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ABSTRACT. We show that integrating a (positively) homogeneous function f
on a compact domain Q C R"™ reduces to integrating a related function on the
boundary 8. The formula simplifies when the boundary 80 is determined
by homogeneous functions. Similar results are also presented for integration
of exponentials and logarithms of homogeneous functions.

1. INTRODUCTION

We consider the integration of a continuous (positively) homogeneous function
f: R™ — R on a compact domain £} with boundary 9. Using Euler’s identity
for homogeneous functions, Green’s formula simplifies so that integrating f on Q
reduces to integrating a (simply related) function on the boundary 89Q. In the
particular case where Q := {z € R"| g;(z) < a;, i =1,...,m} and where the func-
tions g; are each (positively) homogeneous of degree p;, the formula is even simpler.
Actually, an alternative proof that uses only Euler’s formula is also outlined.

We thus extend to more general domains a result in [4] for integrating a homo-
geneous function on a convex polytope.

A potential application is the integration of arbitrary continuous functions on a
compact set 2. Indeed, as the polynomials are sums of homogeneous polynomials,
and are dense in C(Q2), the space of continuous functions on ) with the sup norm,
or even in L;(Q2), one could approximate [, fdz by Y, [, Pidx, where the P;’s are
homogeneous polynomials, and therefore use the previous result. This result could
also be used in finite element methods for the integration of a poynomial on each
individual volume element.

Finally, we also provide simple formulas for the integration of exponentials and
logarithms of homogeneous functions. For instance, integrating log f on a convex
polytope Q reduces to integrating log f on 8Q and to computing the volume of Q.

2. INTEGRATION OF A HOMOGENEOUS FUNCTION

Let f : R® — R be a real (positively) homogeneous function of degree p (or
in short, f is p-homogeneous), i.e. f(Az) = MPf(z) for all A > 0, z € R*. For
a (positively) p-homogeneous function that is continuously differentiable, Euler’s
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formula states that
(2.1) pf(z) =(Vf(z),z) for all z.

2.1. On the Riemann-Green formula. We first treat the 2-dimensional case.
Let  be a compact domain in R? with boundary 8. Let P(z,y) and Q(z,y)
be continuously differentiable on 2. Then, under some regularity conditions, the
well-known Riemann-Green formula (cf. [5]) states that

(2.2) //(‘%2 ap)d dy = / Pdz+Qdy.
This yields:

Lemma 2.1. Let f(z,y) be a continuously differentiable p-homogeneous function
on . Then

(23) 0+2) [[ rasay= [ fou)wdy-yaz)
Proof. As f is p-homogeneous, from (2.1)
pf(@y) =gl +ygl Vo) €9
Let P(z,y) :== —yf(z,y) and Q(z,y) := zf(z,y) for every (z,y) € Q.
0Q oP of  of

_8_;; — _6—:); =2f(z,y)+xa—z+ya—y = (P+2)f($,y) V(x,y) €.

Hence, applying the Riemann-Green formula (2.2) to P and Q yields

(P+2)//Qfdwdy=[99f(w,y)(wdy—ydw),

the desired result.

When f =1 (ie. p =0), one immediately retrieves the well-known formula
1
area(Q) = —/ zdy — ydz.
2 Jon

2.2. The general case. The previous result generalizes to R™ as follows:

Lemma 2.2. Let f : R" — R be a continuously differentiable p-homogeneous func-
tion and Q a compact domain R™ with boundary 0. Then

(2.4) (n+p) /Q fdo = /a (8 (M) do,

where 7t is the unit outward-pointing normal to 9.

Proof. With notation as in [6], let X be the vector field X := 3~ xj%. From
Proposition 2.3 in [6], we have

(2.5) / div(X) f dw +/ Xf dw =/ (X, 7) f do.
Q Q a0
Now, div(X) = n and from (2.1), X f = pf so that the result follows. O

Thus, integrating f on 2 reduces to integrating (M, )/ on the boundary &f.
We next show that Lemma 2.2 further simplifies in the case where the boundary
0N is determined by homogeneous functions.
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3. BOUNDARY DETERMINED BY HOMOGENEOUS FUNCTIONS

‘We now consider the special case where
(3.1) QCcRY):={zeR" gi(z)<ai i=1,...,m},

and the functions g; are each continuously differentiable (positively) p;-homogeneous
functions, ¢ = 1,...,m. We still assume that Q is compact. Finally, let ; := {z €
Q] gi(z) = a;} so that 0Q = |J-; Qs

Theorem 3.1. Assume that f is a continuously differentiable g-homogeneous func-
tion and the functions g; are each continuously differentiable and p;-homogeneous,
i=1,...,m. Then

3.2 n+q / fdw =" pia; / —_
( ) ( ) ; 1Y% Qi "ng,"
In particular, with f = 1, one obtains
m
(3.3) nxvol(Q) = 3 pia / IVgs|~do.
i=1 2

Proof. Lemma 2.2 applies so that
m
(3.4) (n+q) / fdw =Y f (X, ) fdo.
@ =17

Now, 7 = |Vg;|~1Vg; on §;. Therefore, using (2.1), we have on Q;
(X,Vg:) = (z,Vgi(2)) = pigi(z) = pias,
which yields the desired result. O

Remark. When  is a convex polytope, i.e. g;(z) = (4;,z) andp; =1,i=1,...,m,
then |Vg;| = |A;| and thus (3.2) simplifies to

("”)/fd“’ Zquu Rl

In addition, one may iterate the process for fQi fdo (cf. [4] for more details).

An alternative proof. Interestingly enough, there is a direct proof that does not use
Green’s formula. It was used in [4] for the case where 2 is a convex polytope.
Write a; = b}*, i =1,...,m, and let

(3.5) h(b) == / fdw = / fdo.
@ {9i(z)<bTE, i=1,...,m.}

It is immediate that h(Ab) = A"*9h(b), i.e. h is (n + ¢)-homogeneous and continu-
ously differentiable. In addition, one may show that

Oh —1 / f
- = ,,;bf' dO’.
o F 0. Vil

Hence, applying Euler’s formula to h yields

_ —Sopas [ o
(3.6) (n+ q)h(b) = (Vh(b),b) _i;pzaz /Q el

the desired result.
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Example. In R?, consider the domain
Q:={(z,9) € R?|zy <1; o* + ¢ < R% z,y >0}

and its volume [, dw (i.e. f =1 is 0-homogeneous).
Note that in (3.3), the coordinate axis boundaries of {2 do not contribute since

the boundary values a; are zero in this case.

Both g;(z,y) := zy and ga(z,y) := 2% + y? are 2-homogeneous. = {(z,y) €
Q| zy = 1} and Qp := {(z,y) € Q| 22 + y? = R?}. ||[Vg(M)|| = v/x?2 +y? so
that on Q; we have ||Vg1(M)|| = /(z* + 1)/2? and do = /(z* + 1)/x*dz, which
yields
(3.7) / IVg:| tdo = / ) z~ldz = 2log(a),

Q1 a~

where z = a is the solution to 22 4+ y? = R2, zy = 1.
Similarly, |Vgz| = 2R on s, so that

/Q IVga]~'do = 2 x (1/2R) x (Ret) = o,

where o = arctan (a=2). Hence, Theorem 3.1 yields
2vol(Q) = 4log (a) + R? arctan (a~2),
i.e. vol(R2) = 2log (a) + R? arctan (a~2)/2. This can be retrieved directly.

If we now take 2 := {(z,y)| zy < ;b <y < a;z > 0} with a > b > 0, we get
Qg := {(z,y) € N] y = a} and Q3 := {(z,y) € | —y = —b}. Therefore,

R R T N A R I A
o, 0, e Jo, b
so that Theorem 3.1 yields

1

, b
i.e. vol(Q2) = log (a/b), which is immediate to check.

2vol(Q) = 2log (%) + a% —b 2log(%),

4. INTEGRATING EXPONENTIALS AND LOGARITHMS

In this section, we consider exponentials and logarithms of homogeneous func-
tions. Indeed, we show that integrating such functions on €2 reduces to integrating
a related function on the boundary 9f2.

4.1. Exponentials. We first consider the case of an exponential e where h :
R™ — R is g-homogeneous. The particular case where h = (c,z) was considered
in [1] and [2] and was used to compute the number of integral points in a convex
polytope. We have the following result.

Theorem 4.1. Let Q be the convez polytope {x € R™|(A;,z) < ai,t=1,...,m}.
(a) Let h : R™ — R be g-homogeneous and continuously differentiable. Then,
for every k =0,1,...,

O

4.1 n+ gk / hkel dw + / hEtleh du = hkel do.
@D (ntak) | A 2141 o
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(b) Let h : R™ — R be g-homogeneous, continuously differentiable and strictly
positive on 2. Then, for every k=1,...,

4.2 n—qk / h*ehdw + ¢ / hF+leh duw h~*eh do.
“2) o) [ A Z T4 o,
(c) If p:=n/q is an integer, then
4.3 q / hPHleh dw = h~Pel do
“8 Z T Jo,
and fQ h*etdw, k = —p+1,...,-1,0,1,..., can all be expressed as integrals on

O0. In particular,

h o Pl — (p— 1)h-2 _ —_9\p—3
(4.4) q/ne do = Z|A|| [ - - Dh 4 - -2
+--+ (=1 (p — 1) /h"P]do.
(d) With h := (c,z), and for every &€ € R™, we get

(4.5) (c,) / el du = E <‘"4;1’j> el do.

Proof. Again, with f := h¥e? and with the vector field X := > mig%, Green’s
formula yields

(4.6) n/ fdw+/dew =/ (X, ) f do.
Q Q on
Using
Xf = (kh* ! +hk)eh2x¢§h‘ = g(kh* + R**1)eh, and (X, 7) = TAT A " n €,
i=1

we obtain

(4.7) (n+ qk) / R*eh dw + q / R*+leh dy = Z I, " h*eh do,
Qi

i.e. (4.1). Similarly, with f := h~*e" and similar arguments we obtain (4.2).

To get (c), just notice from (4.2) that [, h~™/9t1ehdy is expressed directly as an
integral over 92, which yields (4.3). Using (4.2) with k := n/q — 1 and (4.3), one
obtains [ h~"/9+2ehdw as an integral on . Therefore, iterating and using (4.2)
and (4.1), all the [, h*e"dw, for k := —n/g+1,...,-1,0,1,..., are expressed as
integrals on 09).

To get (d), apply Green’s formula (4.6), but now with X = Y. £0/0zx;, so that
div(X) = 0. O

The formula (4.1) remains valid even with A = 0 and k = 0. With the convention
0% = 1, (4.1) reduces to the volume formula (3.3) of .

Note that (4.5) was obtained in [1] using Stokes’ formula, and a similar argument
was used to show that it suffices to consider the vertices of the polyhedron. The
same can be done using the above argument.

Indeed, let H; be the (n — 1)-dimensional affine variety that contains €;, and
{u1,...,un—1} an orthonormal basis of the associated vector space. = € Q; can be
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written zq + E::ll y;u; with zg € ;, arbitrary. On ;, consider the vector field
71‘_1 £;0/0y;. Green’s formula yields

n—1
e X ) [ oo = S,y [ el
i=1 @ i Y
where Q;; := Q; N Q; and 7; (in the basis {u1,...,un—1}) is the unit outward-
pointing normal to €;;. Obviously, the process can be repeated up to the 0-
dimensional faces, i.e. the vertices of 2.

4.2. Logarithms. Consider now the function log f where f : R™ — R is continu-
ously differentiable, g-homogeneous and strictly positive on €.

Lemma 4.2. Let @ C R™ be a compact domain with boundary 052, and let f :
R™ — R be continuously differentiable, g-homogeneous and strictly positive on .

Then
(4.8) n/ log fdw + ¢ x vol(Q2) = / (M, ) log f(M) do.
Q an

In addition, if Q = {x € R"|(Ai,z) < a;, i = 1,...,m}, and Q; = {z €
Q| (Ai,z) = a;}, then

m
= %
(4.9) n/ﬂlogfdw + g xvol(Q) = ; TAi] /{;i log f do.

Proof. The proof is again the same as for the exponential. Note that with the
vector field X := ), 2,0/0z;, we have X log f = q and div(X) = n, so that (2.5)
reduces to (4.9). O

Hence, integrating log f on a convex polytope € reduces to integrating log f on
the boundary 92 and to computing the volume of the polyhedron.
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