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NOTES

Edited by Jimmie D. Lawson and William Adkins

The Multi-Dimensional Version of [ ab xPdx

Jean B. Lasserre and Konstantin E. Avrachenkov

1. INTRODUCTION. Besides its own interest, integration of polynomials over
simple sets such as simplices has important applications. In particular, in most finite
element integration methods ([7, p. 90, p. 175]), the domain of integration is decom-
posed into elementary cells and the function is approximated by a polynomial on
each cell. The simplex-like elements (triangles, tetrahedrons,. . .) are among the most
popular type of cells.

In this paper we obtain a new exact integration formula for a g-homogeneous poly-
nomial that is not an approximate quadrature formula ([1], [2], [6]) but rather is the
multi-dimensional version of the one-dimensional classical formula
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Among its nice features, the multi-dimensional analogue of (1.1) has a simple form, is
coordinate-free, and uses information at the vertices only. In addition, various simpli-
fications are possible to yield even simpler alternative formulae [4].

Since every polynomial can be represented as a sum of homogeneous polynomials,
one can easily apply our results to integrate an arbitrary polynomial over a simplex.

Another interesting feature of this formula is that it could be used efficiently in a
finite-element method using simplices. For example, while building the elementary
simplices A of the mesh, it is easy to associate once and for all with each A (via
this formula), a matrix Q7%, so that integrating a quadratic functional x’ Qx reduces to
computing trace(Q Q% ), which requires only n* scalar multiplications. This may be
particularly useful when one has to integrate various quadratic functionals on the same
mesh. A similar argument is also valid for arbitrary g-homogeneous functionals.

2. MAIN RESULT. Let A, C R"” be an n-dimensional (non-degenerate) simplex,
that is, x € A, if and only if x is a convex combination Zg Aix; (with A; >0
and ), A; = 1) of n + 1 points xo, xy, ..., X, such that the vectors (x; — xo), i =
1,2,...,n, are linearly independent. We let x’ denote the transpose of a vector x.

Let p(x) : R* — R be areal (positively) r-homogeneous polynomial, i.e., p(Ax) =
A p(x) forall L > 0, x € R", and some integer r > 0.

We are interested in computing

] p(x)dx. (2.1)
An

We first introduce some notation. With every symmetric multilinear form H :
(R™)? — R, given by

(X1, ..o, x9) > H(xy,...,x,), Xi,..., % €R", 2.2)
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one may associate a g-homogeneous polynomial x — f(x) := H(x,x,...,x) and
conversely, using a polarization formula, with every g-homogeneous polynomial f :
R" — R, one may associate a symmetric g-linear form H : (R*)? — R. Therefore,
we now consider the integration of a g-linear form H over the simplex A,,.

Theorem 2.1. Let xo, X1, ..., X, be the vertices of an n-dimensional simplex A,.
Then, for a symmetric g-linear form H : (R")? — R, one has

H(x,x,...,x)dx:%[ > H(xil,xiz,...,xiq):l. (2.3)

An q 0<i| iy, ..., Sig<n

Proof. We use the well-known formula for integrating a homogeneous polynomial on
the canonical simplex

o (11!.“(1,,!
x oo oxtdy = —————, 2.4
fgn L CES AT @

where Q, :=={x e R*| >}, x; <1; x; >0, i =1,2,...,n} ([2], [5]). Of course,
(2.4) is valid only for the canonical simplex €2,. The key idea is to use properties of a
symmetric g-linear form.

Write x € A, asx = Y ;o Ax; with A; > 0 and ), A; = 1, or equivalently, x =
Yo hixi (1 =30 A)xo with (Aq, ..., A,) € Q,, and where

Q= AeR"| D A< A420,i=12,..,n}

i=1

i.e., ©, is just the canonical simplex in R".
Therefore, noting that

x = i:)»ixﬁ (1—21:7»-)360 = xo+2ki(xi — X0),

we have, by a change of variable x — A,

H(x,x,...,x)dx = det(x; — xg, Xo — X0, . . . , X, — X0)

Ap

X / H(Z)»,»x,-—{-<I—Zki)xo,...,2k,-xi+(l—z ,')X()> di,
Qp i=1 i i=1 i=1

= n! vol(A,)

X f H(Xn:}biXi’{“ (l—i}»i>m,...,ik,»xl—+(l—zn: i>x0>d)\.-
S i=1 i=1

i=1 i=1

Expanding, we get:
H(x,x,...,x)dx = n! vol(A,)

An

aQ

x > A(ao,...,an)/ (1-2%) AN d (2.5)
Qn i=1

>0 @i=q
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As H is symmetric, in (2.5), we have

n—1
Ao, .. o) = (O‘f)(q a“") --~(q %’*O “’)H(ng,x;’“,...,xgn), 2.6)
0 1 n

where Y ;_,o; = g and where the notation H (xy°, x;", ..., x%) means that xo ap-
pears o times, x; appears «; times, .. ., X, appears «, times.
Now, with Y/, o; = g, we have

@
“ lag ! !
/(1_211.) ATI...indk=m 2.7)
Qn i=1

(n+ g)!
[2, (2.2)]. Therefore, using (2.6) and (2.7) in (2.5), and noting that

<q)<q —oeo) (q —Z:.:Olai) y aplog!---a,! gl
a)\ a o n+q!  (+qV

we get
q!n! o
H(x,x,...,x)dx = vol(A,) H(xg®, ..., x2)
An (n+q)! Z%;q 0
vol(A,)
= Z H(xi), Xiyy -+ 5 Xiy) u

( q ) 0<iy-~<ig=n
As one may see, the formula (2.3) is extremely simple. Among its nice features:

* it uses only n + 1 points, the vertices xo, ..., x, of A,.

it is coordinate-free, i.e., it is given directly for an arbitrary simplex and not only the
canonical simplex.

all coefficients in the formula are equal, positive, and with ratio to vol(A,) bounded
as n increases.

As already mentioned, every polynomial p,(x) : R” — R of degree g is the sum of
at most ¢ + 1 homogeneous polynomials of degree 0, 1, ..., g. To each one of them
corresponds a O-linear, 1-linear, . . ., g-linear form, to which in turn, the formula (2.3)
may be applied. Thus, Theorem 2.1 provides a simple way to integrate an arbitrary
polynomial on a simplex.

One may see that (2.3) is the n-dimensional counterpart of the one-dimensional
formula

b patl — gat! b—
f xdx = +‘; ) _ 1+qa[aq+aq“1b+~-~+abq"1+b‘1], (2.8)
a q ()

since (b — a) = vol([a, b]).
Remark 2.2. Consider the integration of a quadratic homogeneous functional x’Qx
(with Q an n-by-n symmetric real-valued matrix) on an n-dimensional simplex A.

The functional Q + [ A X' Qxdx may be viewed as a linear form on the n(n + 1)/2-
dimensional Hilbert space of real-valued symmetric matrices, with the Frobenius
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scalar product (Q, Q*) = trace(Q Q*). Therefore,

f X' Qxdx = vol(A) (Q, O%), 2.9)
A

for some symmetric matrix Q7. The identification of Q7 is easy from (2.3). For ex-
ample, withn =2 and A := {(x;, y,)},i =0, 1, 2,

Z XiX;j % Z [xiy; + yix;]

N 1 O<i<j<2 Osi<j<2
QA = g 1
2 Z [xiy; + yix;] Z Yij
0<i<j<2 0<i<j=<2
and in the n-dimensional case, for a simplex A, := {xo, ..., Xu},
.. 2 1
e =G De ), D bty xpnul

<k<l<n

Hence, with an arbitrary n-dimensional simplex A, one may associate a symmetric
matrix Q% so that for every (symmetric) functional x’Qx, (2.9) holds. This represen-
tation is especially useful when one has to compute (2.3) for several matrices Q. For
example, the matrices Q7 can be precomputed in a finite element method while build-
ing a mesh. Then, evaluating (2.3) for a functional x' Qx via (2.9), requires only n?
scalar multiplications, in contrast to evaluating n(n + 1)/2 terms of the form x;Qx;
(each term also requires about n* multiplications). Of course, a similar construction
holds for g-linear symmetric forms.
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