer programming; see [I6] and [25]. Moreover, a general construction of “ag-
gregation” (see Section 16.6 of [25] and Section 2.2 of [26]) establishes a bijection
between the sets P N Z™ and A N Z% provided P is defined by d + 1 linear in-
equalities. Here A C R? is a rational simplex whose definition is computable in
polynomial time from that of P. It would be interesting to find out whether approx-
imating valuation E by valuation v of Theorem 1.1 for some k < d and applying
the algorithm of this paper to compute v(A) can be of any practical use to solve
higher-dimensional integer programs and integer point counting problems. It could
complement existing software packages [I1] and [10] based on the “short rational
functions” calculus.
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